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Dynamics of First-Order
Difference Equations

1.1 Introduction

Difference equations usually describe the evolution of certain phenomena
over the course of time. For example, if a certain population has discrete
generations, the size of the (n+1)st generation x(n+1) is a function of the
nth generation x(n). This relation expresses itself in the difference equation

x(n + 1) = f(x(n)). (1.1.1)

We may look at this problem from another point of view. Starting from a
point x0, one may generate the sequence

x0, f(x0), f(f(x0)), f(f(f(x0))), . . . .

For convenience we adopt the notation

f2(x0) = f(f(x0)), f3(x0) = f(f(f(x0))), etc.

f(x0) is called the first iterate of x0 under f ; f2(x0) is called the second
iterate of x0 under f ; more generally, fn(x0) is the nth iterate of x0 under
f . The set of all (positive) iterates {fn(x0) : n ≥ 0} where f0(x0) =
x0 by definition, is called the (positive) orbit of x0 and will be denoted
by O(x0). This iterative procedure is an example of a discrete dynamical
system. Letting x(n) = fn(x0), we have

x(n + 1) = fn+1(x0) = f [fn(x0)] = f(x(n)),

and hence we recapture (1.1.1). Observe that x(0) = f0(x0) = x0. For
example, let f(x) = x2 and x0 = 0.6. To find the sequence of iterates

1
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{fn(x0)}, we key 0.6 into a calculator and then repeatedly depress the x2

button. We obtain the numbers

0.6, 0.36, 0.1296, 0.01679616, . . . .

A few more key strokes on the calculator will be enough to convince the
reader that the iterates fn(0.6) tend to 0. The reader is invited to verify
that for all x0 ∈ (0, 1), fn(x0) tends to 0 as n tends to ∞, and that fn(x0)
tends to ∞ if x0 �∈ [−1, 1]. Obviously, fn(0) = 0, fn(1) = 1 for all positive
integers n, and fn(−1) = 1 for n = 1, 2, 3, . . . .

After this discussion one may conclude correctly that difference equa-
tions and discrete dynamical systems represent two sides of the same coin.
For instance, when mathematicians talk about difference equations, they
usually refer to the analytic theory of the subject, and when they talk
about discrete dynamical systems, they generally refer to its geometrical
and topological aspects.

If the function f in (1.1.1) is replaced by a function g of two variables,
that is, g : Z

+ × R → R, where Z
+ is the set of nonnegative integers and

R is the set of real numbers, then we have

x(n + 1) = g(n, x(n)). (1.1.2)

Equation (1.1.2) is called nonautonomous or time-variant, whereas (1.1.1)
is called autonomous or time-invariant. The study of (1.1.2) is much more
complicated and does not lend itself to the discrete dynamical system
theory of first-order equations. If an initial condition x(n0) = x0 is given,
then for n ≥ n0 there is a unique solution x(n) ≡ x(n, n0, x0) of (1.1.2)
such that x(n0, n0, x0) = x0. This may be shown easily by iteration. Now,

x(n0 + 1, n0, x0) = g(n0, x(n0)) = g(n0, x0),
x(n0 + 2, n0, x0) = g(n0 + 1, x(n0 + 1)) = g(n0 + 1, g(n0, x0)),
x(n0 + 3, n0, x0) = g(n0 + 2, x(n0 + 2)) = g[n0 + 2, g(n0 + 1, g(n0, x0))].

And, inductively, we get x(n, n0, x0) = g[n − 1, x(n − 1, n0, x0)].

