ECUACIONES NO LINEALES – Segunda Parte

Autor: Alderete, Iván Martín

Retomemos el mismo ejercicio que resolvimos por punto fijo:

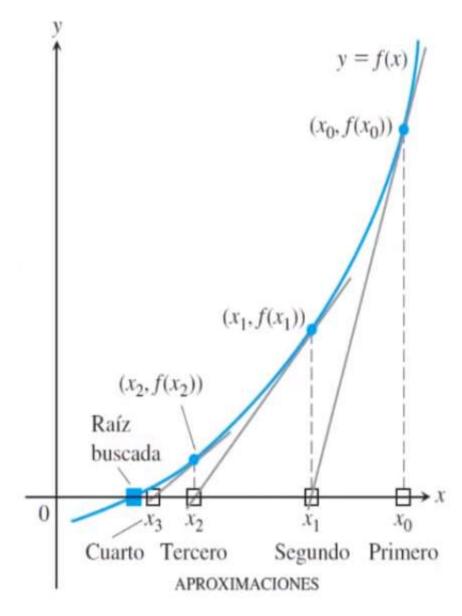
Hallar la raíz de $f(x) = \frac{x^2}{4} - sen(x)$ en el intervalo [1,5; 2] con un error absoluto menor a 0,02.

2. MÉTODOS DE CONVERGENCIA (Parte 2):

b. NEWTON-RAPHSON:

La idea de este método es utilizar la recta tangente de la función para hallar la raíz de forma "más rápida". Pero no siempre es el método más conveniente: si la función f(x) presenta múltiples puntos de inflexión o pendientes grandes en el entorno de la raíz, es más probable que el algoritmo diverja.

Empezando por una semilla x_0 , se calcula x_1 a partir de la sucesión $x_{n+1} = g(x_n)$, como en punto fijo. La idea del método: se calcula el corte con el eje horizontal y la recta tangente de f en x_0 (x_1). Luego se encuentra la recta tangente de f en x_1 y se la interseca con el eje de abscisas, para encontrar x_2 , y así se continúa hasta hallar una aproximación de la raíz que se desee.



 $Figura\ 1-M\'etodo\ de\ Newton\ Raphson.$

La expresión de g para el método de Newton Raphson será:

$$g(x) = x - \frac{f(x)}{f'(x)}$$

Y, para este problema:

$$g(x) = x - \frac{\frac{x^2}{4} - sen(x)}{\frac{x}{2} - cos(x)}$$

Habría que probar las condiciones de existencia y unicidad de punto fijo, además de verificar que la derivada de f no se anula en el intervalo a analizar. En este caso, la evaluación de la existencia del punto fijo en I no se cumpliría, a menos que el intervalo se reduzca a, por ejemplo, [1,8; 2], como se ve en la *Figura* 2. La gráfica muestra a nuestra función g(x), en el recuadro **rosa** se representa la región [1,5; 2]x[1,5; 2], mientras que en la **verde** se distingue la región [1,8; 2]x[1,8; 2].

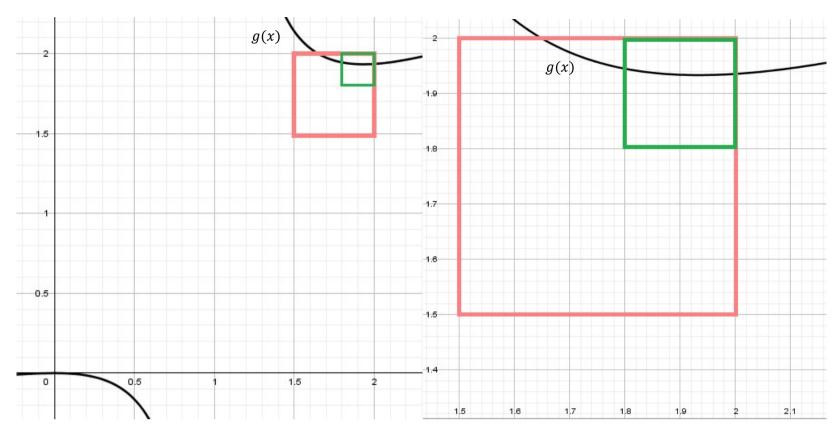


Figura 2 – Condición de existencia del punto fijo para g definida por el método de Newton-Raphson

Dejo para ustedes lo siguiente: probar (de manera gráfica y/o analítica), si se cumple la condición de unicidad para Newton-Raphson en el intervalo [1,8; 2]; ¿qué ocurre si, por ejemplo, elijo como semilla un valor del intervalo [1,5; 1,6], donde vimos que no podemos asegurar la existencia del PF? Por otra parte, la derivada de la función original no tiene su cero en [1,8; 2].

Y la tabla es análoga al caso anterior:

n	x_n	x_{n+1}	$arepsilon_n$
0	1,80	1,945358	0,145358
1	1,94536	1,933826	0,011532
2	1,93383	1,933754	0,000072

Como alcanzamos la tolerancia pedida en la segunda iteración, la expresión de la raíz de la función es:

$$x = 1,93 \pm 0,02$$

c. **SECANTE**:

El método de la secante utiliza una aproximación de la derivada empleada en Newton Raphson de tipo discreta, es decir:

$$f'(x) \approx \frac{\Delta f}{\Delta x}$$

De manera que la sucesión es:

$$x_{n+1} = x_n - f(x_n) * \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Como necesita dos valores de referencia (dos valores semilla), se puede utilizar un método de arranque y luego continuar con la sucesión $x_{n+1} = g(x_n)$ por este método. Si utilizamos bisección (por comodidad), tenemos $x_0 = 1,75$ y $x_1 = 1,875$. Y si organizamos lo que necesitamos para iterar en una tabla:

n	x_{n-1}	x_n	$f(x_{n-1})$	$f(x_n)$	x_{n+1}	ε_n
0	1,75	1,875	-0,21836	-0,07518	1,940633	0,06563
1	1,875	1,94063	-0,07518	0,0091279	1,933527	0,00711
2	1,94063	1.93353	0.009128	-0,0003	1.933753	0.00023

En la segunda fila conseguimos nuestra restricción. Por lo tanto:

$$x = 1,93 \pm 0,01$$

La ventaja de este método radica en que no se necesita conocer la derivada de la función y se evitan cálculos engorrosos si la misma es compleja.

2. ÓRDENES DE CONVERGENCIA (Parte 2):

Completamos la tabla de órdenes de convergencia con los últimos métodos:

Método	Orden de convergencia
BISECCIÓN	Lineal $(p = 1)$
REGULA FALSI	Lineal $(p = 1)$
PUNTO FIJO	Lineal $(p = 1)$
NEWTON RAPHSON	Cuadrático ($p=2$)
SECANTE	Superlineal $(1$

Vamos a compararla con los valores experimentales (calculando a partir de los resultados en los ejercicios realizados):

Método	Orden de convergencia (experimental)
BISECCIÓN	1,00
REGULA FALSI	1,02
PUNTO FIJO	0,70
NEWTON RAPHSON	2,00
SECANTE	1,55

Les propongo las siguientes <u>actividades</u>:

- Agregar una iteración en la tabla de punto fijo, y recalcular el orden de convergencia.
- Calcular la constante asintótica del error en cada tabla, utilizar p recalculado en PF.
- Realizar los gráficos a continuación para cada uno de los ejercicios vistos: ε_n vs n y log (ε_{n+1}) vs log (ε_n) . En función de estos, analizar qué información se puede extraer de cada uno.
- Si no conozco el método utilizado, ¿puedo determinar cuál se utilizó a partir de estos gráficos?