

ESTABILIDAD II - 84.03

TRABAJO PRACTICO № 01: "SOLICITACIÓN AXIL EN RÉGIMEN ELÁSTICO - SA"

EJERCICIOS OBLIGATORIOS:

- Ejercicio N°1: figura 01.03
- Ejercicio Nº 6: esquema estructural A
- Ejercicio Nº 8
- Ejercicio N°10
- Ejercicio N°19: figura 19.01

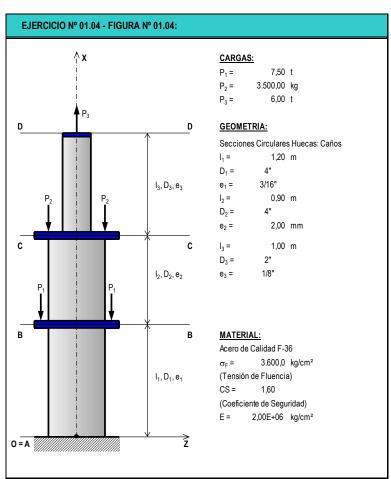
NOTAS PRELIMINARES:

En todos los esquemas y dibujos que se realicen, deberán indicarse los valores característicos;

PARTE "A":	"SISTEMAS ISOSTÁTICOS"
------------	------------------------

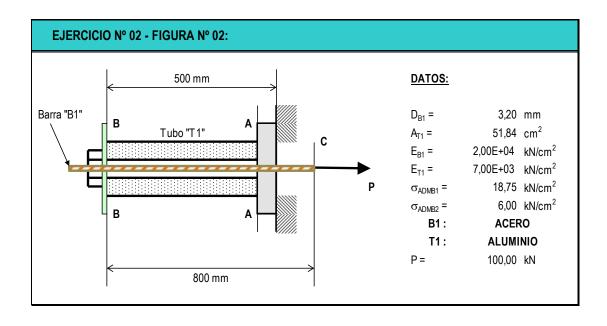
EJERCICIO Nº 01: Para los siguientes esquemas estructurales indicados en las Figuras Nº 01.01 a 01.04, se pide:

- 01.01 Determinar la función esfuerzo normal, N = N(x), a lo largo del eje de las estructuras y dibujar el diagrama de esfuerzos normales, verificando, además, la correspondencia entre función y diagrama;
- $01.02 \text{idem } 01.01 \text{ pero para la función tensión normal y su diagrama, } \sigma = \sigma(x);$
- 01.03 Dibujar los volúmenes de tensiones normales para la sección "D";
- 01.04 Ídem 01.01 pero para la función desplazamientos absolutos y su diagrama, $\delta = \delta(x)$;
- $01.05 \text{idem } 01.01 \text{ pero para la función deformaciones específicas y su diagrama, } \epsilon = \epsilon(x);$
- 01.06 Especificar de manera particular los desplazamientos absolutos para las secciones "B", "C" y "D";
- 01.07 Hallar los desplazamientos relativos entre las secciones "C" y "D";
- 01.08 Verificar la sección más solicitada por resistencia;
- 01.09 Verificar la sección más solicitada por desplazamiento.


05.01-SA	TP Nº 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	1
TP N°	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

ESTABILIDAD II - 84.03

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	2
TP N°	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

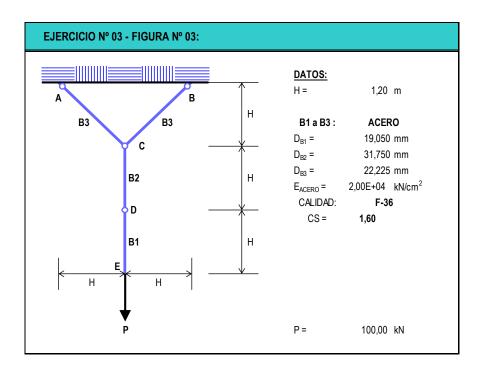


ESTABILIDAD II - 84.03

EJERCICIO Nº 02: El esquema de la Figura Nº 02 representa una barra de acero "B1" que se encuentra vinculada mediante tuerca y arandela contra una placa infinitamente rígida en la sección "B-B", la cual apoya contra un tubo de aluminio "T1". Asimismo, el tubo descansa en su otro extremo "A-A" contra un bloque rígido de hormigón. A este bloque se le ha practicado un orificio de manera de permitir pasar la barra "B1". En el extremo "C" de la barra "C1" se aplica una fuerza "P" en la dirección y sentido indicados. Se pide:

- 02.01 Calcular el desplazamiento del punto "C";
- 02.02 Determinar las tensiones actuantes en el tubo y en la barra;
- 02.03 Verificar las tensiones de ambas barras indicando la relación entre las tensiones de trabajo y las admisibles.

