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CHAPTER 1 Definitions and Funda-
mental Concepts

1. Definitions

Conceptually, a graph is formed by vertices and edges con-

necting the vertices.

EXAMPLE.

Formally, a graph is a pair of sets (V,E), where V is the

set of vertices and E is the set of edges, formed by pairs

of vertices. E is a multiset, in other words, its elements

can occur more than once so that every element has a

multiplicity.

Often, we label the vertices with letters (for example: a, b,

c, . . . or v1, v2, . . . ) or numbers 1,2, . . . Throughout

this lecture material, we will label the elements of V in this

way.
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EXAMPLE. (Continuing from the previous example) We

label the vertices as follows:

v2 v3

v1

v4

v5

We have V = {v1, . . . , v5} for the vertices and

E = {(v1, v2), (v2, v5), (v5, v5), (v5, v4), (v5, v4)}

for the edges.

Similarly, we often label the edges with letters (for exam-

ple: a, b, c, . . . or e1, e2, . . . ) or numbers 1,2, . . . for

simplicity.

NOTE. The two edges (u, v) and (v, u) are the same.

In other words, the pair is not ordered.

EXAMPLE. (Continuing from the previous example) We

label the edges as follows:
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v2 v3

v1

v4

v5
e1

e2

e3

e4 e5

So E = {e1, . . . , e5}.

We have the following terminologies:

1. The two vertices u and v are end vertices of the edge

(u, v).

2. Edges that have the same end vertices are parallel.

3. An edge of the form (v, v) is a loop.

4. A graph is simple if it has no parallel edges or loops.

5. A graph with no edges (i.e. E is empty) is empty.

6. A graph with no vertices (i.e. V and E are empty) is

a null graph.
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1. A graph with only one vertex is trivial.

2. Edges are adjacent if they share a common end vertex.

3. Two vertices u and v are adjacent if they are con-

nected by an edge, in other words, (u, v) is an edge.

4. The degree of the vertex v, written as d(v), is the

number of edges with v as an end vertex. By con-

vention, we count a loop twice and parallel edges con-

tribute separately.

5. A pendant vertex is a vertex whose degree is 1.

6. An edge that has a pendant vertex as an end vertex is

a pendant edge.

7. An isolated vertex is a vertex whose degree is 0.

EXAMPLE. (Continuing from the previous example)

• v4 and v5 are end vertices of e5.
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• e4 and e5 are parallel.

• e3 is a loop.

• The graph is not simple.

• e1 and e2 are adjacent.

• v1 and v2 are adjacent.

• The degree of v1 is 1 so it is a pendant vertex.

• e1 is a pendant edge.

• The degree of v5 is 5.

• The degree of v4 is 2.

• The degree of v3 is 0 so it is an isolated vertex.
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In the future, we will label graphs with letters, for example:

G = (V,E).

Theminimum degree of the vertices in a graphG is denoted

δ(G) (= 0 if there is an isolated vertex in G). Similarly,

we write ∆(G) as the maximum degree of vertices in G.

EXAMPLE. (Continuing from the previous example)

δ(G) = 0 and ∆(G) = 5.

NOTE. In this course, we only consider finite graphs, i.e.

V and E are finite sets.

Since every edge has two end vertices, we get

THEOREM 1. The graph G = (V,E), where V =

{v1, . . . , vn} and E = {e1, . . . , em}, satisfies

n
∑

i=1

d(vi) = 2m.

COROLLARY. Every graph has an even number of ver-

tices of odd degree.
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Proof. If the vertices v1, . . . , vk have odd degrees and
vk+1, . . . , vn have even degrees, then (Theorem 1)

d(v1)+ · · ·+d(vk) = 2m−d(vk+1)−· · ·−d(vn)

is even. Therefore, k is even.

EXAMPLE. (Continuing from the previous example) Now

the sum of the degrees is

1 + 2+ 0+ 2+ 5 = 10 = 2 · 5.

There are two vertices of odd degree, namely v1 and v5.

A simple graph that contains every possible edge between
all the vertices is called a complete graph. A complete
graph with n vertices is denoted as Kn. The first four
complete graphs are given as examples:

K1 K2
K3 K4

The graph G1 = (V1, E1) is a subgraph of G2 =
(V2, E2) if

1. V1 ⊆ V2 and

2. Every edge of G1 is also an edge of G2.
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EXAMPLE.We have the graph

G2:

e1

v1

v2

e2

e3 v3

e4

v4

e5

v5

e6

and some of its subgraphs are

G1:

e1

v1

v2
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G1:

e1

v1

v2

e2

v3

e4

v4

e5

v5

e6

G1:

v1

v2

v3

e5

v5

e6

and

G1:
v5

e6
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The subgraph of G = (V,E) induced by the edge set

E1 ⊆ E is:

G1 = (V1, E1) =def. 〈E1〉,

where V1 consists of every end vertex of the edges in E1.

EXAMPLE. (Continuing from above) From the original

graph G, the edges e2, e3 and e5 induce the subgraph

〈e2,e3,e5〉:

v1

v2

e2

e3 v3

e5

v5

The subgraph of G = (V,E) induced by the vertex set

V1 ⊆ V is:

G1 = (V1, E1) =def. 〈V1〉,

where E1 consists of every edge between the vertices in

V1.
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EXAMPLE. (Continuing from the previous example) From

the original graphG, the vertices v1, v3 and v5 induce the

subgraph

v1 e3 v3

e5

v5

e6

〈v1,v3,v5〉:

A complete subgraph of G is called a clique of G.

11



2. Walks, Trails, Paths, Circuits, Connectivity,

Components

NOTE. There are many different variations of the follow-

ing terminologies. We will adhere to the definitions given

here.

A walk in the graph G = (V,E) is a finite sequence of
the form

vi0, ej1, vi1, ej2, . . . , ejk, vik,

which consists of alternating vertices and edges of G. The
walk starts at a vertex. Vertices vit−1 and vit are end
vertices of ejt (t = 1, . . . , k). vi0 is the initial vertex

and vik is the terminal vertex. k is the length of the walk.
A zero length walk is just a single vertex vi0. It is allowed
to visit a vertex or go through an edge more than once. A
walk is open if vi0 6= vik. Otherwise it is closed.

EXAMPLE. In the graph

v6

G: v1

e10
e9

e8

e1

v2

e7

e2

v5 e6

e5

v4

v3

e3

e4
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the walk

v2, e7, v5, e8, v1, e8, v5, e6, v4, e5, v4, e5, v4

is open. On the other hand, the walk

v4, e5, v4, e3, v3, e2, v2, e7, v5, e6, v4

is closed.

A walk is a trail if any edge is traversed at most once. Then,

the number of times that the vertex pair u, v can appear

as consecutive vertices in a trail is at most the number of

parallel edges connecting u and v.

EXAMPLE. (Continuing from the previous example) The

walk in the graph

v1, e8, v5, e9, v1, e1, v2, e7, v5, e6, v4, e5, v4, e4, v4

is a trail.

A trail is a path if any vertex is visited at most once except

possibly the initial and terminal vertices when they are the

same. A closed path is a circuit. For simplicity, we will

assume in the future that a circuit is not empty, i.e. its

length ≥ 1. We usually identify the paths and circuits

with the subgraphs induced by their edges.
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EXAMPLE. (Continuing from the previous example) The

walk

v2, e7, v5, e6, v4, e3, v3

is a path and the walk

v2, e7, v5, e6, v4, e3, v3, e2, v2

is a circuit.

The walk starting at u and ending at v is called an u–v

walk. u and v are connected if there is a u–v walk in the

graph (then there is also a u–v path!). If u and v are

connected and v and w are connected, then u and w are

also connected, i.e. if there is a u–v walk and a v–w walk,

then there is also a u–w walk. A graph is connected if all

the vertices are connected to each other. (A trivial graph

is connected by convention.)

EXAMPLE. The graph

is not connected.
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The subgraph G1 (not a null graph) of the graph G is a

component of G if

1. G1 is connected and

2. Either G1 consists of a single isolated vertex of G or

G1 is the subgraph induced by those edges of G that

have an end vertex in G1.

Different components of the same graph do not have any

common vertices because of the following theorem.

THEOREM 2. If the graph G has a vertex v that is

connected to a vertex of the component G1 of G, then v

is also a vertex of G1.

Proof. If v is connected to vertex v′ of G1, then there is

a walk in G

v = vi0, ej1, vi1, . . . , vik−1, ejk, vik = v′.

Since v′ is a vertex of G1, then (condition #2 above) ejk
is an edge ofG1 and vik−1 is a vertex ofG1. We continue

this process and see that v is a vertex of G1.
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EXAMPLE.

G:

v1

v3

v2

e1 e2
v4 e3

e5

v6

e4

v5

e6

v7

e7

v8G1 G2 G3 G4

The components of G are G1, G2, G3 and G4.

THEOREM 3. Every vertex of G belongs to exactly one

component of G. Similarly, every edge of G belongs to

exactly one component of G.

Proof. We choose a vertex v in G. We do the following as

many times as possible starting with V1 = {v}:

(∗) If v′ is a vertex of G such that v′ /∈ V1 and v′ is

connected to some vertex of V1, then

V1 ← V1 ∪ {v
′}.
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Since there is a finite number of vertices in G, the process

stops eventually. The last V1 induces a subgraph G1 of G

that is the component of G containing v. G1 is connected

because its vertices are connected to v so they are also

connected to each other. Condition #2 holds because we

can not repeat (∗). By Theorem 2, v does not belong to

any other component.

The edges of the graph are incident to the end vertices of

the components.

Theorem 3 divides a graph into distinct components. The

proof of the theorem gives an algorithm to do that. We

have to repeat what we did in the proof as long as we have

free vertices that do not belong to any component. Ev-

ery isolated vertex forms its own component. A connected

graph has only one component, namely, itself.

A graph G with n vertices, m edges and k components

has the rank

ρ(G) = n− k.

The nullity of the graph is

µ(G) = m− n+ k.

We see that ρ(G) ≥ 0 and ρ(G) + µ(G) = m. In

addition, µ(G) ≥ 0 because
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THEOREM 4. ρ(G) ≤ m

Proof. We will use the second principle of induction (strong

induction) for m.

Induction Basis: m = 0. The components are trivial and

n = k.

Induction Hypothesis: The theorem is true for m < p.

(p ≥ 1)

Induction Statement: The theorem is true for m = p.

Induction Statement Proof: We choose a component G1

of G which has at least one edge. We label that edge e

and the end vertices u and v. We also label G2 as the

subgraph of G and G1, obtained by removing the edge e

from G1 (but not the vertices u and v). We label G′ as

the graph obtained by removing the edge e from G (but

not the vertices u and v) and let k′ be the number of

components of G′. We have two cases:

1. G2 is connected. Then, k′ = k. We use the Induc-

tion Hypothesis on G′:

n− k = n− k′ = ρ(G′) ≤ m− 1 < m.
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2. G2 is not connected. Then there is only one path

between u and v:

u, e, v

and no other path. Thus, there are two components in

G2 and k′ = k+1. We use the Induction Hypothesis

on G′:

ρ(G′) = n− k′ = n− k − 1 ≤ m− 1.

Hence n− k ≤ m.

These kind of combinatorial results have many consequences.

For example:

THEOREM 5. If G is a connected graph and k ≥ 2 is

the maximum path length, then any two paths in G with

length k share at least one common vertex.

Proof. We only consider the case where the paths are not

circuits (other cases can be proven in a similar way). Con-

sider two paths of G with length k:

vi0, ej1, vi1, ej2, . . . , ejk, vik (path p1)

and

vi′0
, ej′1

, vi′1
, ej′2

, . . . , ej′k
, vi′k

(path p2).
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Let us consider the counter hypothesis: The paths p1 and

p2 do not share a common vertex. Since G is connected,

there exists an vi0–vi′k
path. We then find the last vertex

on this path which is also on p1 (at least vi0 is on p1)

and we label that vertex vit. We find the first vertex of the

vit–vi′k
path which is also on p2 (at least vi′k

is on p2)

and we label that vertex vi′s. So we get a vit–vi′s path

vit, ej′′1
, . . . , ej′′ℓ

, vi′s.

The situation is as follows:

vi0, ej1, vi1, . . . ,vit, ejt+1
, . . . , ejk, vik

ej′′1
...

ej′′ℓ
vi′0

, ej′1
, vi′1

, . . . ,vi′s, ej′s+1
, . . . , ej′k

, vi′k

From here we get two paths: vi0–vi′k
path and vi′0

–vik
path. The two cases are:

• t ≥ s: Now the length of the vi0–vi′k
path is≥ k+1.

√ ∗

∗From now on, the symbol
√

means contradiction. If we get a
contradiction by proceeding from the assumptions, the hypothesis
must be wrong.
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• t < s: Now the length of the vi′0
–vik path is≥ k+1.

√

A graph is circuitless if it does not have any circuit in it.

THEOREM 6. A graph is circuitless exactly when there

are no loops and there is at most one path between any

two given vertices.

Proof. First let us assume G is circuitless. Then, there

are no loops in G. Let us assume the counter hypothesis:

There are two different paths between distinct vertices u

and v in G:

u = vi0, ej1, vi1, ej2, . . . , ejk, vik = v (path p1)

and

u = vi′0
, ej′1

, vi′1
, ej′2

, . . . , ej′ℓ
, vi′ℓ

= v (path p2)

(here we have i0 = i′0 and ik = i′ℓ), where k ≥ ℓ. We

choose the smallest index t such that

vit 6= vi′t
.

There is such a t because otherwise

1. k > ℓ and vik = v = vi′ℓ
= viℓ (

√

) or

21



2. k = ℓ and vi0 = vi′0
, . . . , viℓ = vi′ℓ

. Then, there

would be two parallel edges between two consecutive

vertices in the path. That would imply the existence

of a circuit between two vertices in G.
√

u
v

v vit–1 is

p1

p2

We choose the smallest index s such that s ≥ t and vis is

in the path p2 (at least vik is in p2). We choose an index

r such that r ≥ t and vi′r = vis (it exists because p1 is

a path). Then,

vit−1, ejt, . . . , ejs, vis(= vi′r), ej′r, . . . , ej′t
, vi′t−1

(= vit−1)

is a circuit.
√

(Verify the case t = s = r.)

Let us prove the reverse implication. If the graph does

not have any loops and no two distinct vertices have two

different paths between them, then there is no circuit. For

example, if

vi0, ej1, vi1, ej2, . . . , ejk, vik = vi0

22



is a circuit, then either k = 1 and ej1 is a loop (
√

), or

k ≥ 2 and the two vertices vi0 and vi1 are connected by

two distinct paths

vi0, ej1, vi1

and

vi1, ej2, . . . , ejk, vik = vi0 (
√

).
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3. Graph Operations

The complement of the simple graph G = (V,E) is the

simple graph G = (V,E), where the edges in E are

exactly the edges not in G.

EXAMPLE.

v2

v1

v3

v4

v5
G:

v2

v1

v3

v4

v5
G:
_

EXAMPLE. The complement of the complete graph Kn

is the empty graph with n vertices.
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Obviously, G = G. If the graphsG = (V,E) and G′ =
(V ′, E′) are simple and V ′ ⊆ V , then the difference

graph is G − G′ = (V,E′′), where E′′ contains those
edges from G that are not in G′ (simple graph).

EXAMPLE.

G: G':

G – G':

Here are some binary operations between two simple graphs
G1 = (V1, E1) and G2 = (V2, E2):

• The union is

G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2)

(simple graph).
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• The intersection is

G1 ∩G2 = (V1 ∩ V2, E1 ∩ E2)

(simple graph).

• The ring sum G1⊕G2 is the subgraph of G1 ∪G2

induced by the edge set E1 ⊕ E2 (simple graph).

Note! The set operation ⊕ is the symmetric differ-

ence, i.e.

E1 ⊕ E2 = (E1 − E2) ∪ (E2 − E1).

Since the ring sum is a subgraph induced by an edge set,

there are no isolated vertices. All three operations are com-

mutative and associative.

EXAMPLE. For the graphs

G1: G2:

v1 v2

v5

v3 v4

v1

v3

v6

v7

e1

e2
e3 e5

e4

e1

e7

e6

26



we have

v6

v7

e7

e6

v1 v2

v5

v3 v4

e1

e2
e3 e5

e4

G1 ∪ G2:

G1 ∩ G2:

v1

v3

e1

v6

e6

G1 ⊕ G2:

v1 v2

v3 v4

e2
e3 e5

e4

e7

NOTE. The operations ∪, ∩ and⊕ can also be defined for

more general graphs other than simple graphs. Naturally,

we have to ”keep track”of the multiplicity of the edges:

∪ : The multiplicity of an edge in G1 ∪G2 is the larger

of its multiplicities in G1 and G2.
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∩ : The multiplicity of an edge in G1∩G2 is the smaller

of its multiplicities in G1 and G2.

⊕ : The multiplicity of an edge in G1 ⊕ G2 is

|m1 −m2|, where m1 is its multiplicity in G1 and

m2 is its multiplicity in G2.

(We assume zero multiplicity for the absence of an edge.)

In addition, we can generalize the difference operation for

all kinds of graphs if we take account of the multiplicity.

The multiplicity of the edge e in the difference G−G′ is

m1 −̇ m2 =







m1 −m2, if m1 ≥ m2

0, if m1 < m2

(also known as the proper difference), where m1 and m2

are the multiplicities of e in G1 and G2, respectively.

If v is a vertex of the graph G = (V,E), then G− v is

the subgraph of G induced by the vertex set V −{v}. We

call this operation the removal of a vertex.

28



EXAMPLE. (Continuing from the previous example)

G1 – v4:

v1

v5

v3

e1
e3

v2

Similarly, if e is an edge of the graph G = (V,E), then

G − e is graph (V,E′), where E′ is obtained by remov-

ing e from E. This operation is known as removal of an

edge. We remark that we are not talking about remov-

ing an edge as in Set Theory, because the edge can have

nonunit multiplicity and we only remove the edge once.

EXAMPLE. (Continuing from the previous example)

G1 – e5:

v1 v2

v5

v3 v4

e1

e2
e3

e4

29



If u and v are two distinct vertices of the graph G =

(V,E), then we can short-circuit the two vertices u and

v and obtain the graph (V ′, E′), where

V ′ = (V −{u, v})∪{w} (w /∈ V is the ”new”vertex)

and

E′ = (E − {(v′, u), (v′, v) | v′ ∈ V })

∪ {(v′, w) | (v′, u) ∈ E or (v′, v) ∈ E}

∪ {(w,w) | (u, u) ∈ E or (v, v) ∈ E}.

(Recall that the pair of vertices corresponding to an edge is

not ordered.) Note! We have to maintain the multiplicity

of the edges. In particular, the edge (u, v) becomes a loop.

So, to get E′ we simply replace u and v by w in each pair

in E.

EXAMPLE. (Continuing from the previous example)

Short-circuit v3 and v4 in the graph G1:

v1 v2
v5

w

30



In the graph G = (V,E), contracting the edge e =

(u, v) (not a loop) means the operation in which we first

remove e and then short-circuit u and v. (Contracting a

loop simply removes that loop.)

EXAMPLE. (Continuing from the previous example) We

contract the edge e3 in G1 by first removing e3 and then

short-circuiting v2 and v3.

v1 v2
v5

v3 v4

e1

e2

e5

e4

v1

v5

w v4

e2

NOTE. If we restrict short-circuiting and contracting to

simple graphs, then we remove loops and all but one of the

parallel edges between end vertices from the results.
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4. Cuts

A vertex v of a graph G is a cut vertex or an articulation

vertex ofG if the graphG−v consists of a greater number

of components than G.

EXAMPLE. v is a cut vertex of the graph below:

cut vertex

G: G – v:
v

(Note! Generally, the only vertex of a trivial graph is not a

cut vertex, neither is an isolated vertex.)

A graph is separable if it is not connected or if there exists

at least one cut vertex in the graph. Otherwise, the graph

is nonseparable.
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EXAMPLE. The graph G in the previous example is sep-

arable.

EXAMPLE. The graph below is nonseparable.

A block of the graph G is a subgraph G1 of G (not a null

graph) such that

• G1 is nonseparable, and

• if G2 is any other subgraph of G, then G1 ∪G2 =

G1 or G1 ∪G2 is separable (think about that!).

EXAMPLE. The graph below is separable:
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cut vertex

THEOREM 7. The vertex v is a cut vertex of the con-

nected graph G if and only if there exist two vertices u and

w in the graph G such that

(i) v 6= u, v 6= w and u 6= w, but

(ii) v is on every u–w path.
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Proof. First, let us consider the case that v is a cut-vertex

of G. Then, G− v is not connected and there are at least

two components G1 = (V1, E1) and G2 = (V2, E2).

We choose u ∈ V1 and w ∈ V2. The u–w path is in G

because it is connected. If v is not on this path, then the

path is also in G − v (
√

). The same reasoning can be

used for all the u–w paths in G.

If v is in every u–w path, then the vertices u and w are

not connected in G− v.

THEOREM 8. A nontrivial simple graph has at least two

vertices which are not cut vertices.

Proof. We will use induction for the graph G with n ver-

tices.

Induction Basis: The case n = 2 is obviously true.

Induction Hypothesis: The theorem is true for n ≤ k.

(k ≥ 2)

Induction Statement: The theorem is true for n = k+1.

Induction Statement Proof: If there are no cut vertices in

G, then it is obvious. Otherwise, we consider a cut vertex v
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of G. Let G1, . . . , Gm be the components of G− v (so

m ≥ 2). Every component Gi falls into one of the two

cases:

1. Gi is trivial so the only vertex of Gi is a pendant

vertex or an isolated vertex of G but it is not a cut

vertex of G.

2. Gi is not trivial. The Induction Hypothesis tells us

that there exist two vertices u and w in Gi which are

not cut vertices of Gi. If v and u (respectively v and

w) are not adjacent in G, then u (respectively w) is

not a cut vertex in G. If both v and u as well as v

and w are adjacent in G, then u and w can not be

cut vertices of G.

A cut set of the connected graph G = (V,E) is an edge

set F ⊆ E such that

1. G − F (remove the edges of F one by one) is not

connected, and

2. G−H is connected whenever H ⊂ F .
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THEOREM 9. If F is a cut set of the connected graph

G, then G− F has two components.

Proof. Let F = {e1, . . . , ek}. The graph

G− {e1, . . . , ek−1}

is connected (and so is G if k = 1) by condition #2.

When we remove the edges from the connected graph, we

get at most two components.

EXAMPLE. In the graph

v1

e1

v2

e4 v3

e3

e2

e5

e6

v4

e7

e8 v6

v5

{e1, e4} , {e6, e7} {e1, e2, e3} , {e8} , {e3, e4, e5, e6} ,

{e2, e5, e7} , {e2, e5, e6} and {e2, e3, e4}

are cut sets. Are there other cut sets?
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In a graph G = (V,E), a pair of subsets V1 and V2 of

V satisfying

V = V1∪V2 , V1∩V2 = ∅ , V1 6= ∅ , V2 6= ∅,

is called a cut (or a partition) of G, denoted 〈V1, V2〉.

Usually, the cuts 〈V1, V2〉 and 〈V2, V1〉 are considered to

be the same.

EXAMPLE. (Continuing from the previous example)

〈{v1, v2, v3}, {v4, v5, v6}〉 is a cut.

We can also think of a cut as an edge set:

cut 〈V1, V2〉 = {those edges with one end vertex

in V1 and the other end vertex in V2}.

(Note! This edge set does not define V1 and V2 uniquely

so we can not use this for the definition of a cut.)

Using the previous definitions and concepts, we can easily

prove the following:

1. The cut 〈V1, V2〉 of a connected graph G (consid-

ered as an edge set) is a cut set if and only if the

subgraphs induced by V1 and V2 are connected, i.e.

G− 〈V1, V2〉 has two components.
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2. If F is a cut set of the connected graph G and V1
and V2 are the vertex sets of the two components of

G− F , then 〈V1, V2〉 is a cut and F = 〈V1, V2〉.

3. If v is a vertex of a connected (nontrivial) graph G =

(V,E), then 〈{v}, V −{v}〉 is a cut ofG. It follows

that the cut is a cut set if the subgraph (i.e. G− v)

induced by V −{v} is connected, i.e. if v is not a cut

vertex.

If there exists a cut 〈V1, V2〉 for the graph G = (V,E)

so that E = 〈V1, V2〉, i.e. the cut (considered as an edge

set) includes every edge, then the graph G is bipartite.

EXAMPLE. The graph

v1

v2

v3

v4

v5

v6

v7
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is bipartite with

V1 = {v1, v2, v3} and V2 = {v4, v5, v6, v7}.

