roduction to Graphs

We introduce the idea of a graph via some examples, and concentrate on two
types of graph, namely trees and planar graphs. Further graph-theoretic topics
will be covered in the next chapter. :

3.1 The Concept of a Graph

Example 3.1 (The seven bridges of Konigsberg)

In the early eighteenth century there were seven bridges over the River Pregel
in the Eastern Prussian town of Konigsberg (now Kaliningrad). It is said that
the residents tried to set out from h nome, Cross every Uuuge exar,uy once and
return home. They began to believe the task was impossible, so they asked
Euler if it were possible. Euler’s proof that it was impossible is often taken to
be the beginning of the theory of graphs. What Euler essentially did (although
his argument was in words rather than pictures) was to reduce the complexity
of Figure 3.1(a) to the simple diagram of 3.1(b), where each land mass is
represented by a point (vertex) and each bridge by a line (edge). If the desired
walk existed, then each time a vertex was visited by using one edge, then
another euge would be used up 1€&V1ﬁ5 the vertex; so every vertex wotuld have
to have an even number of edges incident with it. Since this is not the case, the
desired walk is impossible.

The diagram of Figure 3.1(b) is an example of a graph. It has four vertices

and seven edges.

43
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A
AR

(b)

Example 3.2 (Th

An old problem concerns three houses A, B, C which are to be joined to each
of the three utilities, gas, water and electricity, without any two connections
crossing each other. In other words, can the diagram of Figure 3.2 be redrawn
so that no two lines cross? The diagram is another example of a graph.

A | B C
G W , E

Figure 3.2 The utilities graph

Definition 3.1

A graph G consists of a finite set V of vertices and a collection E of pairs of
vertices called edges. The vertices are represented by points, and the edges by
lines (not necessarily straight) joining pairs of points. If an edge e joins vertices
z and y then z and y are adjacent and e is incident with both z and y. Any
edge joining a vertex z to itself is called a loop.

Note that we say E is a collection of pairs, not a set of pairs. This is to
allow repeated edges. If two or more edges join the same two vertices, they are
called multiple edges. For example, the graph of Figure 3.1(b) has two pairs
of multiple edges. The graph of the utilities problem is simple, i.e. it has no
loops or multiple edges.

The number of edges incident with a vertex v in a graph without loops
is called the degree or valency of v and is denoted by d(v). The second
name recalls one of the early occurrences of graphs, as drawings of chemical
molecules. For example, ethane (C2Hg) can be represented by the graph of
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Figure 3.3, where the two “inside” vertices, of valency 4, fepresent the two

1, represent hydrogen atoms. Vertices of degree 1 are ca,lled pendant or end

vertices.

Figure 3.3 Ethane

When a graph contains a loop, the loop is considered to contribute twice to
the degree of its incident vertex. This convention enables us to establish the
following useful result.

Theorem 3.1

The sum of the degrees of the vertices of a graph is twice the number of edges.

Proof
Each edge contributes twice to the sum of the degrees, once at each end.

Mhic cmces JEP . PUNIURES | DI S S TR e e V. ~ e andhes A.L- k1
uua chuu, lb SOINELILINES Called tneé I uhlld.l{llls lelllllld d a paivy, vlie vue
number of hands shaken is twice the number of handshakes. It has an immediate
corollary.

Corollary 3.2

In any graph, the sum of the vertex degrees is even.

Example 3.3

The complete graph K, is the simple graph with n vertices, in which each
pair of vertices are adjacent. Since each of the n vertices must have degree n—1,
the number ¢ of edges must satisfy 2¢ = n(n — 1), so that ¢ = 3n(n — 1). This
of course is as expected, since q is just the number of ways of choosing two of

the n vertices, i.e. ¢ = (3) = $n(n — 1).

K,
Figure 3.4
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The graphs K < 4, are shown in Figure 3 4. The notatlon Kﬂ is in hon-

theorem on planarity will be mentloned in Section 3.6. Note that K4 contains
K3 within it; this idea of one graph being contained in another is formalised in
the next definition.

Definition 3.2

A graph H is said to be a subgraph of a graph G if the vertex set of H is a
subset of the vertex set of (7, and the edge set of H is a subset of the edge set

Y e ]

o1 .

Thus, for example, K, is a subgraph of K,, wherever m < n; simply restrict
K., to m of its vertices.

Finally in this section, we establish some standard notation. From now on,
we shall use p and ¢ to denote the numbers of vertices and edges respectively,
and by a (p, ¢)-graph we shall mean a graph with p vertices and ¢ edges. Thus,
for example, Ky is a (4, 6)-graph.

3.2 Paths in Graphs

Many important applications of graph theory involve travelling round the
graph, in the sense of moving from vertex to vertex along incident edges. We
make some definitions related to this idea.

Definition 3.3
A walk in a graph G is a sequence of edges of the form
Vo1, N1z, V2V3,... ,VUn-1Vn.

This walk is sometimes, in a simple graph, represented more compactly by
vp — v — V2 — - -- = v,. Note that there is an implied direction to the walk.
vp is called the initial vertex and v, the final vertex of the walk; the number
(n) of edges is called the length of the walk.

A walk in which all the edges are distinct is called a trail. A trail in which

all vertices vp, . . . v,, are distinct (except possibly v, = vg) is called a path;a
nath 2. — o, with v, = 1y, is called a cvele
l.lu‘. U I L [4 vn Y'A 44 vy U UUUUUU uuv.’ul\—
Example 3.4
In the graph of Figure 3.5,
zZu—-sy—=v—u is a trail but not a path; -
U Y >w v is a path of length 3; ) i

Uy w—ov-ou is a cycle of length 4.
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It seems natural to consider the cyclesu 2 y 2 v suvandy 2 v s u—y

n
&
@
g

Figure 3.5

to be the same; so often we identify a cycle with the set of its edges. We use
the notation (for n > 1)

Cn = cycle of length n (i.e. with n edges and vertices);

P, = path of length n — 1 (i.e. with n vertices).
Thus, for example, P, = K, and C3 = K3

Definition 3.4 ~

A graph is connected if, for each p of vertices, there is a path from
z to y. A graph which is not connec conn

pieces, called components.

3.3 Trees

Definition 3.5

A tree is a connected simple graph with no cycles.

For example, the ethane graph in Figure 3.3 is a tree, as is each P,. Note that
the ethane graph has p = 8 and ¢ = 7, while P, hasp=mn and ¢ =n — 1; in
each case, p— q = 1. This property in fact characterises those connected graphs
which are trees. Our proof of this depends upon the following useful result.

Theorem 3.3
IfT is a tree with p > 2 vertices then T contains at least two pendant vertices.

Proof

Since T has p vertices, all paths in T must have length less than p. So there
must be a longest path in T, say v; = v2 = ... = v,. We claim that v; and
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v, both have degree 1. Suppose v; has degree > 1; then there is another edge

_ from vy, say v,vg, where vg is none of vo, ... v, (otherwise there would bea
cycle), so vo = v; — ... = v, would be a longer path. So v, has degree 1, and
a similar argument holds for v,.

Theorem 3.4

T o o L oY ol el e ki MMl bl L))l Sdh b nando aea
Let LI Dt a Sl uple gl _p.ll WILIL p YL LIUES, LIl Lo 1011IUwWl 15 wLALCLIITIILS alt
equivalent:

Proof

(i) = (ii) We have to show that all trees with p vertices have p — 1 edges.
This is certainly true when p = 1. Suppose it is true for all trees with k > 1
vertices, and let T be a tree with k + 1 vertices. Then, by Theorem 3.3, T
has an end vertex w. Remove w and its incident edge from T to obtain a tree
T' with k vertices. By the induction hypothesis, T’ has & — 1 edges; so T has
(k — 1) + 1 = k edges as required.

(ii) = (ili) Suppose T has p — 1 edges and no cycles, and suppose it consists
of ¢t > 1 components, Ty, ... ,T;, each of which has no cycles and hence must
be a tree. Let p; denote the number of vertices in T;. Then 3, p; = p, and the
number of edgesin Tis ) ,(pi—1) =p—t.Sop—t=p—1,ie t =1, so that
T is connected.

(iii) = (i) Suppose T is connected with p — 1 edges, but is not a tree. Then T
must have a cycle. Removing an edge from a cycle does not destroy connect-
edness, so we can remove edges from cycles until no cycles are left, preserving
connectedness. The resulting graph must be a tree, with p vertices and ¢ < p-1
edges, contradicting (ii).

This theorem can be used to establish the tree-like nature of certain chemical
molecules.

Show that the alkanes (paraffins) C, Ha,,+2 have tree-like molecules.

Solution

Each molecule is represented by a graph with n + (2n + 2) = 3n + 2 vertices.
Of these, n have degree 4 and 2n + 2 have degree 1, so, by Theorem 3.1,

2q=4n+2n+2=6n+2
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whence ¢ = 3n+ 1 = p— 1. Since molecules are connected, the graphs must be
trees, by Theorem 3.4.

The first few alkanes are shown in Figure 3.6.

-+ I A

methane ethane propane
[
R R SR { | G SR
butane isobutane

Figure 3.6 Alkanes

Note that there are two “different” trees corresponding to C4H;p.

Definition 3.6

Two graphs G, G, are isomorphic if it is possible to label the vertices of both
graphs by the same labels, so that, for each pair u,v of labels, the number of
edges joining vertices u and v in (7; is equal to the number of edges joining u
and v in G,.

Example 3.6 i

(i) The graphs portrayed by the last two diagrams in Figure 3.4 are isomorphic.
(i) The butane and isobutane graphs (Figure 3.6) are not isomorphic. The
second graph has one vertex of degree 4 joined to all the other vertlces of
degree 4, but this does not happen in the first graph.

Tree diagrams such as those in Figure 3.6 were introduced in 1864 by the
chemist A. Crum Brown in his study of isomerism, the occurrence of molecules
with the same chemical formula but different chemical properties. The problem
of enumerating the non-isomorphic molecules C,Ha, 2 was eventually solved
by Cayley in 1875, but his solution is beyond the scope of this book.

A related problem was: find T'(n), the number of non-isomorphic trees with
n vertices. We have T(1) = T(2) = T(3) = 1, and, as the reader should check,
T4) = 2,T(5) = 3,T(6) = 6. No simple formula for T'(n) exists, although
T(n) is the coefficient of ™ in a known but very complicated series. However,
there does exist a very nice formula for the number of trees on n given labelled
vertices. For example, although T'(3) = 1, there are three labelled trees with
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vertices labelled 1,2,3 as shown in Figure 3.7. It was established by Cayley i

. n_z .

will be given in Chapter 6.