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	3
TP N°	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

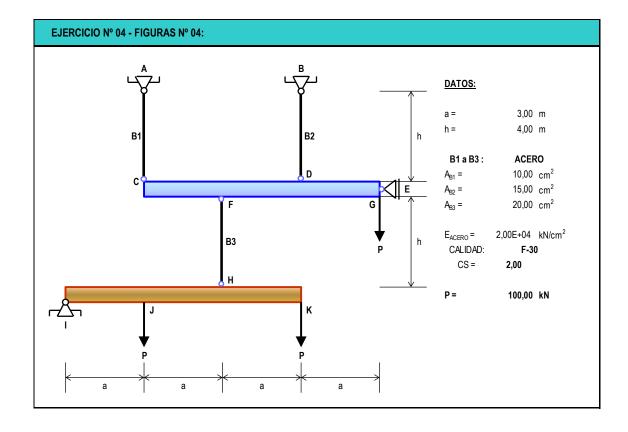


ESTABILIDAD II - 84.03

EJERCICIO Nº 03: Para el esquema de la Figura Nº 03 se pide verificar a resistencia la estructura. En caso de que alguna barra no verifique las tensiones admisibles, el cliente solicita que la misma sea reemplazada por otra con una sección igual al doble de la mínima necesaria. Una vez hecho esto, el cliente vuelve a introducir una nueva modificación de la carga y solicita que se verifique nuevamente cada barra del sistema. Si ahora, existe alguna que no verifica, requiere que la misma sea reemplazada por otra que tenga una sección igual a la mínima necesaria de la nueva condición de solicitación.

Utilizar siempre diámetros comerciales: 1/16"; 1/8", 3/16", ¼", 5/16", 3/8", 7/16", ½", 5/8", ¾", 7/8", 1", 1 1/8", 1 ¼", 1 3/8", 1 ½", etc.

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	4
TP N°	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24



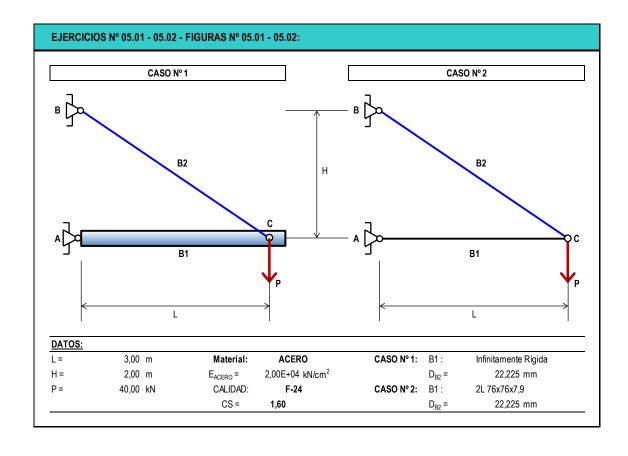
ESTABILIDAD II - 84.03

EJERCICIO Nº 04: Para el esquema estructural de la Figura Nº 04, el cual está conformado por dos (2) barras infinitamente rígidas (la CG y la IK) y por tres barras deformables (B1, B2 y B3), se pide:

- 04.01 Estudiar la isostaticidad del sistema;
- 04.02 Determinar las reacciones de vínculo externo;
- 04.03 Determinar los esfuerzos normales actuantes en las barras B1 a B3;
- 04.04 Verificar por resistencia a las tres barras;
- 04.05 Calcular los desplazamientos de los siguientes puntos: C, E, y K..

05.01-SA	TP Nº 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	5
TP N°	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

ESTABILIDAD II - 84.03


EJERCICIO Nº 05: Para las 2 estructuras del esquema de la Figura Nº 05, se pide:

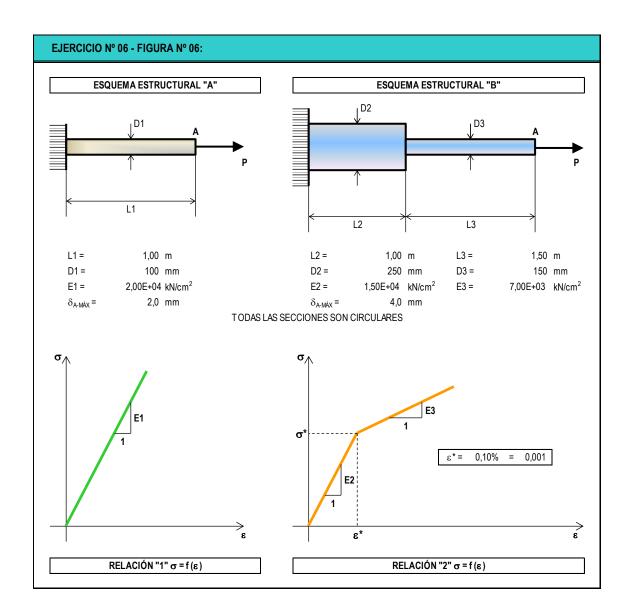
05.01 – Verificar por resistencia las barras B1 y B2, cuando corresponda;