A simple bipartite graph is called a complete bipartite graph

if we can not possibly add any more edges to the edge set

〈V1, V2〉, i.e. the graph contains exactly all edges that have

one end vertex in V1 and the other end vertex in V2. If

there are n vertices in V1 and m vertices in V2, we denote

it as Kn,m (cf. complete graph).

EXAMPLE.

K1,1: K1,2: K2,1:

K2,3:

(Usually Kn,m and Km,n are considered to be the same.)
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5. Labeled Graphs and Isomorphism

By a labeling of the vertices of the graph G = (V,E),

we mean a mapping α : V → A, where A is called the

label set. Similarly, a labeling of the edges is a mapping

β : E → B, where B is the label set. Often, these labels

are numbers. Then, we call them weights of vertices and

edges. In a weighted graph, the weight of a path is the sum

of the weights of the edges traversed.

The labeling of the vertices (respectively edges) is injective

if distinct vertices (respectively edges) have distinct labels.

An injective labeling is bijective if there are as many labels

in A (respectively in B) as the number of vertices (respec-

tively edges).

EXAMPLE. If A = {0,1} and B = R, then in the

graph,

0

1

1

0
0

1

0.1

0.4

0.7
0.6

0.2
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the labeling of the edges (weights) is injective but not the

labeling of the vertices.

The two graphs G1 = (V1, E1) and G2 = (V2, E2)

are isomorphic if labeling the vertices ofG1 bijectively with

the elements of V2 gives G2. (Note! We have to maintain

the multiplicity of the edges.)

EXAMPLE. The graphs G1 and G2 are isomorphic and

the vertex labeling vi 7→ v′i and edge labeling ej 7→ e′j
define the isomorphism.

G1:

v1

v2

v3
e1 e5

v4

v5

e3 e6

e2

v7

e9

e7

v6

v8

e8

e10

e4

G2:

v'
v'

e'

e'

e'

v' v'

v' e'

v'

e' e' e'

e'

v'

v'

e'
8

8

9

e'10 6

7

5

5

4

4

2

7 2

1
3

1

36
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Determining whether or not two graphs are isomorphic is a

well researched∗ problem. It differs significantly from other

problems in graph theory and network analysis. In addi-

tion, it has a lot to do with group theory in algebra. The

problem is important in the theory of Computational Com-

plexity. For example, refer to KÖBLER, J. & SCHÖNING U. &

TORÁN, J.: The Graph Isomorphism Problem. Its Structural

Complexity. Birkhäuser (1993).

∗Maybe too well, cf. READ, R.C. & CORNEILL, D.G.: The Graph Iso-
morphism Disease. Journal of Graph Theory 1 (1977), 339–363.
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CHAPTER 2 Trees

1. Trees and Forests

A forest is a circuitless graph. A tree is a connected forest.
A subforest is a subgraph of a forest. A connected subgraph
of a tree is a subtree. Generally speaking, a subforest (re-
spectively subtree) of a graph is its subgraph, which is also
a forest (respectively tree).

EXAMPLE. Four trees which together form a forest:

A spanning tree of a connected graph is a subtree that
includes all the vertices of that graph. If T is a spanning
tree of the graph G, then

G− T =def. T
∗

is the cospanning tree.
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EXAMPLE.

G: spanning tree:

cospanning tree

The edges of a spanning tree are called branches and the

edges of the corresponding cospanning tree are called links

or chords.

THEOREM 1. If the graph G has n vertices and m

edges, then the following statements are equivalent:

(i) G is a tree.

(ii) There is exactly one path between any two vertices in

G and G has no loops.
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(iii) G is connected and m = n− 1.

(iv) G is circuitless and m = n− 1.

(v) G is circuitless and if we add any new edge to G, then

we will get one and only one circuit.

Proof. (i)⇒(ii): If G is a tree, then it is connected and

circuitless. Thus, there are no loops in G. There exists a

path between any two vertices of G. By Theorem 1.6, we

know that there is only one such path.

(ii)⇒(iii): G is connected. Let us use induction on m.

Induction Basis: m = 0, G is trivial and the statement is

obvious.

Induction Hypothesis: m = n−1 when m ≤ ℓ. (ℓ ≥ 0)

Induction Statement: m = n− 1 when m = ℓ+1.

Induction Statement Proof: Let e be an edge in G. Then

G− e has ℓ edges. If G− e is connected, then there exist
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two different paths between the end vertices of e so (ii) is

false. Therefore, G− e has two components G1 and G2.

Let there be n1 vertices and m1 edges in G1. Similarly,

let there be n2 vertices and m2 vertices in G2. Then,

n = n1 + n2 and m = m1 +m2 +1.

The Induction Hypothesis states that

m1 = n1 − 1 and m2 = n2 − 1,

so

m = n1 + n2 − 1 = n− 1.

(iii)⇒(iv): Consider the counter hypothesis: There is a

circuit in G. Let e be some edge in that circuit. Thus,

there are n vertices and n − 2 edges in the connected

graph G− e.
√ ∗

(iv)⇒(v): IfG is circuitless, then there is at most one path

between any two vertices (Theorem 1.6). If G has more

than one component, then we will not get a circuit when

we draw an edge between two different components. By

adding edges, we can connect components without creating

circuits:
∗In a connected graph with n vertices, there are at least n − 1
edges. (Theorem 1.4)
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1st component 2nd component
3rd
component

4th
component

If we add k(≥ 1) edges, then (because (i)⇒(iii))

m+ k = n− 1 (
√

because m = n− 1).

So G is connected. When we add an edge between vertices

that are not adjacent, we get only one circuit. Otherwise,

we can remove an edge from one circuit so that other cir-

cuits will not be affected and the graph stays connected, in

contradiction to (iii)⇒(iv). Similarly, if we add a parallel

edge or a loop, we get exactly one circuit.

(v)⇒(i): Consider the counter hypothesis: G is not a tree,

i.e. it is not connected. When we add edges as we did

previously, we do not create any circuits (see figure).
√

Since spanning trees are trees, Theorem 1 is also true for

spanning trees.

THEOREM 2. A connected graph has at least one span-

ning tree.
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Proof. Consider the connected graph G with n vertices

and m edges. If m = n − 1, then G is a tree. Since G

is connected, m ≥ n − 1 (Theorem 1.4). We still have

to consider the case m ≥ n, where there is a circuit in

G. We remove an edge e from that circuit. G− e is now

connected. We repeat until there are n− 1 edges. Then,

we are left with a tree.

NOTE. We can get a spanning tree of a connected graph

by starting from an arbitrary subforest M (as we did previ-

ously). Since there is no circuit whose edges are all in M ,

we can remove those edges from the circuit which are not

in M .

By Theorem 1, the subgraph G1 of G with n vertices is a

spanning tree of G (thus G is connected) if any three of

the following four conditions hold:

1. G1 has n vertices.

2. G1 is connected.

3. G1 has n− 1 edges.

4. G1 is circuitless.
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Actually, conditions #3 and #4 are enough to guarantee
that G1 is a spanning tree. If conditions #3 and #4 hold
but G1 is not connected, then the components of G1 are
trees and the number of edges in G1 would be

number of vertices− number of components < n−1 (
√

).

THEOREM 3. If a tree is not trivial, then there are at

least two pendant vertices.

Proof. If a tree has n(≥ 2) vertices, then the sum of the
degrees is 2(n − 1). If every vertex has a degree ≥ 2,
then the sum will be ≥ 2n (

√

). On the other hand, if
all but one vertex have degree ≥ 2, then the sum would
be ≥ 1+2(n− 1) = 2n− 1 (

√

). (This also follows
from Theorem 1.8 because a cut vertex of a tree is not a
pendant vertex!)

A forest with k components is sometimes called a k-tree.
(So a 1-tree is a tree.)

EXAMPLE.

4-tree:
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We use Theorem 1 to see that a graph with k components

has a spanning k-tree, also known as a spanning forest,

which has k components.
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2. (Fundamental) Circuits and (Fundamental) Cut

Sets

If the branches of the spanning tree T of a connected graph

G are

b1, . . . , bn−1

and the corresponding links of the cospanning tree T ∗ are

c1, . . . , cm−n+1,

then there exists one and only one circuit Ci in T + ci
(which is the subgraph of G induced by the branches of T

and ci) (Theorem 1). We call this circuit a fundamental

circuit.

Every spanning tree definesm−n+1 fundamental circuits

C1, . . . , Cm−n+1,

which together form a fundamental set of circuits. Every

fundamental circuit has exactly one link which is not in any

other fundamental circuit in the fundamental set of circuits.

Therefore, we can not write any fundamental circuit as a

ring sum of other fundamental circuits in the same set.

In other words, the fundamental set of circuits is linearly

independent under the ring sum operation.
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EXAMPLE.

G:

T: T*:

c1
c2 c3

C1 C2
C3

The graph T − bi has two components T1 and T2. The

corresponding vertex sets are V1 and V2. Then, 〈V1, V2〉

is a cut of G. It is also a cut set of G if we treat it as

an edge set because G − 〈V1, V2〉 has two components

(result #1, slide 38). Thus, every branch bi of T has a

corresponding cut set Ii.
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The cut sets

I1, . . . , In−1

are also known as fundamental cut sets and they form a

fundamental set of cut sets. Every fundamental cut set

includes exactly one branch of T and every branch of T

belongs to exactly one fundamental cut set. Therefore,

every spanning tree defines a unique fundamental set of

cut sets for G.

EXAMPLE. (Continuing from the previous example) The

graph

G: e2

e1

e4

e3

e5

e6

e7

e8

has the spanning tree

T:

b1

b2

b3

b4

b5
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that defines these fundamental cut sets:

b1 : {e1, e2} b2 : {e2, e3, e4} b3 : {e2, e4, e5, e6}

b4 : {e2, e4, e5, e7} b5 : {e8}

Next, we consider some properties of circuits and cut sets:

(a) Every cut set of a connected graph G includes at least

one branch from every spanning tree of G. (Counter

hypothesis: Some cut set F ofG does not include any

branches of a spanning tree T . Then, T is a subgraph

of G− F and G− F is connected.
√

)

(b) Every circuit of a connected graph G includes at least

one link from every cospanning tree of G. (Counter

hypothesis: Some circuit C of G does not include any

link of a cospanning tree T ∗. Then, T = G − T ∗

has a circuit and T is not a tree.
√

)

THEOREM 4. The edge set F of the connected graph

G is a cut set of G if and only if

(i) F includes at least one branch from every spanning

tree of G, and

55



(ii) ifH ⊂ F , then there is a spanning tree none of whose

branches is in H.

Proof. Let us first consider the case where F is a cut set.

Then, (i) is true (previous proposition (a)). IfH ⊂ F then

G − H is connected and has a spanning tree T . This T

is also a spanning tree of G. Hence, (ii) is true.

Let us next consider the case where both (i) and (ii) are

true. Then G − F is disconnected. If H ⊂ F there is a

spanning tree T none of whose branches is in H. Thus T

is a subgraph of G−H and G−H is connected. Hence,

F is a cut set.

Similarly:

THEOREM 5. The subgraph C of the connected graph

G is a circuit if and only if

(i) C includes at least one link from every cospanning tree

of G, and

(ii) if D is a subgraph of C and D 6= C, then there

exists a cospanning tree none of whose links is in D.
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Proof. Let us first consider the case where C is a circuit.

Then, C includes at least one link from every cospanning

tree (property (b) above) so (i) is true. If D is a proper

subgraph of C, it obviously does not contain circuits, i.e.

it is a forest. We can then supplement D so that it is

a spanning tree of G (see remark on slide 49), i.e. some

spanning tree T of G includes D and D does not include

any link of T ∗. Thus, (ii) is true.

Now we consider the case where (i) and (ii) are both true.

Then, there has to be at least one circuit in C because

C is otherwise a forest and we can supplement it so that

it is a spanning tree of G (see remark on slide 49). We

take a circuit C′ in C. Since (ii) is true, C′ 6= C is not

true, because C′ is a circuit and it includes a link from

every cospanning tree (see property (b) above). Therefore,

C = C′ is a circuit.

THEOREM 6. A circuit and a cut set of a connected

graph have an even number of common edges.

Proof. We choose a circuit C and a cut set F of the

connected graph G. G − F has two components G1 =

(V1, E1) and G2 = (V2, E2). If C is a subgraph of

G1 or G2, then the theorem is obvious because they have
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no common edges. Let us assume that C and F have

common edges. We traverse around a circuit by starting

at some vertex v of G1. Since we come back to v, there

has to be an even number of edges of the cut 〈V1, V2〉 in

C.

The reader is advised to read the following several times:

THEOREM 7. A fundamental circuit corresponding to

link c of the cospanning tree T ∗ of a connected graph is

formed exactly by those branches of T whose correspond-

ing fundamental cut set includes c.

Proof. There exists a fundamental circuit C that corre-

sponds to link c of T ∗. The other edges b1, . . . , bk of

C are branches of T . We denote Ii as the fundamental

cut set that corresponds to branch bi. Then, bi is the only

branch of T which is in both C and Ii. On the other hand,

c is the only link of T ∗ in C. By Theorem 6, we know that

the common edges of C and Ii are bi and c, in other words,

c is an edge of Ii.

Then, we show that there is no c in the fundamental cut

sets

Ik+1, . . . , In−1
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that correspond to the branches

bk+1, . . . , bn−1

of T . For instance, if c were in Ik+1, then the fundamental

cut set Ik+1 and the circuit C would have exactly one

common edge. (
√

). So c is only in the fundamental cut

sets I1, . . . , Ik.

The following is the corresponding theorem for fundamental

cut sets:

THEOREM 8. The fundamental cut set corresponding

to branch b of the spanning tree T of a connected graph

consists exactly of those links of T ∗ whose corresponding

fundamental circuit includes b.

Proof. Let I be a fundamental cut set that corresponds

to the branch b of T . Other edges c1, . . . , ck of I are

links of T ∗. Let Ci denote the fundamental circuit that

corresponds to ci. Then, ci is the only link of T ∗ in both

I and Ci. On the other hand, b is the only branch of T

in I . By Theorem 6, the common edges of I and Ci are b

and ci, in other words, b is an edge of Ci.

Then, we show that the fundamental circuits

Ck+1, . . . , Cm−n+1
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corresponding to the links

ck+1, . . . , cm−n+1

do not include b. For example, if b were in Ck+1, then the

fundamental circuit Ck+1 and the cut set I would have

exactly one common edge (
√

). Hence, the branch b is

only in fundamental circuits C1, . . . , Ck.

From the results, we can see the duality between cut sets

and circuits of a graph: The theorems for cut sets can

generally be converted to dual theorems for circuits and

vice versa. Usually, we just need to change some of the key

terminologies to their duals in the theorems and proofs. In

particular, we take advantage of this dualism for dealing

with matroids (see Chapter 7 of the lecture notes).
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CHAPTER 3 Directed Graphs

1. Definition

Intuitively, a directed graph or digraph is formed by vertices
connected by directed edges or arcs.∗

EXAMPLE.

Formally, a digraph is a pair (V,E), where V is the vertex
set andE is the set of vertex pairs as in ”usual”graphs. The
difference is that now the elements of E are ordered pairs:
the arc from vertex u to vertex v is written as (u, v) and
the other pair (v, u) is the opposite direction arc. We also
have to keep track of the multiplicity of the arc (direction
of a loop is irrelevant).

We can pretty much use the same notions and results for
digraphs from Chapter 1. However:
∗This not a standard terminology. We will however call directed
edges arcs in the sequel.
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1. Vertex u is the initial vertex and vertex v is the ter-

minal vertex of the arc (u, v). We also say that the

arc is incident out of u and incident into v.

2. The out-degree of the vertex v is the number of arcs

out of it (denoted d+(v)) and the in-degree of v is

the number of arcs going into it (denoted d−(v)).

3. In the directed walk (trail, path or circuit),

vi0, ej1, vi1, ej2, . . . , ejk, vik

viℓ is the initial vertex and viℓ−1 is the terminal vertex

of the arc ejℓ. .

4. When we treat the graph (V,E) as a usual undirected

graph, it is the underlying undirected graph of the di-

graph G = (V,E), denoted Gu.

5. DigraphG is connected ifGu is connected. The com-

ponents ofG are the directed subgraphs ofG that cor-

respond to the components of Gu. The vertices of G

are connected if they are connected in Gu. Other no-

tions for undirected graphs can be used for digraphs as

well by dealing with the underlying undirected graph.
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6. Vertices u and v are strongly connected if there is a
directed u–v path and also a directed v–u path in G.

7. Digraph G is strongly connected if every pair of ver-
tices is strongly connected. By convention, the trivial
graph is strongly connected.

8. A strongly connected component H of the digraph G
is a directed subgraph of G (not a null graph) such
that H is strongly connected, but if we add any ver-
tices or arcs to it, then it is not strongly connected
anymore.

Every vertex of the digraph G belongs to one strongly con-
nected component of G (compare to Theorem 1.3). How-
ever, an arc does not necessarily belong to any strongly
connected component of G.

EXAMPLE. For the digraph G

v1

v2

e1

e9

e2

e3
e5

v4
v6

e6
e8

v5

v3

e4 e7
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the strongly connected components are

({v1}, ∅) , ({v2, v3, v4}, {e3, e4, e5}) ,

({v5}, ∅) and ({v6}, ∅).

The condensed graph Gc of the digraph G is obtained by

contracting all the arcs in every strongly connected compo-

nent.

EXAMPLE. (Continuing from the previous example) The

condensed graph is

v1
e9

v6

e8

v5

w
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2. Directed Trees

A directed graph is quasi-strongly connected if one of the

following conditions holds for every pair of vertices u and

v:

(i) u = v or

(ii) there is a directed u–v path in the digraph or

(iii) there is a directed v–u path in the digraph or

(iv) there is a vertex w so that there is a directed w–u

path and a directed w–v path.

EXAMPLE. (Continuing from the previous example) The

digraph G is quasi-strongly connected.

Quasi-strongly connected digraphs are connected but not

necessarily strongly connected.

The vertex v of the digraphG is a root if there is a directed

path from v to every other vertex of G.
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EXAMPLE. (Continuing from the previous example) The

digraph G only has one root, v1.

THEOREM 1. A digraph has at least one root if and only

if it is quasi-strongly connected.

Proof. If there is a root in the digraph, it follows from the

definition that the digraph is quasi-strongly connected.

Let us consider a quasi-strongly connected digraph G and

show that it must have at least one root. If G is trivial,

then it is obvious. Otherwise, consider the vertex set V =

{v1, . . . , vn} of G where n ≥ 2. The following process

shows that there must be a root:

1. Set P ← V .

2. If there is a directed u–v path between two distinct

vertices u and v in P , then we remove v from P .

Equivalently, we set P ← P − {v}. We repeat this

step as many times as possible.

3. If there is only one vertex left in P , then it is the

root. For other cases, there are at least two distinct
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vertices u and v in P and there is no directed path

between them in either direction. Since G is quasi-

strongly connected, from condition (iv) it follows that

there is a vertex w and a directed w–u path as well

as a directed w–v path. Since u is in P , w can not

be in P . We remove u and v from P and add w, i.e.

we set P ← P − {u, v} and P ← P ∪ {w}. Go

back to step #2.

4. Repeat as many times as possible.

Every time we do this, there are fewer and fewer vertices

in P . Eventually, we will get a root because there is a

directed path from some vertex in P to every vertex we

removed from P .

The digraph G is a tree if Gu is a tree. It is a directed

tree if Gu is a tree and G is quasi-strongly connected, i.e.

it has a root. A leaf of a directed tree is a vertex whose

out-degree is zero.
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EXAMPLE.

6 leaves

root

THEOREM 2. For the digraph G with n > 1 vertices,

the following are equivalent:

(i) G is a directed tree.

(ii) G is a tree with a vertex from which there is exactly

one directed path to every other vertex of G.

(iii) G is quasi-strongly connected but G− e is not quasi-

strongly connected for any arc e in G.
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(iv) G is quasi-strongly connected and every vertex of G

has an in-degree of 1 except one vertex whose in-

degree is zero.

(v) There are no circuits in G (i.e. not in Gu) and every

vertex of G has an in-degree of 1 except one vertex

whose in-degree is zero.

(vi) G is quasi-strongly connected and there are no circuits

in G (i.e. not in Gu).

Proof. (i)⇒(ii): If G is a directed tree, then there is a

root. This implies that there is a directed path from the

root to every other vertex in G (but not more than one

path since Gu is a tree).

(ii)⇒(iii): If (ii) is true, then G obviously is quasi-strongly

connected. An arc e in G cannot be a loop because G is

a tree. So, if e is an arc of G, G− e is not connected and

thus also not quasi-strongly connected. Otherwise G − e

would be a tree with some n vertices and n − 2 edges

which contradicts Theorem 2.1.
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(iii)⇒(iv): If G quasi-strongly connected, then it has a

root r (Theorem 1) so that the in-degrees of other vertices

are ≥ 1.

We start by considering the counter hypothesis: There ex-

ists a vertex v 6= r and d−(v) > 1. Then, v is the

terminal vertex of two distinct arcs (u, v) and (w, v). If

there were a loop e in G, then G − e would be quasi-

strongly connected (
√

). Thus, u 6= v with w 6= v.

Now, there are two distinct directed trails from r to v.

The first one includes (u, v) and the second one includes

(w, v). We have two possible cases:

r

u

w

v
r

u

w

v

In the digraph on the left, the paths r–u and r–w do not

include the arcs (u, v) and (w, v). Both G− (u, v) and

G − (w, v) are quasi-strongly connected. In the digraph

on the right, the r–u path includes the arc (w, v) or (as

in the figure) the r–w path includes the arc (u, v). In

either case, only one of G − (u, v) and G − (w, v) is

quasi-strongly connected because the root is r (Theorem

1). (
√

)
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We still have to show that d−(r) = 0. Let us consider the

counter hypothesis: d−(r) ≥ 1. Then, r is the terminal

vertex of some arc e. However, the tree G − e is then

quasi-strongly connected since r is its root (Theorem 1).

(
√

)

(iv)⇒(v): If (iv) is true, then it is enough to show that

there are no circuits in Gu. The sum of in-degrees of all

the vertices in G is n − 1 and the sum of out-degrees of

all the vertices in G is also n−1, i.e. there are n−1 arcs

in G. Since G is quasi-strongly connected, it is connected

and it is a tree (Theorem 2.1). Therefore, there are no

circuits in Gu.

(v)⇒(vi): If we assume that (v) is true, then there are n−1

arcs in G (compare to the previous proof). By Theorem

2.1, G is a tree. We denote by r the vertex satisfying

condition (v). By Theorem 2.1, we see that there is exactly

one path to any other vertex of G from r. These paths are

also directed. Otherwise, d−(r) ≥ 1 or the in-degree of

some vertex on that path is > 1 or the in-degree of some

other vertex other than r on that path is zero. Hence, r is

a root and G is quasi-strongly connected (Theorem 1).

(vi)⇒(i): If G is quasi-strongly connected, then it has a

root (Theorem 1). Since G is connected and there are no

circuits in G, it is a tree.
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A directed subgraph T of the digraph G is a directed span-

ning tree if T is a directed tree and T includes every vertex

of G.

EXAMPLE.

G: T:

THEOREM 3. A digraph has a directed spanning tree if

and only if it is quasi-strongly connected.

Proof. If the digraph G has a directed spanning tree T ,

then the root of T is also a root for G and it is quasi-

strongly connected (Theorem 1).

We now assume that G is quasi-strongly connected and

show that it has a directed spanning tree. If G is a di-

rected tree, then it is obvious. Otherwise, from Theorem 2,
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we know that there is an arc e in G so that if we remove e,

G remains quasi-strongly connected. We systematically re-

move these kind of arcs until we get a directed tree. (Com-

pare to the proof for Theorem 2.2)
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3. Acyclic Directed Graphs

A directed graph with at least one directed circuit is said to

be cyclic. A directed graph is acyclic otherwise. Obviously,

directed trees are acyclic but the reverse implication is not

true.

EXAMPLE. The digraph

is acyclic but it is not a directed tree.

THEOREM 4. In an acyclic digraph, there exist at least

one source (a vertex whose in-degree is zero) and at least

one sink (a vertex whose out-degree is zero).
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Proof. Let G be an acyclic digraph. If G has no arcs, then

it is obvious. Otherwise, let us consider the directed path

vi0, ej1, vi1, ej2, . . . , ejk, vik,

which has the maximum path length k. Since G is acyclic,

vi0 6= vik. If (v, vi0) is an arc, then one of the following

is true:

• v 6= vit for every value of t = 0, . . . , k. Then,

v, (v, vi0), vi0, ej1, vi1, ej2, . . . , ejk, vik

is a directed path with length k +1.
√

• v = vit for some value of t. We choose the smallest

such t. Then, t > 0 because there are no loops in G

and

vi0, ej1, vi1, ej2, . . . , ejt, vit, (v, vi0), vi0

is a directed circuit.
√

Hence, d−(vi0) = 0. Using a similar technique, we can

show that d+(vik) = 0 as well.
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IfG = (V,E) is a digraph with n vertices, then a labeling

of the vertices with an injective function

α : V → {1, . . . , n}

which satisfies the condition α(u) < α(v) whenever

(u, v) is an arc in G is known as topological sorting.

