Proceso de Implementación y Análisis de Temporización

Contenido

- > Realización del Proceso de Implementacion
- > Generacion de Reportes de Implementacion
- Descripcion del analisis estatico de temporizacion y los caminos estaticos de temporizacion
- Descripcion de las verificaciones de tiempos de estabilizacion (setup) y retencion (hold)
- Analisis de la relacion entre la frecuencia de los relojes y la verificacion de tiempos
- > Generacion de reportes para hacer analisis estatico de temporizacion
- > Usu del reporte *Timing Summary* para verificar el cumplimiento de las restricciones temporales
- > Generación del Archivo de Configuración de la FPGA y configuración de la misma

Temario

- Proceso de Implementacion
- Reportes
- Analisis estático de temporizacion
- Generacion del archivo de configuracion y configuración de la FPGA
- Resumen

Proceso de Implementación

El proceso de Implementación se compone de 5 subprocesos

- > Opt_design: Optimización de la lógica
- > Power_opt_design: Optimización del consumo
- > Place_design: ubicación física de los elementos
- > Phys_opt_design: optimización de las redes post-ubicación
- > Route_design: Ruteo del sistema

Subproceso opt_design: Optimizacion de la Logica

Busca una netlist optima para ubicacion y ruteo

- Se hace una nueva optimizacion de la lógica en la netlist completa a partir del RTL sintetizado y la IP agregada
 - Realiza recortes de la lógica no utilizada en la netlist de entrada
 - Busca un tiempo de propagacion constante
 - Recalcula las ecuaciones de las LUTs

Es opcional en desarrollos independientes (aunque es recomendable)

- Por ejemplo: elimina la logica asociada a bancos no usados cuando se utiliza la IP *MIG* (Memory Interface Generator) (bloques phaser/iodelay/....)
- Se ejecuta automaticamente en desarrollos basados en proyectos

Opt Design (opt_design)	
is_enabled	\checkmark
tcl.pre	
tcl.post	
-verbose	
-directive	Default
More Options	Explore
Power Opt Design (power_opt_design)	ExploreArea
is enabled	ExploreSequentialArea
tcl.pre	AddRemap
tcl.post	RuntimeOptimized
More Ontions	NoBramPowerOpt
	Default

Opciones de opt_design

> Desarrollos independientes

- Se puede especificar cuales optimizaciones realizar en un script

opt_design

Description:

Optimize the current netlist. This will perform the retarget, propronst, sweep and bram_power_opt optimizations by default.

Syntax:

```
opt_design [-retarget] [-propconst] [-sweep] [-bram_power_opt] [-remap]
        [-resynth_area] [-resynth_seq_area] [-directive <arg>] [-quiet]
        [-verbose]
```

Usage:

Name	Description		
[-retarget]	Retarget		
[-propconst]	Propagate constants across leaf-level instances		
[-sweep]	Remove unconnected leaf-level instances		
[-bram_power_opt]	Perform Block RAM power optimizations		
[-remap]	Remap logic optimally in LUTs		
[-resynth_area]	Resynthesis		
[-resynth_seq_area]	Resynthesis (with Sequential optimizations)		
[-directive]	Mode of behavior (directive) for this command. Please		
	refer to Arguments section of this help for values for		
	this option		
	Default: Default		
[-quiet]	Ignore command errors		
[-verbose]	Suspend message limits during command execution		

Subproceso power_opt: Optimizacion del consumo

- La optimizacion del consumo incluye realizar habilitaciones de reloj (clock gating), de manera de lograr reducciones del consumo dinamico de hasta un 30%
- Las optimizaciones de habilitacion de reloj se realizan a nivel del sistema completo y no realizan cambios en la logica o las señales de reloj definidas
- Esta técnica tambien se aplica sobre los bloques IP

١

INPS89_16_02101

Opciones para optimizacion de consumo

> Reduccion automatica del consumo

- Automaticamente se apagan las partes no usadas del sistema
- No requiere conocimientos detallados del sistema
- La interface grafica permite la optimizacion a nivel global y a nivel objetos
 - Comando para optimizacion global: power_opt_design
 - Optimizacion a nivel local a traves del comando SDC set_power_opt
 - Instancia: Incluir/excluir instancias de la optimizacion
 - Dominio de Reloj:: Optimizar instancias sincronizadas por un reloj especifico
 - Tipo de Celda: Block RAM, registros, SRL, DSP, etc

Subproceso place_design: ubicación física de los elementos

> Desarrollos basados en proyectos

 Se ejecuta en la etapa de implementacion

> Desarrollos independientes

-Comando Tcl place_design

Puede usar un archivo XDEF para ubicaciones iniciales

Place Design (place_design)	
tcl.pre	
tcl.post	
-directive	Default
More Options	SSI_SpreadSLLs
Post-Place Power Opt Design (power_opt)	SSI_BalanceSLLs
is_enabled	SSI_BalanceSLRs
tcl.pre	SSI_HighUtilSLRs
tcl.post	RuntimeOptimized
More Options	AltWI DrivenPlacement
Post-Place Phys Opt Design (phys_opt_de	Default

place_design

Description: Automatically place ports and leaf-level instances

Syntax:

Usage:

Name	Description
[-directive]	Mode of behavior (directive) for this command. Please refer to Arguments section of this help for values for this option. Default: Default
[-no_timing_driven]	Do not run in timing driven mode
[-timing_summary]	Enable accurate post-placement timing summary.
[-unplace]	Unplace all the instances which are not locked by Constraints.
[-post_place_opt]	Run only the post commit optimizer
[-quiet]	Ignore command errors
[-verbose]	Suspend message limits during command execution

Características del subproceso de Ubicacion

> Etapas de la Ubicacion

- Chequeo DRC Pre-ubicacion
 - Verifica conexiones no ruteables, restricciones fisicas validas y sobreutilizacion de recursos
- Ubicacion
 - Ubicacion de I/O y relojes
- > Ubicacion de Macros y bloques basicos
 - Comandadas por temporizacion y por recorrido de señales
 - Busca evitar el congestionamiento en el ruteo
- > Ubicacion detallada
 - Establece la ubicacion de flip-flops, LUTs, etc.
 - Empaqueta los bloques en Slices
- > Optimizaciones Post-ubicacion detallada

Subproceso phys_opt_design: Optimización de las redes postubicación

Optimizacion Post-ubicacion comandada por temporizacion

- Copia y ubica amplificadores para redes con alto fanout y retardo negativo
 - · La copia solo se hace si mejora la temporizacion
 - El retardo debe estar dentro de un limite especifico
 - Alrededor del 10% del worst negative slack (WNS)

> Disponible en la interface grafica

- -phys_opt_design
- Se ejecuta entre place_design y route_design

Post-Place Phys Opt Design (phys_opt_	design)
is_enabled	
tcl.pre	
tcl.post	
-directive	Default
More Options	Explore
Route Design (route_design)	ExploreWithHoldFix
tcl.pre	AggressiveExplore
tcl.post	AlternateReplication
-directive	AddRetime
More Options	AlternateElowWithRetiming
Post-Route Phys Opt Design (phys_opt_	_d Default

phys_opt_design

Description: Optimize the current placed netlist.

Syntax:

phys_opt_design	[-fanout_opt] [-placement_opt] [-routing_opt] [-rewire]
	[-critical_cell_opt] [-dsp_register_opt] [-bram_register_opt]
	[-bram_enable_opt] [-shift_register_opt] [-hold_fix] [-retime]
	[-force_replication_on_nets <args>] [-directive <arg>]</arg></args>
	[-critical_pin_opt] [-clock_opt] [-quiet] [-verbose]

Usage: Name	Description
[-fanout_opt]	Do cell-duplication based optimization on
[-placement_opt]	high-famout timing critical nets Do placement based optimization on timing critical nets
[-routing_opt]	Do routing based optimization on timing critical nets
[-rewire]	Do rewiring optimization
[-critical_cell_opt]	Do cell-duplication based optimization on timing critical nets
[-dsp register opt]	Do DSP register optimization
[-bram register opt]	Do BRAM register optimization
[-bram enable opt]	Do BRAM enable optimization
[-shift register opt]	Do Shift register optimization
[-hold fix]	Attempt to improve slack of high hold
	violators
[-retime]	Do retiming optimization
[-force replication on nets]	Force replication optimization on nets
[-directive]	Mode of behavior (directive) for this
	command. Please refer to Arguments section of
	this help for values for this option
	Default: Default
[-critical_pin_opt]	Do pin-swapping based optimization on timing critical nets
[-clock_opt]	Do clock skew optimization in post-route optimization
[-quiet]	Ignore command errors
[-verbose]	Suspend message limits during command execution

Subproceso route_design: Ruteo del sistema

> Desarrollos basados en proyectos

- Se incluye en la etapa de implementacion

> Desarrollos independientes

-Comando Tcl route_design

> Reporte de ruteo

- -Comando Tcl report_route_status
- Verifica el ruteo de redes individuales
 - Totalmente ruteadas: lista los recursos de ruteo
 - Listado de Ruteos fallidos

□ Route Design (route_design)	
tcl.pre	
tcl.post	
-directive	Default
More Options	Explore
More Options ■ Post-Route Phys Opt Design (phys_opt_d is_enabled tcl.pre	NoTimingRelaxation MoreGlobalIterations HigherDelayCost
tcl.pre tcl.post -directive	AdvancedSkewModeling RuntimeOptimized Ouick
More Options	Default

route_design

Description: Route the current design

Syntax:

route_design	[-unroute] [-release_memory] [-nets <args>] [-physical_nets]</args>
	[-pin <arg>] [-directive <arg>] [-tns_cleanup]</arg></arg>
	[-no_timing_driven] [-preserve] [-delay] -max_delay <arg></arg>
	-min_delay <arg> [-timing_summary] [-quiet] [-verbose]</arg>

