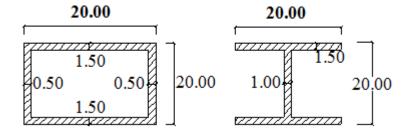


ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03

<u>TRABAJO PRACTICO № 6:</u> "SOLICITACION POR TORSION EN RÉGIMEN ELÁSTICO – ST"

N = Número de grupo


ABCDE = Número de legajo de un integrante del GRUPO (si algún número es cero tomar diez)

EJERCICIO Nº 1: Se dispone de una chapa galvanizada de 2 m x 0.68 m x 2 mm de espesor 'e'. Se desea armar con ella un tubo de 0.20 m de diámetro. Calcular el Mt que puede absorber el tubo considerado cerrado y abierto, calculando los θ en cada caso (ángulo específico de torsión).

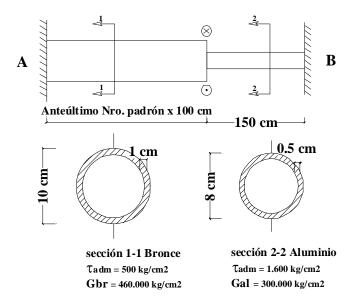
Si se cerrara el tubo con remaches de 5 mm de diámetro 'Ø' ¿cuántos de estos serán necesarios por metro para que el tubo se comporte a torsión como si estuviera cerrado? Se considerará para este cálculo que la fricción en la junta no absorbe fuerza de corte. Controlar que la separación λ entre remaches sea: $3\emptyset < \lambda < 6\emptyset$ y $6e < \lambda < 15e$

DATOS DEL EJERCICIO:		
$\tau_{adm CHAPA} = 800 \text{ kgf/cm}^2$	τ_{adm} REMACHE = 1.260 kgf/cm ²	σ_{ap} = 2.600 kgf/cm ²

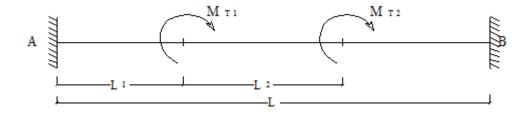
EJERCICIO Nº 2: Determinar la tensión tangencial máxima y el giro específico (χt) de dos barras solicitadas con el mismo par torsor Mt = 100 Kgf·m, una de las secciones es rectangular hueca de paredes delgadas y otra un perfil doble T de alas anchas de igual altura ancho y espesor. Comparar los resultados.

DATOS DEL EJERCICIO: G = 80.000 MPa

06	Solicitación por Torsión en Régimen Elástico - ST	2013*	20	001	Pág.:	1
TP Nº	DENOMINACION	AÑO	CUATRIM.	CURSO	de:	6



ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03

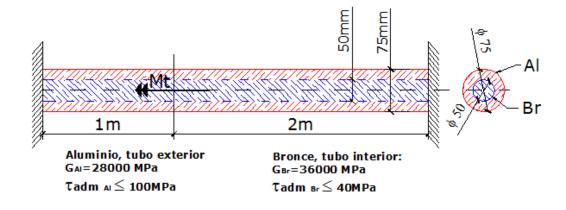

EJERCICIO Nº 3: Para la estructura esquematizada:

- a. Determinar las reacciones de vínculo.
- b. Determinar el Mt admisible de la estructura indicada, y trazar los diagramas de momentos torsores, de giros unitarios y absolutos a lo largo de la pieza.
- c. Calcular la tensión tangencial máxima en ambas secciones, y dibujar los diagramas.

EJERCICIO Nº 4: Dimensionar la barra de la figura para las condiciones descriptas si se utiliza un perfil laminado normal doble T. Condiciones:

- a. RESISTENCIA: $\tau_{\text{máxima}} \le 80 \text{ MN/m}^2 = 800 \text{ kg/cm}^2$
- b. DEFORMACION: $\theta \leq 1^{\circ}$

06	Solicitación por Torsión en Régimen Elástico - ST	2013*	2º	001	Pág.:	2
TP Nº	DENOMINACION	AÑO	CUATRIM.	CURSO	de:	6



ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03

DATOS DEL EJERCICIO:				
Mt1 = 0.5 x E MN·m	Mt2 = 0.7 x D MN·m	G = 80.000 MPa		
L1 = 4.50m	L2 = 4.50m	L = 12.00m		

EJERCICIO Nº 5: Para la barra bi-empotrada de dos materiales solidarios en toda su longitud, esquematizada en la figura, se pide:

- a. Verificar si es posible aplicar un momento torsor Mt = 8 kN·m
- b. Trazar el diagrama de momentos torsores de la barra.
- c. Para la o las secciones analizadas, trazar los diagramas de tensiones tangenciales.
- d. Trazar el diagrama de χt y giros absolutos a lo largo de la barra.