THEOREM 5.We can sort the vertices of a digraph topo-

logically if and only if the graph is acyclic.

Proof. If the digraph is cyclic, then obviously we can not

sort the vertices topologically.

If the digraph G is acyclic, then we can sort the vertices in

the following manner: ∗

1. We choose a vertex v which is a sink. It exists by

Theorem 4. We set α(v) ← n, G ← G − v and

n← n− 1.

2. If there is just one vertex v in G, set α(v) ← 1.

Otherwise, go back to step #1.

∗This is known as Marimont’s Algorithm. The algorithm itself con-
tains other items, too. The original reference is MARIMONT, R.B.:
A New Method of Checking the Consistency of Precedence Matri-
ces. Journal of the Association for Computing Machinery 6 (1959),
164–171.
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CHAPTER 4 Matrices and Vector
Spaces of Graphs

1. Matrix Representation of Graphs

The adjacency matrix of the graph G = (V,E) is an

n × n matrix D = (dij), where n is the number of

vertices in G, V = {v1, . . . , vn} and

dij = number of edges between vi and vj.

In particular, dij = 0 if (vi, vj) is not an edge in G.

The matrix D is symmetric, i.e. DT = D.

EXAMPLE.

D =

















0 2 1 0 0
2 1 0 1 0
1 0 3 0 0
0 1 0 0 0
0 0 0 0 0

















v1

v3
v5

v4

v2

Obviously, an adjacency matrix defines a graph completely

up to an isomorphism.

77



The adjacency matrix of a directed graphG isD = (dij),

where

dij = number of arcs that come out of vertex vi
and go into vertex vj.

EXAMPLE.

D =











0 1 0 0
1 0 0 0
0 0 0 0
2 1 0 1











v1 v2

v4
v3

The all-vertex incidence matrix of a non-empty and loopless

graphG = (V,E) is an n×mmatrixA = (aij), where

n is the number of vertices in G, m is the number of edges

in G and

aij =







1 if vi is an end vertex of ej
0 otherwise.
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EXAMPLE.

e1 e2 e3 e4

A =

















1 1 1 0
1 1 0 1
0 0 1 0
0 0 0 1
0 0 0 0

















v1
v2
v3
v4
v5

v1 v2

v3 v4

v5
e3 e4

e2

e1

The all-vertex incidence matrix of a non-empty and loopless

directed graph G is A = (aij), where

aij =















1 if vi is the initial vertex of ej
−1 if vi is the terminal vertex of ej
0 otherwise.

EXAMPLE.

v1 v2

v4
v3

e3 e4

e1

e2

e5
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e1 e2 e3 e4 e5

A =











1 −1 −1 −1 0
−1 1 0 0 −1
0 0 0 0 0
0 0 1 1 1











v1
v2
v3
v4

Since every column of an all-vertex incidence matrix con-

tains exactly two non-zero numbers, two ones, we can re-

move a row and still have enough information to define the

graph. The incidence matrix of a graph is obtained by re-

moving a row from the all-vertex incidence matrix. It is

not unique because there are n possible rows to remove.

The vertex corresponding to the row removed is called the

reference vertex.

Similarly, every column in the all-vertex incidence matrix of

a digraph contains exactly two non-zero numbers, +1 and

−1. We can remove a row from the all-vertex incidence

matrix and obtain the incidence matrix. Notice that the

rows of an all-vertex incidence matrix are linearly dependent

because the sum of rows is a zero vector.

THEOREM 1. The determinant of an incidence matrix

of a nontrivial tree is ±1, regardless of whether the tree is

a directed graph or not.
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Proof. We use induction on n, the number of vertices in

the tree.

Induction Basis: n = 2 and it is obvious.

Induction Hypothesis: The theorem is true for n ≤ k.

(k ≥ 2)

Induction Statement: The theorem is true for n = k+1.

Induction Statement Proof: Let T be a tree which has

k+1 vertices and letA be an (arbitrary) incidence matrix

of T . T has at least two pendant vertices (Theorem 2.3).

We choose a pendant vertex vi which is not the reference

vertex of A and the edge et which is incident on vi. Then,

ait = (±)1 and aij = 0, when j 6= t.

We expand the determinant of |A| by the ith row:

|A| = (±)(−1)i+t|A′|,

where A′ is the minor corresponding to ait. We write

T ′ = T − vi which is also a tree (vi is a pendant ver-

tex). We use the induction hypothesis to get |A′| = ±1

because A′ is obviously an incidence matrix of T ′.
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COROLLARY. If the digraph G has no loops, then the

rank of its all-vertex incidence matrix is ρ(G).

Proof. If we rearrange the rows or columns of the all-vertex

incidence matrix, the rank of the matrix will not change.

Let us rearrange the vertices and arcs to group them by

components. Then, the all-vertex incidence matrix is a

block diagonal matrix in which each block is an all-vertex

incidence matrix of a component.



























1st compo-
nent

2nd compo-
nent

O

O . . .

kth compo-
nent



























We denote ni as the number of vertices in the ith com-

ponent. Every component has a spanning tree whose inci-

dence matrix has a nonzero determinant by Theorem 1, i.e.

the matrix is not singular.

The all-vertex incidence matrix of the ith component is

obtained by adding columns and one row to an incidence

matrix of the corresponding spanning tree. The row added
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is linearly dependent of other rows so that the rank of this

matrix is the same as the rank of the incidence matrix (=

ni−1). Notice that in the special case when a component

is trivial, the rank is zero = 1− 1. Therefore,

rank of A = sum of the ranks of the components

= (n1 − 1) + · · ·+ (nk − 1)

= n1 + · · ·+ nk
︸ ︷︷ ︸

= n
−k = ρ(G).

NOTE. From this proof, we can also get a basis for the

row space and the column space of the all-vertex incidence

matrix. The columns corresponding to the branches of the

spanning forest of G are a basis of the column space. We

can get a basis of the row space by removing one row out

of each component block.
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2. Cut Matrix

If all the cuts of a nontrivial and loopless graph G =

(V,E) are I1, . . . , It, then the cut matrix of G is a

t × m matrix Q = (qij), where m is the number of

edges in G and

qij =







1 if ej ∈ Ii (the cut is interpreted as an edge set)

0 otherwise.

EXAMPLE. For the graph

v2

v3

e2 e3e4

e1
v1

the cuts are I1 = {e1, e4}, I2 = {e2, e3, e4} and

I3 = {e1, e2, e3}. The cut matrix is

e1 e2 e3 e4

Q =







1 0 0 1
0 1 1 1
1 1 1 0







I1
I2
I3
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NOTE. If the graph has n vertices, then it has

1

2
(2n − 2) = 2n−1 − 1

cuts. Usually, there are not this many distinct edge sets.

For the cut matrix, we only take one cut corresponding to

an edge set so that there would not be repeated rows. Even

so, there are usually too many rows.

If G is a nontrivial and loopless digraph, then we assign an
arbitrary direction to every cut 〈V1, V2〉: the orientation

of 〈V1, V2〉 is from V1 to V2. In other words, we consider
oriented cuts and we pick only one direction from the two
possibilities. Then, the cut matrix Q = (qij) is

qij =















1 if ej ∈ Ii and they are in the same direction

−1 if ej ∈ Ii and they are in opposite directions

0 otherwise.

EXAMPLE. For the digraph

v1 v2

v4
v3

e3 e4

e1

e2

e5
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the different cuts (interpreted as edge sets) are

I1 = {e1, e2, e3, e4}

(in the direction of e1),

I2 = {e3, e4, e5}

(in the direction of e3),

I3 = {e1, e2, e5}

(in the direction of e1) and I4 = ∅. The cut matrix is

e1 e2 e3 e4 e5

Q =











1 −1 −1 −1 0
0 0 1 1 1
1 −1 0 0 1
0 0 0 0 0











I1
I2
I3
I4

Since 〈{v}, V − {v}〉 is a cut for every vertex v, rows

of the all-vertex incidence matrix are rows of Q. If we are

dealing with directed graphs, then these rows may have to

be multiplied by −1.

THEOREM 2. Every row of the cut matrix of a digraph

can be expressed in two different ways as a linear combi-

nation of the rows of the all-vertex incidence matrix. The

non-zero coefficients are either all = +1 or all = −1.
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Proof. Let Q be the cut matrix of a digraph G = (V,E)

and let A be the all-vertex incidence matrix. Let 〈V1, V2〉
(note that it is oriented) be the cut corresponding to the
ith row of Q. Reindexing if needed, we can assume that

V1 = {v1, . . . , vr} and V2 = {vr+1, . . . , vn}.

We write

qi = ith row of Q and at = tth row of A.

We show that

qi =
r
∑

t=1

at = −
n
∑

t=r+1

at,

which proves the theorem. Let (vp, vq) = ek be the kth

arc of G. Then,

apk = kth element of the vector ap = 1,

aqk = kth element of the vector aq = −1

and

ajk = 0 if j 6= p, q.

We get four cases:

• vp ∈ V1 and vq ∈ V2: Now p ≤ r and q ≥ r + 1

so qik = 1 and

qik =
r
∑

t=1

atk = −
n
∑

t=r+1

atk.
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• vp ∈ V2 and vq ∈ V1: Now p ≥ r + 1 and q ≤ r

so qik = −1 and

qik =
r
∑

t=1

atk = −
n
∑

t=r+1

atk.

• vp ∈ V1 and vq ∈ V1: Now p ≤ r and q ≤ r so

qik = 0 and

qik =
r
∑

t=1

atk = − ar+1,k
︸ ︷︷ ︸

=0

− · · · − ank
︸︷︷︸

=0

.

• vp ∈ V2 and vq ∈ V2: Now p ≥ r + 1 and

q ≥ r +1 so qik = 0 and

qik = a1k
︸︷︷︸

=0

+ · · ·+ ark
︸︷︷︸

=0

= −
n
∑

t=r+1

atk.

The statements above are valid for every k.

EXAMPLE. (Continuing from the previous example) The

corresponding row of I1 is

(1,−1,−1,−1,0) = (1,−1,−1,−1,0)

= −(−1,1,0,0,−1)− (0,0,0,0,0)− (0,0,1,1,1).

88



COROLLARY. The rank of the cut matrix of a digraph

G is ρ(G).

Proof. The all-vertex incidence matrix A of G is also a

submatrix of the cut matrix Q of G. Then, (by Corollary

of Theorem 1)

rank(Q) ≥ rank(A) = ρ(G).

On the other hand, by Theorem 2, every row of Q can

be expressed as a linear combination of the rows of A.

Therefore,

rank(Q) = rank(A) = ρ(G).

Another consequence is that the cut matrix Q can be ex-

pressed as

Q = A1A,

where the elements of A1 are 0 or ±1. In addition, the

matrixA1 can be constructed from the process in the proof

of Theorem 2.

If the graph G is connected, then it has a spanning tree T

and an associated fundamental cut set. The fundamental

cut sets are also cuts (when cuts are interpreted as edge

sets). Therefore, the cut matrix Q of G has a submatrix
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Qf that corresponds to these fundamental cut sets. This

matrix is called the fundamental cut set matrix.

Similarly, the connected digraph G has a fundamental cut

set matrix: if we interpret a fundamental cut set as a set,

then the direction of the cut is chosen to be the same as the

direction of the corresponding branch of T . If we rearrange

the edges of G so that we have the branches first and sort

the fundamental cut sets in the same order, then we get

the fundamental cut set matrix in the form

Qf =
(

In−1 Qfc

)

,

where In−1 is the identity matrix with n − 1 rows. The

rank of Qf is thus n− 1 = ρ(G).

EXAMPLE. (Continuing from the previous example) We

left out vertex v3 so we get a connected digraph. We

choose the spanning tree

v1 v2

v4

e3

e1

T:
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The fundamental cut sets are

I2 = {e3, e4, e5}

(in the direction of e3) and

I3 = {e1, e2, e5}

(in the direction of e1). Then,

e1 e3 e2 e4 e5

Qf =

(

1 0 −1 0 1
0 1 0 1 1

)

I3
I2

and

e1 e2 e3 e4 e5

Q =







1 −1 −1 −1 0
0 0 1 1 1
1 −1 0 0 1







←
←
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3. Circuit Matrix

We consider a loopless graph G = (V,E) which contains

circuits. We enumerate the circuits of G:

C1, . . . , Cℓ.

The circuit matrix of G is an ℓ ×m matrix B = (bij)

where

bij =







1 if the arc ej is in the circuit Ci

0 otherwise

(as usual, E = {e1, . . . , em}).

The circuits in the digraph G are oriented, i.e. every circuit

is given an arbitrary direction for the sake of defining the

circuit matrix. After choosing the orientations, the circuit

matrix of G is B = (bij) where

bij =







































1 if the arc ej is in the circuit Ci and they in

the same direction

−1 if the arc ej is in the circuit Ci and they are

in the opposite direction

0 otherwise.
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EXAMPLE. For the directed graph

v1

e4

e1 v2

e2 e3

v3

the circuits are

v1

e4

e1 v2

e3

v3

C1

v1

e4

e1 v2

e2

v3

C2

v2

e2 e3

v3

C1

and the circuit matrix is

e1 e2 e3 e4

B =







1 0 −1 1
−1 1 0 −1
0 −1 1 0







C1
C2
C3
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If the graph G is connected and contains at least one cir-

cuit, then it has a cospanning tree T ∗ and the correspond-

ing fundamental circuits. By choosing the corresponding

rows of the circuit matrix B, we get an (m−n+1)×m

matrix Bf , called the fundamental circuit matrix.

Similarly, a connected digraph G with at least one circuit

has a fundamental circuit matrix: the direction of a fun-

damental circuit is the same as the direction of the corre-

sponding link in T ∗.

When we rearrange the edges of G so that the links of T ∗

come last and sort the fundamental circuits in the same

order, the fundamental circuit matrix takes the form

Bf =
(

Bft Im−n+1

)

,

where Im−n+1 is the identity matrix with m − n + 1

rows. The rank of Bf is thus m − n + 1 = µ(G) and

the rank of B is ≥ m− n+1.

EXAMPLE. (Continuing from the previous example) We

left out vertex v3 so we get a connected digraph and we

chose the spanning tree
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v1 v2

v4

e3

e1

T:

The fundamental circuits are

v1 v2

e1

e2

C1

v1

v4

e3 e4 C2

v1 v2

v4

e3

e1

e5

C3

and

e1 e3 e2 e4 e5

Bf =







1 0 1 0 0
0 −1 0 1 0
−1 −1 0 0 1







C1
C2
C3
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THEOREM 3. An oriented cut and an oriented circuit of

a digraph have an even number of common arcs. Half of

these arcs have the same direction in the cut and in the

circuit, and the remaining arcs have opposite directions in

the cut and in the circuit.

Proof. Compare to the proof of Theorem 2.6.

THEOREM 4. For a digraph,

BQT = O (zero matrix).

Proof. By the previous theorem, half of the nonzero num-

bers in the dot product corresponding to each element of

BQT are +1. The remaining nonzero numbers are −1.

Therefore, the dot product is = 0.

THEOREM 5. If the digraph G contains at least one

circuit, then the rank of its circuit matrix B is µ(G). Fur-

thermore, if G is connected, then the circuit matrix B can

be expressed asB = B2Bf , where the matrixB2 consists

of 0’s and ±1’s, and the cut matrix Q can be expressed

as Q = Q1Qf , where the matrix Q1 consists of 0’s and

±1’s.
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Proof. First we consider the case when G is connected.

We choose a spanning tree T of G and rearrange the m

edges of G so that the branches of T come first and the

links of T ∗ come last. We sort the fundamental cut sets in

the same order as the branches and links. Then,

Qf =
(

In−1 Qfc

)

and Bf =
(

Bft Im−n+1

)

.

The blocks of B can be constructed in a similar way:

B =
(

B1 B2

)

.

Since Qf is a submatrix of Q and Bf is a submatrix of B,

it follows from Theorem 4 that

O = BfQ
T
f =

(

Bft Im−n+1

) (

In−1 Qfc

)T

=
(

Bft Im−n+1

)

(

In−1
QT

fc

)

= BftIn−1 + Im−n+1Q
T
fc = Bft +QT

fc.

Hence

Bft = −Q
T
fc.

Furthermore, since Qf is a submatrix of Q, we can use the

same theorem to get
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O = BQT
f =

(

B1 B2

) (

In−1 Qfc

)T

=
(

B1 B2

)

(

In−1
QT

fc

)

= B1In−1 +B2Q
T
fc = B1 −B2Bft.

Hence

B =
(

B2Bft B2

)

= B2

(

Bft Im−n+1

)

= B2Bf ,

as claimed.

In the same way, Q can be expressed as Q = Q1Qf , as
claimed, which is clear anyway since the rank ofQ is n−1

and its elements are 0’s and ±1’s.

Every row of B is a linear combination of the rows cor-
responding to the fundamental circuits and the rank of B
is at most equal to the rank of Bf = m − n + 1. On
the other hand, as we pointed out earlier, the rank of B is
≥ m− n+1. Thus,

rank(B) = m− n+1( = µ(G))

for a connected digraph.

In the case of a disconnected digraph G (which contains
at least one circuit), it is divided into components (k ≥ 2

components) and the circuit matrixB is divided into blocks
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corresponding to the components (compare to the proof of

the corollary of Theorem 1), in which case

rank(B) =
k
∑

i=1

(mi − ni +1)

= m− n+ k = µ(G).

Notice that the proof also gives the formula,Bft = −Q
T
fc,

which connects the fundamental cut matrix and the funda-

mental circuit matrix.
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4. An Application: Stationary Linear Networks

A stationary linear network is a directed graph G that sat-

isfies the following conditions:

1. G is connected.

2. Every arc of G belongs to some circuit and there are

no loops in G.

3. Every arc ej inG is associated with a number ij called

the through-quantity or flow. If there are m arcs in

G, then we write

i =







i1
...
im







(through-vector).

4. Every vertex vi in G is associated with a number pi
called the potential. Furthermore, the across-quantity

or potential difference of the arc ej = (vi1, vi2) is

uj = pi2 − pi1.
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If there are n vertices and m arcs in G, then we write

p =







p1
...
pn







and u =







u1
...

um







(potential vector and across-vector). (Potentials are
rarely needed.)

5. Every arc ej is one of the following:

(a) a component∗, for which there is an associated
number rj. rj is constant (6= 0) (stationarity)
and the following equation links the quantities:

uj = ijrj (linearity).

(b) a through-source, for which the through-quantity
ij is fixed.

(c) an across-source, for which the across-quantity uj
is fixed.

6. (Kirchhoff’s Through-Quantity Law) The sum of the
through-quantities of an oriented cut ofG is zero when
the cut is interpreted as an edge set and the sign of a
through-quantity is changed if the directions of a cut
and an arc are different.

∗Not to be confused with a component of a graph!
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7. (Kirchhoff’s Across-Quantity Law) The sum of the

across-quantities of an oriented circuit of G is zero

when the sign of an across-quantity is changed if the

directions of a circuit and an arc are different.

EXAMPLE. A typical stationary linear network is an elec-

trical circuit with linear resistors, constant current sources

and constant voltage sources. The components are resis-

tors and rj are the resistances. Equation 5.(a) is Ohm’s

Law.

We take a spanning tree T of a stationary linear networkG,

its fundamental cut matrix Qf and its fundamental circuit

matrix Bf . Let us rearrange the arcs in these matrices and

vectors i and u like we did before. That is, the branches of

T will come first followed by the links of T ∗. Kirchhoff’s

Laws can then be written as

Qi = 0 and Bu = 0.

On the other hand, the rows of the fundamental cut ma-

trix Qf span all the rows of Q, and similarly rows of the

fundamental circuit matrix Bf span the rows of B. Then,

Kirchhoff’s Laws can also be written as

Qf i = 0n−1 and Bfu = 0m−n+1.
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Let us form the diagonal matrices K = ⌈k1, . . . , km⌋

and L = ⌈ℓ1, . . . , ℓm⌋, where

kj =















−rj if ej is a component

1 if ej is a through-source

0 if ej is an across-source

and

ℓj =















1 if ej is a component

0 if ej is a through-source

1 if ej is an across-source,

and the m-vector s = (s1, . . . , sm)T, where

sj =















0 if ej is a component

ij if ej is a through-source

uj if ej is an across-source.

Then, all the information can be expressed as a system of

linear equations








K L
Qf O(n−1)×m

O(m−n+1)×m Bf









(

i
u

)

=







s
0n−1

0m−n+1







,

known as the fundamental equations. The through- and

across-quantities can be solved (ideally) if rj’s and the

sources are given.
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NOTE. The same procedure can be applied to form state

(differential) equations for dynamic networks, which have

nonstationary components.

The matrix of this system of linear equations does not have
to be nonsingular and the system does not even have to
have a unique solution at all. For example, in the matrix
above, we can easily see that it is singular if some circuit
only consists of across-sources or if some cut only consists
of through-sources.

As a matter of fact, this is the only case when the through-
and across quantities are not defined uniquely if the con-
stants rj are real numbers with the same sign (and often
otherwise too). We choose a specific spanning tree T to
explore these concepts more carefully:

LEMMA. If no cut of G consists of only through-sources

and no circuit of G consists of only across-sources, then G
has a spanning tree T such that every across-source is a

branch of T and every through-source is a link of T ∗.

Proof. If G satisfies the hypothesis, then we first choose a
digraph M which has every vertex and across-source (arc)
of G. There are no circuits in this digraph. Then we add
components to M one by one and try to come up with a
spanning tree. If this fails at some point, then G has a cut
with only through-sources, which is impossible.
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Now let us assume that no cut ofG consists of only through-

sources and no circuit of G consists of only across-sources.

We use the spanning tree T mentioned in the lemma. We

rearrange the arcs of G so that (as before) the branches of

T come first. Within these branches, the across-sources

come first followed by components. Similarly, the links

are rearranged so that the components come first and the

through-sources come last.

The system of 2m equations can then be written as






























O O O O I O O O
O −R1 O O O I O O
O O −R2 O O O I O
O O O I O O O O
I O Q11 Q12 O O O O
O I Q21 Q22 O O O O
O O O O B11 B12 I O
O O O O B21 B22 O I





























































i1
i2
i3
i4
u1
u2
u3
u4































=































s1
0
0
s2
0
0
0
0































← across-sources (in branches)

← components (in branches)

← components (in links)

← through-sources (in links)

← fundamental cut sets (across-sources)

← fundamental cut sets (components)

← fundamental circuits (components)

← fundamental circuits (through-sources)
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where the I’s are identity matrices of the right dimensions,

the O’s are zero matrices of the right dimensions and the

0’s are zero vectors of the right dimensions.

NOTE. Here we assume that G has all these four types

of arcs (across-source branch, component branch, through-

source link and component link). In other cases (for ex-

ample, when there are no through-sources), we leave the

corresponding rows, columns and elements out of the sys-

tem of equations. Other cases are treated in a similar way.

Solving the equations, we get

u1 = s1 , u2 = R1i2 , u3 = R2i3 , i4 = s2

which leaves this system of equations:










I O Q11 O
O I Q21 O
O B12R1 R2 O
O B22R1 O I





















i1
i2
i3
u4











= −











Q12s2
Q22s2
B11s1
B21s1











.

Thus,

i1 = −Q11i3 −Q12s2 , i2 = −Q21i3 −Q22s2 ,

u4 = −B22R1i2 −B21s1.
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From the results in the previous section, we get

Bft =

(

B11 B12

B21 B22

)

= −QT
fc

= −

(

Q11 Q12

Q21 Q22

)T

=





−QT
11 −Q

T
21

−QT
12 −Q

T
22



 .

Therefore, B11 = −QT
11 and B12 = −QT

21 etc. Fi-

nally, there is only one set of equations for i3:

(QT
21R1Q21 +R2)i3 = QT

11s1 −QT
21R1Q22s2.

The matrix∗ of this system of equations can written as

QT
21R1Q21+R2 =

(

QT
21 I

)

(

R1 O
O R2

)(

Q21

I

)

.

We can see that it is not singular if the diagonal elements

of R1 and R2 are all positive or all negative.

Therefore, we get

THEOREM 6. If the constants rj are real numbers with

the same sign, then the fundamental equations of the sta-

tionary linear network have a unique solution exactly when

no cut of the network consists of only through-sources and

no circuit of the network consists of only across-sources.