Usage:

Name	Description
[-unroute]	Unroute whole design or the given nets/pins if used
[-release_memory]	Release Router memory. Not compatible with any other options.
[-nets]	Operate on the given nets.
[-physical nets]	Operate on all physical nets.
[-pin]	Operate on the given pin.
[-directive]	Mode of behavior (directive) for this command. Please
	refer to Arguments section of this help for values for
	this option.
	Default: Default
[-tns_cleanup]	Do optional TNS clean up.
[-no timing driven]	Do not run in timing driven mode.
[-preserve]	Preserve existing routing.
[-delay]	Use with -nets or -pin option to route in delay driven
	mode.
-max_delay	Use with -pin option to specify the max_delay
	constraint on the pin.When specified -delay is
	implicit.
-min_delay	Use with -pin option to specify the max_delay
	constraint on the pin.When specified -delay is
	implicit.
[-timing_summary]	Enable post-router signoff timing summary.
[-quiet]	Ignore command errors
[-verbose]	Suspend message limits during command execution

Características del proceso de Ruteo

> Etapas del ruteo

- Ruteo de redes especiales y señales de reloj
- Ruteo comandado por temporizacion
 - Priorizado por tiempos de setup/hold
 - · Intercambio de entradas en las LUTs para mejorar los caminos criticos
 - Corrige dentro de ciertos limites las violaciones a los tiempos de setup/hold violations

> Dos modos

- Normal (por defecto): El ruteo comienza con los componentes ubicados y se intenta rutear todas las redes
- Re-Entrante (solo en diseños independientes): se puede rerutear y mantener fijo el ruteo de redes especificas

Temario

o Proceso de Implementacion

• Reportes

- Analisis estático de temporizacion
- Generacion del archivo de configuracion y configuración de la FPGA
- Resumen

Luego de ejecutarse el proceso de Implementacion:

- Las pestañas de Fuentes (Sources) y Redes (Netlist) no cambian
 - A medida que se selecciona un recurso, se muestra su ubicacion en el dispositivo físico (FPGA)
- Los resultados de temporizacion se puedne ver en el reporte *Timing Summary*
- Al seleccionar cada red, la ubicacion de la lógica y el ruteo se muestra en la vista del dispositivo
 - Esta forma de ver la ubicacion ayuda cuando es necesario reubicar para mejorar el analisis de temporizacion

Reportes de Implementacion

- En el menu Flow Navigator se muestran los reportes mas usados, mientras que la pestaña Reports contiene otros reportes mas detallados
 - Reporte *Post Optimization DRC*: Enumera los chequeos de DRC en las I/O que fueron exitosos
 - Reporte Post Power Optimization DRC: Enumera los chequeos de DRC de consumo que fueron exitosos
 - Reporte *Place and Route Log*: Describe el proceso de implementacion y los resultados obtenidos
 - Reporte IO: Enumera el pinout final del sistema
 - Reporte *Clock Utilization*: Describe los recursos de reloj utilizados y la utilizacion de recursos en cada dominio de reloj
 - Reporte Utilization: Describe los recursos de la FPGA utilizados en formato texto
 - Reporte *Control Sets*: describe como se agruparon las señales de control

Name	Modified	Size	GUI Report
Synth Design (synth_design)			
- 🕒 Vivado Synthesis Report	7/13/16 2:44 PM	17.2 KB	
🖺 Utilization Report	7/13/16 2:44 PM	6.5 KB	
Design Initialization (init_design)			
i 🛅 Timing Summary Report			
G Opt Design (opt_design)			
Post opt_design DRC Report	7/13/16 4:10 PM	1.1 KB	
📄 Post opt_design Methodology D			
I 🖿 Timing Summary Report			
Power Opt Design (power_opt_design)			
🖿 Timing Summary Report			
Place Design (place_design)			
🖳 🗎 Vivado Implementation Log	7/13/16 5:58 PM	21.7 KB	
Placement Incremental Reus			
- 📄 IO Report	7/13/16 4:10 PM	116.8 KB	
- 🗋 Utilization Report	7/13/16 4:10 PM	7.6 KB	
🗎 Control Sets Report	7/13/16 4:10 PM	2.5 KB	
- Incremental Reuse Report			
Timing Summary Report			
Post-Place Power Opt Design (post_place	_power_opt_design)		
- M Timing Summary Report			
Post-Place Phys Opt Design (phys_opt_de	esign)		
- M Timing Summary Report			
Route Design (route_design)			🔺 🔛 Implemented Design
Vivado Implementation Log	7/13/16 5:58 PM	21.7 KB	- T <mark>x</mark>
WebTalk Report	7/13/16 5:58 PM	18.6 KB	Constraints Wiza
DRC Report	7/13/16 4:10 PM	1.1 KB	A THE TRACT COMM
Methodology DRC Report	10 10 C		Ealt Timing Const
Power Report	7/13/16 4:10 PM	7.5 KB	🐴 Deport Timing Su
Route Status Report	7/13/16 4:10 PM	0.6 KB	
Timing Summary Report	7/13/16 4:10 PM	7.1 KB	Report Clock Net
Incremental Reuse Report			
Clock Utilization Report	7/13/16 4:10 PM	7.3 KB	🗾 🔤 Report Clock Inte
Post-Route Phys Opt Design (post_route	_phys_opt_design)		
Post-Route Physical Optimizatio			Report DRC
E: Write Bitstream (write_bitstream)			
Vivado Implementation Log	//13/16 5:58 PM	21.7 KB	Report Noise
WebTalk Report	7/13/16 5:58 PM	18.6 KB	A CONTRACTOR OF STATES