05.02 – Verificar mediante la construcción de Williot (analíticamente) y realizando previamente una representación gráfica de los corrimientos, la condición de que el desplazamiento del punto "C" no exceda la condición de rigidez o de deformación:

 $\delta \leq H/750$;

05.03 – En el caso de que alguna de las barras no verifique alguna de las dos condiciones, se pide redimensionar las mismas de manera que cumpla ambas condiciones.

05.01-SA	TP N° 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	6
TP №	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

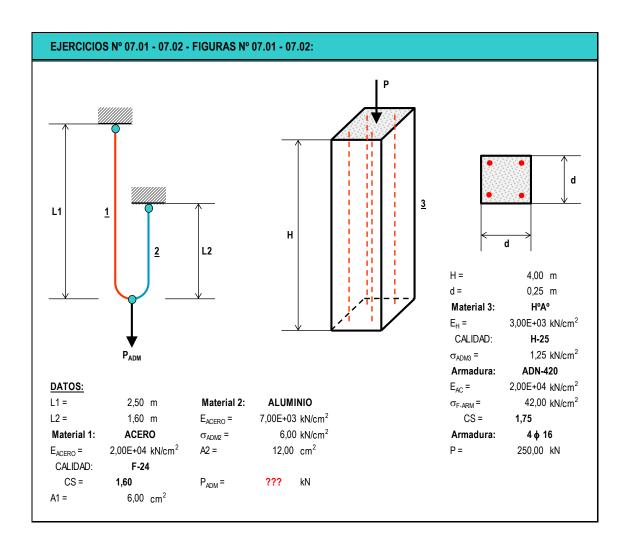


ESTABILIDAD II - 84.03

EJERCICIO Nº 06: La Figura Nº 06 indica dos esquemas estructurales. Ambos pueden tener los dos comportamientos mecánicos-estructurales indicados en los diagramas $\sigma = \sigma(\varepsilon)$. Se pide para cada esquema estructural y bajo sus dos comportamientos, pero trabajándolos en formas separadas e independientes:

- 06.01 Determinar la magnitud de la fuerza "P" de manera de alcanzar en los extremos libre de las estructuras los desplazamientos δ_{A-MAX} indicados para cada uno;
- 06.02 Trazar los diagramas N(x), δ (x), σ (x) y ϵ (x), para cada esquema y para cada comportamiento;
- 06.03 Trazar los diagramas P-δ y σ -ε para cada esquema y cada comportamiento.

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	7
TP №	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24


ESTABILIDAD II - 84.03

PARTE "B":	"SISTEMAS HIPERESTÁTICOS"
PARIE B.	SISTEMAS RIFERESTATIOUS

EJERCICIO Nº 07: Para los dos esquemas estructurales de las Figuras Nº 07.01 y 07.02, las cuales representan 2 barras colineales en el 1º caso, y una columna de hormigón armado (HA) en el 2º caso, se pide:

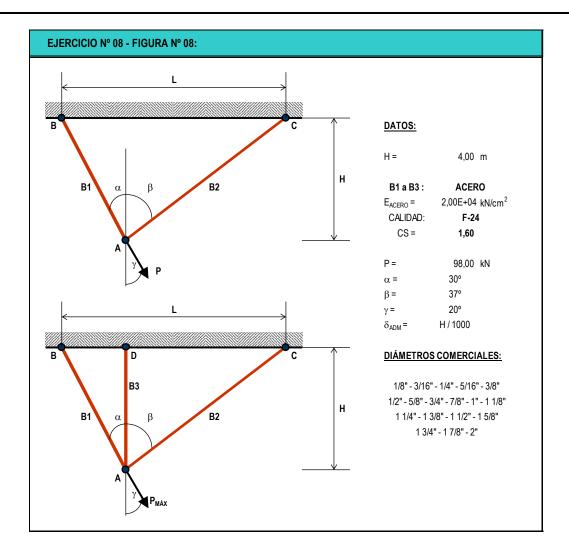
07.01 – Para la estructura de la Figura N° 07.01 hallar la carga P admisible (P_{ADM}) de manera que verifiquen las condiciones de resistencia y de desplazamiento dada esta última por la relación $\delta \le \text{Li}/500$;

07.02 – Para la estructura de la Figura Nº 07.02 verificar la columna por resistencia y calcular el acortamiento de la misma.