∗This matrix is called the impedance matrix. Similarly, the admit-
tance matrix can be constructed from the blocks of the fundamen-
tal circuit matrix
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From the theorem above, we notice that the number of

equations we have to solve (numerically) is considerably

fewer than 2m.

EXAMPLE. A mono-frequency AC circuit with passive el-

ements (resistors, capacitors and inductors) can also be

modelled as a stationary linear network (Theorem 6 does

not apply).

In the circuit below, the component values areR = 10Ω,

C = 100 µF, L = 10 mH and the current source is

I = 10cos(1000t) A.

I R

R

L

C

The complex current of the source is 10ej1000t, where

j is the imaginary unit. The (angular) frequency is ω =

1000 rad/s. There are no voltage sources. The corre-

sponding digraph is
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v3
e5

v1

e3

v2

e2

e4

e1

The voltages and currents written as complex exponentials

are

ik = Ike
j1000t and uk = Uke

j1000t.

In particular, the current source is

i5 = s5 = 10ej1000t.

We get rk from the familiar formulae from electrical circuit

analysis:

r1 = r4 = R = 10 , r3 =
1

jωC
= −10j ,

r2 = jωL = 10j.

We choose the arcs e1 and e2 as the branches of the span-

ning tree T . Because of the linearity of the system of

equations, the exponential factors ej1000t cancel out and

we get
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





























−10 0 0 0 0 1 0 0 0 0
0 −10j 0 0 0 0 1 0 0 0
0 0 10j 0 0 0 0 1 0 0
0 0 0 −10 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 1 0 1 0
0 0 0 0 0 −1 0 0 0 1





























































I1
I2
I3
I4
I5
U1

U2

U3

U4

U5































=































0
0
0
0
10
0
0
0
0
0































.

Notice that we have left out the across-sources because

there are none. This system is easily solved using computer

programs, e.g. MATLAB:

>>H=[-10 0 0 0 0 1 0 0 0 0 ;
0 -10*j 0 0 0 0 1 0 0 0 ;
0 0 10*j 0 0 0 0 1 0 0 ;
0 0 0 -10 0 0 0 0 1 0 ;
0 0 0 0 1 0 0 0 0 0 ;
1 0 1 1 1 0 0 0 0 0 ;
0 1 0 -1 0 0 0 0 0 0 ;
0 0 0 0 0 -1 0 1 0 0 ;
0 0 0 0 0 -1 1 0 1 0 ;
0 0 0 0 0 -1 0 0 0 1];

>>s=[0 0 0 0 10 0 0 0 0 0]’;
>>UV=inv(H)*s;
>>[UV angle(UV) abs(UV)]

ans =

-6.0000 + 2.0000i 2.8198 6.3246
-2.0000 + 4.0000i 2.0344 4.4721
-2.0000 - 6.0000i -1.8925 6.3246
-2.0000 + 4.0000i 2.0344 4.4721
10.0000 0 10.0000
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-60.0000 +20.0000i 2.8198 63.2456
-40.0000 -20.0000i -2.6779 44.7214
-60.0000 +20.0000i 2.8198 63.2456
-20.0000 +40.0000i 2.0344 44.7214
-60.0000 +20.0000i 2.8198 63.2456

Thus, for example, the complex voltage across the current

source is

u5 = U5e
j1000t = 63.25ej(1000t+2.82)

and the real voltage is

63.25 cos(1000t+2.82) V.

Kirchhoff’s Through-Quantity Law can also be written in

the form

Ai = 0n,

where A is the all-vertex incidence matrix of G. Further-

more,

ATp = −u.

Hence

u • i = uTi = −pTAi = 0.

This result only depends on the structure of the digraph G

(through the all-vertex incidence matrix). Now we get the

famous theorem:
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TELLEGEN’S THEOREM. If two stationary linear net-

works have the same digraph with corresponding through-

vectors i1 and i2 as well as corresponding across-vectors

u1 and u2, then

u1 • i2 = 0 and u2 • i1 = 0.

If we apply this to the case when the two networks are

exactly the same (= G), then we get

u • i = 0,

known as the Law of Conservation of Energy.

NOTE. More details on this subject can be found e.g.

in SWAMY & THULASIRAMAN or VÁGÓ, as well as DOLAN &

ALDOUS and CHEN.
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5. Matrices over GF(2) and Vector Spaces of

Graphs

The set {0,1} is called a field (i.e. it follows the same

arithmetic rules as real numbers) if addition and multipli-

cation are defined as follows:

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

In this case −1 = 1 and 1−1 = 1. This is the field

GF(2).

If we think of the elements 0 and 1 of the all-vertex inci-

dence, cut, fundamental cut, circuit and fundamental cir-

cuit matrices of a (”undirected”) graph as elements of the

field GF(2), then Theorems 1, 2, 4, 5 and their corollar-

ies also apply to ”undirected graphs”. (Keep in mind that

−1 = 1 in the field GF(2).) The proofs are the same.

For ”undirected”graphs, the vector spaces are over the field

GF(2). For directed graphs, the vector spaces are real

(i.e. over the field R). The row space of the cut matrix

of a (di)graph is the cut space. Similarly, the row space

of the circuit matrix is the circuit space. The dimension of

the cut space is the rank of the (di)graph and the dimension
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of the circuit space is the nullity of the (di)graph. Further-

more, the cut space and the circuit space are orthogonal

complements. (All of these statements follow directly from

the results above.)

Often, we deal with the above mentioned spaces through

subgraphs, i.e. we identify a vector with the subgraph gen-

erated by the corresponding arcs. In the case of ”undirected”

graphs, the addition of GF(2) vectors corresponds to the

ring sum operation.
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CHAPTER 5 Graph Algorithms

1. Computational Complexity of Algorithms

The complexity of a problem is related to the resources re-

quired to compute a solution as a function of the size of

the problem. The size of a problem is measured by the

size of the input N , and the resources required are usu-

ally measured by time (number of steps) and space (maxi-

mum amount of memory measured appropriately). Decision

problems or yes-or-no questions are very common. Read

HOPCROFT & ULLMAN for classical complexity theory.

To make computational complexities comparable, we need

to agree on some specific mathematical models for algo-

rithms. For example, consider computing with Turing Ma-

chines and refer to courses in Theoretical Computer Science

and Mathematical Logic.

We have deterministic and nondeterministic version of al-

gorithm models. In the deterministic version, there are no

choices to be made. In the nondeterministic version, there

is a choice to be made somewhere on the way. For a non-

deterministic algorithm, we have to make the following as-

sumptions so that we can actually solve problems:
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1. The algorithm terminates at some point no matter how

we choose the steps.

2. The algorithm can terminate without yielding a solu-

tion.

3. When the algorithm terminates and yields a solution,

the solution is correct (it is possible to have more than

one solution).

4. For decision problems, if the algorithm fails to give a

positive answer (yes), then the answer is interpreted

to be negative (no).

5. If the problem is to compute a value, then the nonde-

terministic algorithm has to give a solution for every

input (value of the function).

Nondeterministic algorithms are best treated as verification

procedures for problems rather than procedures for produc-

ing answers.
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Computational complexity is considered asymptotically, that
is for large problems, time or space complexities that differ
by constant coefficients are not distinguished because linear
acceleration and compression of space are easy to perform
in any kind of algorithm model. Although the choice of an
algorithm model has a clear impact on the complexity, it is
not an essential characteristic, i.e. it does not change the
complexity class.

Often, we use the big-O notation for complexities.

O(f(N))

refers to the class of functions g(N) such that whenever
N ≥ N0 holds, then |g(N)| ≤ Cf(N) holds, where C
is a constant.

Without exploring algorithm models any further, we define
a couple of important complexity classes. The time com-
plexity class P (deterministic polynomial time problems)
consists of problems of (input) size N where it takes at
most p(N) steps to solve the problem using deterministic
algorithms. p(N) is some problem dependent polynomial
of N .

The time complexity class NP (nondeterministic polyno-

mial time problems) consists of problems of size N where
it takes at most p(N) steps to solve the problem using
nondeterministic algorithms. Once again, p(N) is some
problem dependent polynomial of N .
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Time complexity class co−NP (complements of nonde-

terministic polynomial time problems) consists of decision

problems whose complements are in NP. (The comple-

ment of a problem is obtained by swapping the positive and

the negative answer.)

Obviously, P ⊆ NP and (for decision problems)

P ⊆ co−NP. Whether or not the inclusion is proper

is an open problem, actually quite a famous problem. It is

widely believed that both of the inclusions are proper. It is

not known if the following holds for decision problems:

NP = co−NP or P = NP ∩ co−NP

Most researchers believe that they do not hold.

An algorithm may include some ideally generated random

numbers. The algorithm is then called probabilistic or sto-

chastic. The corresponding polynomial time complexity

class is BPP (random polynomial time problems or bound-

ed-error probabilistic polynomial time problems).

Some stochastic algorithms may fail occasionally, that is,

they produce no results and terminate prematurely. These

algorithms are called Las Vegas algorithms. Some stochas-

tic algorithms may also produce wrong answers (ideally with
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a small probability). These kind of algorithms are called

Monte Carlo algorithms. Some stochastic algorithms sel-

dom yield exact solutions. Nevertheless, they give accurate

approximate solutions with high probability. These kind of

algorithms are called approximation algorithms.

The task of an algorithm may be to convert a problem to

another. This is known as reduction. If problem A can be

reduced to another problem B by using a (deterministic)

polynomial time algorithm, then we can get a polynomial

time algorithm for problem A from a polynomial time al-

gorithm for B.

A problem is NP-hard if every problem in NP can be

reduced to it by a polynomial time algorithm. NP-hard

problems are NP-complete if they are actually in NP.

NP-complete problems are the ”worst kind”. If any prob-

lem in NP could be shown to be deterministic polyno-

mial time, then every problem in NP would be in P and

P = NP . Over one thousand NP-complete problems

are known currently.

The old division of problems into tractable and intractable

means that P problems are tractable and others are not.

Because we believe that P 6= NP in general, NP-

complete problems are intractable. In the following, graph
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algorithms are either in P or they are approximations of

some more demanding problems. The size of an input can

be for example the number of nonzero elements in an inci-

dence matrix, the number of vertices n or the number of

edges m or some combination of n and m.
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2. Reachability: Warshall’s Algorithm

We only deal with directed graphs in this section. The
results also hold for ”undirected” graphs if we interpret an
edge as a pair of arcs in opposite directions.

PROBLEM.We are given an adjacency matrix of the di-

graph G = (V,E). We are to construct the reachability
matrix R = (rij) of G, where

rij =







1 if G has a directed vi–vj path

0 otherwise.

(Note that V = {v1, . . . , vn}.) In particular, we should

note that if rii = 1, then vi is in a directed circuit.

Warshall’s Algorithm constructs a series of n×n matrices
E1, . . . ,En where

1. elements of Ei are either zero or one.

2. Ei ≤ Ei+1 (i = 0, . . . , n−1) (comparison is done
element by element).

3. E0 is obtained from the adjacency matrix D by re-
placing the positive elements with ones.

4. En = R.
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The algorithm is presented as a pseudocode:

procedure Warshall

begin

E := E0

for i := 1 to n do

for j := 1 to n do

if (E)ji = 1 then for k := 1 to n do

(E)jk := max((E)jk, (E)ik)

end if

end for

end for

end

In this case, the maximizing operation is sometimes called

the Boolean sum:

max 0 1

0 0 1
1 1 1

Let us show that Warshall’s Algorithm gives us the desired

results. Let Ei denote the value of E after i steps.

STATEMENT. (i) If there is a directed path from vs
to vt such that apart from vs and vt, the path only

includes vertices in the set {v1, . . . , vi}, then (Ei)st
= 1.
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(ii) If vertex vs belongs to a directed circuit whose other

vertices are in the set {v1, . . . , vi}, then (Ei)ss

= 1.

Proof. We will use induction on i.

Induction Basis: i = 1. (E1)st = 1 if (E0)st = 1,

or (E0)s1 = 1 and (E0)1t = 1. We have one of the

following cases:

s  t: vs vt vs v1

vt

s = t: vs vs v1

Induction Hypothesis: The statement is true for i < ℓ.

(ℓ ≥ 2)

Induction Statement: The statement is true for i = ℓ.

Induction Statement Proof: Let us handle both statements

together. The proof for (ii) is given in square brackets. We

have two cases:
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• vℓ belongs to the directed path [resp. directed cir-

cuit] but ℓ 6= s, t [resp. ℓ 6= s]. Then, we use the

Induction Hypothesis:

(Eℓ−1)sℓ = 1 and (Eℓ−1)ℓt = 1

[resp. (Eℓ−1)sℓ = 1 and (Eℓ−1)ℓs = 1],

so (Eℓ)st = 1 [resp. (Eℓ)ss = 1].

• vℓ is either vs or vt [resp. vℓ is vs] or it does not

belong to the directed path [resp. directed circuit] at

all. Then, by the Induction Hypothesis

(Eℓ−1)st = 1 [resp. (Eℓ−1)ss = 1],

so (Eℓ)st = 1 [resp. (Eℓ)ss = 1].

In Warshall’s Algorithm, the maximizing operation is per-

formed at most n3 times.
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3. Depth-First and Breadth-First Searches

PROBLEM. We have to traverse through a (di)graph to

find some kind of vertices or edges.

We assume that the (di)graph is connected and loopless.

For disconnected graphs, we have to go through the com-

ponents separately. We ignore loops if the (di)graph has

any.

Depth-First Search, DFS, has many uses. The procedure

is a bit different for undirected graphs and directed graphs.

Therefore they will be treated separately.

Undirected Graphs

We choose a starting vertex r (root) to start the search.

Then, we traverse an edge e = (r, v) to go to the vertex

v. At the same time, we direct e from r to v. Now, we

say that the edge e is examined and we call it a tree edge.

The vertex r is called the father of v and we denote it

r = FATHER(v).

We continue the search. At a vertex x, there are two cases:
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(1) If every edge incident to x has been examined, re-
turn to the father of x and continue the process from
FATHER(x). The vertex x is said to be completely

scanned.

(2) If there exist some unexamined edges incident to x,
then we choose one such edge e = (x, y) and direct
it from x to y. This edge is now said to be examined.
We have two subcases now:

(2.1) If y has not been visited before, then we tra-
verse the edge (x, y), visit y and continue the
search from y. In this case, e is a tree edge and
FATHER(y) = x.

(2.2) If y has been visited before, then we select some
other unexamined edge incident to x. In this case,
the edge e is called a back edge.

Every time we come to a new vertex which has never been
visited before, we give it a distinct number. The number
of the root is 1. We write

DFN(x) = running number of vertex x.

A complete DFS ends when we traverse back to the root
and we have visited every vertex or when we have found
the desired edge/vertex.
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DFS divides the edges ofG into tree edges and back edges.

Obviously, the tree edges form a spanning tree of G, also

known as a DFS tree. If we include the directions of the tree

edges, we get a directed DFS tree. DFS gives a direction

to every edge in G. When we use these directions, we get a

digraph whose underlying graph is G. It has the DFS tree

as a directed spanning tree.

EXAMPLE. For the graph

we start the DFS from a root in the upper left corner. The

back edges are marked with two lines.
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The corresponding DFS tree is
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In the following, we denote,

K(x) =







0 if vertex x has not been visited

1 if vertex x has been visited

and TREE and BACK are set variables containing the di-
rected tree edges and back edges.

Depth-First Search for Graphs:

1. Set

TREE← ∅ , BACK← ∅ and i← 1.

For every vertex x of G, set

FATHER(x)← 0 and K(x)← 0.

2. Choose a vertex r for which K(r) = 0 (this condi-
tion is needed only for disconnected graphs, see step
#6). Set

DFN(r)← i , K(r)← 1 and u← r.

3. If every edge incident to u has been examined, go to
step #5. Otherwise, choose an edge e = (u, v) that
has not been examined.

4. We direct edge e from u to v and label it examined.
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4.1 If K(v) = 0, then set

i← i+1 , DFN(v)← i ,

TREE← TREE ∪ {e} , K(v)← 1 ,

FATHER(v)← u and u← v.

Go back to step #3.

4.2 If K(v) = 1, then set BACK ← BACK ∪ {e}
and go back to step #3.

5. If FATHER(u) 6= 0, then set u ← FATHER(u)
and go back to step #3.

6. (Only for disconnected graphs so that we can jump

from one component to another.) If there is a vertex

r such that K(r) = 0, then set i← i+1 and go

back to step #2.

7. Stop.

We denote T as the DFS tree and ~G as the directed graph

obtained from the algorithm. T is a directed spanning tree

of ~G. If there is a directed path from u to v in T , then we

call u an ancestor of v and v a descendant of u. Vertices u

and v are related if one of them is an ancestor of the other.
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In particular, if (u, v) is an edge of T , then u is the father

of v and v is a son of u. An edge (u, v) of G, where u

and v are unrelated, is called a cross edge. However,

STATEMENT. Cross edges do not exist.

Proof. Let u and v be two distinct vertices which are un-

related. Then, (by quasi-strong connectivity) there are two

vertices u′ and v′ such that

• FATHER(u′) = FATHER(v′),

• u′ = u or u′ is an ancestor of u and

• v′ = v or v′ is an ancestor of v.

We examine the case where DFN(u′) < DFN(v′) (the

other case is obviously symmetrical). We label T1 as the

directed subtree of T whose root is u′ and T2 as the

directed subtree of T whose root is v′. Obviously, DFS

goes through the vertices of T2 only after u′ is completely

scanned. Furthermore, u′ is completely scanned only after

all the vertices of T1 are completely scanned. Hence, it is

impossible to have an edge (u, v).
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Directed Graphs

Depth-first search in a (connected and loopless) digraph G

is similar to the case for undirected graphs. The algorithm

divides the arcs inG into four different classes. If the search

proceeds to an unexamined arc e = (x, y), then the four

possible classes are:

(1) If y has not been visited, then e is a tree edge.

(2) If y has been visited, then there are three cases:

(2.1) y is a descendant of x in the subgraph induced by

existing tree edges. Then, e is a forward edge and

DFN(y) > DFN(x).

(2.2) x is a descendant of y in the subgraph induced by

the existing tree edges. Then, e is a back edge

and

DFN(y) < DFN(x).

(2.3) x and y are not related by any of the existing tree

edges. Then, e is a cross edge and

DFN(y) < DFN(x).
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(Note! It is impossible that

DFN(y) > DFN(x).

This is proven in the same way as we did previ-

ously.)

The directed subgraph of G induced by tree edges is called

the DFS forest (directed forest).

If

DFN(y) > DFN(x)

holds for the arc (x, y), then (x, y) is a tree edge or a

forward edge. During the search, it is easy to distinguish

the two because (x, y) is a tree edge if y has not been

visited and it is a forward edge otherwise.

If

DFN(y) < DFN(x),

then (x, y) is a back edge or a cross edge. During the

search, it is easy to distinguish the two because (x, y) is a

cross edge if y is completely scanned and it is a back edge

otherwise.
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In the following, K, FATHER, TREE and BACK are de-

fined as previously. We also have two new variables FOR-

WARD and CROSS (their meanings are obvious) and

L(x) =







1 if x is completely scanned

0 otherwise.

Depth-First Search for Digraphs:

1. Set

TREE← ∅ , FORWARD← ∅ , BACK← ∅ ,

CROSS← ∅ and i← 1.

For every vertex x in G, set

FATHER(x)← 0 , K(x)← 0 and L(x)← 0.

2. Choose a vertex r such that K(r) = 0 and set

DFN(r)← i , K(r)← 1 and u← r.

3. If every arc coming out of u has already been exam-

ined, then set L(u)← 1 and go to step #5. Other-

wise, choose an unexamined arc e = (u, v).
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4. Label the arc e examined.

4.1 If K(v) = 0, then set

i← i+1 , DFN(v)← i ,

TREE← TREE ∪ {e} , K(v)← 1 ,

FATHER(v)← u and u← v.

Go to step #3.

4.2 IfK(v) = 1 and DFN(v) > DFN(u), then set
FORWARD← FORWARD∪{e} and go to step
#3.

4.3 If K(v) = 1 and DFN(v) < DFN(u) and
L(v) = 0, then set BACK← BACK∪{e} and
go to step #3.

4.4 If K(v) = 1 and DFN(v) < DFN(u) and
L(v) = 1, then set CROSS ← CROSS ∪ {e}
and go to step #3.

5. If FATHER(u) 6= 0, then set u ← FATHER(u)
and to go step #3.

6. If there is a vertex r such that K(r) = 0, then set
i← i+1 and go to step #2.

7. Stop.
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EXAMPLE. DFS in the following digraph starts from a

root in the upper left corner and proceeds like this (back

edges are marked with one line, cross edges are marked with

two lines and forward edges are marked with three lines):

1

2

3
4

5

6

7

8

9

1011 12

13

––

–––

–––

–––

–––

––

––

––

––

– –
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The corresponding DFS forest is

1

2

3
4

5

6

7

8

9

1011 12

13

THEOREM 1. If a depth-first search in a quasi-strongly

connected digraph starts from one of its roots, then the

DFS forest is a directed tree. In particular, the DFS forest

of a strongly connected digraph is a directed tree no matter

where the search starts from.

Proof. Let us prove by contradiction and consider the coun-

ter hypothesis: The DFS forest T resulted from a DFS in a

quasi-strongly connected digraph G that began from root

r is not a directed tree.

Since T is a directed forest, the component T1 of T which

has the root r does not contain some vertex v of G. On
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the other hand, there is a directed path from r to v. We

choose the last vertex u on this path which is in T1 and

the arc e = (u,w). Since the vertex w is not in T1, the

edge e is not a tree edge, a back edge nor a forward edge.

Then, it must be a cross edge. Because the search began

at r, the vertex w has to be in T1 (
√

).

Strongly connected digraphs are also quasi-strongly con-

nected and any vertex can be chosen as a root.

Breadth-first search, BFS, is related to DFS. Let us consider

a connected graph G.

Breadth-First Search for Graphs:

1. In the beginning, no vertex is labeled. Set i← 0.

2. Choose a (unlabeled) starting vertex r (root) and label

it with i.

3. Search the set J of vertices that are not labeled and

are adjacent to some vertex labeled with i.
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4. If J 6= ∅, then set i ← i + 1. Label the vertices in

J with i and go to step #3.

5. (Only for disconnected graphs so we can jump from

one component to another.) If a vertex is unlabeled,

then set i← 0 and go to step #2.

6. Stop.

BFS also produces a spanning tree, called the BFS tree,

when we take the edges

(vertex labeled with i, unlabeled vertex)

while forming J . One such tree edge exists for each vertex

in J . We obtain the directed BFS tree by orienting the

edges away from the labeled vertex to the unlabeled vertex.

BFS as presented above does not however orient every edge

in the graph. Obviously, the label of a vertex is the length

of the shortest path from the root to it, in other words, the

distance from the root.

EXAMPLE. BFS in the graph we had in the previous ex-

ample starts at a root in the upper left corner and proceeds

as follows. (Tree edges are marked with two cross lines.)
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The corresponding BFS tree is
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We obtain the directed BFS tree by orienting the branches

away from the root.

BFS in a digraph G is very similar to what we just did.

Breadth-First Search for Digraphs:

1. In the beginning, no vertex is labeled. Set i← 0.

2. Choose an unlabeled starting vertex r (root) and label

it with i.

3. Search the set J of terminal vertices of arcs whose

initial vertices have been labeled with i but whose ter-

minal vertices have not been labeled.

4. If J 6= ∅, then set i ← i + 1. Label the vertices in

J with i and go to step #3.

5. If not all vertices have been labeled, then set i ← 0

and go to step #2.

6. Stop.
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BFS in a digraph produces a BFS forest (directed forest)

when we take the examined arcs

(vertices labeled with i, unlabeled vertices)

while forming J . One such tree edge exists for each vertex

in J .

NOTE. In addition, BFS can be modified to sort the arcs

like DFS.
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4. The Lightest Path: Dijkstra’s Algorithm

PROBLEM. The edges of a (di)graph are given non-nega-

tive weights. The weight of a path is the sum of the weights

of the path traversed. We are to find the lightest (directed)

path in the (di)graph from vertex u to vertex v (6= u) if

the path exists (sometimes also called the shortest path).

We should state if such path does not exist.

Obviously, we can assume that we do not have any loops

or parallel edges. Otherwise, we simply remove the loops

and choose the edge with the lowest weight out of the

parallel edges. From now on, we only consider directed

graphs. Undirected graphs can be treated in the same way

by replacing an edge with two arcs in opposite directions

with the same weight.