1.2 Linear First-Order Difference Equations

In this section we study the simplest special cases of (1.1.1) and (1.1.2),
namely, linear equations. A typical linear homogeneous first-order equation
is given by

x(n + 1) = a(n)x(n), x(n0) = x0, n ≥ n0 ≥ 0, (1.2.1)

and the associated nonhomogeneous equation is given by

y(n + 1) = a(n)y(n) + g(n), y(n0) = y0, n ≥ n0 ≥ 0, (1.2.2)

where in both equations it is assumed that a(n) �= 0, and a(n) and g(n)
are real-valued functions defined for n ≥ n0 ≥ 0.
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One may obtain the solution of (1.2.1) by a simple iteration:

x(n0 + 1) = a(n0)x(n0) = a(n0)x0,

x(n0 + 2) = a(n0 + 1)x(n0 + 1) = a(n0 + 1)a(n0)x0,

x(n0 + 3) = a(n0 + 2)x(n0 + 2) = a(n0 + 2)a(n0 + 1)a(n0)x0.

And, inductively, it is easy to see that

x(n) = x(n0 + n − n0))
= a(n − 1)a(n − 2) · · · a(n0)x0,

x(n) =

[
n−1∏
i=n0

a(i)

]
x0. (1.2.3)

The unique solution of the nonhomogeneous (1.2.2) may be found as
follows:

y(n0 + 1) = a(n0)y0 + g(n0),
y(n0 + 2) = a(n0 + 1)y(n0 + 1) + g(n0 + 1)

= a(n0 + 1)a(n0)y0 + a(n0 + 1)g(n0) + g(n0 + 1).

Now we use mathematical induction to show that, for all n ∈ Z
+,

y(n) =

[
n−1∏
i=n0

a(i)

]
y0 +

n−1∑
r=n0

[
n−1∏

i=r+1

a(i)

]
g(r). (1.2.4)

To establish this, assume that formula (1.2.4) holds for n = k. Then from
(1.2.2), y(k + 1) = a(k)y(k) + g(k), which by formula (1.2.4) yields

y(k + 1) = a(k)

[
k−1∏
i=n0

a(i)

]
y0 +

k−1∑
r=n0

[
a(k)

k−1∏
i=r+1

a(i)

]
g(r) + g(k)

=

[
k∏

i=n0

a(i)

]
y0 +

k−1∑
r=n0

(
k∏

i=r+1

a(i)

)
g(r)

+

(
k∏

i=k+1

a(i)

)
g(k) (see footnote 1)

=

[
k∏

i=n0

a(i)

]
y0 +

k∑
r=n0

( ∏
i=r+1

a(i)

)
g(r).

Hence formula (1.2.4) holds for all n ∈ Z
+.

1Notice that we have adopted the notation
∏k

i=k+1 a(i) = 1 and∑k
i=k+1 a(i) = 0.
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1.2.1 Important Special Cases
There are two special cases of (1.2.2) that are important in many
applications. The first equation is given by

y(n + 1) = ay(n) + g(n), y(0) = y0. (1.2.5)

Using formula (1.2.4) one may establish that

y(n) = any0 +
n−1∑
k=0

an−k−1g(k). (1.2.6)

The second equation is given by

y(n + 1) = ay(n) + b, y(0) = y0. (1.2.7)

Using formula (1.2.6) we obtain

y(n) =

⎧⎪⎨⎪⎩any0 + b

[
an − 1
a − 1

]
if a �= 1,

y0 + bn if a = 1.
(1.2.8)

Notice that the solution of the differential equation

dx

dt
= ax(t), x(0) = x0,

is given by

x(t) = eatx0,

and the solution of the nonhomogeneous differential equation

dy

dt
= ay(t) + g(t), y(0) = y0,

is given by

y(t) = eaty0 +
∫ t

0
ea(t−s)g(s) ds.

Thus the exponential eat in differential equations corresponds to the expo-
nential an and the integral

∫ t

0 ea(t−s)g(s) ds corresponds to the summation
n−1∑
k=0

an−k−1g(k).

We now give some examples to practice the above formulas.

Example 1.1. Solve the equation

y(n + 1) = (n + 1)y(n) + 2n(n + 1)!, y(0) = 1, n > 0.
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TABLE 1.1. Definite sum.