[
[u—y

1

3.4 Spanning Trees

Suppose that a connected graph represents a raflwa.y system, the vertices rep-
resenting the towns and the edges the railtracks. Suppose also that the gov-
ernment wishes to get rid of as much track as possible, nevertheless retaining
a rail system which connects all the towns. What is required is a tree which is
a subgraph of the given graph, containing all the vertices.

Definition 3.7

A spanning tree of a connected graph G is a tree which contains all the
vertices of G and which is a subgraph of G.

Example 3.7

~r

(i) K3 has three spanning trees, as shown in Figure 3.7.

(ii) K4 has 16 = 42 spanning trees. Draw them. Do you see how this relates to
Cayley’s 1889 result? \
A

(ili) In the graph of Figure 3.5, the edges zu,ru,uy,yv,yw form a spanning
tree,

In the case of a weighted graph G, i.e. when each edge e of G has a weight w(e)
assigned to it, where w(e) is a positive number such as the length of e, then it
may be desired to find a spanning tree of smallest possible total weight. There
are several different algorithms which find such a minimum weight spanning

tree of G.

The greedy algorithm
This is often known as Kruskal’s algorithm.
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Procedure -~

{1} Choose an edge of smallest weight.

(ii) At each stage, choose from the edges not yet chosen the edge of smallest
weight whose inclusion will not create a cycle.

iii) Continue until a spanning tree is obtained.

(If the given graph has p vertices, the algorithm will terminate after p— 1 edges
have been chosen.)

Example 3.8

Apply the greedy algorithm to the graph of Figure 3.8.

Figure 3.8

Solution

First choose AE (weight 2). Then choose BD(3), then AB(4). We cannot now

chamnan ATIHEY cinrca ite inclugian wanld sranta o frvela ARN A Qimilavly we
A\VISLU LV Loy n.l_/\u} DILILT LU0 MIVIUDIVIL WUULIU vl CauvT a \,J‘blc Pp VS S e W Ullllllml‘y wo

cannot choose DE. So choose BC'(6). The edges AE, AB, BD, BC then form
a minimum weight spanning tree of weight 2 + 3 +4 4+ 6 = 15.

Justification of the greedy algorithm

Suppose that the greedy algorithm produces a tree T, but that there is another
spanning tree U which has smaller weight than T'. Since T # U, and both have
the same number of edges, there must be an edge in T not in U: let e be such
an edge of minimum weight. The addition of e to U must create a cycle C,
and this cycle must contain an edge e’ which is not in T. Now w(e') > w(e),
since if w(e') < w(e) then e’ would have been chosen by the greedy algorithm
rather than e. So if we remove ¢’ from C we obtain a spanning tree V such that
w(V) < w(U), and V has one more edge in common with T' than U had. By
repeating this process we eventually change U into T', one edge at a time, and
conclude that w(T') < w(U) < w(T), a contradiction. So no such U can exist.
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The greedy algorithm is so called because it greedily minimises the weight at §

this strategy. The disadvantage of the algorithm, however, lies in the difficulty
of determining at each stage whether or not a cycle would be created by the
inclusion of the smallest weighted edge available (this is particularly true when
the graph is large). This problem can be overcome by using a slightly different
algorithm, due to Prim (1957). In Prim’s algorithm, the graph constructed is
connected (and hence a tree) at each stage of the construction (unlike the greedy
algorithm, which chose BD immediately after AE in the above example), and
at each stage the smallest weight edge is sought which joins the existing tree
to a vertex not in the tree. Clearly the inclusion of this edge cannot create a
cycle.

Prim’s algorithm

(i) Select any vertex, and choose the edge of smallest weight from it.

(ii) At each stage, choose the edge of smallest weight joining a vertex already
included to a vertex not yet included.

(iii) Continue until all vertices are included.

Example 3.8 (revisited)

Use Prim’s algorithm starting at B. Choose BD(3), then BA(4), then AE(2),
then BC(6) to obtain the same spanning tree as before.

A third algorithm operates by removing edges from the given graph, de g
stroying cycles, until a spanning tree is left. At each stage remove the largest- =
weighted edge whose removal does not disconnect the graph. In Example 3.8,

we could remove DC, then DE, then AD. Clearly this approach would be E
quicker than the others if the graph has “few” edges. '

3.5 Bipartite Graphs

Definition 3.8

A graph is bipartite if its vertex set V' can be partitioned into two sets B,W
in such a way that every edge of the graph joins a vertex in B to a vertex in
W. The partition V = BUW is called a bipartition of the vertex set.

®

Example 3.9

Labellings show that the graphs in Figure 3.9 are bipartite. In both graphs, %
each edge joins a B to a W.
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/4 w 774 B W

Figure 3.9 Bipartite graphs

If we interpret B and W as black and white, we see that a graph is bipartite
precisely when the vertices can be coloured using two colours so that no edge
joins two vertices of the same colour. For this reason, bipartite graphs are
sometimes called bichromatic.

Example 3.10

The cycle C,, is bipartite if and only if n is even.

Theorem 3.5

A connected graph is bipartite if and only if it contains no cycle of odd length.

Proof

If a graph G contains an odd cycle (i.e. a cycle of odd length) then it cannot
possibly be bipartite. So suppose now that G contains no odd cycle; we shall
show how to colour its vertices B and W. S

Choose any vertex v of G, and partition V as BU W where

B = {u €V : shortest path from v to u has even length }, .

W = {u € V : shortest path from v to u has odd length }.

We have u € B since 0 is even; we have to check that no edge of G has both
ends in B or both ends in W.

Suppose there is an edge zy with z € B and y € B. Then, denoting the
length of the shortest path from vertex v to vertex v2 by d(vy,v:), we have
d(v,z) = 2m and d(v,y) = 2n for some integers m,n. But there is a walk from
vtoy via z of length 2m +1, so 2n < 2m+1. Similarly 2m < 2n+1,som = n.

Denote the shortest paths from v to z and y by P(z) and P(y) respectively.
Then, since m = n, both P(z) and P(y) have equal lengths. Let w be the last
vertex on P(z) which is also on P(y) (possibly w = v). Then the part of P(x)
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from w to z and the part of P(y) from w to y must be of equal length, and, .
But G has no odd cycles, so the assumption of the existence of the edge zy !
must be false. So there is no edge with both edges in B; similarly there is no |
edge with both edges in W.

Corollary 3.6

All trees are bipartite.

Definition 3.9 (Complete bipartite graphs)

A simple bipartite graph with vertex set V = B U W is complete if every |
vertex in B is joined to every vertex in W. If |B| = m and |W| = n, the graph |
is denoted by Ky n or by K, m. For example, the utilities graph of Figure 3.2 |
is K3 3, and the methane graph of Figure 3.6 is K| 4.

Clearly, Ky, n has m+n vertices and mn edges; m of the vertices have degree
n, and n of the vertices have degree m.

The complete graphs K, and the complete bipartite graphs K, , play im- |
portant roles in graph theory, particularly in the study of planarity to which :
we now turn.

3.6 Planarity

A graph is planar if it can be drawn in the plane with no edges crossing. The
concept of planarity has already appeared in the utilities problem, which can
be restated as: is K33 planar? If a graph is planar, then any drawing of it
with no edges crossing is called a plane graph. For example, K, is planar, as
was shown in Figure 3.4; the second drawing of K4 there was a plane graph, §
establishing its planarity. :

Planar graphs occur naturally in the four-colour problem. In colouringa
map, it is standard procedure to give adjacent countries different colours. It
became apparent that four colour always seemed to be sufficient to colour any
map, and a general proof of this statement was attempted by A.B. Kempe i
1879. Ten years later, Heawood discovered that Kempe’s “proof” was flawed,
and instead of the four-colour theorem we had the four-colour conjecture. Even-
tually, in 1976, the truth of the conjecture was established by two mathemati-
cians, K. Appel and W. Haken; as the postmark of the University of Illinois
asserted, “four colours suffice”.

The problem of colouring a map can be transformed into one of colouring the
vertices of a planar graph. Given a map, we can represent each region by a ver-
tex, and join two vertices by an edge precisely when the corresponding regions |
share a common boundary. For example, Figure 3.10 shows a map and a planar }
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of a planar graph with four colours, so that no two adjacent vertices receive

the same colour. Colourings of graphs will be discussed further in Chapter 5.
Any plane graph clearly divides the plane into disjoint regions, one of which

is infinite. The basic result about plane graphs is known as Euler’s formula;

Euler initially studied it in the context of polyhedra, and we shall look at this
in the next section.

Theorem 3.7 (Euler's formula)

Any connected plane (p, g)-graph divides the plane into r regions, where

p—g4+71="2.
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Proof .

If there is a cycle, remove one edge from it. The effect is to reduce ¢ and r by 1
(since two regions are amalgamated into one), and to leave p unchanged. So the
resulting graph hasp' = p,¢' =¢— 1,7 =r—1, wherep —¢ +r' =p—q+r.
Repeat this process until no cycies remain. The final graph must be a iree,
withp! —¢'+r" =p—-(p—-1)+1=2.

P—q+tr=5-8+5=2.
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There are four finite regions and one infinite region.

We now define the degree of a region of a plane graph to be the number of
encounters with edges in a walk round the boundary of the region.

Example 3.12
In Figure 3.11 regions 3 and 4 have degree 3, the infinite region 1 has degree

Figure 3.11

5, and region 2 has degree 9 (note that one edge is encountered twice, once on
each side).
Parallel to the handshaking lemma we have:

Theorem 3.8

In a connected plane graph, 2¢ = sum of degrees of the regions.

Theorem 3.9
K, is planar only if n < 4.

Proof

It is enough to show that K is non-planar. (Why?) Now K5 has p = 5,¢ = 10,
so if a plane drawing of K5 exists it must have r = 2 — 5 + 10 = 7 regions.
Each of the seven regions must have degree > 3, so, by Theorem 3.8, 20 = 2¢ >
7 x 3 = 21, a contradiction.

K3,3 is not planar.