We denote α(r, s) as the weight of the arc (r, s). Dijk-

stra’s Algorithm marks the vertices as permanent or tem-

porary vertices. The label of a vertex r is denoted β(r)

and we define

γ(r) =







1 if the label is permanent

0 if the label is temporary.
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A permanent label β(r) expresses the weight of the lightest

directed u–r path. A temporary label β(r) gives an upper

limit to this weight (can be∞). Furthermore, we denote:

π(r) =















the predecessor of vertex r on the lightest
directed u–r path if such a path exists

0 otherwise,

so we can construct the directed path with the lowest weight.

Dijkstra’s Algorithm:

1. Set

β(u)← 0 and γ(u)← 1.

For all other vertices r, set

β(r)←∞ and γ(r)← 0.

For all vertices r, we set π(r) ← 0. Furthermore,

set w ← u.

2. For every arc (w, r), where

γ(r) = 0 and β(r) > β(w) + α(w, r),

set

β(r)← β(w) + α(w, r) and π(r)← w.
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3. Find a vertex r∗ for which

γ(r∗) = 0 , β(r∗) <∞

and

β(r∗) = min
γ(r)=0

{β(r)}.

Set

γ(r∗)← 1 and w ← r∗.

If there is no such vertex r∗, a directed u–v path does

not exist and we stop.

4. If w 6= v, then go to step #2.

5. Stop.

We see that the algorithm is correct as follows. We denote

(for every step):

V1 = {permanently labeled vertices}

V2 = {temporarily labeled vertices}.

(〈V1, V2〉 is a cut with the completely scanned vertices on

one side and other vertices on the other side.)
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STATEMENT. The label β(r) of the vertex r in V1 is

the weight of the lightest directed u–r path and π(r) is

the predecessor of r on such a path.

Proof. After step #2, the temporary label of r is always

the weight of a directed u–r path with the lowest weight

whose vertices are in V1 except for r (=∞ if there is no

such path), and π(r) is a predecessor of r on this path

(or = 0). This is because (two cases):

• Before step #2, β(r) = ∞. The only ”new” vertex

in V1 is now w so every possible directed u–r path

has to visit w. If there is no such path, then the case

is obvious (β(r) stays at∞ and π(r) stays at zero).

Let us assume that we have the (lightest) directed

u–r path that contains only vertices of V1 and r as

well. In particular, w is included. The subpath from u

to w has of course the lowest weight. We consider the

vertex s (∈ V1) which is the predecessor of r on the

directed u–r path. If s = w, then the case is clear.

If s 6= w, then s has been a w before, in which case

β(r) can not be =∞ (step #2) (
√

).

• Before step #2, β(r) < ∞. Then, β(r) is the

weight of the lightest directed u–r path whose vertices
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are in V1 − {w} except for r. The only ”new”vertex
in V1 is w so every possible lighter directed u–r path

has to visit w. If there is no such path, then the case

is obvious (β(r) and π(r) remain unchanged).

Let us assume that we have a (lighter) directed u–r

path that contains only vertices of V1 and r as well.

In particular, w is included. The subpath from u to

w has of course the lowest weight. We consider the

vertex s (∈ V1) which is the predecessor of r on the

directed u–r path. If s = w, then the case is clear. If

s 6= w, then s is in V1−{w}. Since s has been a w

before, there is a lightest directed u–s path that does

not contain w (otherwise, we should have chosen r∗

in step #3 to be some predecessor of s on the directed

u–w–s path). Then, we get a directed u–r path with

a lower weight that contains r and only vertices in

V1 − {w} (
√

).

The permanent label is the weight we seek because of the

minimization in step #3 and π(r) gives a predecessor of

r as we claimed.

At the end of the algorithm, vertex v gets a permanent label

or the process stops at step #3 (which means a directed

u–v path does not exist). The directed path with the lowest

weight can be obtained by starting from the vertex v and

finding the predecessors by using the label π.
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If we replace step #4 by

4.’ Go to step #2.

and continue the process until it stops at step #3, we get

β(w) =























0 if w = u

the weight of the lightest directed u–w path
if there is one

∞ otherwise

and

π(w) =















the predecessor of w on the lightest directed
u–w path if there is one and w 6= u

0 otherwise.

NOTE. Dijkstra’s algorithm may fail if there are negative

weights. These cases are investigated in the next section.
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5. The Lightest Path: Floyd’s Algorithm

PROBLEM.We are to find the lightest path from vertex

u to vertex v (6= u) in a digraph or to show that there is no

such path when the arcs of the digraph have been assigned

arbitrary weights. Note that the weight of a directed path

is the sum of the weights of the arcs traversed.

Obviously, we can assume there are no loops or parallel arcs.

Otherwise, we simply remove the loops and choose the arc

with the lowest weight out of the parallel arcs.

Floyd’s Algorithm only works for digraphs. We write the

weight of (x, y) as α(x, y) and construct the weight ma-

trix W = (wij) where

wij =







α(vi, vj) if there is an arc (vi, vj)

∞ otherwise.

(Once again, V = {v1, . . . , vn} is the vertex set of the

digraph.)

Floyd’s Algorithm is similar to Warshall’s Algorithm. It only

works if the digraph has no negative cycles, i.e. no directed

circuit in the digraph has a negative weight. In this case,

the lightest directed path is the lightest directed walk.
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Floyd’s Algorithm constructs a sequence of matrices

W0,W1, . . . ,Wn

where W0 = W and

(Wk)ij = weight of the lightest directed vi–vj path,

where there are only vertices v1, . . . , vk
on the path besides vi and vj

( =∞ if there is no such path).

STATEMENT. When Wk is computed from Wk−1 by

the formula

(Wk)st = min{(Wk−1)st, (Wk−1)sk+(Wk−1)kt},

then we get the previously mentioned sequence of weight

matrices. If the digraph has negative cycles, then the se-

quence is correct up to the point when one of the diagonal

elements turns negative for the first time.

Proof. We use induction on k.

Induction Basis: k = 1. Since the digraph is loopless, the

diagonal elements of W0 can only be ∞ and the lightest

directed path (if there is one) is one of the following, and

the statement is obvious:
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s  t: vs vt vs
v1

vt

s = t: vs v1

Induction Hypothesis: The statement is true for k < ℓ.

(ℓ ≥ 2)

Induction Statement: The statement is true for k = ℓ.

Induction Statement Proof: The diagonal elements of

Wℓ−1 have to be nonnegative (∞ is permitted) for us

to get this k. Let us consider the case where s 6= t. (The

case s = t is analogous.) We have five cases:

• Vertex vℓ is on the lightest directed path but it is not

vs or vt, i.e. ℓ 6= s, t. Let us consider the directed

subpath from vs to vℓ whose vertices other than vs
and vℓ are in {v1, . . . , vℓ−1}. Suppose the lightest

directed vs–vℓ path of this kind has common vertices

with the directed subpath from vℓ to vt other than vℓ
itself, e.g. vp. The directed vs–vp–vℓ–vt walk we get
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would be lighter than the original directed vs–vt path.

By removing cycles, we would get a directed vs–vt
path that would be lighter and would only contain vs
as well as vt and the vertices v1, . . . , vℓ (

√

). (We

have to remember that weights of cycles are not neg-

ative!) Therefore, the directed subpath from vs to vℓ
is the lightest directed vs–vℓ path which contains the

vertices v1, . . . , vℓ−1 as well as vs and vℓ.

Similarly, the directed subpath from vℓ to vt is the

lightest directed vℓ–vt path which contains the ver-

tices v1, . . . , vℓ−1 as well as vt and vℓ.

Now, we use the Induction Hypothesis:

(Wℓ)st < (Wℓ−1)st

(check the special case (Wℓ−1)st =∞) and

(Wℓ)st = (Wℓ−1)sℓ + (Wℓ−1)ℓt.

• The directed vs–vt path with the lowest weight ex-

ists and vℓ = vs. By the Induction Hypothesis,

(Wℓ)st = (Wℓ−1)st and

(Wℓ−1)sℓ + (Wℓ−1)ℓt = (Wℓ−1)ℓℓ + (Wℓ−1)ℓt

≥ (Wℓ−1)ℓt = (Wℓ−1)st,

since (Wℓ−1)ℓℓ ≥ 0 (possibly =∞).
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• The directed vs–vt path exists and vℓ = vt. By the

Induction Hypothesis, (Wℓ)st = (Wℓ−1)st and

(Wℓ−1)sℓ + (Wℓ−1)ℓt = (Wℓ−1)sℓ + (Wℓ−1)ℓℓ
≥ (Wℓ−1)sℓ = (Wℓ−1)st,

since (Wℓ−1)ℓℓ ≥ 0 (possibly =∞).

• The lightest directed vs–vt path exists but vℓ is not

on the path. Now, we construct the lightest directed

vs–vℓ path and the lightest vℓ–vt path which, in addi-

tion to the end vertices, contain only vertices v1, . . . ,

vℓ−1, if it is possible. By combining these two paths,

we get a directed vs–vt walk. By removing possible

cycles from this walk, we get an as light or even lighter

vs–vt path, which only contains vertices v1, . . . , vℓ
as well as vs and vt. (We have to remember that

weights of cycles are not negative!) Therefore, this is

a case where

(Wℓ−1)sℓ + (Wℓ−1)ℓt ≥ (Wℓ−1)st

and the equation in the statement gives the right re-

sult. If there is no directed vs–vℓ path or vℓ–vt path,

then it is obvious.

• The lightest directed vs–vt path does not exist. Then,

(Wℓ)st =∞ and (Wℓ−1)st =∞.
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On the other hand, at least one of the elements

(Wℓ−1)sℓ or (Wℓ−1)ℓt is =∞ because otherwise

we would get a directed vs–vt path by combining the

vs–vℓ path with the vℓ–vt path as well as removing

all possible cycles (
√

).

Floyd’s Algorithm also constructs another sequence of ma-

trices Z0, . . . ,Zn in which we store the lightest directed

paths in the following form

(Zk)ij =































ℓ where vℓ is the vertex following vi on the
lightest directed vi–vj path containing only
vertices vi and vj as well as v1, . . . , vk
(if such a path exists)

0 otherwise.

Obviously,

(Z0)ij =







j if (W)ij 6=∞

0 otherwise.

The matrix Zk (k ≥ 1) of the sequence can be obtained

from the matrix Zk−1 by

(Zk)ij =







(Zk−1)ik if (Wk−1)ik + (Wk−1)kj < (Wk−1)ij

(Zk−1)ij otherwise,

so the sequence can be constructed with the sequenceW0,

W1, . . . ,Wn at the same time.
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Finally, Floyd’s Algorithm is presented in the following pseu-

docode. We have added a part to test if there are nega-

tive elements on the diagonal and the construction of the

Z0, . . . ,Zn sequence of matrices.

procedure Floyd

begin

W := W0

k := 0

for i := 1 to n do

for j := 1 to n do

if (W)ij =∞ then

(Z)ij := 0

else

(Z)ij := j

end if

end for

end for

while k < n and Test(W) do

Iteration(W,Z, k)

end while

end
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subprocedure Test(W)

begin

for i := 1 to n do

if (W)ii < 0 then

return FALSE

end if

end for

return TRUE

end

subprocedure Iteration(W,Z, k)

begin

k := k +1

for i := 1 to n do

for j := 1 to n do

if (W)ik + (W)kj < (W)ij then

(W)ij := (W)ik + (W)kj
(Z)ij := (Z)ik

end if

end for

end for

end
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6. The Lightest Spanning Tree: Kruskal’s

and Prim’s Algorithms

PROBLEM. We have to find the spanning tree with the

lowest weight of a connected graph if the edges of the graph

have been weighted arbitrarily and the weight of a tree is

the sum of all the weights of the branches.

Obviously, we can assume that the graph G = (V,E)

is nontrivial and simple. Otherwise, we simply remove the

loops and choose the edge with the lowest weight out of the

parallel edges. We denote the weight of the edge e as α(e)

and the weight of the spanning tree T as γ(T). As usual,

we write the number of vertices as n, number of edges as

m, V = {v1, . . . , vn} and E = {e1, . . . , em}.

The distance between two spanning trees T1 and T2 of G

is

n− 1−#(T1 ∩ T2) =def. d(T1, T2),

where #(T1 ∩ T2) is the number of edges in the inter-

section of T1 and T2. Obviously, d(T1, T2) = 0 if and

only if T1 = T2. If d(T1, T2) = 1, then T1 and T2 are

neighboring trees.

The spanning tree T of G is cut minimal if the weights

of the edges of the fundamental cut set determined by
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the branch b are ≥ α(b) for every branch b. Similarly,

the spanning tree T is circuit minimal if the edges of the

fundamental circuits are ≤ α(c) for every link c in the

cospanning tree T ∗. The spanning tree T is locally minimal

if γ(T) ≤ γ(T ′) for every neighboring tree T ′ of T .

LEMMA. The following three conditions are equivalent for

the spanning tree T :

(i) T is cut minimal.

(ii) T is circuit minimal.

(iii) T is locally minimal.

Proof. (i)⇒(ii): Let us assume T is cut minimal and let

us consider a fundamental circuit C of G corresponding to

the link c of the cospanning tree T ∗. Other than c, the

branches in C are branches of T . Every such branch b

defines a fundamental cut set of T , which also contains c

(Theorem 2.7). Hence α(b) ≤ α(c).

(ii)⇒(iii): Let us assume that T is circuit minimal and let

us consider a neighboring tree T ′ of T . T ′ has (exactly

one) branch e′ which is not in T , i.e. e′ is a link of T ∗.
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We examine the fundamental circuit C defined by e′. Not
all edges of C are in T ′. We choose an edge e in C that
is not in T ′. Then, e is a branch of T (actually the only
branch of T that is not in T ′). Now, we remove e out of
T and add e′ to T . The result has to be T ′. Because of
circuit minimality, α(e′) ≥ α(e), i.e. γ(T ′) ≥ γ(T).

(iii)⇒(i): We consider the locally minimal spanning tree
T . We take an arbitrary branch b from T corresponding to
a fundamental cut set I and an arbitrary link c 6= b in I .
Then, b belongs to the fundamental circuit of T defined by
c (Theorem 2.8). By removing the branch b from T and
adding the edge c to T , we get the neighboring tree T ′

of T . Because of local minimality, γ(T) ≤ γ(T ′), i.e.
α(c) ≥ α(b).

The spanning tree T is minimal if it has the lowest possible
weight.

THEOREM 2. The following three conditions are equiv-

alent for the spanning tree T :

(i) T is cut minimal.

(ii) T is circuit minimal.

(iii) T is minimal.
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Proof. By the lemma above, (i) and (ii) are equivalent. A

minimal spanning tree is obviously locally minimal. Thus,

it suffices to prove that a cut minimal spanning tree is also

minimal. We will prove by contradiction and consider the

counter hypothesis: There is a cut minimal spanning tree T

which is not minimal. Let us consider the minimal spanning

tree T ′ and choose T and T ′ so that the distance d(T, T ′)

is as small as possible. By the lemma, d(T, T ′) > 1.

T has a branch e which is not in T ′, i.e. it is a link of

(T ′)∗. We label the fundamental cut set of T defined

by e as I and the fundamental circuit of T ′ defined by

e as C. In the intersection I ∩ C, there are also other

edges besides e (Theorem 2.6). We choose such an edge

e′. Then, e′ is a link of T ∗ and a branch of T ′. Since

T is cut minimal, α(e′) ≥ α(e). Since T ′ is (circuit)

minimal, α(e′) ≤ α(e). Therefore, α(e′) = α(e).

By removing e′ from T ′ and adding e to T ′, we get a

minimal spanning tree T ′′ which has the same weight as

T ′. However, d(T, T ′′) < d(T, T ′).
√

In Kruskal’s Algorithm, the edges of the graphG (and their

weights) are listed as e1, . . . , em. The algorithm con-

structs a circuit minimal spanning tree by going through
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the list to take some edges to form the tree. This is espe-

cially effective if the edges are sorted in ascending order by

weight.

In the dual form of Kruskal’s Algorithm, we construct a cut

minimal spanning tree by going through the list of edges

to take some edges to form the cospanning tree. Once

again, this is especially effective if the edges are sorted in

descending order by weight.

In all, we get four different versions of Kruskal’s Algorithm.

(We have to remember that the subgraph induced by the

edge set A is written as 〈A〉.)

Kruskal’s Algorithm No. 1

Here we assume that the edges are given in ascending order

by weight.

1. Set k ← 1 and A← ∅.

2. If ek does not form a circuit with the edges in A, then

set

A← A ∪ {ek}

as well as k ← k +1 and go to step #4.

161



3. If ek forms a circuit with the edges in A, then set

k← k +1 and go to step #4.

4. If (V,A) is not a tree, then go to step #2. Otherwise

stop and output the spanning tree T = 〈A〉.

Whenever we leave out an edge from A (step #3), its end

vertices are already connected in A. Thus, the vertices of

G are connected in T as they are inG. Since T is obviously

circuitless (step #3), it is also a spanning tree of G. At

each stage, the branches of the fundamental circuit defined

by the link belonging to T ∗ (step #3) are predecessors of

that link in the list. Hence, T is circuit minimal and thus

minimal.

NOTE. In every step, the branches and links are perma-

nent. We do not have to know the edges beforehand as

long as we process them one by one in ascending order.

The rank of the graph (number of branches in a spanning

tree) is then required beforehand so we know when to stop.
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Kruskal’s Algorithm No. 2

Here we assume the edges are given in an arbitrary order.

1. Set k ← 1 and A← ∅.

2. If 〈A ∪ {ek}〉 contains no circuits, then set

A← A ∪ {ek}

as well as k ← k +1 and go to step #4.

3. If 〈A ∪ {ek}〉 contains a circuit C, then choose the

edge with the largest weight e in C (if there are more

than one, take any), set

A← (A ∪ {ek})− {e}

as well as k ← k +1 and go to step #4.

4. If k ≤ m, then go to step #2. Otherwise, stop and

output the spanning tree T = 〈A〉.

Whenever we leave out an edge from A (step #3), its end

vertices are already connected in A. Thus, the vertices of

G are connected in T as they are inG. Since T is obviously

circuitless (step #3), it is a spanning tree of G.
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We see that T is circuit minimal (and minimal) by the

following logic. During the whole process, 〈A〉 is a forest

by step #4. In addition, if u andw are connected in 〈A〉 at

some point, then they are also connected afterwards. The

u–w path in 〈A〉 is unique but it can change to another

path later in step #3. Nevertheless, whenever this change

occurs, the maximum value of the weights of the edges of

the path can not increase anymore. Every link c of T ∗ has

been removed from A in step #3. Then, the weight of c

is at least as large as the weights of the other edges in C,

After we have gone through step #3, the only connected

end vertices of c in 〈A〉 have to go through the remaining

edges of C. The final connection between the end vertices

of c in T goes through the edges of the fundamental circuit

defined by c. Therefore, the weights of the edges of this

fundamental circuit are ≤ α(c).

NOTE. In each step, the links (e in step #3) are perma-

nent and the branches are not. We do not have to know

the edges beforehand as long as we process them one by

one. However, we need to know the nullity of the graph

(number of links in a cospanning tree) so that we know

when to stop. The algorithm can also be used to update

a minimal spanning tree if we add edges to the graph or

decrease their weight.
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Kruskal’s Algorithm No. 3

Here we assume the edges are given in descending order by

weight.

1. Set A← E and k← 1.

2. If (V,A− {ek}) is connected, then set

A← A− {ek}

as well as k ← k +1 and go to step #4.

3. If (V,A−{ek}) is disconnected, then set k ← k+1

and go to step #4.

4. If (V,A) is not a tree, then we go to step #2. Other-

wise we stop and output the spanning tree

T = (V,A).

T is obviously connected because (V,A) is connected ev-

erytime we go to step #4. On the other hand, T is cir-

cuitless because if the circuit C is in T and the edge c is

in the circuit, then c is removed from A in step #2 when

ek = c (
√

). Thus, T is a spanning tree of G. In each
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step, the links of the fundamental cut set defined by the

branch belonging to T (step #3) are predecessors of that

branch in the list. Hence, T is cut minimal and it is thus

minimal.

NOTE. In each step, the branches and links are perma-

nent. We have to know the edges beforehand. On the

other hand, we do not have to know their weights as long

as we get them one by one in descending order.

Kruskal’s Algorithm No. 4

Here we assume the edges are given in an arbitrary order.

1. Set A← E and k← 1.

2. If (V,A− {ek}) is connected, then set

A← A− {ek}

as well as k ← k +1 and go to step #4.

3. If (V,A − {ek}) is disconnected, then it has two

components. The corresponding vertex sets form a

cut 〈V1, V2〉. We interpret it as an edge set and
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choose the edge e with the lowest weight in 〈V1, V2〉

(if there are more than one, take any). Set

A← (A− {ek}) ∪ {e}

as well as k ← k +1 and go to step #4.

4. If k ≤ m, then go to step #2. Otherwise stop and

output the spanning tree T = (V,A).

T is obviously connected because (V,A) is connected ev-

erytime we go to step #4. (Take note that the connectivity

is preserved everytime we go through step #3.) On the

other hand, T is circuitless. If a circuit C of G ends up in

T and c is the edge of C, which is first in the list, then c

must be removed from A in step #2 when ek = c. (Note

that the edge removed from the circuit first can not be re-

moved in step #3.) If c comes back later (in step #3),

then it forms a cut set of (V,A) by itself in which case

some other edge of C has been removed. By continuing

this process, we see that all the edges of C can not be in

A in the end (
√

). Therefore, T is a spanning tree of G.

In addition, T is cut minimal and minimal because every

branch b of T comes in in step #3. The links of the fun-

damental cut set defined by b are either edges of the cut
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〈V1, V2〉 which is examined at that point or they are links

of the cuts we examined later in step #3. Whenever an

edge of this kind gets removed later in step #3, it is al-

ways compensated by edges that are heavier in weight than

b. Those heavier edges are in the cut 〈V1, V2〉 which is

examined at that time. Therefore, the weights of the fun-

damental cut set defined by b are ≥ α(b).

NOTE. In each step, the branches (e in step #3) are per-

manent and the links are not. We have to know the edges

beforehand. We do not have to know the weights before-

hand as long as we process them one by one. This algorithm

can also be used for updating a minimal spanning tree if we

remove edges from a graph or if we increase the weights of

edges.

Prim’s Algorithm

In Prim’s Algorithm (also known as Jarńık’s Algorithm),

we use the all-vertex incidence matrix of G. If we label the

set of edges incident on vertex v as Ω(v), then we can

get a list Ω(v1), . . . ,Ω(vn), i.e. the cuts defined by the

vertices (interpreted as edge sets). In addition, we assign

weights to the vertices.
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The algorithm works in the same way as Dijkstra’s Algo-

rithm by constructing the spanning tree branch by branch.

The variables are A (set of branches of the spanning tree

we have at the time), B (set of vertices of the spanning

tree we have at the time) and I (the cut interpreted as an

edge set from which we choose the next branch).

Prim’s Algorithm (First Version):

1. Choose a starting vertex r and set

A← ∅ , B ← {r} as well as I ← Ω(r).

2. Choose the lightest edge e from I (if there are more

than one, choose any). Take the end vertex v of e

that is not in B. Set

A← A∪{e} , B ← B∪{v} and I ← I⊕Ω(v)

and go to step #3. (Remember that ⊕ denotes the

symmetric difference operation between two sets, see

slide 26.)

3. If B 6= V , then go to step #2. Otherwise, stop and

output the spanning tree T = (B,A) = 〈A〉.
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Since the edge e was chosen from a cut, T is circuitless.

On the other hand, because there is a path from r to every
other vertex, T has every vertex of G and it is connected.
T is thus a spanning tree. It is also minimal because

STATEMENT. During the whole process, (B,A) is a

subtree of some minimal spanning tree of G.

Proof. We use induction on ℓ, the number of vertices in

B.

Induction Basis: ℓ = 1. The case is obvious because
(B,A) is trivial.

Induction Hypothesis: The statement is true for ℓ = k−1.
(k ≥ 2)

Induction Statement: The statement is true for ℓ = k.

Induction Statement Proof: In step #2, we can write

A = A′ ∪ {e}, where e ∈ I ′ and B = B′ ∪ {v}.
(B′, A′) is a subtree of some minimal spanning tree Tmin
from the Induction Hypothesis. If e belongs to Tmin, then
the case is clear. Otherwise, there is a fundamental circuit
C in Tmin + e and there is another edge e′ of I ′ in C

(Theorem 2.6). Then, α(e′) ≥ α(e) and (Tmin+e)−e′

is also a minimal spanning tree and (B,A) is its subtree
(because Tmin is circuit minimal and α(e′) ≤ α(e)).
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Often, we use one or two additional labels for the vertices
to make Prim’s Algorithm easier. In the next version of the
algorithm, we will use two labels π(v) and β(v), which
are used to perform step #2 more effectively. The values
of π are weights (up to∞) and the values of β are edges
(or = 0). Otherwise, the algorithms works in the same
way as before.