Number Summation Definite sum

1
n∑

k=1

k
n(n + 1)

2

2
n∑

k=1

k2 n(n + 1)(2n + 1)
6

3
n∑

k=1

k3
[

n(n + 1)
2

]2

4
n∑

k=1

k4 n(6n4 + 15n3 + 10n2 − 1)
30

5
n−1∑
k=0

ak

{
(an − 1)/(a − 1) if a �= 1

n if a = 1

6
n−1∑
k=1

ak

{
(an − a)/(a − 1) if a �= 1

n − 1 if a = 1

7
n∑

k=1

kak, a �= 1
(a − 1)(n + 1)an+1 − an+2 + a

(a − 1)2

Solution

y(n) =
n−1∏
i=0

(i + 1) +
n−1∑
k=0

[
n−1∏

i=k+1

(i + 1)

]
2k(k + 1)!

= n! +
n−1∑
k=0

n! 2k

= 2nn! (from Table 1.1).

Example 1.2. Find a solution for the equation

x(n + 1) = 2x(n) + 3n, x(1) = 0.5.

Solution From (1.2.6), we have

x(n) =
(

1
2

)
2n−1 +

n−1∑
k=1

2n−k−1 3k

= 2n−2 + 2n−1
n−1∑
k=1

(
3
2

)k

= 2n−2 + 2n−1 3
2

(( 3
2

)n−1 − 1
3
2 − 1

)
= 3n − 5 · 2n−2.
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Example 1.3. A drug is administered once every four hours. Let D(n) be
the amount of the drug in the blood system at the nth interval. The body
eliminates a certain fraction p of the drug during each time interval. If the
amount administered is D0, find D(n) and limn→∞ D(n).

Solution We first must create an equation to solve. Since the amount of
drug in the patient’s system at time (n+1) is equal to the amount at time
n minus the fraction p that has been eliminated from the body, plus the
new dosage D0, we arrive at the following equation:

D(n + 1) = (1 − p)D(n) + D0.

Using (1.2.8), we solve the above equation, arriving at

D(n) =
[
D0 − D0

p

]
(1 − p)n +

D0

p
.

Hence,

lim
n→∞ D(n) =

D0

p
. (1.2.9)

Let D0 = 2 cubic centimeters (cc), p = 0.25.
Then our original equation becomes

D(n + 1) = 0.75D(n) + 2, D(0) = 2.

Table 1.2 gives D(n) for 0 ≤ n ≤ 10.

It follows from (1.2.9) that limn→∞ D(n) = 8, where D* = 8 cc is the
equilibrium amount of drug in the body. We now enter the realm of finance
for our next example.

Example 1.4. Amortization

Amortization is the process by which a loan is repaid by a sequence of
periodic payments, each of which is part payment of interest and part
payment to reduce the outstanding principal.

Let p(n) represent the outstanding principal after the nth payment g(n).
Suppose that interest charges compound at the rate r per payment period.

The formulation of our model here is based on the fact that the out-
standing principal p(n + 1) after the (n + 1)st payment is equal to the
outstanding principal p(n) after the nth payment plus the interest rp(n)
incurred during the (n + 1)st period minus the nth payment g(n). Hence

p(n + 1) = p(n) + rp(n) − g(n),

TABLE 1.2. Values of D(n).

n 0 1 2 3 4 5 6 7 8 9 10
D(n) 2 3.5 4.62 5.47 6.1 6.58 6.93 7.2 7.4 7.55 7.66
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or

p(n + 1) = (1 + r)p(n) − g(n), p(0) = p0, (1.2.10)

where p0 is the initial debt. By (1.2.6) we have

p(n) = (1 + r)np0 −
n−1∑
k=0

(1 + r)n−k−1g(k). (1.2.11)

In practice, the payment g(n) is constant and, say, equal to T . In this case,

p(n) = (1 + r)np0 − ((1 + r)n − 1)
(

T

r

)
. (1.2.12)

If we want to pay off the loan in exactly n payments, what would be the
monthly payment T? Observe first that p(n) = 0. Hence from (1.2.12) we
have

T = p0

[
r

1 − (1 + r)−n

]
.