Proof

K33 has p = 6 and ¢ = 9, so if a plane drawing exists it must have r =
2 — 6 + 9 = 5 regions. Since K3 3 is bipartite, with no odd cycles, each region
must have degree > 4, so we must have 18 = 2¢ > 4 x 5 = 20, a contradiction.
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Corollary 3.11

K.» r is planar & min(m,n) < 2.

The technique of counting the sum of the degrees of the regions is a useful
one. We can apply it to the famous Petersen graph, shown in Figure 3.12. (See
Section 4.1 and Exercise 5.17 for more about this graph.)

NV

Figure 3.12 The Petersen graph

Example 3.13

The Petersen graph is not planar.

Solution

Suppose a plane drawing exists. Since p = 10 and ¢ = 15, we would have
r=2-10+ 15 = 7. Now the shortest cycle in the graph clearly has length

5 en avy 1
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Kuratowski’s theorem

What makes a graph non-planar? Clearly, if it contains K5 or K3 3 as a sub-
graph, then it cannot possibly be planar. It was proved in 1930 by the Polish
mathematician Kuratowski that, essentially, it is only the presence of a K5 or
a K33 within a graph that can stop it being planar.

To clarify this statement, we first make the following observation. Since Kj
is not planar, the graph shown in Figure 3.13 cannot be planar either. For if it
were, we could make a plane drawing of it, erase b from the edge ac, and obtain
a plane drawing of K. Inserting a new vertex into an existing edge of a graph
is called subdividing the edge, and one or more subdivision of edges creates
asubdivision of the original graph.
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[\

a b c
Figure 3.13

Theorem 3.12 (Kuratowski's theorem)

A graph is planar if and only if it does not contain a subdivision of K or Kj;
as a subgraph.

The proof of this deep topological result is beyond the scope of this book. But

we exhibit the result’s usefulness by using it to prove that the Petersen graph
is non-planar.

Example 3.13 (again)

In Figure 3.14, Petersen’s graph is on the left. On the right is the same graph
with two edges removed. This subgraph is a subdivision of K33 as shown by
the labelling of the vertices.

Another test for planarity will be given in Section 4.2.

B

w

Figure 3.14

Chords of a circle

We close this section on planarity with an application of Euler’s formula tos
well-known problem concerning chords of a circle.

Suppose we have n points spaced round a circle, and we join each pair o
points by a chord, taking care to ensure that no three chords intersect at the
same point. Into how many regions is the interior of the circle divided? The
cases n = 3,4, 5 are shown in Figure 3.15. It would appear that n = 6 should ;
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n=23 n=4 n=235
4 regions 8 regions 16 regions
Figure 3.15

give 32 regions. But it does not! (Check!)

Suppose we have n points and have drawn the (3) chords. There will be n
regions with a circular arc as a boundary - let’s lay them aside and concentrate
on the remaining regions. Turn the geometrical picture into a graph by putting
a vertex at each of the n given points, and at each crossing point of chords.
How many crossing points are there? There is one for each pair of chords which
cross. But any pair of crossing chords is obtained by choosing 4 of the given
n points and drawing the “cross” chords between them; so there must be (7)
crossing points. So the resulting graph has p = n + (§) vertices. Each of the n
original vertices has degree n — 1, and each of the new () vertices has degree
4. So by the handshaking lemma

Thus
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= 2-n+ () + ().

Here r includes a count of 1 for an infinite region, so there are 1 — n + (3) + (})

finite regions. We have to add the n boundary regions which we put aside earlier,
so finally the number of regions is

e (5)+ ()

Check that this gives 4, 8,16 for n = 3,4, 5, and 31 for n = 6.
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3.7 Polyhedra

A polyhedron is a solid bounded by a finite number of faces, each of which is
polygonal. For example, the pyramid in Figure 3.16(a) is a polyhedron with
five vertices, five faces (four triangular, and one square base), and eight edges.

/N —
VARVAN

(a) (b)

Figure 3.16 A pyramid and its plane graph

As was mentioned earlier, Euler’s formula arose first in the study of polyhedra,
relating the numbers of vertices, faces and edges in a convex polyhedron. (A
polyhedron is convex if the straight line segment joining any two of its vertices
lies entirely within it.) Such a polyhedron can be represented by a plane graph,
obtained by projecting the polyhedron into a plane. The graph in Figure 3.16(b)
represents the pyramid; think of the internal vertex as the top of the pyramid,
and think of the base of the pyramid as being represented by the infinite region
(of degree 4).

The cube is an example of a regular polyhedron. A polyhedron is regular
if there exist integers m > 3,n > 3 such that each vertex has m faces (or m
edges) meeting at it, and each face has n edges on its boundary. For a cube,
m = 3 and n = 4. Convex regular polyhedra are known as Platonic solids;
they were discussed at great length by the ancient Greeks who knew that there
were only 5 such solids. In the next theorem we use the terminology of graphs,
moving from a polyhedron to its corresponding graph.

Theorem 3.13

Suppose that a regular polyhedron has each vertex of degree m and each face
of degree n. Then (m,n) is one of (3,3),(3,4), (4, 3),(3,5),(5,3). .
Further, there exist Platonic solids corresponding to each of these pairs.

Proof
We have p — ¢+ r = 2, where

2¢ = sum of vertex degrees = mp

and 2¢ = sum of face degrees = nr.
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2
So (% -1+ ;)q = 2, whence

(2m + 2n — mn)q = 2mn. (3.1)

Thus, trivially, 2m+2n—mn > 0,i.e. (m—2)(n—2) < 4.So (m—2)(n—2) =1,2
or 3, and the five possibilities arise.

For each possible pair (m,n), we can find ¢ from (3.1) and then deduce the
values of p and r. We tabulate these values in Table 3.1, and give the name of
the corresponding Platonic solid.

Table 3.1
m|njqg p r | Name
31316 4 4 | tetrahedron
31412 8 6 | cube
4 1312 6 8 | octahedron
3 15]30 20 12 ) dodecahedron
5330 12 20 | icosahedron

Note that the names reflect the number r of faces. The five solids, and their
plane graphs, are shown in Figure 3.17.

As well as the five regular polyhedra just discussed, there exist the semireg-
ular polyhedra known as the Archimedean solids. Although they may well
have been known to the Greeks, the first known listing of them is due to Ke-
pler in 1619. These solids have more than one type of face, but they have the
property that each vertex has the same pattern of faces around it. For example,
the truncated cube, obtained by slicing off each of the eight vertices, has eight

frpmmilar faces and six octagonal faces, and, at each vertex, two octagons and

e AL Gl Waih UL UGRV AT LGy Gualdy GV TOvAL Ve baay Y ULV VIS Guala

one triangle meet.

Example 3.14

A polyhedron is made up of pentagons and hexagons, with three faces meeting
at each vertex. Show that there must be exactly 12 pentagonal faces.

Solution

We have p— ¢+ r = 2 and 2q = sum of vertex degrees = 3p. Thus 2q = 6r — 12.
Now suppose there are z pentagonal and y hexagonal faces. Then r = z + y
and 2¢ = sum of degrees of faces = 5z + 6y. Substituting into 2¢ = 6r — 12
gives 5z + 6y = 6z + 6y — 12, whence z = 12.

The case £ = 12,y = 0 corresponds of course to a dodecahedron. The case
z = 12,y = 20 corresponds to the pattern often seen on a soccer ball. The
corresponding Archimedean solid is a truncated icosahedron; the reader
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should be able to see how to obtain one by slicing vertices off an icosahedron.
This solid aroused great interest in the 1990s when it was discovered that a
third form of carbon existed (as well as diamond and graphite).

This form is denoted by Cgo; the molecular structure is that of 60 carbon
atoms situated at the vertices of a truncated icosahedron. The discoverers of
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this molecule called it Buckminsterfullerine (it is commonly known as a

the architect R. Buckminster Fuller. But, as we have pointed out, it has been
known to mathematicians for a long time.

The graphite form of carbon has the carbon atoms arranged in a flat hon-
eycomb pattern of hexagons. Hexagons tile the plane, so need the addition of
n-gons with n < 6 to enable a 3-dimensional form to take place. It turns out
that 12 pentagons are just right to enable a complete closing up to take place.
See Exercise 3.14 for the corresponding problem when pentagons are replaced

I\“ annarog
Uy LUl TS,

There are other fullerine molecules, such as Cy¢ which has 12 pentagons and
25 hexagons; its shape is more like a rugby ball.

Exercises

Exercise 3.1

Prove that the number of vertices of odd degree in a given graph is even.

Exercise 3.2

eSS Pl S

Show that all alcohols C,,Hz,4.; OH have tree-like molecules. (The valen-
cies of C, 0, H are 4,2, 1 respectively.)

L = |

| = 22
LACIUIOC J.9

Show that if G is a simple graph with p vertices, where each vertex has
degree > 1(p— 1), then G must be connected. (Hint: how many vertices
must each component have?)

Figure 3.18
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Exercise 3.5

How many edges must be removed from a connected (p, ¢)-graph to ob-
tain a spanning tree?

Exercise 3.6

Let K33 have bipartition BUW where B = {a,b}, W = {z1,x2,23}.

(a) Explain why, in a spanning tree of K, 3, there must be precisely one
of the vertices z; joined to both a and b.

(b) How many spanning trees does K, 3 have?

(c) How many spanning trees does K3 100 have?

Exercise 3.7

Use (a) the greedy algorithm, (b) Prim’s algorithm to find a minimum
weight spanning tree in the graph shown in Figure 3.19.

Figure 3.19

Exercise 3.8

The distances between 5 Lanarkshire towns are given in Table 3.2. Find
the shortest length of a connecting road network.

Table 3.2
G H A M EK
Glasgow 0 10 11 13 9
Hamilton 10 0 8 3 6
Airdrie 11 8 0 8 13
Motherwell 13 3 8 0 8
East Kilbride | 9 6 13 8 0
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Exercise 3.9

Pan Caledonian Airways (PCA) operates between 12 towns whose coor-
dinates referred to a certain grid are (0, 2), (0, 5}, (1,0), (1,4), (2, 3), (2, 4),
(3,2),(3,5),(4,4),(4,5),(5,3),(6,1). What is the minimum number of
flights necessary so that travel by PCA is possible between any two of
the towns? Find the minimum total length of such a network of flights.

Exercise 3.10

Determine which of the graphs in Figure 3.20 are planar.