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	8
TP №	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

ESTABILIDAD II - 84.03

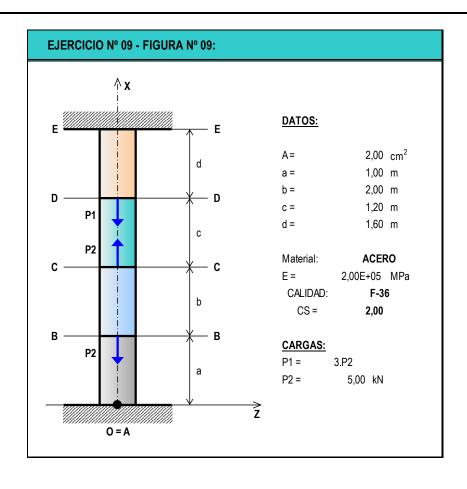
EJERCICIO Nº 08: Para las estructuras de la Figura Nº 08 se pide:


- 08.01 Dimensionar las barras para la condición de resistencia adoptando secciones con diámetros comerciales según se indica (secciones circulares macizas);
- 08.02 Verificar mediante la construcción gráfica-analítica (de Williot) y realizando previamente una representación gráfica de los corrimientos, la condición de que el desplazamiento del punto "A" no exceda la condición de rigidez o de deformación:
- $\delta \leq H/1000$;
- 08.03 Ídem el inciso 08.02 aplicando el "Teorema de los Trabajos Virtuales";
- 08.04 En el caso de que alguna de las barras no verifique alguna de las dos condiciones, se pide redimensionar las mismas de manera que cumpla ambas condiciones;
- 08.05 Indicar las tensiones de trabajo finales de ambas barras y la relación entre las tensiones de trabajo y las admisibles, para las secciones adoptadas;
- 08.06 Si se agrega una barra vertical de igual sección que la mayor adoptada, se requiere calcular cuál es la carga máxima, P_{MÁX}, que puede soportar la estructura cumpliendo la condición de resistencia indicada;
- 08.07 Determinar el nuevo corrimiento del punto "A" aplicando la construcción gráfica-analítica (de Williot) y el "Teorema de los Trabajos Virtuales".

05.01-SA	TP Nº 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	9
TP N°	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

ESTABILIDAD II - 84.03

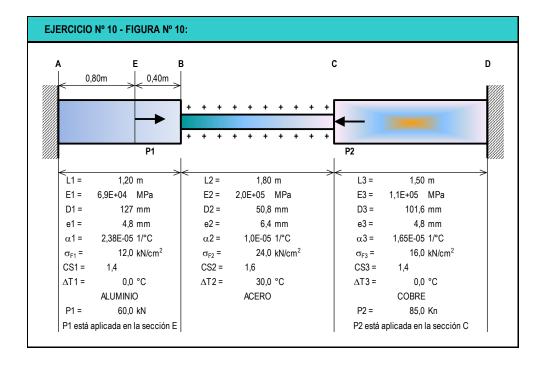
EJERCICIO Nº 09: Para la estructura de la Figura Nº 09, conformada por una barra doblemente empotrada, la cual está solicitada por las fuerzas que se muestran, se pide:


- 09.01 Determinar las reacciones de vínculo externo;
- 09.02 Trazar el diagrama de esfuerzos normales a lo largo de la estructura;
- 09.03 Trazar el diagrama de tensiones normales a lo largo de la estructura;
- 09.04 Trazar el diagrama de desplazamientos absolutos a lo largo de la estructura;
- 09.05 Trazar el diagrama de deformaciones específicas a lo largo de la estructura;
- 09.06 Determinar los desplazamientos relativos entre las secciones CB, DC y DB.

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	10
TP №	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

ESTABILIDAD II - 84.03

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	11
TP №	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24



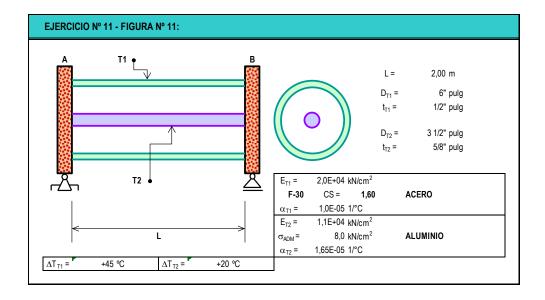
ESTABILIDAD II - 84.03

EJERCICIO Nº 10: Para el esquema estructural de la Figura Nº 10, conformada por tres barras colineales en cuanto a su eje, se pide:

- 10.01 Calcular las reacciones de vínculo;
- 10.02 Trazar los diagramas de características, de tensiones normales, de desplazamientos absolutos y de deformaciones específicas;
- 10.03 Verificar las secciones indicando cuáles cumplen las condiciones de resistencia y cuáles no.