Exercises 1.1 and 1.2

1. Find the solution of each difference equation:

(a) x(n + 1) − (n + 1)x(n) = 0, x(0) = c.

(b) x(n + 1) − 3nx(n) = 0, x(0) = c.

(c) x(n + 1) − e2nx(n) = 0, x(0) = c.

(d) x(n + 1) − n
n+1x(n) = 0, n ≥ 1, x(1) = c.

2. Find the general solution of each difference equation:

(a) y(n + 1) − 1
2y(n) = 2, y(0) = c.

(b) y(n + 1) − n
n+1y(n) = 4, y(1) = c.

3. Find the general solution of each difference equation:

(a) y(n + 1) − (n + 1)y(n) = 2n(n + 1)!, y(0) = c.

(b) y(n + 1) = y(n) + en, y(0) = c.

4. (a) Write a difference equation that describes the number of regions
created by n lines in the plane if it is required that every pair of
lines meet and no more than two lines meet at one point.

(b) Find the number of these regions by solving the difference equation
in case (a).

5. The gamma function is defined as Γ(x) =
∫∞
0 tx−1e−t dt, x > 0.

(a) Show that Γ(x + 1) = xΓ(x), Γ(1) = 1.
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(b) If n is a positive integer, show that Γ(n + 1) = n!.

(c) Show that x(n) = x(x − 1) · · · (x − n + 1) =
Γ(x + 1)

Γ(x − n + 1)
.

6. A space (three-dimensional) is divided by n planes, nonparallel, and
no four planes having a point in common.

(a) Write a difference equation that describes the number of regions
created.

(b) Find the number of these regions.

7. Verify (1.2.6).

8. Verify (1.2.8).

9. A debt of $12,000 is to be amortized by equal payments of $380 at
the end of each month, plus a final partial payment one month after
the last $380 is paid. If interest is at an annual rate of 12% com-
pounded monthly, construct an amortization schedule to show the
required payments.

10. Suppose that a loan of $80,000 is to be amortized by equal monthly
payments. If the interest rate is 10% compounded monthly, find the
monthly payment required to pay off the loan in 30 years.

11. Suppose the constant sum T is deposited at the end of each fixed period
in a bank that pays interest at the rate r per period. Let A(n) be the
amount accumulated in the bank after n periods.

(a) Write a difference equation that describes A(n).

(b) Solve the difference equation obtained in (a), when A(0) = 0, T =
$200, and r = 0.008.

12. The temperature of a body is measured as 110◦ F. It is observed that
the amount the temperature changes during each period of two hours
is −0.3 times the difference between the previous period’s temperature
and the room temperature, which is 70◦ F.

(a) Write a difference equation that describes the temperature T (n) of
the body at the end of n periods.

(b) Find T (n).

13. Suppose that you can get a 30-year mortgage at 8% interest. How much
can you afford to borrow if you can afford to make a monthly payment
of $1,000?

14. Radium decreases at the rate of 0.04% per year. What is its half-life?
(The half-life of a radioactive material is defined to be the time needed
for half of the material to dissipate.)
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15. (Carbon Dating). It has been observed that the proportion of carbon-
14 in plants and animals is the same as that in the atmosphere as long
as the plant or the animal is alive. When an animal or plant dies, the
carbon-14 in its tissue starts decaying at the rate r.

(a) If the half-life of carbon-14 is 5,700 years, find r.

(b) If the amount of carbon-14 present in a bone of an animal is 70%
of the original amount of carbon-14, how old is the bone?

1.3 Equilibrium Points

The notion of equilibrium points (states) is central in the study of the dy-
namics of any physical system. In many applications in biology, economics,
physics, engineering, etc., it is desirable that all states (solutions) of a given
system tend to its equilibrium state (point). This is the subject of study
of stability theory, a topic of great importance to scientists and engineers.
We now give the formal definition of an equilibrium point.