=
o > v 1
Rrase %M
A& Y

Figure 3.20

?

\

Exercise 3.11

A complete matching of a graph with 2n vertices is a subgraph con-

sisting of n disjoint edges. How many different complete matchings are

there in the graph of F Lsdi'e 3. 20(&)‘7

Exercise 3.12
The graph Gn(n > 1) is shown in Figure 3.21.
(a) Is G, (i) bipartite? (ii) planar?

(b) Let a,, denote the number of complete matchings of G,,. Show that
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Figure 3.21

a1 = 3 and ap = 5. Show that a, = an,_; + 2a,,_2 (n > 3) and hence
obtain a formula for a.,.

Exercise 3.13

(a) Show that if G is a simple planar (p, ¢) graph, p > 3, then ¢ < 3p-6.
Deduce that K5 is not planar.

(b) Show that if G is a simple planar (p,q) graph, p > g, where ¢
is the girth of GG, i.e. the length of the shortest cycle in G, then

< ;5(p-2).
(c) Deduce from (b) that K3 3 and the Petersen graph are both nonpla-
nar.

Exercise 3.14

A convex polyhedron has only square and hexagonal faces. Three faces
meet at each vertex. Use Euler’s formula to show that there must be ex-
actly six square faces. The cube has no hexagonal faces: give an example
with six square faces and at least one hexagonal face. (Try truncating
an octahedron.)

Exercise 3.15

Suppose n cuts are made across a pizza. Let p, denote the maximum
number of pieces which can result (this happens when no two cuts are
parallel or meet outside the pizza, and no three are concurrent).

(&) + () + (3):

Prove that p,

Exercise 3.16

Let h,, denote the number of spanning trees in the fan graph shown in
Figure 3.22. Verify that hy = 1,hy = 3, h3 = 8.

Sl
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Find a recurrence relation for h,, and hence show

) and hence ] Figure 3.22

19 £ 3p—6.
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- Travelling Round a Graph

In this chapter we consider various problems relating to the existence of certain
types of walk in a graph. The reader should recall the definitions of walk, path,
cycle and trail given in Section 3.2. The Konigsberg bridge problem concerns
the existence of a trail which is closed and contains all the edges of the graph.
We study such (Eulerian) trails in more detail, but first we look at a related type
of problem associated with the name of the Irish mathematician Sir William
Rowan Hamilton (1805-1865).

4.1 Hamiltonian Graphs

Tha dadarahadvran

lem: is it possible to start at one of the 20 vertices, and, by following edges, visit
every other vertex exactly once before returning to the starting point? In other
words: is there a cycle through all the vertices? You should have no problem
finding such a cycle (turn to Figure 4.3 if you get stuck), so it is perhaps not
surprising that the commercial exploitation of this problem as a game was not
a financial success.

+ tha and nf Cha
[

™
AT TLIU ULl vlidaps

Definition 4.1

A hamiltonian cycle in a graph G is a cycle containing all the vertices of G.
A hamiltonian graph is a graph containing a hamiltonian cycle.

The name hamiltonian is, as often happens in mathematics, not entirely just,
since others such as Kirkman had studied the idea before Hamilton.

69
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Example 4.1

(a) The octahedral graph is hamiltonian: in Figure 4.1(a) take the hamiltonian
cycle 1234561.

(b) The graph of Figure 4.1(b) is not hamiltonian. The easiest way to see this
is to note that it has 9 vertices so that, if it is hamiltonian, it must contain a
cycle of length 9. But, being a bipartite graph, it contains only cycles of even
length.

1
A L o f a J
/A | | S T
4
3 2 ~— - ®
(a) (b)
Figure 4.1
Theorem 4.1
A bipartite graph with an odd number of vertices cannot be hamiltonian.
e
Example 4.2

(a) K, is hamiltonian for all n > 3.
(b) Km n is hamiltonian if and only if m =n > 2.

Q. ¥ A1
\oee LXEICISE 4.1.)

Example 4.3

The Petersen graph is not hamiltonian.

1

5 /\ 2 |

’i
4 3
Figure 4.2
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Solution

Label the vertices as shown in Figure 4.2, and suppose there is a hamiltonian
cycle. Every time the cycle goes from the outside along one of the “spokes”
la,2b, 3¢, 4d, Se, it has to return to the outside along another spoke. So the
hamiltonian cycle must contain either 2 or 4 spokes.

(a) Suppose there are 4 spokes in a hamiltonian cycle: we can assume 5e is the
one spoke not in it. Then 51 and 54 must be in the cycle, as must eb and
ec. Since la and 15 are in the cycle, 12 is not, so 23 is. But this gives the
cycle 23 ceb?2 as part of the hamiltonian cycle, which is clearly impossible.

(b) Suppose there are just two spokes in the hamiltonian cycle. Take la as one
of them. Then ac or ad is in the cycle - say ad. Then ac is not, so ¢3 is. So
spokes b2,d4, e5 are not in the cycle. Since b2 is not in the cycle, 23 must
be. Similarly, since d4 is not in, 34 must be in the cycle. So all three edges
from 3 are in the cycle, a contradiction.

There is no straightforward way of characterising hamiltonian graphs. Perhaps
the best known simple sufficient condition is that given by Dirac in the following
theorem, but it must be emphasised that the condition given is not at all
necessary (as can be seen by considering the cycle C,,, n > 5).

Theorem 4.2 (Dirac, 1950)

If G is a simple graph with p vertices, each vertex having degree > %p, then G
is hamiltonian.

Proof

Outlined in Exercise 4.6.

4.2 Planarity and Hamiltonian Graphs

There are some interesting connections between planar graphs and hamiltonian
graphs. The first arose in connection with the Four Colour Conjecture (FCC),
when it was realised that the presence of a hamiltonian cycle in a plane graph
makes the colouring of its regions (faces) with four colours very easy. For exam-
ple, consider the problem of colouring the faces of a dodecahedron using four
colours. Figure 4.3 shows a hamiltonian cycle which divides the regions into an
internal chain of regions, and an external chain. Colour the internal chain with
colours A and B, and the external chain with colours C and D.

Early on in the history of the FCC, Tait conjectured that every polyhedral
map in which every vertex has degree 3 has a hamiltonian cycle. (A map is
polyhedral if any two adjacent regions meet in a single common edge or a
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Figure 4.3 Dodecahedron

single point.) The truth of Tait’s conjecture would have implied that every
such map is 4-colourable; however, the conjecture was finally proved false in
1946, when Tutte constructed a counterexample.

Another connection between hamiltonicity and planarity occurs in the follow-
ing algorithm which can be used to determine whether or not a given hamilto-
nian graph is planar. The basic idea is that if a graph G is both hamiltonian
and planar, then, in a plane drawing of G, the edges of G which are not in the
hamiltonian cycle H will fall into two sets, those drawn inside H and those
drawn outside.

The planarity algorithm for hamiltonian graphs

1. Draw the graph G with a hamiltonian cycle H on the outside, i.e. with A
as the boundary of the infinite region.

2. List the edges of G not in H: ey,... €.

3. Form a new graph K in which the vertices are labelled e, , . .. , e, and where
the vertices labelled e;,e; are joined by an edge if and only if e;, e; cross
in the drawing of G, i.e. cannot both be drawn inside (or outside) H (such
edges are said to be incompatible).

4. Then G is planar if and only if K is bipartite.

(If K is bipartite, with bipartition BUW, then the edges e; coloured B can be
drawn inside H, and the edges coloured W can be drawn outside.)
In practice, we introduce the edges one by one, as follows.

Example 4.4
Test the graph shown in Figure 4.4 for planarity.

Solution
1. The graph is already drawn with hamiltonian cycle abcdefa on the outside
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3. Start with ad; it is incompatible with bf, be, ce:
bf

ad ® be

ce
Now consider bf. It crosses only ad. Next consid

get:
bf

/.
ad % be
dj ce

Now consider ce. It also crosses df, so we get:

2 bf
df ce

4. By now we have the full graph K. (Check: the
the number of crossings of edges in G.) Since K
that G is planar, and we can draw it with ad an
outside (Figure 4.5).

Example 4.5

Show that K3 3 is not planar.
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Figure 4.5

Figure 4.6

Solution

1.

.C.O

In Figure 4.6 we have K3 3 drawn with hamiltonian cycle on the outside.

. Edges not in hamiltonian cycle are ad, be, cf.

Tinie.
ULalil.

be

ad

cf

. This is not bipartite, so K3 3 is not planar.

4.3 The Travelling Salesman Problem

A sales representative of a publisher of mathematical texts has to make a round
trip, starting at home, and visiting a number of university bookshops before
returning home. How does the salesman choose his route to minimise the total
distance travelled?
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Here we consider a weighted graph, in which the vertices represent the book-
1 hi e edg eprese ] ween them, each
edge being labelled by the length of the route it represents. The salesman wishes
to find a hamiltonian cycle of minimum length, i.e. of minimum total weight.
A complete graph K, has (n — 1)! different hamiltonian cycles (or 1(n — 1)!
if we do not distinguish between a cycle and its “reverse”), so finding the one
of minimum weight by looking at each in turn is out of the question when n is
large. Even for n = 10, 5(n—1)! = 181 440. There is no really efficient algorithm
yet known for solving the travelling salesman problem (TSP), so “good” rather
than “best” routes are sought, as are estimates, rather than exact values, of
the shortest total length.

Lower bounds ‘ K

Lower bounds can be found by using spanning trees. First observe that if we

take any hamiltonian cycle and remove one edge then we get a spanning tree,
50

Solution to TSP > minimum length of a spanning tree (MST). (4.1)

But we can do better. Consider any vertex v in the graph G. Any hamiltonian
cycle in G has to consist of two edges from v, say vu and vw, and a path from
u to w in the graph G — (v) obtained from G by removing v and its incident
edges. Since this path is a spanning tree of G — {v}, we have

sum of lengths of two )} [/ MST of \

} + k ) . (4.2)
shortest edges from v G - {v}

Solution to TSP > i

Example 4.6
Apply (4.2) to the graph of Figure 4.7.

Figure 4.7

Solution

Choose vertex a. The two shortest edges from a have lengths 3 and 6. The
minimum weight spanning tree of G — {a} consists of edges bc, cd and ec, and
has length 14. So, by (4.2), a lower bound for the TSP is 3 + 6 + 14 = 23.
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Instead, we could have started with b. The two shortest edges from b have
engths 4 and and the minimum weight spanning tree o — {b} has length
13, so we obtain the lower bound 4 + 7 + 13 = 24. This second bound gives us
more information than the first.