NOTA 02: Todo lo anterior deberá ser resuelto por "inspección" y por aplicación del "Método de las Incógnitas Estáticas"

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	12
TP N°	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

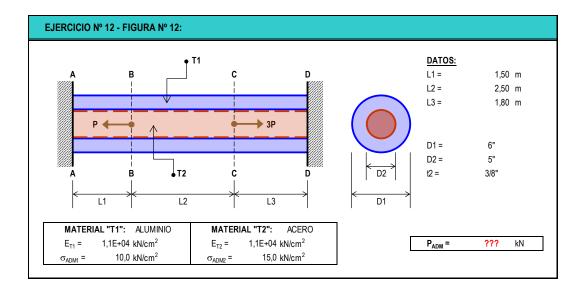


ESTABILIDAD II - 84.03

EJERCICIO Nº 11: Dos tubos concéntricos se disponen como indica la Figura Nº 11. Ambos están vinculados a dos cabezales rígidos en "A" y en "B". En coincidencia con el primero se dispone un apoyo fijo, mientras que con el segundo se dispone un apoyo móvil. Cada uno de los tubos sufre una variación de temperatura con relación a una determinada condición considerada como "inicial". Se pide:

- 11.01 Calcular las reacciones de vínculo;
- 11.02 Calcular los esfuerzos en cada tubo;
- 11.03 Trazar los diagramas de características, de tensiones normales, de desplazamientos absolutos y de deformaciones específicas;
- 11.04 Verificar las secciones indicando cuáles cumplen las condiciones de resistencia y cuáles no.

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	13
TP №	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

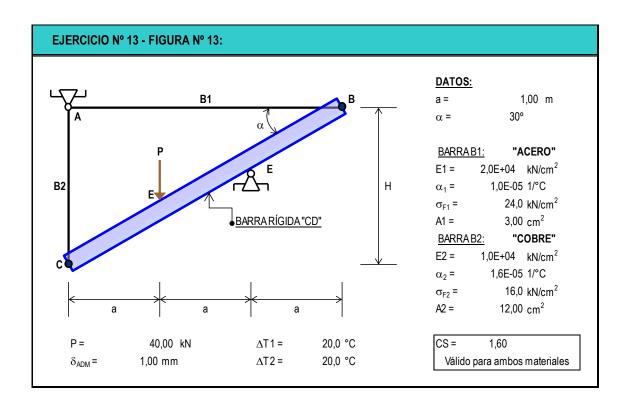


ESTABILIDAD II - 84.03

EJERCICIO Nº 12: Dos tubos concéntricos y solidariamente (o rígidamente) vinculados a través del diámetro interno de **"T1"** con el diámetro externo de **"T2"**, se disponen como indica la Figura Nº 12. Además, ambos están empotrados en los extremos A y D. En las secciones indicadas se aplican 2 cargas "P" y "3P". Se pide:

- 12.01 Determinar el valor de "PADM";
- 12.02 Calcular las reacciones de vínculo totales de la estructura indicando cuánto hace reaccionar en cada extremo cada tubo para la carga P_{ADM} determinada en 12.01;
- 12.03 Trazar los diagramas de características totales y de cada tubo;
- 12.04 Determinar los diagramas de tensiones normales correspondientes a cada tubo a lo largo de los ejes de las mismas:
- 12.05 Determinar los diagramas de desplazamientos absolutos y de deformaciones específicas de la estructura a lo largo del eje de la misma;
- 12.06 Verificar las secciones indicando cuáles cumplen las condiciones de resistencia y cuáles no.

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	14
TP N°	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