Definition 1.5. A point x∗ in the domain of f is said to be an equilibrium
point of (1.1.1) if it is a fixed point of f , i.e., f(x*) = x*.

In other words, x∗ is a constant solution of (1.1.1), since if x(0) = x∗ is
an initial point, then x(1) = f(x*) = x∗, and x(2) = f(x(1)) = f(x*) = x*,
and so on.

Graphically, an equilibrium point is the x-coordinate of the point where
the graph of f intersects the diagonal line y = x (Figures 1.1 and 1.2). For
example, there are three equilibrium points for the equation

x(n + 1) = x3(n)

where f(x) = x3. To find these equilibrium points, we let f(x*) = x∗, or
x3 = x, and solve for x. Hence there are three equilibrium points, −1, 0, 1
(Figure 1.1). Figure 1.2 illustrates another example, where f(x) = x2−x+1
and the difference equation is given by

x(n + 1) = x2(n) − x(n) + 1.

Letting x2 − x + 1 = x, we find that 1 is the only equilibrium point.
There is a phenomenon that is unique to difference equations and cannot

possibly occur in differential equations. It is possible in difference equations
that a solution may not be an equilibrium point but may reach one after
finitely many iterations. In other words, a nonequilibrium state may go to
an equilibrium state in a finite time. This leads to the following definition.

Definition 1.6. Let x be a point in the domain of f . If there exists a
positive integer r and an equilibrium point x∗ of (1.1.1) such that fr(x) =
x*, fr−1(x) �= x*, then x is an eventually equilibrium (fixed) point.
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x*=−1

x*=0 x*=1

1

2 3

FIGURE 1.1. Fixed points of f(x) = x3.

f(x)
y=x

x*=1

FIGURE 1.2. Fixed points of f(x) = x2 − x + 1.

Example 1.7. The Tent Map

Consider the equation (Figure 1.3)

x(n + 1) = T (x(n)),

where

T (x) =

⎧⎪⎨⎪⎩
2x for 0 ≤ x ≤ 1

2
,

2(1 − x) for
1
2

< x ≤ 1.

There are two equilibrium points, 0 and 2
3 (see Figure 1.3). The search for

eventually equilibrium points is not as simple algebraically. If x(0) = 1
4 ,

then x(1) = 1
2 , x(2) = 1, and x(3) = 0. Thus 1

4 is an eventually equilibrium
point. The reader is asked to show that if x = k/2n, where k and n are
positive integers with 0 < k/2n ≤ 1, then x is an eventually equilibrium
point (Exercises 1.3, Problem 15).
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x(r+1)

x(n)

x* x*
2 1

FIGURE 1.3. Equilibrium points of the tent map.

x(n)

x*+ε

x*+δ
x0

x*

x*- δ

x* - ε

0     1 2 3 4 5 6 7 8 9 10 n

FIGURE 1.4. Stable x*. If x(0) is within δ from x*, then x(n) is within ε from
x(n) for all n > 0.

One of the main objectives in the study of a dynamical system is to
analyze the behavior of its solutions near an equilibrium point. This study
constitutes the stability theory. Next we introduce the basic definitions of
stability.

Definition 1.8. (a) The equilibrium point x∗ of (1.1.1) is stable (Figure
1.4) if given ε > 0 there exists δ > 0 such that |x0 − x∗| < δ implies
|fn(x0) − x∗| < ε for all n > 0. If x∗ is not stable, then it is called unstable
(Figure 1.5).

(b) The point x∗ is said to be attracting if there exists η > 0 such that

|x(0) − x∗| < η implies lim
n→∞ x(n) = x∗.

If η = ∞, x∗ is called a global attractor or globally attracting.
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x(n)

x*+ε

x*+δ
x0

x*

x*- δ

x* - ε

0 1 2 3 4 5 6 7 8 9 10
n

FIGURE 1.5. Unstable x*. There exists ε > 0 such that no matter how close x(0)
is to x*, there will be an N such that x(N) is at least ε from x*.