Upper bounds

Assume that the weights are distances, satisfying the triangle inequality

d(z,z) < d(z,y) + d(y, 2)

where d(z,y) denotes the shortest distance along edges from z to. y. In this
case the following method gives upper bounds for the TSP in K,,.

Find a minimum spanning tree of K,,, say of weight w. We can then find a
walk of length 2w which visits every vertex at least once, and which returns to

its starting point, by going “round” the tree as shown in Figure 4.8.
g going gu

a

Figure 4.8

We now try to reduce the length of this walk by taking shortcuts. Start at one
vertex and follow the walk round. When we reach an edge which will take us
to a vertex already visited, take the direct route to the next vertex not yet
visited. For example, in Figure 4.8, which shows the minimum spanning tree
of the graph of Example 4.6, we could start at a and obtain aecbda, which has
length 26.

Since this method yields a hamiltonian cycle of length no greater than twice
MST, we have

MST < solution to TSP < 2 MST, (43)

and, since MST < solution to TSP, by (4.1), we have constructed a hamiltonian
cycle of length at most twice the minimum possible length. In Section 4.5 we
shall improve this to at most 5 times the minimum.

W

4.4 Gray Codes

A Gray code of order n is a cyclic arrangement of the 2" binary sequences of
length n such that any pair of adjacent sequences differ in only one place. For
example, Figure 4.9(a) shows a Gray code of order 3.
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000 000

001 010 001 010

011 110 011 110

1N 100 111 100
101 101

(a) (b)

Figure 4.9

The industrial use of Gray codes is on account of their ability to describe
the angular position of a rotating wheel. As in Figure 4.9(b), 0 and 1 are
represented by white and black (off and on), and are read by electrical contact
brushes. The fact that adjacent sequences differ in only one place reduces errors
when the contact brushes are close to a boundary between segments. (Compare
with 1999 changing to 2000 in a car milometer.)

Note that the code above corresponds to a hamiltonian cycle in a 3-dimensional
cube (follow the arrows in Figure 4.10). Note also that the cycle involves going

z

001 011
101
000 010
> >y
100 110

z

Figure 4.10

round the bottom of the cube (i.e. round a 2-dimensional cube!) with third
coordinate 0, then moving up to change the third coordinate to 1, and then
tracing out the 2-dimensional cube at the top, in the opposite direction. This
idea generalises. So to obtain a Gray code of order 4, write down a Gray code
of order 3 with 0 appended to each binary word, then follow it with the same
Gray code of order 3, in reverse order, with 1 at the end of each word. This
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gives

0000 — 0100 — 1100 — 1000 — 1010 — 1110 - 0110 — 0010 — 0011—
0111 — 1111 - 1011 — 1001 — 1101 — 0101 — 0001 — O0C00.

. i

A

4.5 Eulerian Graphs

The driver of a snow plough wishes to set out from the depot, travel along each
road exactly once, and return to the depot. When is this possible? Similarly,
the citizens of Konigsberg wished to cross every bridge exactly once and return

h Ra+th L1 1. f. laoad trail ~F TRPRT] Py gy
nome. poun prooieils asK 10T a CioSeq traii Ol a parvicuiar type.

Definition 4.2

An eulerian circuit is a closed trail which contains each edge of the graph. A
graph which contains an eulerian trail is called an eulerian graph.

It was observed in Section 3.1 that a necessary condition for the existence of an
eulerian circuit is that all vertex degrees must be even. It turns out that this
condition is also sufficient in connected graphs. Our proof will use the following
lemma.

Lemma 4.3

Let G be a graph in which every vertex has even degree. Then the edge set of
G is an edge-disjoint union of cycles.

Proof

Proceed by induction on ¢, the number of edges. The lemma is true for ¢ =2,
so consider a graph G with k edges and suppose that the lemma is true for all
graphs with ¢ < k. Take any vertex vg, and start a walk from vg, continuing
until a vertex already visited is visited for the second time. If this vertex is v;,
then the part of the walk from v; to v; is a cycle C. Remove C to obtain a graph
H with < k edges and in which every vertex has even degree. By induction, H
is an edge-disjoint union of cycles, so the result follows.

Theorem 4.4

Let G be a connected graph. Then G is eulerian if and only if every vertex has
even degree.

1
r —
R
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Proof

=. Already shown.

<. Suppose every vertex has even degree. Then the edges fall into disjoint
cycles. Take any such cycle C). If C, does not contain all the edges of G then,
since G is connected, there must be a vertex vy, € €1 and an edge v;v2 not in
C1. Now vyv, is in some cycle, say C5, disjoint from C). Insert 3 into C, at
v, to obtain a closed trail. If this trail does not contain ail edges of GG, take a
vertex v3 in C) U Cy and edge v3v4 not in C) U Cy. Then v3vy4 is in some cycle
(3 which we insert into C; U C;. Continue in this way until all edges are used

up.

Example 4.7

Figure 4.11

In Figure 4.11, first take cycle abcdefa. Then insert cycle agea at a, and finally
insert cycle bdhb at b to obtain eulerian trail

ageabdhbede fa.

Definition 4.3
An eulerian trail is a trail which contains every edge of the graph, but is

not closed. A non-eulerian graph which contains an eulerian trail is called a
semi-eulerian graph.

5

The following result follows immediately from Theorem 4.4.

Theorem 4.5

A connected graph G is semi-eulerian if and only if it contains precisely two
vertices of odd degree.

Example 4.8

In the Kénigsberg bridge problem, suppose that one further bridge is built.
The resulting graph will then have two vertices of odd degree and hence will
contain an eulerian trail.
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An upper bound for the TSP

The following method yields a hamiltonian cycle in a complete graph whose
length is at most % times the length of the minimum hamiltonian cycle. This
improves the bound in Section 4.3.

Given K, labelled by the length of the edges, first find a minimum spanning
tree T'. T must, by Exercise 3.1, have an even number 2m of vertices of odd

agwran T& +hae maccihia 3nim dhaca Ve xrontinac [ e-pe Qi m

dUBIUU ian IB bllcll PUDDIUIU bU Juiii bllCDC &Il VTILILECD lllbU K1 palld U.)' UDLILE 11
edges of K,. Such a set of disjoint edges is called a matching. There will
be many ways of choosing such a matching, so we choose a matching M of
smallest total length. If we now add the edges of M to T', we obtain the new
graph M UT in which every vertex has even degree: thus M U T possesses an
eulerian circuit.

For example, with the graph of Example 4.7, T has length 17 (as in Figure
4.8) and T has four vertices of odd degree. Take M = {ad, bc} to obtain MUT
as shown in Figure 4.12. An eulerian circuit is aecbcda.

a

¢

Figure 4.12

Starting at a, we can take aech and, to avoid visiting ¢ twice, go directly from
b to d, and then to a, obtaining the hamiltonian cycle aecbda which has length
26.

We now show that the eulerian circuit obtained by this method always has
length < 3MST. Let TSP, EC, MST, M denote respectively the lengths of the
minimum hamiltonian cycle, the eulerian circuit, the minimum spanning tree
and the matching. Then

EC=MST+ M, TSP > MST.

The 2m vertices of M will occur, in some order, say z,,... ,Zg,,, in the mini
mum length hamiltonian cycle. If for each ¢ < 2m, we replace the part of the
cycle between z; and z;,; by the edge z;z;;;, and we replace the part between

) ) 0 3 allll 3 atLt LIl a4l L UL

ZTom and 3 by the edge x2,71, we obtain
Uz, z2) + U(zo,23) + - - - + L(z2m, 1) < TSP
where ¢(z,,z;11) denotes the length of the edge z;z; 1. Thus we have

(U(z1,z2) (x5, T4)+ - +€(Tam—1,Tom))+(€(x2,x23)+ - -+ €(ZTom, 1)) < TSP.
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So we obtain two matchings of x4, ... , s, whose lengths sum to < TSP. One

_ of these matchings must have total length < TSP, sothat
1
M< -2—TSP.

Thus EC = MST + M < TSP + ;TSP = 3TSP. Thus, on using shortcuts in
the eulerian circuit to avoid repeating vertices, we obtain a ha,xmltoma.n cycle
whose length is < 3TSP.

4.6 Eulerian Digraphs

A digraph or directed graph is a graph in which each edge is assigned a
direction, indicated by an arrow. In place of the degree of a vertex we have the
indegree, the number of edges directed towards the vertex, and the outde-
gree, the number of edges directed away from the vertex.

Example 4.9

NNV

f €

Figure 4.13

In Figure 4.13, the indegrees of a,... , f are respectively 1,2,2,1,2,0, and the
outdegrees are 1,1,1,0,2,3. It should be clear why the sum of the indegrees
equals the sum of the outdegrees.

An eulerian circuit in a digraph is exactly what we would expect; it has to
follow the directions of the arrows at each stage. If every vertex has its indegree
equal to its outdegree then, as in Lemma 4.3, the edge set can be partitioned
as an edge-disjoint union of directed cycles, and, as in Theorem 4.4, we obtain:

Theorem 4.6

A connected digraph has an eulerian circuit if and only if each vertex has its
indegree and outdegree equal.

Memory wheels

It is said that the meaningless Sanskrit word
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yamdtdrajabhdnasalagdm

has been used as a memory aid by Indian drummers. 1t has 1n 1t every 3-tuple o
accented and unaccented vowels, each 3-tuple appearing once. We can display
this by replacing unaccented vowels by 0 and accented vowels by 1, to obtain

0111010001. (4.4)

The 3-tuples 011,111,110, 101, 010, 100, 000, 001 appear in it in this order. Note
that the last two digits of (4.4) are the same as the first two, so we can obtain|
a “memory wheel” by overlapping the ends as shown in Figure 4.14.

0
YN
0 1
1 1
0
Figure 4.14

Now this arrangement achieves what a Gray code achieved, but much mere
efficiently. A sensor placed at the edge of the wheel can read off triples of
digits and thereby determine how far the wheel has rotated. A Gray code for
8 positions would require three circles of 8 digits, i.e. 24 digits, whereas the
memory wheel uses only 8.