Report Power

Reporte Utilization

- > Presionar dos veces en la pestaña *Reports* para verlo en formato texto
- En el menu Flow Navigator, en la seccion Implementation, Presionar en el reporte Utilization para ver los resultados en formato tabular

Reporte I/O

- En este reporte se ve una tabla con el listado de todas las señales, sus propiedades y su ubicacion
 - Es importante verificar la asignacion de pines, ya que las herramientas reubican todos los pines que no tienen señales asignadas. Por ejemplo, si se define un bus de 16 bits en I/O, pero solo se utilizan 12 en el sistema; los 4 no utilizados pueden ser reubicados en lugares fisicos no relacionados con los 12 utilizados.

roject Summary X		Report - synth_1 X	i i keport - impi_i	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>
C:/CTT-Vivado/sw_le	ed_20142/sw_led_20142.runs/im	npl_1/system_wrappe	r_io_placed.rpt	
23 +	+			
24 Total Use	er IO			
25+	+			
26	151			
27 +	+			
28				
29				
30 2. IO Assig	mments by Package Pin			
31				
32				
33 +		+	-+	
34 Pin Numbe	er Signal Name	Bank Type	Pin Name	Use
35 +	+	·+	-+	+
36 A1	FIXED_IO_mio[1]		PS_MI01_500	BIDIR
37 A2	FIXED_IO_mio[2]		PS_MI02_500	BIDIR
38 A3	FIXED_IO_mio[5]		PS_MI05_500	BIDIR
39 A4	FIXED_IO_mio[6]		PS_MI06_500	BIDIR
40 A5			GND	GND
41 A6	FIXED_IO_mio[13]		PS_MI013_500	BIDIR
42 A7	FIXED_IO_mio[18]		PS_MI018_501	BIDIR
43 A8	FIXED_I0_mio[20]	2	PS_MI020_501	BIDIR
44 A9	FIXED_IO_mio[36]		PS_MI036_501	BIDIR
45 A10			VCCO_MIO1_501	I VCCO
46 All	FIXED_I0_mio[30]		PS_MI030_501	BIDIR
47 A12	FIXED_I0_mio[28]	L.	PS_MI028_501	BIDIR
48 A13	FIXED_I0_mio[26]		PS_MI026_501	BIDIR
49 A14	FIXED_I0_mio[22]		PS_MI022_501	BIDIR

Reporte Clock Utilization

- Este reporte describe los recursos de reloj utilizados en el sistema
 - Listado de BUFG, BUFH,
 BUFHCE, MMCM, y un analisis por dominio de reloj

10	sw_ieu_201	-72/5W_IBU_2014	aruns/impi_t/sys	rem_widther_conv_onisation_bigreo.thr
10				
11 Clock U	tilizati	on Report		
12				
13 Table o	£ Conten	ts		
14		1997 - Carlon Carlon (Carlon Carlon (Carlon (C	200.000	
151. Clock	& Primit	ive Utilizat	ion	
162. Deta	ils of G	lobal Clocks		
173. Deta	lis of R	egional Cloc	KS 	
18 4. Deta	lis of M	ulti-Regiona	1 Clocks	
195. Deta	113 OF I	/U UIOCKS		
206. Deta	113 OT L 5 Demi-	ocal Liocks		
21 /. U10C	Kegion	s : key Reso	urce utiliza	ition
22 8. Net 1	<i>wise</i> res	ources used	in clock reg in clock reg	rion XUVI
23.9. Met	Wise Les	ources used	in clock reg	JION AITI
2511 Net	wise re	sources used	in clock re	gion X1V2
25 II. NCC 26	WISC IC	Sources used	III CIOCK IE	
27 1 Cloci	k Primit	ive Utilizat	ion	
28				
29				
30 +	-+	+	+	+
31 Type	Used	Available	Num Fixed	
22.1	-+	+	+	+
32 +	1	I 32	1 0	l l
33 BUFG	1 0	72	I 0	1
33 BUFG 34 BUFH		1 16	1 0	1
33 BUFG 34 BUFH 35 BUFIO	1 0			
33 BUFG 34 BUFH 35 BUFIO 36 MMCM	I 0 I 0	4	1 0	
32 + 33 BUFG 34 BUFH 35 BUFIO 36 MMCM 37 PLL	0 0 0	I 4 I 4	I 0 I 0	1
33 BUFG 34 BUFH 35 BUFIO 36 MMCM 37 PLL 38 BUFR	I 0 I 0 I 0 I 0	4 4 16	I 0 I 0 I 0	1 1 1