06	Solicitación por Torsión en Régimen Elástico - ST	2013*	20	001	Pág.:	3
TP N⁰	DENOMINACION	AÑO	CUATRIM.	CURSO	de:	6

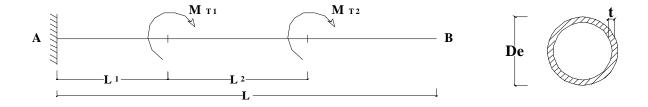
ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03

EJERCICIOS OPTATIVOS:

EJERCICIO Nº 6: Para una pieza sometida a un momento torsor Mt, calcular una sección circular maciza y otra sección circular anular (con relación $R_{\text{exterior}}/R_{\text{interior}} = 1.25$). Comparar sus diámetros, ángulos específicos ó curvatura de torsión (χ t) y consumo de materiales.

DATOS DEL EJERCICIO:			
Mt = 2 x E t⋅m	G = 80.000 MPa	Re/Ri = 1.25	τ _{adm} = 1.000 kgf/cm ²

EJERCICIO Nº 7: Dimensionar la sección transversal de la barra esquematizada en la figura sometida a torsión, considerando las siguientes condiciones límites:


- c. RESISTENCIA: 1. $\sigma_{ppal\ m\'{a}x} \le 140\ MN/m^2 = 1400\ kg/cm^2$
 - 2. $\tau_{\text{máxima}} \leq 80 \text{ MN/m}^2$ = 800 kg/cm²
- d. DEFORMACION: $\theta \leq 1^{\circ}$
- e. DURABILIDAD: $t = espesor \ge 2.5 \text{ mm}$
- f. FUNCIONAL: De/t \leq 30
- g. ECONOMICA: Peso mínimo

Trazar los diagramas de Mt, χ_t y θ (giro absoluto a lo largo de la barra)

Trazar el diagrama de τ en la sección de dimensionado

Si se agrega una fuerza axil P = 10t en el extremo B, indicar el nuevo estado de tensión. ¿Verifica la condición de resistencia [a]?

NOTA: Para simplificar ante tantas condiciones es preferible imponer De/t = 30 y verificar si luego verifica el resto.

06	Solicitación por Torsión en Régimen Elástico - ST	2013*	2º	001	Pág.:	4
TP Nº	DENOMINACION	AÑO	CUATRIM.	CURSO	de:	6

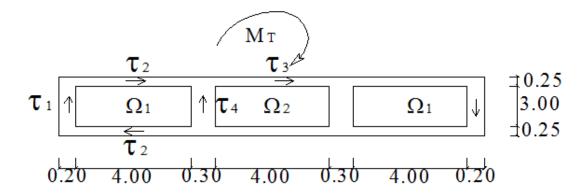
ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03

DATOS DEL EJERCICIO:		
Mt1 = 0.5 x E MN·m	Mt2 = 0.7 x D MN·m	G = 80.000 MPa
L1 = 4.50m	L2 = 4.50m	L = 12.00m

EJERCICIO Nº 8: Ídem barra del problema 7 y suponiendo empotrado el punto B. Verificar para la sección adoptada la condición a.2 y b

<u>EJERCICIO Nº 9:</u> Ídem problema 8 suponiendo que se reemplaza por el requerimiento de una sección tubular cuyo contorno exterior es un cuadrado.

DATOS DEL EJERCICIO:		
a/t < 30	a = De (problema 5)	t = t (problema 5)


06	Solicitación por Torsión en Régimen Elástico - ST	2013*	2º	001	Pág.:	5
TP Nº	DENOMINACION	AÑO	CUATRIM.	CURSO	de:	6

ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03

EJERCICIO Nº 10: Determinar las tensiones tangenciales en la sección transversal indicada en la figura, sometida a un momento torsor Mt constante a lo largo de la pieza. ¿Que porcentaje de Mt toma cada celda? ¿Cuanto gira un extremo respecto del otro?

DATOS DEL EJERCICIO:		
Mt = 10 x E t⋅m	G = 8.000 MPa	L _{pieza} = 20m

06	Solicitación por Torsión en Régimen Elástico - ST	2013*	20	001	Pág.:	6
TP Nº	DENOMINACION	AÑO	CUATRIM.	CURSO	de:	6