We now try to generalise this idea: can a circular arrangement of 2" binary
digits be found which includes all 2™ n-digit binary sequences? One approat
might be via hamiltonian cycles. Since, in the above example, 110 is followed
by 101, and 101 by 010, we could take the triples zyz as the vertices of a graph
and join zyz and yzw by an edge to obtain the directed graph of Figure 4.15.

001 . 011
010
000 , 111
\\\‘<\\\l(////’- 101
100 K 110
Figure 4.15

The directed hamiltonian cycle

000 - 001 - 011 — 111 —~ 110 — 101 — 010 — 100 — 000
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vields the memory wheel of Figure 4.14. The trouble with this approach, how-

corresponding digraph when n > 4.

The problem was however solved by L.J. Good, in a 1946 paper in number
theory. Instead by taking the triples as the vertices, Good took the triples as
the edges of a graph, in which the vertices corresponded to the overlapping
2-tuples. So, for n = 3, we form the digraph of Figure 4.16.

01

111

Figure 4.16

Now in this digraph all vertices have indegree and outdegree equal, so the
digraph contains an eulerian circuit. Once such circuit consists of the edges

000 — 001 — 011 — 111 - 110 — 101 — 010 — 100 — 000,

and this gives the same memory wheel as before.

In general, take as vertices the (n — 1)-digit binary sequences, and draw a
directed edge from z1z3 ... Zn—1 t0 T3 ... Tpn_1Tp, labelling the edge 122 . .. Zn.
The resulting digraph has an eulerian circuit which yields a memory wheel.

Example 4.10

Obtain a memory wheel containing all 16 4-digit binary sequences.

Solution

Construct a digraph with 8 vertices labelled by the eight 3-digit binary se-
quences, and draw a directed edge from z;z;z3 to o230 and to z3x31. The
digraph of Figure 4.17 is obtained.

An eulerian circuit is (in terms of vertices)

000 - 000 — 001 - 011 —-111-111-110-101
—011 - 110 — 100 — 001 — 010 — 101 — 010 — 100 — 000
i¢. in terms of edges,
0000 — 0001 — 0011 — 0111 — 1111 — 1110 — 1101 — 1011
~0110 — 1100 - 1001 — 0010 — 0101 — 1010 — 0100 — 0000.
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F

Figure 4.17

The corresponding memory wheel is as shown in Figure 4.18.

Figure 4.18

The problem of constructing memory wheels is also known as the rotating drum
problem. The circular binary sequences are often called maximum length
shift register sequences, or de Bruijn sequences after the Dutch mathe
matician N.G. de Bruijn who wrote about them in 1946 (although it turned out
that they had been constructed many years before by C. Flye Sainte-Marie).
They have been used worldwide in telecommunications, and there have been
recent applications in biology.

Exercises

Exercise 4.1

(a) Strengthen Theorem 4.1 to: if a bipartite graph, with bipartitio
V = BUW, is hamiltonian, then |B| = |W|.
(b) Deduce that Ky, n, is hamiltonian if and only if m =n > 2.
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Exercise 4.2

For each graph in Figure 4.19, determine whether (a) it is hamiltonian,
(b) it is eulerian, (c) it is semi-eulerian.

@) (ii)

LN 8 VaN N

N 7

(iii)

Figure 4.19

Exercise 4.3

Which of the platonic solid graphs are (a) hamiltonian, (b) eulerian?

Exercise 4.4

Use the planarity algorithm to determine whether or not the graphs in
Figure 4.20 are planar.

Exercise 4.5
e

Exercise 4.6

Dirac’s theorem. Prove Theorem 4.2 as follows. Suppose G is not
hamiltonian. By adding edges we can assume that G is “almost” hamil-
tonian in the sense that the addition of any further edge will give a
hamiltonian graph. So G has apathvy - va = --- — vp through every
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o7 S A=

(a) (b)

Figure 4.20

vertex, where v; and v, are not adjacent. Show that there must be a ver-
tex v; adjacent to vy, with v;_; adjacent to v,. This gives a hamiltonian
cycle vy = -+ 2 Vi1 = Vp = - S Vig1 7 V; UL

r~ M - =
cxercise 4./

(a) Ore’s theorem. Imitate the proof of Dirac’s theorem to show that
if G is a simple graph with p > 3 vertices, with deg(v) + deg(w) >
for each pair of non-adjacent vertices v, w, then G is hamiltonian.

(b) Deduce that if G has 2+ 4 (p—1)(p— 2) edges then G is hamiltonian

(¢) Find a non-hamiltonian graph with 1 + 5(p — 1)(p — 2) edges.

Exercise 4.8

By removing vertex A , find a lower bound for the TSP for the graph of
Exercise 3.7. Repeat, removing vertex B. Then obtain an upper bound
by the method of Section 4.5.

Exercise 4.9

Find upper and lower bounds for the TSP for the situation in Exercise
3.8. How do your results compare with the exact solution?

-~
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Exercise 4.10

Construct a memory wheel containing all 32 5-digit binary sequences.

Exercise 4.11

Use digraphs to construct a memory wheel of length 9 containing all

2-digit ternary sequences (formed from the digits 0, 1,2). Then find cne
for all 3-digit ternary sequences.

Exercise 4.12

Dominoes. Can you arrange the 28 dominoes of an ordinary set in a
closed loop, so that each matches with its neighbour in the usual way?
Can you do so if all dominoes with a 6 on them are removed? Can you
state a general theorem about dominoes with numbers 0,1,...,n on
them? (Hint: consider each domino as an edge of a graph with vertices
labelled 0,1,... ,n.)

Exercise 4.13

Figure 4.21 shows an arrangement of the numbers 1, ... , 5 round a circle,
so that each number is adjacent to every other number exactly once. Can
you produce a similar arrangement for 1,...,7? Use Euler’s theorem to
show that there is a solution for n numbers if and only if n is odd. Can

you salvage a similar type of result when n is even?

Figure 4.21
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In this chapter we consider partitions of a set, introducing the Stirling numbers
and the Bell numbers. We then consider vertex and edge colourings of a graph,
where the vertex set and the edge set are partitioned by the colours.

5.1 Partitions of a Set

A partition of a set S is a collection of non-empty subsets S;,...,S, of §
which are pairwise disjoint and whose union is S. The subsets S; are called
the parts of the partition. For example {1,2,4} U {3,6} U {5} is a partition
of {1,... ,6} into three parts. Note that it does not matter in what order the

nartc annear
*Im g “!.ll.l\.am .

Example 5.1 -

In a game of bridge, the 52 cards of a standard pack are distributed among
four people who receive 13 cards each. In how many ways can the pack of 52
cards be partitioned into four sets of size 137

Solution

VWi LI

We can choose 13 cards in (‘;’g) ways. From the remaining 39 we can choose a

further 13 in (39) ways, and then from the remaining 26 we can choose 13 in

13
(ig) ways. This leaves a final set of 13 cards. So we have

52\ /39 26)w 520 390 260 52
13/\13/ \13) ~ 131391 13126! 13113!  (13))¢

89
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ways of partitioning the pack. But these partitions are not all distinct, since

each distinct partition arises in 4! ways, depending on which of the four setsin

it is chosen first, which is chosen second, and so on. So the required number is
52!
(131)24!

(a vast number, greater than 10%7).

There is another way of approaching this counting problem. Consider a row o
52 spaces grouped into four groups of 13: '

The cards can be placed in the spaces in 52! ways. Within each group there are
191 wava of arranging the cama 12 rarde and thoae i arant orra oo anbe o
1J: WaYo Ui all GILEIILE LT DGLIIT 1o LalUud, ddill LWiITOoT Ulllcliclilv GLIO:IJEU.IIICII\JD all
irrelevant since they give rise to the same part of the partition, so we have to
divide by (13!)*, one 13! for each group. Then the four groups themselves can
be arranged in 4! ways, so we have to divide by 4!, giving the same answer a
before.

This argument easily generalises, to give the following result.

Theorem 5.1

A set of mn objects can be partitioned into m sets of size n in
(mn)!
(nD)ymmi

different ways.

Corollary 5.2

A set of 2m objects can be partitioned into m pairs in
(2m)!
2mm!

different ways.

Example 5.2
The number of ways of pairing 16 teams in a football cup draw is
16!

The same type of argument can be applied when the parts of the required
partition are not all of the same size.

Example 5.3

In how many ways can a class of 25 pupils be placed into four tutorial groups
of size 3, two of size 4 and one of size 57
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Solution

Consider the following grouping of 25 spaces

e L Y S L e L ).

The 25 pupils can be placed in the spaces 25! ways. To count distinct partitions
we have to take into account the ways of ordering the pupils within the groups -
sowe divide by (31)%(4!)25! - and also the ways of ordering the groups themselves
-so we divide by 4! on account of the four groups of size 3 and by 2! on account
of the two groups of size 4. So the required number is

25!

=] 15
@hi@nzeaia - >0 * 107

Definition 5.1

A partition of an n-element set consisting of a; subsets of size i, 1 < i < n,
where 37 | ia; = n, is called a partition of type 191272 ., .non.

Generalising Example 5.3 gives the following result.

Theorem 5.3

The number of partitions of type 1%12%2 . . n®" of an n-element set is

)
1t:

M, @E)=a;!

Example 5.4

The number of ways of grouping 10 people into two groups of size 3 and one
group of size 4 is the number of partitions of type 324! and so is

10!
(atyeaiai — 2100

5.2 Stirling .Numbers

In this section we think about partitioning a set into a given number of parts.

Definition 5.2

Let S(n, k) denote the number of ways of partitioning an n-set into exactly k
parts. Then S(n, k) is called a Stirling number of the second kind.
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These numbers are named after the Scottish mathematician James Stirling
(1602-1770), who is also | for hi ... ol
n! ~ V2rmnn"e™".

Stirling also has numbers of the first kind named after him - see Exercise 5.10.
We now study S(n, k). Clearly, for alln > 1,

S(n,1) = S(n,n) =1. ' (5.1)

Example 5.5

We show that S(4,2) = 7. Here are the seven ways of partitioning {1,2,3,4}
into two parts: {1}U{2, 3,4}, {2}U{1, 3,4}, {3}U{1, 2,4}, {4}U{1, 2, 3}, {1,2}u
{3,4},{1,3}u {2,4} and {1,4} U {2,3}.

Clearly, for large n, we need a better way of evaluating S(n, k) than just writing
down all possible partitions. Such a method is given by the following recurrence
relation.