Reporte Control Sets

- Este reporte describe los grupos de señales de control en el sistema (idealmente deberia ser los menos posibles)
- El numero de grupos describe como se agrupan las señales de control
 - Esto determina la habilidad de las herramientas de lograr una alta utilizacion del dispositivo fisico
 - El numero de señales de control esta determinado por la inferencia de señales de set/reset y habilitacion de reloj
 - El numero de señales de control se puede reducir si estas se comparten en el sistema

C:/xup/fpga_flow/2016_	2_ZYNQ_labs/zed/lab4/lab4.runs/im	pl_1/wave_gen_top_control_sets_p	laced.rpt	
4 Date 5 Host 6 Command 7 Design 8 Device	: Wed Jul 20 09:36:14 20 : XSJNPURUSH030 running : report_control_sets -v : wave_gen_top : xc7z020	16 64-bit Service Pack 1 (b erbose -file wave_gen_top	uild 7601) _control_sets_place	ed.rpt
9				
11 Control Set Inf	ormation			
12	STRADION			
13 Table of Conter	ita			
14				
151. Summary				
16 2. Flip-Flop Di	stribution			
17 3. Detailed Cor	trol Set Information			
18				
191. Summary				
20				
21				
22 +		+	+	
23	Status	I Cou	nt	
24 +		+	+	
25 Number of uni	que control sets	I. I.	43	
26 Unused regist	er locations in slices c	ontaining registers 1	30	
27 +		+	+	
28				
29				
30 2. Flip-Flop Di	stribution			
31				
33 4				
34 Clock Enable	Sunchronous Set/Reset	Asynchronous Set/Reset	Total Registers	Total Slices
35 +		+	+	
36 No	L No	No.	27	17
37 No	I No	l Yes	1 107	. 32
38 No	Yes	I No	134	47
39 Yes	No	No	43	11
40 Yes	No	Yes	1 50	10
41 Yes	Yes	No	229	64
42 +	+	+	+	+

Reporte power_opt:

> Se puede invocar con el comando Tcl report_power_opt

 Se puede ejecutar antes y despues de la optimizacion de consumo, para analizar las mejoras obtenidas en el sistema

onsole					? _ & 2
± ♦ © 10	Ô				
report_power_opt INFO: [Pwropt 34-45] Repo: Copyright 1986-2018 Xilin:	ting existing clock ena ;, Inc. All Rights Reser	ables. rved.			
Tool Version : Viva	o v.2018.1 (win64) Buil	Ld 2188600 Wed Apr	4 18:40:38	MDT 2018	
Date : Sat 4	pr 28 12:13:41 2018				
Host : Lapte	p running 64-bit major	release (build 9)	200)		
Command : repor	t power opt				
Design : labl					
Device : xc7z	10clg400-1				
Design State : Route	d				
Grade : comm	rcial				
Process : typic	al				
Characterization : Produ	ction				
Power optimization report					
Power optimization report Table of Contents 	n				
Power optimization report Table of Contents 	n				
Power optimization report Table of Contents 1. Summary 2. Recommendations 3. Hierarchical Information 3.1 BRAM 3.2 SRLs 3.3 SILOR Registers 3.4 XHU URAMS 1. Summary 	n , total i USER GATED	+ TOOL GATED % (SATED (Total)	+ 	

Temario

- Proceso de Implementacion
- Reportes
- Analisis estático de temporizacion
- Generacion del archivo de configuracion y configuración de la FPGA
- Resumen

Analisis estático de temporizacion (Static Timing Analysis – STA)

- > Un sistema es basicamente un conjunto de bloques lógicos interconectados
- > La funcionalidad del sistema esta definida en el codigo fuente RTL
 - Esta funcionalidad se verifica mediante simulacion y archivos de prueba
- El desempeño del sistema esta determinado por los retardos en los bloques lógicos
 - Esto se verifica mediante un analisis estático de temporizacion (STA)
- > En un analisis STA la funcionalidad de los bloques lógicos no es importante
 - Solo es importante el desempeño de cada componente
 - De esta manera, solo es necesario clasificar los bloques lógicos en combinatorios o secuenciales

Retardo de los componentes

> Cada componente tiene un retardo asociado

- Una LUT tiene un retardo de propagacion desde la entrada a la salida
- El ruteo tiene un retardo de propagacion desde el amplificador (buffer/driver) hasta el/los receptores
- Un flip-flop necesita que los datos esten estables un cierto tiempo antes y despues del momento en que se almacenan