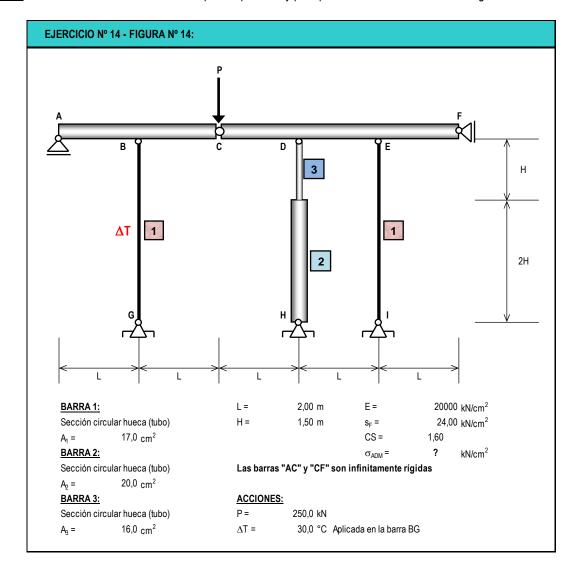


ESTABILIDAD II - 84.03

EJERCICIO Nº 13: Para el esquema estructural de la Figura Nº 13, constituida por una estructura de barras, en las cuales las B1 y B2 son consideradas como deformables elásticamente, mientras que la barra "CD" deberá considerarse como infinitamente rígida. La estructura se encuentra solicitada bajo dos estados de cargas o de acciones en forma independiente; el primero corresponde a la "Causa Fuerza – CF", mientras que el segundo a la causa "Variación de Temperatura – ΔΤ". Se pide para cada uno de los estados de cargas o de acciones indicados y en forma independiente:

- 13.01 Resolver el sistema (solicitaciones, tensiones, alargamientos o acortamientos y deformaciones específicas) para la causa fuerza;
- 13.02 Resolver el sistema (solicitaciones, tensiones, alargamientos o acortamientos y deformaciones específicas) para la causa variación de temperatura;
- 13.03 Verificar las secciones de las barras elásticas para la combinación de los estados de causas 1 y 2 actuando simultáneamente, tanto por resistencia como por deformación. En caso de no verificar alguna de las condiciones se deberá redimensionar la o las barras para que ambas condiciones sean verificadas.

05.01-SA	TP N° 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	15
TP N°	CARPETA - SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24



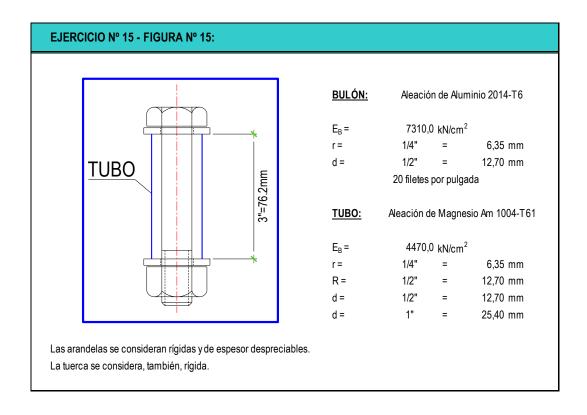
ESTABILIDAD II - 84.03

EJERCICIO Nº 14: Para el esquema estructural de la Figura Nº 14, la cual se encuentra solicitada bajo dos estados de cargas (causa fuerza y causa variación de temperatura) que actúan en forma independiente, se pide lo siguiente:

- 14.01 Las solicitaciones y las tensiones normales para cada una de las cuatro barras con comportamiento elástico lineal;
- 14.02 Los diagramas de alargamientos y de deformaciones específicas de las cuatro barras;
- 14.03 Verificar para cada estado en forma independiente y en forma conjunta la condición de resistencia;
- 14.04 Para cada estado y para la combinación de ambos, determinar el desplazamiento vertical del punto "C".

NOTA: Todo lo anterior deberá ser resuelto por "inspección" y por aplicación del "Método de las Incógnitas Estáticas"

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	16
TP №	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

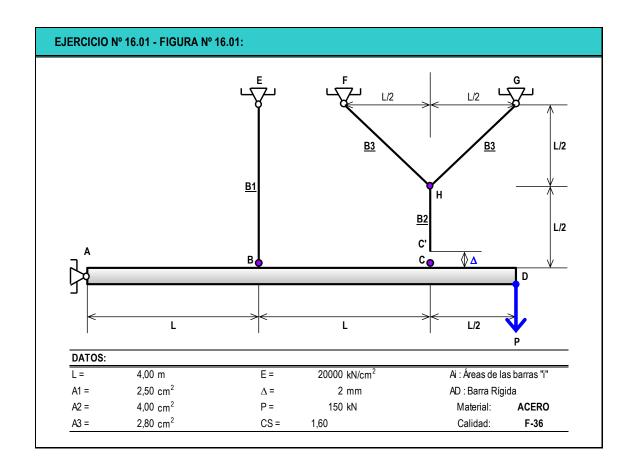


ESTABILIDAD II - 84.03

EJERCICIO Nº 15: El dispositivo de la Figura Nº 15 está constituido por un tornillo con doble arandela y tuerca y un tubo. Inicialmente, se aprieta la tuerca suavemente hasta que la arandela inferior toque el tubo. Luego se aprieta la tuerca nuevamente proporcionándole una media vuelta. Se pide para esta situación:

- 15.01 Calcular los esfuerzos en cada elemento, bulón y tubo;
- 15.02 Calcular las tensiones en cada elemento.