Theorem 5.4
S(n,k)=S(n~1,k-1)+kS(n - 1,k) (5.2)

whenever 1 < k < n.

Proof

In any partition of {1,... ,n} into k parts, the element n may appear by itself
as a l-element subset or it many occur in a larger set. If it appears by itself,
then the remaining n — 1 elements have to form a partition of {1,...,n -1}

into k — 1 subsets, and there are S(n — 1, k — 1) ways in which this can be done.
On the other hand, if the element n is in a set of size at least two, we can think
of partitioning {1,... ,n — 1} into & sets - this can be done in S(n — 1, k) ways
- and then of introducing n into one of the k sets so formed - and there are k
ways of doing this. So, by the addition and multiplication principles, we have
S(n,k) =S(n-1,k-1)+kS(n-1,k).

Example 5.5 (again)
5(4,2) = 5(3,1) + 2 5(3,2)

= 1 +2(52,1)+25(2,2)

= 1 +21+2) =T
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Theorem 5.5

Foralln > 2, 5(n,2) =2""" -1

Proof

We use induction on n. The result is true for n = 2, so suppose it is true for
n=k > 2. Then
S(k+1,2) =5(k,1)+ 25(k,2) (by 5.2)

=14202¥1-1)

k

4 ') ! (5] l\,, 4r)—1
=1l1+4+<é —4L4=4& ’ — 1.

Table 5.1 gives the first few Stirling number S(n, k).

Table 5.1
n\k |1 2 3 4 5 6 7 8 | B(n)
1 1 1
2 1 1 2
3 |1 3 1 5
4 (1 7 6 1 15
E 5 [1 15 25 10 1 52
2 6 1 31 90 65 15 1 203
7 1 63 301 350 140 21 1 877
8 1 127 966 1701 1050 266 28 1 | 4140

Note the number 2"~! — 1 in the column k = 2. On the right of the table
are the sums B(n) of all the Stirling numbers in the rows. B(n) is the total
number of partitions of an n-set, and is calied a Bell number, after another
Scot, E.T. Bell, who emigrated to the USA. and wrote several popular books

on mathematics, including Men of Mathematics, an idicsyncratic two-volume
collection of “biographies” of famous mathematicians. We have, for n > 1,

| B(n) = ; S(n, k). (5.3)
k W =250

B3

If we define B(0) = 1 = S5(0,0) (accept this as a useful convention, like (g) = 1),
we can obtain a recurrence reilation for the Bell numbers.
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Theorem 5.6

n—1

Foralln>1, B(n)= Z (" . 1)B(k).

k=0

The nth element of the set being partitioned will appear in one of the sets of
the partition along with j > 0 other elements. There are (";1) ways of choosing
t

aréitsanad i
vitiGiiea 1

P PRy Mh oy rnnnieads o 2 1 A ala mbo moe

ult:bc _[ Blt:ulcubb 1ne I€IMalillllpg 7e — 1L — ereInieniis Caii

B(n —1 ~ j) ways. So

®
T

- o 1\

B(n) = ( )B(n—l-J)

.

el

Z - l)B(k (on putting n — 1 — j = k).

Example 5.6 .
8
BO =Y (:)B(k)
k=0

=1+81+28.2+56.5+ 70.15+ 56.52 4+ 28.203 + 8.877 + 1.4140

= 21147.

For an interesting (but useless!) formula for B(n), see Exercise 5.9.

5.3 Counting Functions

The Stirling numbers arise naturally in the enumeration of all functions
f : X = Y which can be defined from an m-set X to an n-set Y. There
are n™ such functions since, for each * € X, there are n possible values for
f(z).

Recall that the image of f : X — Y is the set of elements of ¥ which actually

arise as a value f(z) for some z € X:
imf={y€Y :y= f(x) for some x € X}.

Each function f : X — Y has as its image a subset of Y. How many such
functions have an image of size k? If f takes precisely k values then X can be
partitioned into k parts, the ith of which will consist of those elements of X
which are mapped onto the ith member of im(f). So a function f: X =Y
with image of size k can be constructed as follows:
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(i) partition X into k parts X,... , X\ (this can be done in S(m, k) ways);

(ii) choose the image set of size k in Y (this can be done in (}) ways);

(ii) pair off each X; with one of the members of the image set (this can be done
in k! ways).

ara mM fianndiang
ale 7¢  IUuliCuiviid

So the number of functions f : X — Y with image of size k is S(m, k)(})k!.
1 H + a ”

nre b pan falba any yal :v-l\r\

Thyia waliia +
11Us, 8iniCeé ~ Cdll vaKe ally vasue 1roIn 4

P
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f: X = Y altogether, we obtain:

Theorem 5.7
Let | X| = m and |Y| = n where m,n > 1.

(2) The number of functions f : X — Y with image of size k is S(m, k) (})4!.

(b)
n™ = zn: S(m, k) (’;) kl. (5.4)

Note as a special case that the number of surjections from X to Y, i.e. func-
tions whose image set is the whole of Y, is n!S(m, n).

Example 5.7
We check (5.4) in the case n = 4,m = 5.

3 S(5, k) (:) K! = 45(5,1) + 125(5,2) + 245(5, 3) + 245(5, 4)
k=1 :

=4 4 180 + 600 + 240 = 1024 = 4°.

Note that if we define S(m,0) = 0 for all m > 1, and S(0,0) = 1, then we can
rewrite (5.4) as

This identity can be inverted.

Theorem 5.8

Forallm > 1,n > 0,m > n,

IS(m,n) = ) (-1 k (7 )k (5.5)
n!S(m,n kz=o (k)
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Proof We can use Corollary 1.15, putting a, = k™ and b = S(m,k)k.

Alternatively we shall be able to use the inclusion-exclusion principle in the
next chapter: see Section 6.2.

Example 5.8

k=0

5(5,3) = % (Z(—UH (z) ks) = %(—0 +3-32%43% =25

5.4 Vertex Colourings of Graphs

To colour the vertices of a graph G is to assign a colour to each vertex in such
a way that no two adjacent vertices receive the same colour. If we define an
independent set of vertices of G to be a set of vertices no two of which are
adjacent, then a vertex colouring can be thought of as a partition of the set V
of vertices into independent subsets. Often we are concerned with the smallest
number of colours required, i.e. the smallest number of independent sets which
partition V; we call this number the chromatic number of G.

| e W T UL e |

Detinition 5.3

The chromatic number x(G) of a graph G is the smallest value of k for which
the vertex set of G can be partitioned into k independent subsets.

We have met the idea of colouring vertices already; in Section 3.5 we noted that
bipartite graphs are bichromatic; so if G is bipartite with at least one edge then
x(G) = 2. Also, the four colour theorem asserts that x(G) < 4 for all plana
graphs G.

—

Theorem 5.9

(i) x(Kn)=n.
(ii) x(Cr) =2 if n is even; x(C,) = 3 if n is odd.

Proof
(i) No two vertices can receive the same colour since they are adjacent.

ii) If n is even, we can alternate colours round the cycle; if n is odd we need
) y
a third colour for the “last” vertex coloured.

/’*‘u
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Example 5.9

The graph of Figure o5.1(a) has chromatic number 3; 1t needs at least three
colours since it contains Cj3, and three colours are sufficient, as shown in Fig-
ure 5.1(b).

o ecnen nF (7 ndAd fontradist
11T LaOT ULl Lwin, H) Uuu, contraqaicy

colour-theorem-provers, that a graph needs m colours only if it contains K, as
asubgraph. Another counterexample to this belief is the graph of Figure 5.1(c)
which needs four colours (why?) although it does not contain Kj.

There is no easy way of finding x(G) for a given graph G. The greedy algo-
rithm, which we now describe, will give an upper bound for x(G) related to the
maximum vertex degree. In our description of the algorithm we denote colours
by C,,Cs,Cs,... and call C; the ith colour.

o QAT 134
1iC Ubllbl 01 5011e amateur

The greedy algorithm for vertex colouring

1. List the vertices in some order: vy, ... ,vp.

2. Assign colour Cj to v;.

ELN il v nas

3. Atstagei+1, when v; has just been assigned a colour,
colour C; W1th j as small as p 531b1 which has not yet been used to colour
a vertex adjacent to viy;.

Example 5:10 .

We use the greedy algorithm to colour the graph of Figure 5.2 for each of the
two vertex orderings shown.
With vertices listed as in (a), we assign colours a

This colouring uses four colours. However, with the vertices labelled as in (b),

we get:
v: 1 2 3 4 5 6 7

c: 1 2 3 1 3 1 2
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1 2 1 2
-5 q 3 3 7] 5
6 7 6 7
(a) (b)
Figure 5.2

This second colouring shows that x(G) < 3; in fact x(G) = 3 since G is not
bipartite.

Clearly, the bound for x(G) obtained by the algorithm depends on the par-
ticular order in which the vertices are considered. But note that, if a vertexv
has degree d then, when it is the turn of v to be assigned a colour, at most d of
the colours are ineligible, so it must be given some colour C; where i <d+1.
Thus we have the following bound.

Theorem 5.10

If G has maximum vertex degree A, then the greedy algorithm will colour the
vertices of G using at most A + 1 colours, so that x(G) < A + 1.

Example 5.11 (A timetabling problem)

The University of Central Caledonia has nine vice-principals, Professors
A,B,...,I, who serve on eight committees. The memberships of the com-
mittees are as follows.

Tan

Committee1: A, B, C, D 5: A, H, J
2: A, C, D, E 6: H, I, J
3: B, D, F, G 7: G, H, J
4: C, F, G, H 8: E, I

-

Each committee is to meet for a day; no two commitiees with a member in
common can meet on the same day. Find the smallest number of days in which
the meetings can take place.

Solution

Represent each committee by a vertex, and join two vertices by an edge precisely
when the corresponding committees have overlapping membership. Then the
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Figure 5.3

minimum number of days required is the chromatic number of the graph G,
shown in Figure 5.3. Note that vertices 1,2,3,4 form a K4, so at least four
colours (days) are needed. But four colours are sufficient: e.g.

{1,7,8} U {3,5} U {2,6} U {4}

is a partition of {1,...,8} into independent sets. So x(G) = 4, and four days
are enough.

EE A
Jg.J LU

An edge colouring of a graph G is an assignment of colours to the edges of
G so that no two edges with a common vertex receive the same colour. The
minimum number of colours required in an edge colouring of G is called the
chromatic index of G and is denoted by Xx'(G).