Prim’s Algorithm (Second Version):

1. Choose a starting vertex r and set π(r) ← 0. For
every other vertex v, set π(v) ← ∞. For every
vertex v, set β(v) ← 0 as well as A ← ∅ and
B ← ∅.

2. Choose a vertex u /∈ B for which

π(u) = min
v/∈B
{π(v)}.

Set B ← B ∪ {u}. If β(u) 6= 0, then set
A← A ∪ {β(u)}.

3. Go through all the edges e = (u, v) where v /∈ B.
If α(e) < π(v), then set π(v) ← α(e) and
β(v)← e.

4. If B 6= V , then go to step #2. Otherwise, stop and
output the spanning tree T = (B,A) = 〈A〉.
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7. The Lightest Hamiltonian Circuit (Travelling

Salesman’s Problem): The Annealing Algorithm

and the Karp–Held Heuristics

PROBLEM. If it is possible, we are to find the Hamilto-

nian circuit with the lowest weight. A Hamiltonian circuit

visits all the vertices of a graph. As usual, the weights of

the edges have been assigned and the weight of a (directed)

circuit is the sum of the weights of the edges traversed.

Obviously, we can assume that the graph is nontrivial, con-

nected (otherwise it would not be possible to get a Hamil-

tonian circuit) and simple. If not, then we simply remove all

the loops and choose the edge with the lowest weight out of

the parallel edges. As usual, we denote n as the number of

vertices, m as the number of edges, V = {v1, . . . , vn}

and E = {e1, . . . , em}. We label the weight of an edge

e = (vi, vj) as α(e) = α(vi, vj) and the weight of a

Hamiltonian circuit H as γ(H). We agree that the ”first”

vertex of a Hamiltonian circuit is v1.

The same problem exists for directed graphs in which case

we are looking for the directed Hamiltonian circuit with

the lowest weight (known as the Unsymmetric Travelling

Salesman’s Problem).
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The Travelling Salesman’s Problem (TSP)∗ is an NP-

complete problem, read e.g. MEHLHORN for more informa-

tion. Actually, even deciding the existence of a Hamiltonian

circuit is an NP-complete problem. Solving a small TSP

takes a lot of time and larger problems take so much time

that it is almost impossible to obtain accurate solutions.

Therefore, many stochastic and approximation methods are

used in practice. Then, we have to accept the possibility of

inaccurate outcomes or even the lack of results.

The Annealing Algorithm

The annealing algorithms or thermodynamic algorithms have

the following common features:

(A) The system in question is always in some state s. The

set of all states S is finite and known. In the TSP, a

state is a Hamiltonian circuit.

(B) Each state s has a response f(s), which can be cal-

culated in a timely fashion from the state. Our goal

∗The name ”Travelling Salesman’s Problem” comes from an inter-
pretation where the vertices of a graph are cities and the weights
of the edges between the cities are travelling times. The salesman
needs to visit every city in the shortest amount of time.
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is to find a state whose response is near the mini-
mum/maximum value. The response of a state of a
TSP is the weight of a Hamiltonian circuit.

(C) There is a procedure Ak which is used to move from
state s to state Ak(s). k is a parameter of the pro-
cedure which belongs to the set K. K can change
during the procedure.

The purpose is to move to certain states ”near” the
state s which are defined by the parameter k. By
repeating the procedure with proper values of k, we
should be able to move from any state to any other
state. (In some cases, we can omit this last part.)

(D) Every time we move from one state to another, we
should be able to choose the parameter k quickly and
randomly from K. In particular, the set K itself
should be easily computable.

(E) We should be able to quickly perform the procedure
Ak given a value of k.

(F) We should be able to find a starting state s0. For the
TSP, the starting state is a Hamiltonian circuit.

The algorithm is as follows:
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The Annealing Algorithm:

1. Choose the starting state s0, the initial temperature

T0 and set s← s0 as well as T ← T0.

2. When we are in the state s, we randomly choose a
parameter k ∈ K and compute s′ = Ak(s).

3. If f(s′) ≤ f(s), then set s ← s′ and go to step
#5.

4. If f(s′) > f(s), then generate a random number r
in the interval [0,1). If

r ≤ e
f(s)−f(s′)

T ,

then set s← s′. Thus, we accept a ”worse”state with
probability

e
f(s)−f(s′)

T .

Note that the greater the temperature T , the greater
the probability that we go ”uphill”.

5. If we have gone through a maximum total number of
iterations, then we stop and output s. Otherwise, if
we have gone through sufficiently many iterations of
the procedure using temperature T , then we lower T
by some rule and go to step #2.
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NOTE. The distribution of the probability

ps′ = e
f(s)−f(s′)

T

used in step #4 is (apart from normalizing) a so-called

maximum entropy distribution with the following condition

on the expected value:

∑

s′=Ak(s)
k∈K

f(s′)>f(s)

ps′f(s
′) = µ

where µ depends on T and s. The distribution is also called

a Boltzman distribution and it is analogous to the distribu-

tion of the same name in Statistical Mechanics. Refer to

courses in Physics and Information Theory for more infor-

mation.

At first, we wait until the fluctuation in the states settles

to a certain equilibrium (using the response f(s)). After

that, we lower the value of T a bit and wait again for the

equilibrium. Then, we lower T again and so on. We con-

tinue this until the change in values of f(s) is sufficiently

small or if we have ran out of time.

The operation Ak and the set K of the neighboring states

depend on the problem. The state structure and the re-

sponse function also depend on the problem. For the TSP,
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we still need to assign Ak and K for every situation. For

this purpose, we take another parameter j and set j ← 2.

In step #2, we update j in the following way:

j ←







j +1 if j < n

2 otherwise.

(Another way of choosing j in step #2 would be to choose

it randomly out of {2, . . . , n}.) Furthermore, we choose

K = {2, . . . , n} − {j}.

Ak is defined by the following operation (known as the

reversal):

• If k > j, then we reverse the order of the vertices

vij, . . . , vik on the corresponding subpath in the cur-

rent Hamiltonian circuit

s : v1, vi2, . . . , vin, v1.

• If k < j, then we reverse the order of the vertices

vik, . . . , vij on the corresponding subpath in the cur-

rent Hamiltonian circuit

s : v1, vi2, . . . , vin, v1.
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We add the missing edges to the graph with very large

weights so that we get a complete graph and we will not

have to worry about the existence of a Hamiltonian circuit

in the first place. If we still do not get a Hamiltonian circuit

in the end without those added edges, then there is not a

Hamiltonian circuit.

The starting temperature T0 should be much larger than

the values of |f(s′)−f(s)| which guarantees that we can

in principle move to any state (”annealing”) in the earlier

stages of the algorithm. After that, we lower the tempera-

ture applying some rule, for example a 10% change.

The annealing algorithm also works for the unsymmetric

TSP with obvious changes.

Karp–Held Heuristics

In the Karp–Held Heuristics, we do not directly look for a

Hamiltonian circuit but look for a similar subgraph, known

as a spanning 1-tree∗. The process does not work for the

unsymmetric TSP. The spanning 1-tree Sv corresponding

to the vertex v (known as the reference vertex) is a sub-

graph of G that satisfies the following conditions:

∗Not to be confused with the 1-tree on sl. 51!
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(a) Sv is connected and contains every vertex of G.

(b) Sv contains exactly one circuit C and the vertex v

belongs to C.

(c) Sv has exactly two edges incident on v.

Clearly, a Hamiltonian circuit is a spanning 1-tree corre-

sponding to any of the vertices. The weight of the span-

ning 1-tree Sv is the sum of of the weights of all its edges,

denoted γ(Sv). Sv is minimal if it has the lowest possible

weight.

STATEMENT. Sv is minimal if and only if

(i) Sv − v is a minimal spanning tree of G− v, and

(ii) the two edges of Sv incident on v are the two lightest

edges of G out of all the edges incident on v.

Proof. Let Sv be a minimal spanning 1-tree. Let e and e′

be the two edges in Sv incident on v. Then, Sv − v is a
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spanning tree of G − v because removing v destroys the

circuit but the connections remain unsevered. If Sv − v is

not a minimal spanning tree ofG−v then there is a lighter

spanning tree T of G− v. By adding the vertex v and the

edges e and e′ to T , we get a spanning 1-tree corresponding

to vertex v which is lighter than Sv (
√

). Therefore, (i)

is true. Obviously, (ii) is true (because otherwise we would

get a lighter spanning 1-tree by replacing e and e′ with the

two lightest edges in G incident on v).

Let us assume that (i) and (ii) are true. If Sv is not min-

imal, then there is a lighter minimal spanning 1-tree S′v
corresponding to v. Because S′v also satisfies (ii), the two

edges incident on v are the same (or at least they have the

same weight) in Sv and S′v. Thus, S
′
v − v is lighter than

Sv − v (
√

).

It follows from the statement that any algorithm that finds

the minimum spanning tree also works for finding the mini-

mum spanning 1-tree with minor modifications. Especially,

Kruskal’s and Prim’s Algorithms are applicable.

In the Karp–Held Heuristics, we also use weights of vertices,

denoted β(v). With these, we can define the virtual weight

of an edge as

α′(vi, vj) = α(vi, vj) + β(vi) + β(vj).
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With the concept of virtual weights, we get the virtual

weight of a spanning 1-tree Sv (we label the edge set of

Sv as A):

γ′(Sv) =
∑

(vi,vj)∈A

α′(vi, vj)

=
∑

(vi,vj)∈A

α(vi, vj) +
∑

(vi,vj)∈A

(β(vi) + β(vj))

= γ(Sv) +
∑

(vi,vj)∈A

(β(vi) + β(vj)).

Now we denote the degree of the vertex u in Sv as dSv(u).

Then,

∑

(vi,vj)∈A

(β(vi) + β(vj)) =
n
∑

i=1

β(vi)dSv(vi)

and

γ′(Sv) = γ(Sv) +
n
∑

i=1

β(vi)dSv(vi).

In particular, if we have a Hamiltonian circuit H (a special

spanning 1-tree), then

dH(v1) = · · · = dH(vn) = 2

and

γ′(H) = γ(H) + 2
n
∑

i=1

β(vi)

︸ ︷︷ ︸

Does not depend on H!

.

181



Minimization of the Hamiltonian circuits using virtual

weights yields the same minimal circuit than obtained by

using real weights. In general though, if we use virtual

weights to search for spanning 1-trees, then we get results

different from the spanning 1-trees obtained by using real

weights.

From now on, we only consider the spanning 1-tree corre-

sponding to vertex v1 and we leave out the subscript. This

is not a limitation of any kind on the Hamiltonian circuits

although it might be a good idea to change the reference

vertex every now and then. We assume that Hmin is a

minimal Hamiltonian circuit and S′ is the minimal span-

ning 1-tree obtained from using virtual weights (which of

course corresponds to v1). Then,

γ′(Hmin) ≥ γ′(S′).

In addition,

γ′(Hmin) = γ(Hmin) + 2
n
∑

i=1

β(vi)

and

γ′(S′) = γ(S′) +
n
∑

i=1

β(vi)dS′(vi).
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Thus,

γ(Hmin) = γ′(Hmin)− 2
n
∑

i=1

β(vi)

≥ γ′(S′)− 2
n
∑

i=1

β(vi)

= γ(S′) +
n
∑

i=1

β(vi)(dS′(vi)− 2),

from which we get a lower limit on γ(Hmin).

The idea of the Karp–Held Heuristics is to guide the de-
grees of the vertices in S′ to the value 2 by changing the
weights of the vertices. If we succeed, then we get a mini-
mal Hamiltonian circuit. In all cases, we get a lower limit on
the weights γ(H) of the (possible) Hamiltonian circuits by
using the calculation above. (Note that dS′(v1) is always
= 2 if S′ is the spanning 1-tree corresponding to v1.)

The Karp–Held Heuristics:

1. Set β(v)← 0 for every vertex v.

2. Set

α′(u, v)← α(u, v) + β(u) + β(v)

for each edge (u, v).
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3. Find the minimal spanning 1-tree S′ using virtual

weights α′(u, v). If we fail to find this kind of span-

ning 1-tree, then there is no Hamiltonian circuit and

we can stop.

4. If S′ is a circuit, then output the minimal Hamiltonian

circuit H = S′ and stop.

5. If S′ is not a circuit and the lower limit calculated from

S′ increased during the last K iterations, then set

β(v)← β(v) + dS′(v)− 2

for every vertex v and go to step #2. (K is a fixed

upper bound on the number of iterations.)

6. If the lower limit calculated from S′ has not increased

during the last K iterations, then output that lower

limit and stop.

This procedure does not always produce a minimal Hamil-

tonian circuit even if there exists one. In practice, it often

produces either a minimal Hamiltonian circuit or a good

lower limit on the weight of it. Getting a number for the

lower limit does not, however, guarantee the existence of a

Hamiltonian circuit in the graph!
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Karp–Held Heuristics has many steps where we have to

choose between different options (such as the reference ver-

tex and the spanning 1-tree). We can not go through every

possibility so we must choose randomly. Then, we have a

Las Vegas algorithm or stochastic algorithm.
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8. Maximum Matching in Bipartite Graphs:

The Hungarian Algorithm

A matching in the graph G = (V,E) is a set of edges

S ⊆ E none of which are adjacent to each other. A

matching is a maximum matching if it has the greatest

possible number of edges. The end vertex of an edge in a

matching is matched.

PROBLEM. We want to find the maximum matching in

a bipartite graph.

An alternating path of a matching S is a path that satisfies

the following conditions:

(1) The first vertex on the path is not matched, and

(2) every second edge is in the matching and the remaining

edges are not in the matching.

Note that the first edge in an alternating path is not in the

matching. In addition, if the last vertex of an alternating

path is not matched, then this path is an augmenting path

186



of S. A matching without augmenting paths is called a

maximal matching.

EXAMPLE. For the bipartite graph

v1
v2

v3

v4

v5

w1

w2

w3

w4

w6

w5

G: S:

v1
v2

v3

v4

v5

w1

w2

w3

w4

w6

w5

one augmenting path of the matching

S = {(v1, w3), (v3, w2), (v4, w6), (v5, w5)}

is the path where the vertices are v2, w2, v3, w6, v4, w1.

v1
v2

v3

v4

v5

w1

w2

w3

w4

w6

w5
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We can augment a matching S using its augmenting path

p as follows:

1. We remove the edges of S in p, and

2. We add the edges in p which are not in S.

The new edge set is obviously a matching. Note that the

number of edges in S on an augmenting path is one fewer

than the number of the remaining edges. Therefore, the

number of edges in a matching increases by one after the

augmenting operation. It is not possible to augment a max-

imal matching.

EXAMPLE. (Continuing from the previous example) By

using the given augmenting path from the matching S, we

get a new maximal matching

S1 = {(v1, w3), (v2, w2), (v3, w6), (v4, w1), (v5, w5)}.

w1

w2

w3

w4

w6

w5

v1
v2

v3

v4

v5
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In the Hungarian Algorithm, we systematically search for

augmenting paths until we get a maximal matching. After

that, it suffices to prove that a maximal matching is a max-

imum matching. From now on, we only consider bipartite

graphs because the algorithm is then much simpler. We

search for augmenting paths by constructing an alternating

tree of a matching S which is a subtree of G such that

(1) a vertex r (the root of the tree) is unmatched,

(2) every second edge on each path out from r is in S

and the remaining edges are not in S, and

(3) either there is an augmenting path out from r or we

can not add any more edges to S.

An alternating tree is an augmenting tree if it has an aug-

menting path. Otherwise, it is a Hungarian tree. Every

augmenting path is obviously an augmenting tree by itself.

Note that the only unmatched vertex of a Hungarian tree

is the root.
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EXAMPLE. (Continuing from the previous example) Two

alternating trees of the matching S are (the root is circled):

w1

w2

w4

w6

v2

v3

v4

v2

v3

v4

w2

w4

w6

Both of them are augmenting trees. An alternating tree of

the matching S1 (the root is w4) is the Hungarian tree

v1

v4

w1

w3

w4

Augmenting and Hungarian trees are not unique. We can

have many different trees depending on the order we take

the edges for constructing the trees even though the roots

are the same. On the other hand,
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STATEMENT. If a matching in a bipartite graph G has

a Hungarian tree, then it does not have an augmenting tree

with the same root.

Proof. Let us prove by contradiction and consider the coun-

ter hypothesis: A matching S has a Hungarian tree U and

an augmenting tree T with the same root r. We get an

augmenting path in the augmenting tree

p : r = v0, e1, v1, e2, . . . , ek, vk.

We choose the last vertex vi which is in U from the path

p (at least r = v0 is in U ). Since vk is not in U , i < k.

Furthermore, the edge ei+1 is not in the matching nor in

U (otherwise vi+1 would also be in U ).

On the other hand, since ei+1 is not in U , vi+1 has to

be an end vertex of another edge in U (
√

) because the

only reason why the edge ei+1 is not put into U while

constructing U is that the other end vertex vi+1 of ei+1

is already in U .

Note how the bipartiteness of the G comes in: If the cut in

G that results in the bipartition is 〈V1, V2〉, then the ver-

tices of U and p alternate between V1 and V2. Therefore,

the length of the r–vi path is even in p and U .
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Constructing an alternating tree from a root always leads

to a Hungarian tree or an augmenting tree but not both.

The order of the edges taken does not matter. (This is not

the case for general graphs.)

For the bipartite graph G = (V,E), the Hungarian Al-

gorithm is as follows. The cut that yields the bipartition is

〈V1, V2〉.

The Hungarian Algorithm:

1. Set S ← ∅. (We can also use some other initial

matching.)

2. If every vertex in V1 or in V2 is matched in S, then

S is a maximum matching and we stop.

3. If there are unmatched vertices in S of V1, then go

through them in some order constructing alternating

trees (the method of construction is not important

as we claimed). If there is an augmenting tree, then

augmenting the matching S by using the augmenting

path we have another matching S1. Set S ← S1

and go to #2.
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4. If all the alternating trees that have unmatched ver-

tices in V1 as roots are Hungarian, S is maximal and

we stop.

THEOREM 3. A maximal matching in a bipartite graph

is a maximum matching.

Proof. Let us prove by contradiction and consider the coun-

ter hypothesis: A maximal matching S in the bipartite

graph G = (V,E) is not a maximum matching. Then,

there are more edges in the maximum matching Smax than

in S and in V1 there are more vertices matched in Smax

than in S. We choose an arbitrary vertex v ∈ V1, which

is matched in Smax but not in S. Then, we have a path

p : v = v0, e1, v1, e2, . . . , ek, vk = w,

whose edges are alternating between Smax and S, i.e. e1
is in Smax and e2 is in S and so on. We choose the

longest such path p. Because p is obviously an alternating

path of S, it has even length, i.e. ek is an edge of S.

(Otherwise, p would be an augmenting path of S which is

impossible because S is maximal.) Thus, w is matched in

S but not matched in Smax (because the path p can not

be continued).
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Hence, every vertex v ∈ V1 which is matched in Smax

but not in S corresponds to a vertex w ∈ V1, which is

matched in S but not in Smax.

Now, every path that ends at w must start from the vertex

v if the starting vertex is matched in Smax but not in S.

The last edge of such a path has to be ek (the only edge

in S incident on w) and the second to the last vertex has

to be vk−1. Furthermore, the second to the last edge of

this path has to be ek−1 (the only edge of Smax incident

on vk−1) and the third to the last vertex has to be vk−2,

and so on.

However, there are then in V1 at least as many vertices w

that are matched in S but not in Smax as there are vertices

v that are matched in Smax but not in S (
√

).

COROLLARY. The Hungarian algorithm produces a max-

imum matching in a bipartite graph.

A matching is perfect if it matches every vertex of a graph.

Thus, a graph with an odd number of vertices can not

have a perfect matching. Let us consider the graph G =

(V,E) and denote

ν(v) = {adjacent vertices of v}
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as well as

ν(A) =
⋃

v∈A

ν(v)

for the vertex set A ⊆ V . Let us denote by #(X)

the number of elements in the set X (the cardinality of

the set). With these notions, we can present the following

famous characterization:

HALL’S THEOREM or ”MARRIAGE THEOREM”.

A bipartite graph G whose bipartition cut is 〈V1, V2〉 has

a perfect matching if and only if every vertex set A ⊆ V1
and B ⊆ V2 satisfies the conditions

#(A) ≤#(ν(A)) and #(B) ≤#(ν(B)).

Proof. If a perfect matching exists, then obviously

#(A) ≤#(ν(A)) and #(B) ≤#(ν(B))

hold for all sets of vertices A ⊆ V1 and B ⊆ V2. (Other-

wise, we can not find a pair for every vertex in A or B in

the matching.)

Let us assume that for all sets of vertices A ⊆ V1 and

B ⊆ V2,

#(A) ≤#(ν(A)) and #(B) ≤#(ν(B)).
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Let S be a maximum matching in G. We will prove by

contradiction and consider the counter hypothesis: S is

not perfect.

We choose a vertex v which is not matched in S. Let

us examine the case where v ∈ V1 (the other case where

v ∈ V2 is obviously symmetrical). The contradiction is ap-

parent if v is an isolated vertex so we can move to the case

where v is an end vertex of an edge. The alternating tree

with the root v is then nontrivial and since the matching

is also maximal, this tree is Hungarian. We choose such a

Hungarian tree U . We label the set of vertices of V1 (resp.

V2) in U by A (resp. by B). Because of the construction

of U , B = ν(A). On the other hand, the vertices of A

and B in U are pairwise matched by the edges of S, except

for the root r. Hence, #(A) = #(B) + 1 > #(B)

(
√

).
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9. Maximum Flow in a Transport Network:

The Ford–Fulkerson Algorithm

A transport network is a directed graph G = (V,E) with

weighted arcs that satisfies the following:

(1) G is connected and loopless,

(2) G has only one source s,

(3) G has only one sink t, and

(4) the weight c(e) of the arc e is called the capacity and

it is a nonnegative real number, i.e. we have a mapping

c : E → R0.

(Compare to stationary linear networks in Section 4.4.) Ac-

tually, we could assume that G has every possible arc ex-

cept loops and it can even have multiple parallel arcs. If

this is not the case, then we simply add the missing arcs

with capacity zero. Naturally, we can also assume that G

is nontrivial.

197



A flow f of a transport network is a weight mapping

E → R0, which satisfies:

(i) For each arc e, we have the capacity constraint

f(e) ≤ c(e),

and

(ii) each vertex v 6= s, t satisfies the conservation con-

dition (also called Kirchhoff’s Flow Law, compare to

Section 4.4)

∑

initial vertex
of e is v

f(e) =
∑

terminal vertex
of e is v

f(e).

f(e) is called the flow of e. The flow of the arc (u, v) is

also denoted as f(u, v). The value of the flow f is

|f | =
∑

initial vertex
of e is s

f(e).

A flow f∗ is a maximum flow if its value is the largest

possible, i.e. |f∗| ≥ |f | for every other flow f .
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An s–t cut of a transport network S is a (directed) cut

I = 〈V1, V2〉 such that s is in V1 and t is in V2. The

capacity of such a cut is

c(I) =
∑

u∈V1
v∈V2

c(u, v).

(Note that the arcs in the direction opposite to the cut do

not affect the capacity.) The capacity of the cut 〈V1, V2〉

is also denoted as c(V1, V2). Furthermore, we define the

flux of the cut I = 〈V1, V2〉 as

f+(I) =
∑

u∈V1
v∈V2

f(u, v)

and the counter-flux as

f−(I) =
∑

u∈V2
v∈V1

f(u, v).

The value of a flow can now be obtained from the fluxes of

any s–t cut:

THEOREM 4. If f is a flow of a transport network and

I is an s–t cut, then

|f | = f+(I)− f−(I).
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Proof. Obviously,

∑

initial vertex
of e is v

f(e) −
∑

terminal vertex
of e is v

f(e) =







|f | if v = s

0 if v 6= s, t.

We denote I = 〈V1, V2〉. By going through the vertices

v in V1 and by adding up the equations we get

∑

v∈V1

∑

initial vertex
of e is v

f(e)−
∑

v∈V1

∑

terminal vertex
of e is v

f(e) = |f |.

For each arc e whose end vertices are both in V1, f(e)

and −f(e) are added exactly once and thus they cancel

out. Therefore,

∑

u∈V1
v∈V2

f(u, v)−
∑

u∈V2
v∈V1

f(u, v) = |f |.

COROLLARY. If f is a flow of a transport network and

I is an s–t cut, then |f | ≤ c(I).

Proof. |f | = f+(I)− f−(I) ≤ f+(I) ≤ c(I).