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	17
TP N°	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

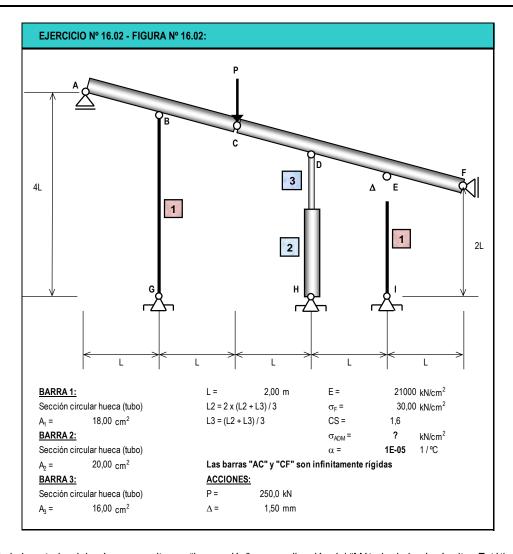


ESTABILIDAD II - 84.03

PARTE "C":	"PROBLEMAS DE MONTAJE"

EJERCICIO Nº 16: Los esquemas estructurales de las Figuras Nº 16.01 y 16.02 están constituidos por barras que se consideran infinitamente rígidas en comparación de las restantes, de acuerdo a lo indicado. Las restantes barras serán consideradas como deformables o flexibles. Debido a un error de montaje, las estructuras no han podido ser montadas de acuerdo a lo proyectada. Se pide:

- 16.01. Para el esquema de la Figura Nº 16.01, determinar la fuerza <u>"F"</u> que hay que aplicar en el extremo <u>C'</u> para vincularla con la articulación <u>C</u>. Mientras que para la 16.02, indicar la temperatura de calentamiento a aplicar sobre la barra <u>"1"</u> (o El) para salvar el error y poder montar;
- 16.02 Determinar los esfuerzos resultantes en todas las barras después de realizado el montaje y en la situación de que el sistema esté preparado para entrar en servicio;
- 16.03 Si se aplica una fuerza "P" en $\underline{\mathbf{D}}$, (para la Figura N° 16.01), y en $\underline{\mathbf{C}}$, (para la Figura N° 16.02); calcular los esfuerzos que ésta provoca y los resultantes totales provenientes del montaje, de la situación posterior a la vinculación y de $\underline{\mathbf{P}}$;
- 16.04 Calcular las tensiones en cada etapa del proceso y las totales, verificando las tensiones admisibles. Indicar, además, qué porcentaje del total es absorbido en cada etapa;
- 16.05 Calcular el descenso del punto "D". (Figura № 16.01) y del punto "C" (Figura № 16.02).

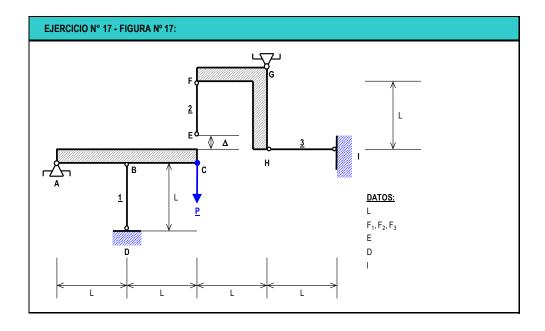


05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	18
TP №	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

ESTABILIDAD II - 84.03

NOTA: Todo lo anterior deberá ser resuelto por "inspección" y por aplicación del "Método de las Incógnitas Estáticas"

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	19
TP №	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

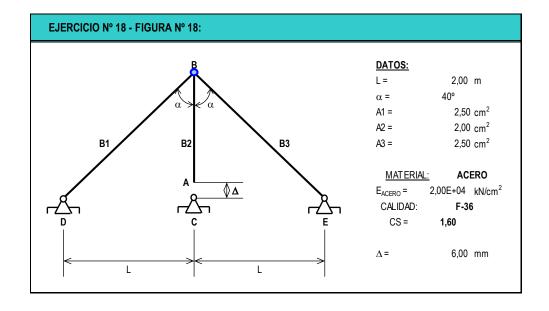


ESTABILIDAD II - 84.03

EJERCICIO Nº 17: La Figura Nº 17 muestra un sistema de dos barras rígidas, ABC y FGH, vinculadas mediante tres bielas elásticas de igual material pero de diferentes áreas. En la barra "2" se observa una diferencia de montaje "D". Se pide:

- 17.01 Determinar los esfuerzos en las bielas luego de producido el montaje;
- 17.02 Cuánto valen los esfuerzos en las bielas calculadas en el inciso "17.01", para el caso particular en que todas ellas fuesen de igual área? (F1 = F2 = F3 = F)?
- 17.03 Si ahora la estructura del inciso "17.02" (F = cte.) se la somete a la acción de una fuerza "P" como se indica en la figura, se requiere determinar los esfuerzos finales en cada una de las tres bielas, es decir, los esfuerzos que surgen de la combinación de cargas "MONTAJE + P".