> Estos retardos dependen de distintos factores

- Algunos dependen del dispositivo (FPGA) y de la implementacion del sistema
 - Las caracteristicas físicas del componente (como y con que esta construido)
 - La ubicacion del componente (su ubicacion absoluta y relativa a otros componentes)
- Otras caracteristicas estan determinadas por factores ambientales (PVT)
 - Las variaciones propias del proceso de fabricacion del dispositivo (P)
 - La tension de alimentacion aplicada (V)
 - La temperatura del componente (T)

Retardos

Los retardos de componentes y ruteo son provistos por el fabricante de la FPGA, mediante caracterizacion de la implementacion fisica de los dispositivos

- La temporizacion se calcula sobre todo el rango de operacion del dispositivo

- Los retardos debidos al proceso de fabricacion (P) estan dentro de un intervalo
 - Cada modelo tiene distintos intervalos(speed grades: -1, -2, -3, etc)
- Los retardos debidos a la alimentacion (V) se calculan dentro del maximo y el minimo que admite el dispositivo
 - Dentro de un mismo modelo puede haber distintos rangos de alimentacion (p.ej. -1 y -1L)
- El retardo debido a la temperatura (T) tambien se calcula dentro del maximo y minimo que admite el dispositivo
 - Un mismo modelo puede tener un rango Comercial (0° a 85°) o Industrial (-40° a 100°)
- Estos rangos de retardo (PVT) se utilizan por las herramientas para el analisis STA

Aplicacion del analisis STA

- Los procesos de implementacion del sistema son comandados por los requisitos de temporizacion
 - Sintesis (Synthesis) para la construccion de la netlist
 - Ubicacion (Placer) para la ubicacion fisica de los componentes
 - Ruteo (Router) para la interconexion de los componentes
- El analisis STA se utiliza antes y despues de cada proceso para obtener reportes de la temporizacion del sistema a medida que el mismo es implementado
- De esta manera, el analisis STA determina si el sistema cumple los requerimientos de temporizacion establecidos

Reporte report_timing_summary:

El reporte de temporizacion se genera en el menu *Flow Navigator* luego de realizar el proceso de implementacion

X

🚴 Report Timing Summary

Timing - Timing Summary - timing_1	 Implemented Design Constraints Wizard Edit Timing Constraints Report Timing Summary Report Clock Networks 	Generate a timing summary to understand if the design met timing. Results name: timing_1 Options Advanced Timer Settings Report Path delay type: min_max Report delay type: min_max Report detasheet
Image: Second state of the second s	Design Timing Summary Setup Worst Negative Slack (WNS): 4.059 ns Total Negative Slack (TNS): 0.000 ns Number of Failing Endpoints: 0 Total Number of Endpoints: 1814 Humber of Endpoints: 1814 Humber of Endpoints: 1814 Humber of Endpoints: 1814 Humber of Endpoints: 1814	Path Limits Maximum number of paths per clock or path group: 10 * Maximum number of worst paths per endpoint: 1* Path Display Display paths with slack less than: Image: Significant digits: 3*
Timing Summary - timing_1 ×	■ Reports Design Runs Ö Timing Utilization	Open in a new tab Open in Timing Analysis layout OK Cancel

Reporte Timing Summary

> Este reporte muestra los resultados de temporizacion para Setup, Hold, y Pulse Width

- Setup
 - Worst Negative Slack (WNS): El peor retardo en cada camino de señal, se utiliza para el calculo del maximo retardo. Puede ser positivo o negativo. Si es positivo significa que se cumplen los requisitos de temporizacion aun para el camino de mayor retardo. Si es negativo, significa que hay caminos de señal cuyo retardo es mayor que el requerido.
 - Total Negative Slack (TNS): La suma de todos los WNS negativos asociados a un punto del circuito (endpoint)
 - Number of Failing Endpoints: La cantidad de puntos del circuito que no cumplen los requerimientos de termporizacion
- $-\operatorname{Hold}$
 - Worst Hold Slack (WHS): El peor retardo de estabilizacion para cada camino de señal, se utiliza para calcular el retardo minimo del sistema
- Pulse Width
 - Worst Pulse Width Slack (WPWS): Es el peor retardo del sistema, calculado con los valores de Setup y Hold

Reporte Timing Summary en formato de tabla

> La tabla Timing Summary muestra:

- General Information: nombre del proyecto, dispositivo, encapsulado, speed grade etc.
- Timer Settings: configuracion de la herramienta de analisis de temporizacion
- Design Timing Summary: resumen de todos los reportes de temporizacion
- Clock Summary: informacion resumida del reporte report_clocks
- Check Timing: informacion sobre restricciones de temporizacion que no se cumplen y/o caminos de señal que deben revisarse
- Intra-Clock Paths: informacion de los valores de worst slack para caminos de señal que tienen el mismo reloj
- Inter-Clock Paths: informacion de los valores de worst slack para caminos de señal que tienen distintos relojes
- Other Path Groups: muestra los caminos de señal que no estan en los otros reportes
- User Ignored Paths: caminos de señal que no fueron tenidos en cuenta para el analisis de temporizacion
- Unconstrained Paths: caminos de señal que no tienen restricciones asociadas

Caminos de señal utilizados para el analisis STA

- Un camino de señal es un camino que:
 - Comienza en un elemento sincronizado
 - Se propaga a traves de elementos combinacionales y las redes que los interconectan
 - Finaliza en un elmento sincronizado
- Los elementos sincronizados son los flip-flops, block RAMs, bloque DSP, etc
- Los elementos combinacionales son las LUTs, los MUXes, carry chains, etc.