1      2     3 4 5 6 7 8 9 10 n

x(n)

x* + η
x1(0)

x*

x2(0)
x-η

FIGURE 1.6. Asymptotically stable x*. Stable if x(0) is within η of x*; then
limn→∞ x(n) = x*.

(c) The point x∗ is an asymptotically stable equilibrium point if it is stable
and attracting.

If η = ∞, x∗ is said to be globally asymptotically stable (Figure 1.7).

To determine the stability of an equilibrium point from the above def-
initions may prove to be a mission impossible in many cases. This is due
to the fact that we may not be able to find the solution in a closed form
even for the deceptively simple-looking equation (1.1.1). In this section we
present some of the simplest but most powerful tools of the trade to help
us understand the behavior of solutions of (1.1.1) in the vicinity of equilib-
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x1(0) 1 2 3 4 5 6 7 8 9 10 n

x2(0)

x*

x(n)

FIGURE 1.7. Globally asymptotically stable x*. Stable and limn→∞ x(n) = x∗

for all x(0).

rium points, namely, the graphical techniques. A hand-held calculator may
fulfill all your graphical needs in this section.

1.3.1 The Stair Step (Cobweb) Diagrams
We now give, in excruciating detail, another important graphical method
for analyzing the stability of equilibrium (and periodic) points for (1.1.1).
Since x(n+1) = f(x(n)), we may draw a graph of f in the (x(n), x(n+1))
plane. Then, given x(0) = x0, we pinpoint the value x(1) by drawing a
vertical line through x0 so that it also intersects the graph of f at (x0, x(1)).
Next, draw a horizontal line from (x0, x(1)) to meet the diagonal line y = x
at the point (x(1), x(1)). A vertical line drawn from the point (x(1), x(1))
will meet the graph of f at the point (x(1), x(2)). Continuing this process,
one may find x(n) for all n > 0.

Example 1.9. The Logistic Equation

Let y(n) be the size of a population at time n. If µ is the rate of growth
of the population from one generation to another, then we may consider a
mathematical model in the form

y(n + 1) = µy(n), µ > 0. (1.3.1)

If the initial population is given by y(0) = y0, then by simple iteration we
find that

y(n) = µny0 (1.3.2)

is the solution of (1.3.1). If µ > 1, then y(n) increases indefinitely, and
limn→∞ y(n) = ∞. If µ = 1, then y(n) = y0 for all n > 0, which means that
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the size of the population is constant for the indefinite future. However, for
µ < 1, we have limn→∞ y(n) = 0, and the population eventually becomes
extinct.

For most biological species, however, none of the above cases is valid as
the population increases until it reaches a certain upper limit. Then, due
to the limitations of available resources, the creatures will become testy
and engage in competition for those limited resources. This competition is
proportional to the number of squabbles among them, given by y2(n). A
more reasonable model would allow b, the proportionality constant, to be
greater than 0,

y(n + 1) = µy(n) − by2(n). (1.3.3)

If in (1.3.3), we let x(n) = b
µy(n), we obtain

x(n + 1) = µx(n)(1 − x(n)) = f(x(n)). (1.3.4)

This equation is the simplest nonlinear first-order difference equation, com-
monly referred to as the (discrete) logistic equation. However, a closed-form
solution of (1.3.4) is not available (except for certain values of µ). In spite of
its simplicity, this equation exhibits rather rich and complicated dynamics.
To find the equilibrium points of (1.3.4) we let f(x∗) = µx∗(1 − x∗) = x∗.
Thus, we pinpoint two equilibrium points: x∗ = 0 and x∗ = (µ − 1)/µ.

Figure 1.8 gives the stair step diagram of (x(n), x(n + 1)) when µ = 2.5
and x(0) = 0.1. In this case, we also have two equilibrium points. One,
x* = 0, is unstable, and the other, x* = 0.6, is asymptotically stable.

Example 1.10. The Cobweb Phenomenon
(Economics Application)

Here we study the pricing of a certain commodity. Let S(n) be the number
of units supplied in period n, D(n) the number of units demanded in period
n, and p(n) the price per unit in period n.