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	20
TP №	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

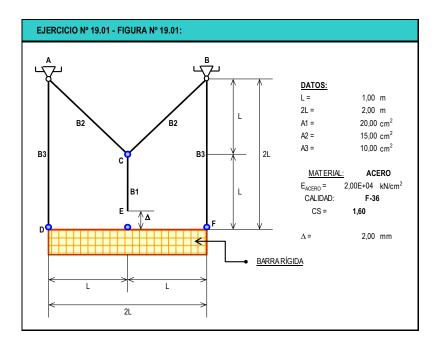


ESTABILIDAD II - 84.03

EJERCICIO Nº 18: El montaje de las barras del sistema cuyo esquema se indica se logra forzando los extremos "A" y "C". Se pide:

- 18.01 Determinar las tensiones en las barras después del montaje e indicar los esfuerzos normales actuantes en las barras:
- 18.02 Resolver el inciso "18.01" de dos maneras distintas.

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	21
TP N°	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

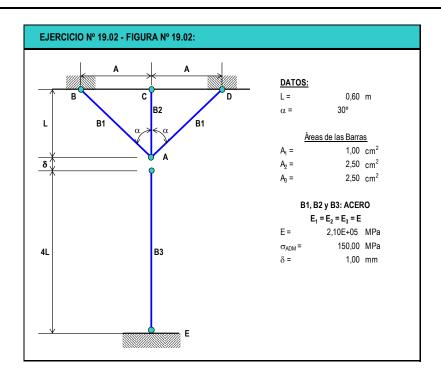

ESTABILIDAD II - 84.03

EJERCICIO Nº 19: Para los esquemas estructurales de las Figuras Nº 19.01 y 19.02, las cuales evidencian un error de montaje, se pide:

19.01 – Calcular los esfuerzos y tensiones de montaje debido al error en la fabricación de las barras "B1" y "B3" respectivamente;

NOTA: Resolver el problema de tres maneras distintas:

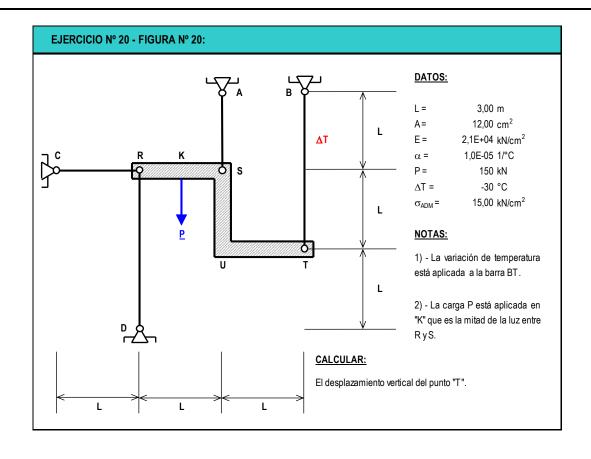
- a) Aplicando dos fuerzas iguales y contrarias en los puntos a unir;
- b) Aplicando una única fuerza hacia abajo en E para salvar el montaje, y luego descargar. Resolver el hiperestático por "inspección";
- c) Aplicando una variación de temperatura en B1 para salvar el montaje, y luego retirar la carga de temperatura. Resolver el hiperestático por aplicación del Método de las Incógnitas Estáticas utilizando el Teorema de los Trabajos Virtuales.



05.01-SA	TP N° 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	22
TP N°	CARPETA - SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

ESTABILIDAD II - 84.03

EJERCICIO Nº 20: Para el esquema estructural de la Figuras Nº 20, sobre la cual actúan dos causas deformantes, la causa fuerza y la variación de temperatura, se pide calcular:


- 20.01 Los esfuerzos normales en cada una de las barras;
- 20.02 Las tensiones normales en cada barra indicando si verifican o no las tensiones admisibles, así como las ratios de trabajo;
- 20.03 Calcular el desplazamiento vertical del punto "T".

05.01-SA	TP N° 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	23
TP N°	CARPETA - SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24

ESTABILIDAD II - 84.03

05.01-SA	TP № 01: Solicitación Axil en Régimen Elástico – SA –	0	2019	2	Todos	Pág.:	24
TP №	CARPETA – SUB-CARPETA - DENOMINACION	REV.	AÑO	CUATRIM.	CURSOS	de:	24