An arc e of a transport network is saturated if f(e) =

c(e). Otherwise, it is unsaturated. Now, we point out

that |f | = c(V1, V2) if and only if
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(i) the arc (u, v) is saturated whenever u ∈ V1 and

v ∈ V2, and

(ii) f(u, v) = 0 whenever u ∈ V2 and v ∈ V1.

An s–t cut I∗ of a transport network is called a minimum

cut if c(I∗) ≤ c(I) for every other s–t cut I .

COROLLARY. If f is a flow of a transport network, I is

an s–t cut and |f | = c(I), then f is a maximum flow

and I is a minimum cut.

Proof. If f∗ is a maximum flow and I∗ is a minimum cut,

then |f∗| ≤ c(I∗) by the corollary above. Thus,

|f | ≤ |f∗| ≤ c(I∗) ≤ c(I)

and f is indeed a maximum flow and I is indeed a minimum

cut.

Actually, the value of the maximum flow is the capacity of

the minimum cut. To show this, we examine a path from

vertex s to vertex v (not necessarily a directed path):

s = v0, e1, v1, e2, . . . , ek, vk = v (path p).
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If ei = (vi−1, vi), then the arc ei is a forward arc. If

ei = (vi, vi−1), then the arc ei is a back arc. The arc

ei of p is now weighted by the following formula:

ǫ(ei) =







c(ei)− f(ei) if ei is a forward arc

f(ei) if ei is a back arc

and the path p is weighted by the following formula:

ǫ(p) =
k

min
i=1
{ǫ(ei)}.

The path p is unsaturated if ǫ(p) > 0, i.e. all of the

forward arcs of p are unsaturated and f(ei) > 0 for all

the back arcs ei of p.

In particular, an s–t path can be unsaturated in which case

it is called an augmenting path∗. All of these definitions

are of course attached to a certain flow f . By starting from

an s–t path p (and a flow f), we can define a new flow:

f =















f(e) + ǫ(p) if e is a forward arc of p

f(e)− ǫ(p) if e is a back arc of p

f(e) otherwise.

f is really a flow. Changes in f can only occur at the

arcs and vertices of p. Every arc of p satisfies the capacity

∗Not to be confused with the augmenting path in the previous sec-
tion!
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constraint because of how ǫ(p) and f(e) are defined. A

vertex vi of p satisfies the conservation condition which we

can verify. We have four cases:

ei
ei+1

vi

ei

ei+1
vi

ei
ei+1

vi

ei
ei+1

vi

Obviously (think about the source s)

|f | = |f |+ ǫ(p),

so f is not a maximum flow if it has an augmenting path.

Moreover, the converse is true as well. Hence,

THEOREM 5. A flow is a maximum flow if and only if it

does not have any augmenting path.
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Proof. As we claimed, a maximum flow can not have an

augmenting path. Let us assume that a flow f does not

have an augmenting path. We denote the set of vertices

which we can reach from the source s along unsaturated

paths by V1. Then, trivially, s ∈ V1 and t /∈ V1 (because

there are no augmenting paths). So, the cut I = 〈V1, V2〉

is an s–t cut. We proceed to prove that |f | = c(I). By

the previous corollary, f is then a maximum flow.

Let us consider the arc (u, v), where u ∈ V1 and v ∈ V2.

Then, there exists an unsaturated s–u path p. The edge

(u, v) is saturated because there would be an unsatu-

rated s–v path otherwise. Similarly, we conclude that

f(u, v) = 0 for every arc (u, v), where u ∈ V2 and

v ∈ V1. Therefore, the flux f+(I) is c(I) and the

counter-flux f−(I) is zero. By Theorem 4, |f | = c(I).

We have also proven the celebrated

MAX-FLOW MIN-CUT THEOREM. The value of a

maximum flow in a transport network is the same as the

capacity of a minimum cut.
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If the capacities of the arcs are rational numbers, then a

maximum flow can be found by using Theorem 5. The

algorithm tries to find an augmenting path for f . If it can

not be found, then we have a maximum flow.

If we find an augmenting path, then we use it to create a

greater flow f . In the algorithm, we use a label α for the

vertices in the following way:

α(v) = (u, direction,∆),

where u is a vertex in the transport network (or − if it

is not defined), ”direction” is either forward (→) or back

(←) (or − if it is not defined) and ∆ is a nonnegative real

number (or∞).

The point is, whenever a vertex v is labeled, there is an

s–v path p which contains the (”directed”) arc (u, v) and

∆ = ǫ(p). A direction is forward if an arc is in the

direction of the path and back otherwise.

We can label a vertex v when the vertex u has been labeled

and either (u, v) or (v, u) is an arc. We have two cases:
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(1) (Forward Label) If e = (u, v) is an arc and

α(u) = (·, ·,∆u)

as well as c(e) > f(e), then we can write

α(v) = (u,→,∆v),

where

∆v = min{∆u, c(e)− f(e)}.

(2) (Back Label) If e = (v, u) is an arc and

α(u) = (·, ·,∆u)

as well as f(e) > 0, then we can write

α(v) = (u,←,∆v),

where

∆v = min{∆u, f(e)}.

There are two phases in the algorithm. In the first phase,

we label the vertices as presented above and each vertex is

labeled at most once. The phase ends when the sink t gets

labeled as

α(t) = (·,→,∆t),

206



or when we can not label any more vertices. In the second

case, there are no augmenting paths and the flow we obtain

is a maximum flow so we stop. In the first case, the flow we

obtain is not a maximum flow and we have an augmenting

path p for which ǫ(p) = ∆t.

The algorithm moves on to the second phase. In the second

phase, we construct a new greater flow f by using the labels

of the vertices of p obtained previously. After this, we go

back to the first phase with this greater new flow.

The Ford–Fulkerson Algorithm:

1. Choose an initial flow f0. If we do not have a specific

flow in mind, we may use f0(e) = 0. Label the

source s by α(s)← (−,−,∞). Set f ← f0.

2. If we have a unlabeled vertex v, which can be la-

beled either forward by (w,→, ∆v) or backward by

(w,←,∆v), then we choose one such vertex and la-

bel it. (There can be many ways of doing this and all

of them are permitted.) If such a vertex v does not

exist, output the maximum flow f and stop.
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3. If t has not been labeled, go to step #2. Otherwise,

set u← t.

4. If α(u) = (w,→,∆u), then set

f(w, u)← f(w, u) +∆t and u← w.

If α(u) = (w,←,∆u), then set

f(u, w)← f(u,w)−∆t and u← w.

5. If u = s, then remove all the labels α but not the

label of the source and go to step #2. If u 6= s, then

go to step #4.

If f0(e) and c(e) are rational numbers, then the algorithm

stops and produces a maximum flow.∗ In this case, we can

assume that these weights and capacities are nonnegative

integers. Thus, the value of a flow increases by a posi-

tive integer every time we move from the second phase to

the first phase and the value reaches a maximum eventu-

ally. On the other hand, the number of steps can be as large

∗If there are irrational capacities or flows f0(e), then the algorithm
may not stop at all and it may not produce a maximum flow even
if the process repeats endlessly. Of course, we do not have to use
irrational flows. In practice, we will not use irrational capacities.
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as the value of the maximum flow. The performance time

of the algorithm does not only depend on the number of

vertices but also the capacities.

The algorithm can be modified∗ so that it does not depend

on the capacities. Thus, it will work for irrational capac-

ities. In this case, our purpose during the labeling phase

is to find the shortest augmenting path. We get this by

always choosing the vertex v in step #2 in such a way that

in α(v) = (w, ·,∆v), w received its label as early as

possible.

The Ford–Fulkerson Algorithm also works for finding a max-

imum matching in a bipartite graph. Let us do an example:

EXAMPLE. Using the bipartite graphG from an example

in the previous section, we get a transport network G′:

v1
v2

v3

v4

v5

w1

w2

w3

w4

w6

w5

G: G′: s t

∗This is known as the Edmonds–Karp Modification (refer e.g. to
SWAMY & THULASIRAMAN).
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Every edge of G′ is directed from left to right and given a

capacity of 1. The initial flow is a zero flow (or a greater

flow we obtain from some other initial flow).

During the whole process, the flows of the edges are integers

0 or 1. We take into the matching those edges in G whose

corresponding edges e in G′ receive a flow f(e) = 1 and

a maximum flow gives a maximum matching.

Note that an augmenting path can be of length larger than

three in this case. (We can also claim now that the aug-

menting paths here and the augmenting paths obtained

from the Hungarian Algorithm do have something in com-

mon after all!)
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CHAPTER 6 Drawing Graphs

1. Planarity and Planar Embedding

We have not treated graphs as geometric objects so far in

the course. In practice, we draw graphs, i.e. we treat ver-

tices as geometric points and edges as continuous curves.

If a graph G can be drawn on a plane (or a sphere) so that

the edges only intersect at vertices, then it is planar. Such

a drawing of a planar graph is a planar embedding of the

graph.

A connected part of a plane which does not contain any

vertices and is surrounded by edges is called a region (or a

face) of a planar embedding. In addition, the part outside

the embedding is considered as a region, known as the ex-

terior region (when we draw a planar graph on a plane or

on a sphere, it is just like any other region). The vertices

surrounding a region s are called boundary vertices and the

edges surrounding s are called boundary edges. Two re-

gions are adjacent if they share a boundary edge. Note

that a region can be adjacent to itself.
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EXAMPLE. In the following planar embedding

v2
v3

v1

v4

v5

e1 e2

e3

e4 e5

v6

e10

e8

s1

s2

s4

s3

s5

e9

v7

v8

e6 e7

the regions are s1, s2, s3, s4 and s5 (the exterior re-

gion) and their boundary vertices and edges as well as their

adjacent regions are given in the table below:

region boundary vertices boundary edges adjacent regions
s1 v1, v5, v2 e1, e10, e2 s2, s5
s2 v2, v5, v4, v3, v6, v7 e2, e4, e7, e9, e8, e6 s1, s2, s3, s5
s3 v4, v5 e4, e5 s2, s5
s4 v5 e3 s5
s5 v1, v5, v4, v3, v2, v8 e10, e3, e5, e7, e6, e1 s1, s2, s3, s4

In the following, we investigate some fundamental proper-

ties of planar embeddings of graphs.

EULER’S POLYHEDRON FORMULA.∗ If a planar

embedding of a connected graphG has n vertices,m edges

∗The name comes from a polyhedron with n vertices, m edges, f
regions and no holes.
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and f regions, then

f + n = m+2.

Proof. Let us use induction on m.

Induction Basis: m = 0. Planar embedding ofG has only

one vertex and one region (the exterior region) so the claim

is true.

Induction Hypothesis: The theorem is true for m ≤ ℓ.

(ℓ ≥ 0)

Induction Statement: The theorem is true for m = ℓ+1.

Induction Statement Proof: We choose an edge e ofG and

examine the graph G′ = G − e. If e is in a circuit, then

G′ is connected and by the Induction Hypothesis, we get

f ′+ n = (m− 1) + 2,

where f ′ is the number of regions in G′. However, clos-

ing the circuit with e increases the number of regions by

one so f ′ = f − 1 and the theorem is true. If G − e

is disconnected, then it has two planar components, G1

and G2 whose number of vertices, edges and regions are
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n1, n2,m1,m2, f1 and f2, respectively. By the Induc-

tion Hypothesis,

f1 + n1 = m1 +2 and f2 + n2 = m2 +2.

While adding e, the number of regions becomes f1+f2−1

(G1 and G2 share the same exterior region or one exterior

region is drawn to be a region of the other component),

the number of vertices becomes n1+n2 and the number

of edges becomes m1 + m2 + 1. Hence, the claim is

true.

EXAMPLE. (Continuing from the previous example) We

remove the vertex v8 to get a connected planar embedding.

Now, we have 7 vertices, 10 edges, 5 regions and 5+ 7

= 10+ 2.

LINEAR BOUND. If a simple connected planar graph G

has n ≥ 3 vertices and m edges, then

m ≤ 3n− 6.

Proof. If the regions of a planar embedding of G are

s1, . . . , sf , then we denote the number of boundary edges

of si by ri (i = 1, . . . , f). The case f = 1 is obvious

because G is then a tree and

m = n− 1 ≤ 3n− 6.
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Thus, we assume that f ≥ 2. Since G is simple, every

region has at least 3 boundary edges and thus

f
∑

i=1

ri ≥ 3f.

Every edge is a boundary edge of one or two regions in the

planar embedding, so

f
∑

i=1

ri ≤ 2m.

The result now follows directly from Euler’s Polyhedron For-

mula.

MINIMUM DEGREE BOUND. For a simple planar

graph G, δ(G) ≤ 5.

Proof. Let us prove by contradiction and consider the

Counter Hypothesis: G is a simple planar graph and

δ(G) ≥ 6. Then, (by Theorem 1.1) m ≥ 3n, where

n is the number of vertices and m is the number of edges

in G. (
√

Linear Bound)

A characterization of planar graphs is obtained by examin-

ing certain forbidden subgraphs.
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KURATOWSKI’S THEOREM. A graph is planar if and

only if none of its subgraphs can be transformed to K5 or

K3,3 by contracting edges.

The proof is quite complicated (but elegant!), refer e.g.

to SWAMY & THULASIRAMAN for more information. K5 and

K3,3 are not planar, which can be verified easily.

There are many fast but complicated algorithms for test-

ing planarity and drawing planar embeddings. For exam-

ple, the Hopcroft–Tarjan Algorithm∗ is one. We present a

slower classical polynomial time algorithm, the Demoucron–

Malgrange–Pertuiset Algorithm† (usually just called De-

moucron’s Algorithm). The idea of the algorithm is to try

to draw a graph on a plane piece by piece. If this fails, then

the graph is not planar.

If G is a graph and R is a planar embedding of a planar

subgraph S of G, then an R-piece P of G is

∗The original reference is HOPCROFT, J.E. & TARJAN, R.E.: Efficient
Planarity Testing. Journal of the ACM 21 (1974), 549–568.
†The original reference is DEMOUCRON, G. & MALGRANGE, Y. &
PERTUISET, R.: Graphes planaires: reconnaissance et construc-
tion des représentations planaires topologiques. Revue Française

Recherche Opérationnelle 8 (1964), 33–47.
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• either an edge of G− S whose end vertices are in S,

or

• a component of the subgraph induced by vertices not

in S which contains the edges (if any) that connect S

to the component, known as pending edges, and their

end vertices.

Those vertices of an R-piece of G that are end vertices

of pending edges connecting them to S are called contact

vertices.

We say that a planar embedding R of the planar subgraph

S is planar extendable to G if R can be extended to a

planar embedding of the whole G by drawing more ver-

tices and/or edges. Such an extended embedding is called

a planar extension of R to G. We say further that an

R-piece P of G is drawable in a region s of R if there is a

planar extension of R to G where P is inside s. Obviously

all contact vertices of P must then be boundary vertices

of s, but this is of course not sufficient to guarantee planar

extendability of R to G. Therefore we say that a P is po-

tentially drawable in s if its contact vertices are boundary

vertices of s. In particular, a piece with no contact vertices

is potentially drawable in any region of R.
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Demoucron’s Algorithm:

1. We first check whether or not G is a forest. If it is a

forest, then it clearly is planar and can be planar em-

bedded. (There are fast algorithms for this purpose.)

We can then stop.

2. If G is not a forest then it must contain at least one

circuit. We choose a circuit C, embed it to get the

planar embedding D, and set R ← D. (A circuit is

obviously planar and is easily planar embedded.)

3. If R is a planar embedding of G, then we output it

and stop.

4. We construct the set P of all R-pieces ofG. For each

piece P ∈ P we denote by S(P) the set of all those

regions of R which P is potentially drawable in.

5. If, for anR-piece P ∈ P , the set S(P) is empty then

G is not planar. We can then output this information

and stop.
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6. Choose an R-piece P , starting from those potentially

drawable only in one region.

7. Depending on the number of contact vertices of P ,

we planar extend R:

7.1 If P has no contact vertices, we call Demoucron’s

Algorithm recursively with input P . If it turns out

that P is not planar, then G is not planar, and we

output this information and stop. Otherwise we

extend R to a planar embedding U by drawing P

in one of its regions, set R ← U , and return to

step #3.

7.2 If P has exactly one contact vertex v, with the cor-

responding pending edge e, we call Demoucron’s

Algorithm recursively with input P . If it turns out

that P is not planar, then G is not planar, and we

output this information and stop. Otherwise we

extend R to a planar embedding U by drawing P

in a region with boundary vertex v, set R ← U ,

and return to step #3. (This region of R will then

be an exterior region of the planar embedding of

P .)
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7.3 If P has (at least) two contact vertices v1 and v2,

they are connected by a path p in P . We then

extend R to a planar embedding U by drawing p

in a region of R with boundary vertices v1 and v2
where P is potentially drawable, set R← U , and

return to step #3.

Clearly, if G is not planar, Demoucron’s Algorithm will out-

put this information. On the other hand, the algorithm will

not get stuck without drawing the planar embedding if the

input is planar, because

STATEMENT. If G is planar, then at each step of the

algorithm R is planar extendable to G.

Proof. We use induction on the number of times ℓ the

algorithm visits step #7.

Induction Basis: ℓ = 0. Now either G is a forest (and R

is not needed) or R is a circuit of G. Obviously the planar

embedding of this circuit can be planar extended to G.

Induction Hypothesis: The statement is true for ℓ ≤ r.

(r ≥ 0)
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Induction Statement: The statement is true for ℓ = r+1.

Induction Statement Proof: For step #7.1 the matter is

clear. If, in step #7.2, P is potentially drawable in the re-

gion s of R, it can always be drawn in this region without

endangering subsequent steps. In other words, any possi-

ble region can be chosen. This is because the region can

be exchanged for another at all times by ”reflection”with

respect to the vertex v (and possibly rescaling):

v
e P

s1

s2

s3
v
e

P s1

s2

s3

Similarly, if in step #7.3, P is drawable in a region of R,

then it can be drawn in this region without endangering

subsequent steps. If P is drawable in both region s1 and

region s2, its contact vertices are boundary vertices of both

s1 and s2. At any time, a drawn P (or part of it) can be

moved from region s1 to s2, or vice versa, simply by reflec-

tion with respect to the common boundary (and possibly

rescaling to fit into the region).
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NOTE. Nonplanar graphs may be embedded on closed

continuous surfaces with holes. For instance, a torus is

closed surface with exactly one hole. On a torus we can

embed the non-planar graphs K5, K6 and K7, and also

K3,3. K8 is more complex and its embedding requires

a closed surface with two holes. The smallest number of

holes in a closed surface required for embedding the graph

G on it is called the genus of G. On the other hand the

smallest number of crossings of edges in a drawing of G

on plane is called the crossing number of G. Computa-

tion of genus and crossing number are both NP-complete

problems.

A coloring of a graph is a labeling of vertices where adjacent

vertices never share a label. The labels are then often called

colors. We say that a graph is k-colorable if it can be

colored using (at most) k colors. If a graph is colorable

then it obviously can not have loops. Equally obviously,

parallel edges can be reduced to one, so we may assume

our graphs here to be simple. The smallest number k for

which the graph G is k-colorable, is called the chromatic

number of G, denoted by χ(G).

K4 is an example of a planar simple graph which is not

3-colorable. On the other hand there is the celebrated
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FOUR-COLOR THEOREM. Every simple planar graph

is 4-colorable.

Proof. The only known proofs require extensive computer

runs. The first such proof was obtained by Kenneth Ap-

pel ja Wolfgang Haken in 1976. It takes a whole book

to present the proof: APPEL, K. & HAKEN, W.: Every Pla-

nar Map is Four Colorable. American Mathematical Society

(1989).

If we require a bit less, i.e. 5-colorability, then there is much

more easily provable result, and an algorithm.

HEAWOOD’S THEOREM or FIVE-COLOR THE-

OREM. Every simple planar graph is 5-colorable.

Proof. We may think of G as a planar embedding. We use

induction on the number n of vertices of G.

Induction Basis: n = 1. Our graph is now 1-colorable

since there are no edges.

Induction Hypothesis: The theorem is true for n ≤ ℓ.

(ℓ ≥ 1)

Induction Statement: The theorem is true for n = ℓ+1.
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Induction Statement Proof: According to the Minimum De-

gree Bound, there is a vertex v in G of degree at most 5.

On the other hand, according to the Induction Hypothesis

the graph G−v is 5-colorable. If, in this coloring, the ver-

tices adjacent to v are colored using at most four colors,

then clearly we can 5-color G.

So we are left with the case where the vertices v1, v2, v3,

v4, v5 adjacent to v are colored using different colors.

We may assume that the indexing of the vertices proceeds

clockwise, and we label the colors with the numbers 1,2,3,

4,5 (in this order). We show that the coloring of G − v

can be changed so that (at most) four colors suffice for

coloring v1, v2, v3, v4, v5.

We denote by Hi,j the subgraph of G− v induced by the

vertices colored with i and j. We have two cases:

• v1 and v3 are in different components H1 and H3 of

H1,3. We then interchange the colors 1 and 3 in the

vertices of H3 leaving the other colors untouched. In

the resulting 5-coloring of G− v the vertices v1 and

v3 both have the color 1. We can then give the color

3 to v.
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• v1 and v3 are connected in H1,3. Then there is a

v1–v3 path in H1,3. Including the vertex v we get

from this path a circuit C. Now, since we indexed the

vertices v1, v2, v3, v4, v5 clockwise, exactly one of

the vertices v2 and v4 is inside C. We deduce that

v2 and v4 are in different components of H2,4, and

we have a case similar to the previous one.

The proof gives a simple (recursive) algorithm for 5-coloring

a planar graph, the so-called Heawood’s Algorithm.
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2. The Davidson–Harel Algorithm

For the actual drawing of a graph we need to define the

drawing area (the ”window”), i.e. a rectangular area with

sides parallel to the coordinate axes, the drawing curve of

the edges (here edges are drawn as line segments), and

certain ”criteria of beauty”, so that the resulting drawing

is pleasant to the eye, balanced, and as clear as possible.

Such ”beauty criteria”are of course context-dependent and

even matters of individual taste. In the sequel we restrict

ourselves to simple graphs, given by, say, an adjacency ma-

trix or an all-vertex incidence matrix.

We will now present the so-called Davidson–Harel Algo-

rithm∗ which, applying an annealing algorithm, aims at bet-

ter and better drawings of a graph using a certain ugliness

function (cf. Section 5.7). An ugliness function R com-

putes a numerical ugliness value obtained from a drawing

P of a graph G. This value is a sum of various contribut-

ing factors. We denote, as usual, the sets of vertices and

edges of G by {v1, . . . , vn} and {e1, . . . , em}, respec-

tively. We also denote by vi the vector (or geometric point)

corresponding to the vertex vi, and by ej the line segment

corresponding to the edge ej. Further, we denote

∗The original reference is DAVIDSON, R. & HAREL, D.: Drawing
Graphs Nicely Using Simulated Annealing. ACM Transactions on
Graphics 15 (1996), 301–331.
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dij = ‖vi − vj‖,

ri = distance of vi from the right border of the window,

li = distance of vi from the left border of the window,

ui = distance of vi from the upper border of the window,

bi = distance of vi from the lower border of the window,

cj = length of the line segment ej,

fij =















1, if the line segments ei and ej intersect
without ei and ej being adjacent

0 otherwise,

gij =















distance of vi from the line segment ej if it
exceeds γ and vi is not an end vertex of ej

γ otherwise.

γ is a parameter of the algorithm telling how close to ver-

tices edges can be. The ugliness function is then given

by

R(P) = λ1

n−1
∑

i=1

n
∑

j=i+1

1

d2ij
+ λ2

n
∑

i=1

(

1

r2i
+

1

l2i
+

1

u2i
+

1

b2i

)

+ λ3

m
∑

j=1

c2j + λ4

m−1
∑

i=1

m
∑

j=i+1

fij + λ5

n
∑

i=1

m
∑

j=1

1

g2ij
,

where λ1, . . . , λ5 are nonnegative-valued parameters

weighting the contributions of the various factors. (One

could actually use negative values as well, whatever the

interpretation then might be.)
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We can compute dij, . . . , gij quite easily using some basic

formulae of vector geometry. We must, however, think

about the speed of the computation as well. One way to

speed up the computation is to use complex arithmetic.

dij, . . . , gij are then equally easily computable.∗

It may also be of advantage to force the vertices into a

lattice of geometric points. This can be achieved for in-

stance by rounding the coordinates (or complex numbers)

to a fixed accuracy and abandoning drawings where the

ugliness function has the value∞ (this happens e.g. when

vertices occupy the same point).