Thus to edge colour a graph is to partition the edge set into subsets such that
no two edges in the same subset have a vertex in common, i.e. so that all edges
in any part of the partition are disjoint. A set of disjoint edges in a graph is
often called a matching. Clearly, in an edge colouring, all edges at a vertex v
must receive different colours, so x'(K,) > n — 1 for each n.

Example 5.12

(a) x'(K4) = 3, since x'(K4) > 3 and three colours suffice, as shown in Figure
5.4(a).

(b) x’(K5) = 5. Here, A = 4 colours are not enough. For there are 10 edges and
no more than two edges in any matching. However, 5 colours are enough,
as shown in Figure 5.4(b).
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Theorem 5.11

(i)
(ii)

Proof

(i)

(i)

; 1 2
3/ \5
1
2 2
5 3
) 3
(a) (b)

Figure 5.4

X' (Kp) =nif nis odd.

X'(Kn) =n—1if n is even.

If n is odd, any matching in K,, can have at most %(n —1) edges. So at most
3(n —1) edges can be given any one colour. But there are $n(n — 1) edges
in K, so at least n colours are needed. Now we can colour the edges using
n colours in the following way. Represent K,, as a regular n-gon, with all
diagonals drawn. Colour the boundary edges by 1, ... ,n; then colour each
diagonal by the colour of the boundary edge parallel with it. This gives an
edge colouring using n colours. The case n = 5 is as in Figure 5.4(b).

Now suppose n is even. Certainly x/(K,) > n—1; we show how to use only
n—1 colours. Since n -1 is odd, we can colour K,_; using n — 1 colours, as
described above. Now take another vertex v and join each vertex of K,,_;
to v, thus obtaining K,. At each vertex of K,,_,, one colour has not been
used. The colours missing at each vertex of K, _; are all different, so we
can use these n — 1 colours to colour the added edges at v. This gives an

edge colouring of K,, using n — 1 colours.

The appearance of A(=n —1) and A+ 1(= n) as the chromatic indices of K,
according as n is even or odd, is in accordance with the following result.

Theorem 5.12 (Vizing, 1964)

i

If G is a simple graph with maximum vertex degree 4, then x'(G) = Ao
A+1.

We omit the proof of this result; a proof can be found in [9]. But we include the
statement of the result because it has led to a great deal of work on determining
which graphs are class one graphs, i.e. satisfy x'(G) = 4, and which are class
two, i.e. satisfy x'(G) = A+ 1.
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Example 5.13

The Petersen graph is class 2. Here A = 3, so we have to show that x'(G) # 3.
So suppose an edge colouring using only three colours exists. Then the outer
5-cycle uses three colours, and, without loss of generality, we can assume that
it is coloured as in Figure 5.5(a). The spokes are then uniquely coloured, as in

(a) (b)
Figure 5.5

Figure 5.5(b). But this leaves two adjacent inside edges which have to be given
colour 2. So there is no edge colouring with three colours.

We close this section by establishing that all bipartite graphs are class 1. This
result is due to Ko6nig, the Hungarian author of the first major book on graph
theory [14].

Theorem 5.13 (Konig)

A

(e
A M

A ;ﬁv
A NS0}

Y —
)=

Proof

Proceed by induction on ¢, the number of edges. The theorem is clearly true
for graphs with ¢ = 1; so suppose it is true for all bipartite graphs with k
edges, and consider a bipartite graph G with maximum vertex degree 4 and
with k + 1 edges. Choose any edge vw of GG, and remove it, thereby forming a
new bipartite graph H. H has & edges and maximum vertex degree < 4, so,
by the induction hypothesis, H can be edge coloured using at most A colours.

Now, in H, v and w both have degree < A —1, so there is at least one colour
missing from the edges from v, and at least one missing from the edges of w.
If there is a colour missing at both vertices then it can be used to colour edge
vw. If there is no colour missing from both, then let C be a colour missing at
v, and C3 a colour missing at w. Now there is some edge, say vu, coloured Cb;
if there is an edge coloured C; from u, go along it, and continue along edges
coloured C; and C» alternately as far as possible. The path so constructed will
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never reach w since if it did it would have to reach w along an edge coloured
() and so would be a path of even length, giving, with edge vw, an odd cycle

in a bipartite graph. So the connected subgraph K, consisting of vertex v and
all vertices and edges of H which can be reached by a path of edges coloured
C) and C4, does not contain w. So we can interchange the colours C; and C;
in K without interfering with the colours in the rest of H. This gives a new
edge colouring of H in which v and w have no edge coloured C3, and we can
use Cs to colour vw.

This idea of swapping colours along a path was used by Kempe in his unsuc-
cessful 1879 attempt to prove the four colour theorem. Despite the fact that
it did not work there as Kempe had hoped, it nevertheless has proved to be a
very useful technique in graph theory.

Example 5.14

Eight students require to consult certain library books. Each is to borrow each
required book for a week. The books B; required by each student S; are as
follows:

S1:B1,B,B3 Sy : By, B4, Bs, Bg Sz : By, B3, Bs, By
Sy : B3, By Ss : By, Bg, By S¢ : B2, B4, Bg
S7 . B4,Bs,B7 Sg : Bg,Bﬁ.

What is the minimum number of weeks required so that each student can
borrow all books required?

Solution

Draw a bipartite graph G with vertices labelled B,,...,By,S:,...,Ss, and
with S; joined by an edge to B; precisely when student S; has to consult
book B;. Then G has maximum vertex degree A = 4, so, by Konig’s theorem,
x'(G) = 4. Thus four colours (weeks) are required. You should be able to
partition the set of edges into four disjoint matchings.

Exercises

Exercise 5.1

How many ways are there of arranging 16 football teams into four groups
of four?



te Mathematics

edge coloured
an odd cycle
" vertex v and
dges coloured
irs C] and Cy
S gives a new
1, and we can

in his unsuc-
the fact that
roved to be a

> borrow each
lent S; are as

‘5’B7

1 student can

5. Partitions and Colourings 103

Exercise 5.2

A class contains 30 pupils. For a chemistry project, the class is to be put

into four groups, two of size 7 and two of size 8. In how many ways can
this be done?

Exercise 5.3

In the early versions of the Enigma machine, used in Germany in the
1930s, the plugboard swapped six pairs of distinct letters of the alphabet.
In how many ways can this be done (assuming 26 letters)?

Exercise 5.4

Any permutation is a product of cycles. For example, the permutation
351642 (3 - 1,5 =+ 2,1 = 3,6 - 4,4 - 5,2 — 6) can be written
as (31)(2645). How many permutations of 1,...,8 are a product of a
1-cycle, two 2-cycles and a 3-cycle?

Exercise 5.5
Prove that (a) S(n,n — 1) = (3), (b) S(n,n—-2) = (3) +3(}).

gous ,Ss, and
as to consult
1ig’s theorem,
Id be able to

Exercise 5.6

Prove by induction that S(n,3) > 32 for all n > 6.

Show that S(n, k) = S, | ("~')S(m, k1) and hence given another
proof of Theorem 5.6.

to four groups

Exercise 5.8
Find B(10).

Exercise 5.9

Use Theorem 5.6 and induction to prove that B(n) = 1 3222, -'JL':
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Exercise 5.10

The (signless) Stirling numbers s(n, k) of the first kind are defined by:
s(n, k) is the number of permutations of 1,... ,n consisting of exactly
k cycles. Verify that s(2,1) = 1,8(3,1) = 2,5(3,2) = 3,s(4,2) = 11 and
that s(n,1) = (n — 1)!. Prove that s(n, k) = (n —1)s(n — 1,k) +s(n -1,
k — 1), and deduce the value of (6, 2).

Exercise 5.11
Find x(G) and x'(G) for each of the graphs of Exercise 4.2.

Exercise 5.12

Let G be a graph with p vertices and let a(G) denote the size of the
largest independent set of vertices of G. Show that x(G)a(G) > p.

Exercise 5.13

Apply the greedy vertex colouring algorithm to the graph of Figure 5.3,
taking the vertices (a) in the order 1,...,8, (b) in order 8,...,1. Do
you get a colouring using four colours?

Exercise 5.14 ' e

As Exercise 5.13, but this time choose vertices in (a) increasing, (b)

darvaacing ardar of vartavy doorane Whirh annraarh wanld vnnn avnact in
AL \lells VAU A UL YUOL vuA ubal. LD ¥V ILLLEL u!.ll.‘L UIGALLL VYW UULIWL "Uu DAPU\JU w

require fewer colours in general?

Exercise 5.15

Explain why there is always an ordering of the vertices for which the
greedy algorithm will lead to a colouring with x(G) colours.

Exercise 5.16

Find the chromatic index of each of the five Platonic solid graphs.
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Exercise 5.17

A graph in which every vertex degree is 3 is called a cubic graph. Prove
that all hamiltonian cubic graphs have chromatic index 3. (Note how-
ever that not all cubic graphs have chromatic index 3, e.g. the Petersen

graph.)

Exercise 5.18

Let G be a graph with an o

which has the same degree 7.

(a) Show that G has (k + 3)r edges.

(b) Explain why no more than & edges can have the same colour in any
edge colouring, and hence show that x'(G) = r + 1. Thus every reg-
ular graph with an odd number of vertices is class 2. (This includes

K,.,n odd, as shown in Theorem 5.11.)
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Exercise 5.19

Let fa(G) denote the number of ways of colouring the vertices of G using

A given colours.

(a) Show that fa(K,)=AXA-1)(A—-2)...(A—n+1).

(b) Show that fi(T) = A(A — 1)*! for all trees T with n vertices.

(c) Let zy be any edge of G. Let G’ be the graph obtained from G by
removing the edge zy, and let G"” be the graph obtained by identi-
fying vertices z and y. Then fiA(G) = fa(G') — f(G"). Deduce that
f1(G) is a polynomial in M: it is called the chromatic polynomial
of G.

(d) Note that the solution a, = 2" + (—1)"2 of Example 2.4 can be
interpreted as: f3(Cp) = 2™ + (—1)"2. By replacing 3 colours by A
colours, show similarly that fy(Cn) = (A—1)" + (-1)*(A - 1). Note
that this gives fo(Cp,) = 0 whenever n is odd, as expected!