Verificacion del tiempo de Setup

- Verifica que un cambio en un elemento sincronizado tiene tiempo de propagarse hasta los otros elementos sincronizados antes del siguiente cambio de reloj
 - Este tiempo se verifica desde el flanco ascendente de la señal de reloj hasta el siguiente flanco ascendente
 - Se verifica para cada camino de señal

Verificacion del tiempo de Hold

- Verifica que un cambio en un elemento sincronizado causado por un cambio de reloj no se propague al siguiente elemento sincronizado antes de que el mismo cambio de reloj llegue al siguiente elemento sincronizado
 - Usualmente se calcula del flanco ascendente del reloj al siguiente flanco ascendente
 - Se verifica para todos los caminos de señal
- El menor retardo se usa para Source Clock y Data Path Delay, y el mayor retardo se usa para Destination Clock Delay

Estructura del reporte Timing Report

Secciones del Reporte

> Report summary

> Clock summary

10	Copyright 1986	-2016 Xilinx, Inc. All Rights Reserved.
3	Tool Version	: Vivado v.2016.2 (win64) Build 1577090 Thu Jun 2 16:32:40 MDT 2016
4	Date	: Wed Jul 20 09:36:50 2016
5	Host	: XSJNFURUSH030 running 64-bit Service Pack 1 (build 7601)
6	Command	: report_timing_summary -warn_on_violation -max_paths 10 -file wave_gen_top_timing_summary_routed.rp
71	Design	: wave_gen_top
8	Device	: 7z020-clg484
9	Speed File	: -1 PRODUCTION 1.11 2014-09-11

> Design timing summary

121	Design Tim:	ing Summary				
123 -						
124	WNS(ns)	TNS(ns)	TNS Failing Endpoints	TNS Total Endpoints	WHS(ns)	THS(ns)
126						
127	0.810	0.000	0	105	0.175	0.000
128						
129						

120 -----

130 All user specified timing constraints are met.

134 Clock	Summary		
135			
136			
137			
138 Clock	Waveform(ns)	Period(ns)	Frequency (MHz)
139			
140 clk_pin	{0.000 5.000}	10.000	100.000
141			

Secciones del Reporte

> Intra clock table

> Maximum delay path

143					
144 Intra Clock	k Table				
145					
146					
147					
148 Clock	WNS (ns)	TNS (ns)	TNS Failing Endpoints	TNS Total Endpoints	WHS(ns)
149					
150 clk_pin	0.810	0.000	0	105	0.175
151					

187 188 -	Max Delay Paths							
189 5	Slack (MET) :	0.810ns	(required time	- arrival	time)			
190	Source:	led_ctl_i	0/led_o_reg[0]/	С				
191		(rising	edge-triggered	cell FDRE	clocked by	clk_pin	{rise@0.000ns fall@5.000ns per	iod=10.000ns})
192	Destination:	led_pins[0]					
193		(output	port clocked b	y clk_pin	{rise@0.00	Ons fall@	5.000ns period=10.000ns})	
194	Path Group:	clk_pin						
195	Path Type:	Max at Sl	ow Process Corn	er				
196	Requirement:	10.000ns	(clk_pin rise@	10.000ns -	clk_pin ri:	se@0.000n	3)	
197	Data Path Delay:	3.442ns	(logic 3.441ns	(99.971%)	route 0.00	lns (0.02	9%))	
198	Logic Levels:	1 (OBUF=	1)					
199	Output Delay:	0.000ns						
200	Clock Path Skew:	-5.713ns	(DCD - SCD + CP	R)				
201	Destination Clock De	alay (DCD):	0.000ns = (10.000 - 1	.0.000)			
202	Source Clock Delay	(SCD) :	5.713ns					
203	Clock Pessimism Remo	val (CPR):	0.000ns					
204	Clock Uncertainty:	0.035ns	((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE			
205	Total System Jitter	(TSJ) :	0.071ns					
206	Total Input Jitter	(TIJ):	0.000ns					
207	Discrete Jitter	(DJ):	0.000ns					
208	Phase Error	(PE) :	0.000ns					
209								
210	Location	Delay type		Incr (ns)	Path (ns)	Netlist	Resource(s)	
211								
212		(clock clk	pin rise edge)	0.000	0.000 r			
213	R4			0.000	0.000 r	clk_pin	(IN)	
214		net (fo=0)		0.000	0.000	clk_pin		
215	R4	IBUF (Prop	ibuf_I_0)	1.475	1.475 r	clk_pin	_IBUF_inst/0	
216		net (fo=1,	routed)	2.114	3.589	clk pin	IBUF	