In the annealing process the state is P and the response

is R(P). An initial state can be obtained by choosing

the points v1, . . . ,vn in the window randomly, and then

drawing the edges accordingly. The state transition process

P ← Aρ(P) is the following:

∗Note that if

z1 = x1 + jy1 and z2 = x2 + jy2,

where j is the imaginary unit, then the real part of z1z2 equals the
dot product

(x1, y1) • (x2, y2)

and the imaginary part equals the determinant
∣

∣

∣

∣

x1 x2

y1 y2

∣

∣

∣

∣

.
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• Choose a random vertex vi. (Alternatively the vertices

may be circulated cyclically.)

• Draw a circle of radius ρ centered on vi. The radius

ρ is a parameter, which is initially large and gradually

reduced later in some systematic fashion.

• Choose a random point u on this circle.

• If u is outside the drawing window, the state remains

the same. Otherwise set vi ← u and change the

edges accordingly in the drawing.

The remaing parts of the algorithm are very similar to the

annealing algorithm for the TSP in Section 5.7.

NOTE. This method has numerous variants. The window

could be a circle and the edges concentric arcs or radii. Or

the window could be a sphere and edges drawn as arcs of

great circles. The window could also be unbounded, for

instance, the whole of R2. We could ”draw”graphs three-

dimensionally. Etc. We could also use a metric other than
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the Euclidean one when computing distances, e.g. the Man-

hattan metric (”1-norm”) or the max-metric (”∞-norm”),

geodetic distances on a sphere, etc. Needless to say, the

resulting drawings are rather different using these variants

of the algorithm.

It may be noted, too, that using nearly any effective criteria,

finding the optimally pleasing drawing of a simple graph is

an NP-complete problem.
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CHAPTER 7 Matroids

Many concepts in the preceding chapters do not so much

deal with graphs themselves as their structural properties.

Examples are various dualities (cut set vs. circuit), princi-

ples behind certain algorithms (e.g. Kruskal’s Algorithms),

and various extremality properties (many structures are the

”smallest of their kind”, one cannot e.g. remove an edge of

a cut set without it losing this property).

Exactly corresponding structures were found in many other

areas of mathematics, and they were called matroids.∗

1. Hereditary Systems

A hereditary family of sets is a family of sets such that

whenever a set F is in the family then so are all subsets

of F (and in particular the empty set ∅). A hereditary

system M of a set E is a nonempty hereditary family IM
of subsets of E. Included there are also the various ways of

specifying IM , called aspects. It will be assumed in what

follows that E is a finite set. The following nomenclature

is traditional:
∗The remarkable thing is that many of these structures were found
independently at the same time around the year 1935: Hassler
Whitney investigated planarity of graphs, Saunders MacLane geo-
metric lattices of points, and Bartel van der Waerden’s topic was
independence in vector spaces.
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• Sets in the family IM are called independent sets of
M .

• The family of subsets of E other than those in IM
is denoted by DM and called the family of dependent
sets of M .

• An independent set is maximal if it is not a proper
subset of another independent set. A maximal inde-
pendent set is called a basis. The family of all bases
is denoted by BM . Note that an independent set is
always contained in a basis.

• A dependent set is minimal if no dependent set is its
proper subset. A minimal dependent set is called a
circuit.∗ (Recall that the empty set is always in IM .)
The family of all circuits is denoted by CM . Note that
a dependent set always contains a circuit.

• A circuit consisting of only one element is a so-called
loop. Elements of a circuit with two elements are
called parallel. A hereditary system is simple if it has
no loops and no parallel elements.

∗This or any other ”familiar sounding” concept should not be con-
fused with the corresponding concept for graphs, even though there
is a certain connection, as will be seen!
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• The rank of a subset F of E is the largest size of

an independent set contained in F . (Recall that E

is assumed to be finite.) Note that the empty set is

always an independent set contained in F . The rank

of F is denoted by ρM(F), and ρM is called the

rank function of M .

A notation similar to one used for graphs will be adopted

in the sequel concerning adding an element e to the set F

(denoted by F + e) or removing it from F (denoted by

F − e). Two easy properties of the rank function are the

following

THEOREM 1. If M is a hereditary system of the set E

then

(i) ρM(∅) = 0, and

(ii) for any subset F of E and any element e,

ρM(F) ≤ ρM(F + e) ≤ ρM(F) + 1.

Proof. Item (i) is clear, so let us move to item (ii).
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Since F + e contains those independent sets that are con-

tained in F , we have

ρM(F + e) ≥ ρM(F).

On the other hand, possible independent subsets of F + e

not contained in F may only consist of an independent

subset of F and e, so

ρM(F + e) ≤ ρM(F) + 1.

A hereditary systemM may of course be specified by giving

its independent sets, that is by giving IM . It can be spec-

ified as well by giving its bases, i.e. BM , independent sets

will then be exactly all subsets of bases. On the other hand,

M can be specified by giving its circuits, i.e. CM , indepen-

dent sets are then the sets not containg circuits. Finally,M

can be defined by giving the rank function ρM , since a set

F is independent exactly when ρM(F) = #(F). (As

before, we denote cardinality of a set F by #(F).) Thus

an aspect may involve any of IM , BM , CM and ρM .

It might be mentioned that a hereditary system is a far

too general concept to be of much use. This means that

well chosen aspects are needed to restrict the concept to a

more useful one (that is, a matroid). Let us have a look

at certain proper aspects in connection with a matroid well

familiar from the preceding chapters.
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2. The Circuit Matroid of a Graph

The circuit matroid M(G) of a graph G = (V,E) is

a hereditary system of the edge set E whose circuits are

the circuits of G, considered as edge sets. (It is naturally

assumed thatG is not empty.) The bases ofM(G) are the

maximal independent edge sets, i.e. spanning forests of G,

and the independent sets ofM(G) are the subforests, both

considered as edge sets. Let us denote GF = (V, F) for

a subset F of E. The number of vertices of G is denoted

by n, as usual.

NOTE. A hereditary system that is not directly a circuit

matroid of any graph but has a structure identical to one

is called a graphic matroid.

Let us then take a look at different aspects of the circuit

matroid.

Basis Exchange Property

Let us consider two bases (i.e. spanning forests) B1 and

B2. If e is an edge in B1, its removal divides some compo-

nent G′ of the graph G into two disjoint subgraphs. Now

certain edges of B1 will be the branches of a spanning tree

T1 of G′, and similarly, certain edges in B2 will be the
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branches of a spanning tree T2 of G′. The removed edge e

is either a branch of T2 or then a link of T ∗2 . In the latter

case e will be in the fundamental cut set determined by a

branch f of T2 (cf. Theorem 2.7). Then

T1 − e+ f

is also a spanning tree of G′ and we can replace e by f

and get again a spanning forest of G, that is, a basis.

Hence we have

BASIS EXCHANGE PROPERTY. If B1 and B2 are

different bases and e ∈ B1−B2 then there is an element

f ∈ B2 −B1 such that B1 − e+ f is a basis.

In general, a hereditary system with the basis exchange

property will be a matroid. In other words, the basis ex-

change property is a proper aspect. Using basis exchange

one can move from one basis to another. All bases are thus

of the same size.

Uniformity. Absorptivity

For a subset F of E let us denote by nF the number of

vertices in the subgraph 〈F 〉 of G induced by F , and by

kF the number of its components. Then there are nF−kF
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edges in a spanning forest of 〈F 〉. Let us denote further

by KF the number of components of the subgraph GF of

G. Clearly then

ρM(G)(F) = nF − kF = n−KF ,

and all such spanning forests are of the same size. Hence

UNIFORMITY. For a subset F of E all maximal inde-

pendent subsets of F are of the same size. (Maximality of

a set H means here that there are no independent sets J

such that H ⊂ J ⊆ F .)

In general, a hereditary system with the uniformity property

will be a matroid, and uniformity is a proper aspect.

In the figure below continuous lines are the edges of F ,

with the thick ones being the branches of a spanning forest.

Dashed lines indicate the remaining edges in E.

e

f
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If e is an edge of G and

ρM(G)(F + e) = ρM(G)(F)

then e does not connect two components of GF . Suppose

f is another edge with the same property, that is,

ρM(G)(F + f) = ρM(G)(F).

Clearly then

ρM(G)(F + e+ f) = ρM(G)(F).

Thus we get

WEAK ABSORPTIVITY. If e, f ∈ E and F ⊆ E

and

ρM(F) = ρM(F + e) = ρM(F + f)

then also

ρM(F + e+ f) = ρM(F).

In general a weakly absorptive hereditary system is a ma-

troid, and thus weak absorptivity is another proper aspect.

By repeating the above argument sufficiently many times

we see that if F and F ′ are sets of edges of G, and for

each edge e in F ′ we have

ρM(G)(F + e) = ρM(G)(F),
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then

ρM(G)(F ∪ F ′) = ρM(G)(F).

Hence also

STRONG ABSORPTIVITY. If F, F ′ ⊆ E and

ρM(F + e) = ρM(F)

for each element e in F ′ then

ρM(F ∪ F ′) = ρM(F).

We conclude that strong absorptivity is a proper aspect.

Augmentation

Suppose I1 and I2 are independent sets of the circuit ma-

troid M(G) (edge sets of subforests of G) and

#(I1) < #(I2).

The subgraph GI1
then has n−#(I1) components, and

the subgraph GI2
has n−#(I2) components, so strictly

less than GI1
.

Adding an edge does not reduce the number of components

exactly in the case where the edge is added in some compo-

nent. Thus, if adding any edge in I2−I1 to GI1
preserves
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the number of components then it must be that the edge

is added in some component of GI1
, and GI2

cannot have

fewer components than GI1
. But as noted, this is not the

case if #(I1) < #(I2), and so

AUGMENTATION. If I1 and I2 are independent sets

of the hereditary system M and #(I1) < #(I2) then

there exists an element e ∈ I2 − I1 such that I1 + e is

in IM .

In general, a hereditary system with the augmentation prop-

erty is a matroid. Thus augmentation is a proper aspect,

too.

Elimination

The circuits of the circuit matroidM(G) are the edge sets

of the circuits of G. The degree of a vertex in a circuit is

two. If C1 and C2 are different circuits of M(G) then

the degree of a vertex of the ring sum 〈C1〉⊕〈C2〉 is also

even, see Section 1.3. Hence 〈C1〉 ⊕ 〈C2〉 must contain

at least one circuit as a subgraph, since a ring sum does not

have isolated vertices and a nonempty forest has at least

one pending vertex (Theorem 2.3). Recalling the definition

of ring sum in Section 1.3 it is noticed that such a circuit
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does not contain edges in the intersection C1 ∩ C2, at

least not with as high multiplicity as in C1 ∪ C2. Thus

ELIMINATION PROPERTY. If C1 and C2 are differ-

ent circuits of the hereditary system M and e ∈ C1∩C2

then there is a circuit C ∈ CM such that

C ⊆ C1 ∪ C2 − e.

Again, elimination property is a proper aspect, and a hered-

itary system with the elimination property is a matroid.

Induced Circuits

If I is an independent set of the circuit matroid M(G)

(edge set of a subforest) then adding one edge either closes

exactly one circuit in a component of GI (Theorem 2.3),

or then it connects two components of GI and does not

create a circuit. We have then

PROPERTY OF INDUCED CIRCUITS. If I is an

independent set of a hereditary system M and e ∈ E then

I + e contains at most one circuit.

The property of induced circuits is a proper aspect, and a

hereditary system having this property will be a matroid.
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3. Other Basic Matroids

Vectorial Matroid

Let E be a finite set of vectors of a vector space (say Rn)

and the independent sets of a hereditary system M of E

be exactly all linearly independent subsets of E (including

the empty set). M is then a so-called vectorial matroid.

Here E is usually allowed to be a multiset, i.e. its elements

have multiplicities—cf. parallel edges of graphs. It is then

agreed that a subset of E is linearly dependent when one

its elements has a multiplicity higher than one.

A hereditary system that is not directly vectorial but is

structurally identical to a vectorial matroid M ′ is called

a linear matroid, and the matroid M ′ is called its represen-

tation.

A circuit of a vectorial matroid is a linearly dependent set C

of vectors such that removing any of its elements leaves a

linearly independent set—keeping in mind possible multiple

elements.

An aspect typical to vectorial matroids is the elimination

property. If
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C1 = {r, r1, . . . , rk} and C2 = {r, r′1, . . . , r
′
l}

are different circuits sharing (at least) the vector r then r

can be represented as linear combinations of other vectors

in both C1 and C2, and in such a way that all coefficients

in the combinations are nonzero. We get thus an equality

k
∑

i=1

ciri −
l

∑

j=1

c′jr
′
j = 0.

Combining (possible) repetitive vectors on the left hand

side, and noticing that this does not make it empty, we see

that C1 ∪C2− r contains a circuit. (Note especially the

case where either C1 = {r, r} or C2 = {r, r}.)

In the special case where E consists of columns (or rows)

of a matrix A, a vectorial matroid of E is called a matrix

matroid and denoted by M(A). For example, the circuit

matroid M(G) of a graph G is a linear matroid whose

representation is obtained using the rows of the circuit ma-

trix of G in the binary field GF(2) (see Section 4.5).∗

Of course, if desired, any vectorial matroid of E may be

considered as a matrix matroid simply by taking the vectors

of E as columns (or rows) of a matrix.†

∗Hereditary systems with a representation in the binary fieldGF(2)
are called binary matroids. The circuit matroid of a graph is thus
always binary. Cf. Section 4.5.
†This actually is the origin of the name ”matroid”. A matroid is
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Transversal Matroid

Let A = {A1, . . . , Ak} be a family of nonempty finite

sets. The transversal matroidM(A) is a hereditary system

of the set E = A1 ∪ · · · ∪ Ak whose independent sets

are exactly all subsets of E containing at most one element

of each of the sets Ai (including the empty set). Here it

is customary to allow the family A to be a multiset, that

is, a set Ai may appear several times as its element, thus

allowing more than one element of Ai in an independent

set.

A natural aspect of transversal matroids is augmentation,

and it is connected with augmentings of matchings of bi-

partite graphs! (See Section 5.8.) Let us define a bipar-

tite graph G = (V,E) as follows: The vertex set is

V = E ∪ A, and the vertices e and Aj are connected

by an edge exactly when e ∈ Aj. (Note how the vertex

set V is naturally divided into the two parts of the cut, E

and A.) An independent set of M(A) is then a set of

matched vertices of G in E, and vice versa.

a generalization of a linear matroid and a linear matroid may be
thought of as a matrix. Indeed, not all matroids are linear. The
name ”matroid” was strongly opposed at one time. Even today
there are people who prefer to use names like ”geometry”or ”com-
binatorial geometry”.
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EXAMPLE. In the figure below is the bipartite graph cor-

responding to the transversal matroid of the family

{{1,2}, {2,3,4}, {4,5}},

and its independent set {1,2,4} (thick line).

1

2

3
4

5

{1,2}

{2,3,4}

{4,5}

Very much in the same way as in the proof of Theorem 5.3

one may show that if I1 and I2 are independent sets (vertex

sets of the matchings S1 and S2) and #(I1) < #(I2)

then there is an augmenting path of the matching S1 such

that the new matched vertex is in I2. Thus M(A) indeed

has the augmentation property.

NOTE. For matchings of bipartite graphs the situation is

completely general. That is, matchings of bipartite graphs

can always be thought of as independent sets of transversal

matroids. In fact this remains true for matchings of general

graphs, too, leading to the so-calledmatching matroids, see

e.g. Swamy & Thulasiraman.
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If the sets of the family A are disjoint—i.e. they form a

partition of E—then the transversal matroid is also called

partition matroid. For a partition matroid augmentation is

obvious.

Uniform Matroid

For all finite sets E one can define the so-called uniform

matroids. The uniform matroid of E of rank k, denoted

Uk(E), is a hereditary system whose independent sets are

exactly all subsets of E containing at most k elements.

The bases of Uk(E) are those subsets containing exactly k

elements, and the circuits are the subsets containing exactly

k +1 elements.

In particular, all subsets of E form a uniform matroid of E

of rank #(E), this is often called the free matroid of E.

Quite obviously Uk(E) has the basis exchange property

and the augmentation property.

Uniform matroids are not very interesting as such. They

can be used as ”building blocks”of much more complicated

matroids, however. It may also be noted that uniform ma-

troids are transversal matroids (can you see why?).
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4. Greedy Algorithm

Many problems of combinatorial optimization may be

thought of as finding a heaviest or a lightest independent

set of a hereditary system M of E, when each element of

E is given a weight. The weighting function is α : E → R

and the weight of a set F ⊆ E is
∑

e∈F

α(e).

The two optimization modes are interchanged when the

signs of the weights are reversed.

One may also find the heaviest or the lightest bases. Again

reversing the signs of the weights interchanges maximiza-

tion and minimization. If all bases are of the same size—as

will be the case for matroids—they can be restricted to

the case where there weights are positive. Indeed, if A is

the smallest weight of an element of E then changing the

weight function to

β : β(e) = 1+ α(e)−A

one gets an equivalent optimization problem with posi-

tive weights. On the other hand, maximization and mini-

mization are interchanged when the weighting function is

changed to

β : β(e) = 1+B − α(e)

where B is the largest weight of an element of E.
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EXAMPLE. (A bit generalized) Kruskal’s Algorithm (see

Section 5.6) finds a lightest spanning forest of an edge-

weighted graphG, i.e. a lightest basis of the circuit matroid

of G. As was seen, this can be done quite fast—and even

faster if the edges are given in the order of increasing weight

when one can always consider the ”best”remaining edge to

be included in the forest.

Kruskal’s Algorithm No. 1 is an example of a so-called

greedy algorithm that always proceeds in the ”best” avail-

able direction. Such a greedy algorithm is fast, indeed, it

only needs to find this ”best” element to be added in the

set already constructed.

It might be mentioned that Kruskal’s Algorithm No. 3 is

also a greedy algorithm, it finds a heaviest cospanning forest

in the dual matroid of the circuit matroid, the so-called

bond matroid of G (see Section 7.6).

Even though greedy algorithms produce the correct result

for circuit matroids they do not always do so.

EXAMPLE. Finding a lightest Hamiltonian circuit of an

edge-weighted graph G may also be thought of as find-

ing the lightest basis of a hereditary system—assuming

of course that there are Hamitonian circuits. The set E
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is again taken to be the edge set ofG but now the bases are

the Hamiltonian circuits of G (considered as edge sets). A

lightest basis is then a lightest Hamiltonian circuit. As was

noticed in Section 5.7, finding a lightest Hamiltonian cir-

cuit is a well-known NP-complete problem and no greedy

algorithm can thus always produce a (correct) result—at

least if P 6= NP . The hereditary system thus obtained is

in general not a matroid, however (e.g. it does not generally

have the basis exchange property).

It would thus appear that—at least for matroids—greedy al-

gorithms are favorable methods for finding heaviest/lightest

bases (or independent sets). Indeed, matroids are precisely

those hereditary systems for which this holds true. To be

able to proceed further we define the greedy algorithm for-

mally. We consider first maximization of independent sets,

minimization is given in brackets. The input is a hereditary

system M of the set E, and a weighting function α.

Greedy Algorithm for Independent Sets:

1. Sort the elements e1, . . . , em of E according to de-

creasing [increasing] weight: e(1), . . . , e(m).

2. Set F ← ∅ and k ← 1.
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3. If α(e(k)) ≤ 0 [α(e(k)) ≥ 0], return F and quit.

4. If α(e(k)) > 0 [α(e(k)) < 0] and F ∪ {e(k)} is

independent, set F ← F ∪ {e(k)}.

5. If k = m, return F and quit. Else set k ← k + 1

and go to #3.

For bases the algorithm is even simpler:

Greedy Algorithm for Bases:

1. Sort the elements e1, . . . , em of E according to de-

creasing [increasing] weight: e(1), . . . , e(m).

2. Set F ← ∅ and k ← 1.

3. If F ∪{e(k)} is independent, set F ← F ∪{e(k)}.

4. If k = m, return F and quit. Else set k ← k + 1

and go to #3.
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The main result that links working of greedy algorithms and

matroids is

MATROID GREEDINESS THEOREM. The greedy

algorithm produces a correct heaviest independent set of

a hereditary system for all weight functions if and only if

the system is a matroid. (This is the so-called greediness

property.) The corresponding result holds true for bases,

and also for finding lightest independent sets and bases.

Furthermore, in both cases it suffices to consider positive

weights.

Proof. For a proof of the first sentence of the theorem see

the lecture notes.

As noted above, greediness is equivalent for maximization

and minimization, for both independent sets and bases. It

was also noted that finding a heaviest basis may be re-

stricted to the case of positive weights. Since for positive

weights a heaviest independent set is automatically a basis,

greediness for bases follows from greediness for independent

sets.

On the other hand, if greediness holds for bases, it holds

for independent sets as well. Maximization of independent
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sets using the weight function α then corresponds to max-

imization of bases for the positive weight function

β : β(e) = 1+max(0, α(e)),

the greedy algorithms behave exactly similarly, item #3 is

not activated for independent sets. Elements of weight 1

should be removed from the output.

NOTE. Greediness is thus also a proper aspect for ma-

troids. For hereditary families of sets it is equivalent to

usefulness of the greedy algorithm. Certain other similar

but more general families of sets have their own ”greedi-

ness theorems”. Examples are the so-called greedoids and

matroid embeddings.
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5. The General Matroid

Any one of the several aspects above makes a hereditary
system a matroid. After proving that they are all equivalent,
we may define a matroid as a hereditary system that has
(any) one of these aspects.

Before that we add one aspect to the list, which is a bit more
difficult to prove directly for circuits matroids of graphs:

SUBMODULARITY. If M is a hereditary system of the
set E and F, F ′ ⊆ E then

ρM(F ∩ F ′) + ρM(F ∪ F ′) ≤ ρM(F) + ρM(F ′).

Let us then state the equivalences, including submodularity.

THEOREM 2. If a hereditary system has (any) one of the
nine aspects below then it has them all (and is a matroid).

(i) Uniformity (vi) Submodularity
(ii) Basis exchange property (vii) Elimination property
(iii) Augmentation property (viii) Property of induced
(iv) Weak absorptivity circuits
(v) Strong absorptivity (ix) Greediness

Proof. See the lecture notes.

The most popular aspect defining a matroid is probably the
augmentation property.
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6. Dualism

In the preceding chapters, in connection with fundamen-

tal cut sets and fundamental circuits, mutual duality was

mentioned. Duality is a property that is very natural for

hereditary systems and matroids.

The dual (system) M∗ of a hereditary system M of the

set E is a hereditary system of E whose bases are the

complements of the bases of M (against E). Often the

bases of M∗ are called cobases of M , circuits of M∗ are

called cocircuits of M , and so on.

It is easily checked that M∗ really is a hereditary system

of E: If B1 and B2 are distinct bases of M∗ then B1

and B2 are distinct bases of M . Thus, if B1 ⊆ B2 then

B2 ⊆ B1 (
√
). Note also that (M∗)∗ = M .

WHITNEY’S THEOREM. The dual M∗ of a matroid

M is a matroid, the so-called dual matroid, and

ρM∗(F) = #(F)− ρM(E) + ρM(F ).

(Note that ρM(E) is the size of a basis of M .)

Proof. See the lecture notes.
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Dualism gives a connection between bases of a matroid M

and circuits of its dual matroid M∗ (i.e. cocircuits of M ):

THEOREM 3. (i) Circuits of the dual matroid of a ma-

troidM are the minimal sets that intersect every basis

of M .

(ii) Bases of a matroid M are the minimal sets that inter-

sect every circuit of the dual matroid M∗.

Proof. (i) The circuits of M∗ are the minimal sets that are

not contained in any complement of a basis of M . Thus

they must intersect every basis of M .

(ii) Bases of M∗ are the maximal sets that do not contain

any circuit of M∗. The same in other words: Bases of M

are the minimal sets that intersect every circuit of M∗.

EXAMPLE. Bases of the circuit matroidM(G) of a con-

nected graph G are the spanning trees. Bases of the dual

matroid M∗(G) are the complements of these, i.e. the

cospanning trees. By the theorem, circuits of the dual ma-

troid are the cut sets of G. (Cf. Theorems 2.4 and 2.5.)

Because according to Whitney’s TheoremM∗(G) is a ma-

troid, it has the greediness property, that is, the greedy algo-

rithm finds a heaviest/lightest basis. Working of Kruskal’s
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Algorithm No. 3 is based on this. The algorithm finds the

heaviest cospanning tree.

Analogous concepts can naturally be defined for a general,

possibly disconnected, graphG. Bases ofM∗(G) are then

the cospanning forests of G. The dual matroid M∗(G) is

called the bond matroid or the cut matroid or the cocircuit

matroid of G.

So, when is the bond matroid M∗(G) graphic, i.e. the

circuit matroid of a graph? The so-calledWhitney Planarity

Theorem tells us that this happens exactly when G is a

planar graph! (See e.g. WEST.)
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