Secciones del Reporte

> Delay path

210	Location	Delay type	Incr (ns)	Path(ns)	Netlist Resource(s)
211					
212		(clock clk_pin rise edge)	0.000	0.000 r	
213	R4		0.000	0.000 r	clk_pin (IN)
214		net (fo=0)	0.000	0.000	clk_pin
215	R4	IBUF (Prop_ibuf_I_O)	1.475	1.475 r	clk_pin_IBUF_inst/0
216		net (fo=1, routed)	2.114	3.589	clk_pin_IBUF
217	BUFGCTRL_X0Y0	BUFG (Prop_bufg_I_0)	0.096	3.685 r	clk_pin_IBUF_BUFG_inst/0
218		net (fo=48, routed)	2.029	5.713	led_ctl_i0/CLK
219	OLOGIC_X0Y90	FDRE		r	<pre>led_ctl_i0/led_o_reg[0]/C</pre>
220	OLOGIC_X0Y90	FDRE (Prop_fdre_C_Q)	0.472	6.185 r	led_ctl_i0/led_o_reg[0]/Q
222		net (fo=1, routed)	0.001	6.186	led_pins_OBUF[0]
223	Y13	OBUF (Prop_obuf_I_O)	2.969	9.155 r	led_pins_OBUF[0]_inst/0
224		net (fo=0)	0.000	9.155	<pre>led_pins[0]</pre>
225	¥13			r	<pre>led_pins[0] (OUT)</pre>
226					
228		(clock clk pin rise edge)	10.000	10.000 r	
229		clock pessimism	0.000	10.000	
230		clock uncertainty	-0.035	9,965	
231		output delay	-0.000	9,965	
232					
233		required time		9.965	
234		arrival time		-9.155	
235					
236		slack		0.810	

Temario

- Proceso de Implementacion
- Reportes
- Analisis estático de temporizacion
- Generacion del archivo de configuracion y configuración de la FPGA
- Resumen

Generacion del archivo de configuracion (Bitstream)

- Genera el archivo de configuracion para el dispositivo seleccionado para el proyecto actual
- > Se ejecuta sobre un sistema implementado
- > Se ejecuta nuevamente el proceso de implementacion si hubo modificaciones
- > Desarrollo basado en proyectos o desarrollos independientes
 - IDE: Menu Generate bitstream
 - -Comando Tcl: launch_runs impl_1 -to_step write_bitstream

Configuracion del proceso de generacion del archivo de configuracion

- > Por defecto se usa el formato binario
- -raw_bitfile: el archivo de configuracion se genera en formato ascii y extension (.rbt).
- -mask_file: Generacion de un archivo de mascara para verificacion de un archivo de configuracion cargado
- -no_binary_bitfile: No crea el archivo de configuracion (.bit)
 - Se usa esta opcion para generar un archivo de configuracion ASCII o un archivo de mascara sin generar el archivo de configuracion binario
- -bin_file: Crea un archivo de configuracion binario (.bin) solo con la informacion de configuracion
- Iogic_location_file: Genera un archivo de extension (.II) con la ubicacion de las LUTs, BRAM, flip-flops, latches, I/O block, entradas y salidas

Write Bitstream (write_bitstream)	6	
tcl.pre		
tcl.post		
-raw_bitfile		
-mask_file		
-no_binary_bitfile		
-bin_file		
-readback_file		
-logic_location_file		
-verbose		
More Options		

Administrador de Hardware (Hardware Manager)

- Los pasos para conectarse al hardware y configurar la FPGA son:
 - Abrir el administrador de hardware
 - Abrir un dispositivo de hardware, administrado por un servidor de hardware. Esto puede ser en forma local o remota
 - Asociar el archivo de configuracion al dispositivo FPGA
 - Configurar el dispositivo.
 - Opcionalmente, abrir la vista *hardware analyzer* para depuracion

Temario

- Proceso de Implementacion
- Reportes
- Analisis estático de temporizacion
- Generacion del archivo de configuracion y configuración de la FPGA
- Resumen

Resumen

- La implementacion utiliza los subprocesos opt_design, power_opt, place_design, phys_opt_design, y route_design
- Hay distintos tipos de reportes que permiten analizar el sistema que se esta implementando
- Los caminos de señal utilizados en el analisis STA comienzan en un elemento sincronizado y terminan en otro elemento sincronizado
- Los caminos de señal se analizan para verificar los tiempos de setup y hold. Este analisis incluye la verificacion de los tiempos de propagacion de la señal de reloj
- El reporte report_timing_summary se utiliza para verificar el cumplimiento de las restricciones de temporizacion del sistema implementado
- El reporte report_timing se usa para un analisis detallado de la temporizacion luego de los procesos de sintesis y de implementacion