For simplicity, we assume that D(n) depends only linearly on p(n) and
is denoted by

D(n) = −mdp(n) + bd, md > 0, bd > 0. (1.3.5)

This equation is referred to as the price–demand curve. The constant md

represents the sensitivity of consumers to price. We also assume that the
price–supply curve relates the supply in any period to the price one period
before, i.e.,

S(n + 1) = msp(n) + bs, ms > 0, bs > 0. (1.3.6)

The constant ms is the sensitivity of suppliers to price. The slope of the
demand curve is negative because an increase of one unit in price produces
a decrease of md units in demand. Correspondingly, an increase of one unit
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FIGURE 1.8. Stair step diagram for µ = 2.5.

in price causes an increase of ms units in supply, creating a positive slope
for that curve.

A third assumption we make here is that the market price is the price
at which the quantity demanded and the quantity supplied are equal, that
is, at which D(n + 1) = S(n + 1).

Thus

−mdp(n + 1) + bd = msp(n) + bs,

or

p(n + 1) = Ap(n) + B = f(p(n)), (1.3.7)

where

A = −ms

md
, B =

bd − bs

md
. (1.3.8)

This equation is a first-order linear difference equation. The equilibrium
price p∗ is defined in economics as the price that results in an intersection
of the supply S(n + 1) and demand D(n) curves. Also, since p∗ is the
unique fixed point of f(p) in (1.3.7), p* = B/(1 − A). (This proof arises
later as Exercises 1.3, Problem 6.) Because A is the ratio of the slopes of
the supply and demand curves, this ratio determines the behavior of the
price sequence. There are three cases to be considered:

(a) −1 < A < 0,

(b) A = −1,

(c) A < −1.

The three cases are now depicted graphically using our old standby, the
stair step diagram.
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FIGURE 1.9. Asymptotically stable equilibrium price.
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FIGURE 1.10. Stable equilibrium price.

(i) In case (a), prices alternate above and below but converge to the equi-
librium price p*. In economics lingo, the price p∗ is considered “stable”;
in mathematics, we refer to it as “asymptotically stable” (Figure 1.9).

(ii) In case (b), prices oscillate between two values only. If p(0) = p0, then
p(1) = −p0+B and p(2) = p0. Hence the equilibrium point p∗ is stable
(Figure 1.10).

(iii) In case (c), prices oscillate infinitely about the equilibrium point p∗

but progressively move further away from it. Thus, the equilibrium
point is considered unstable (Figure 1.11).
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FIGURE 1.11. Unstable equilibrium price.

An explicit solution of (1.3.7) with p(0) = p0 is given by

p(n) =
(

p0 − B

1 − A

)
An +

B

1 − A
(Exercises 1.3, Problem 9). (1.3.9)

This explicit solution allows us to restate cases (a) and (b) as follows.

1.3.2 The Cobweb Theorem of Economics
If the suppliers are less sensitive to price than the consumers (i.e., ms <
md), the market will then be stable. If the suppliers are more sensitive than
the consumers, the market will be unstable.

One might also find the closed-form solution (1.3.9) by using a computer
algebra program, such as Maple. One would enter this program:

rsolve({p(n + 1) = a ∗ p(n) + b, p(0) = p0}, p(n)).

Exercises 1.3

1. Contemplate the equation x(n + 1) = f(x(n)), where f(0) = 0.

(a) Prove that x(n) ≡ 0 is a solution of the equation.

(b) Show that the function depicted in the following (n, x(n)) diagram
cannot possibly be a solution of the equation:
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1                2                3                 4               5
n

x(n)

2. (Newton’s Method of Computing the Square Root of a Positive
Number)
The equation x2 = a can be written in the form x = 1

2 (x + a/x). This
form leads to Newton’s method

x(n + 1) =
1
2

[
x(n) +

a

x(n)

]
.

(a) Show that this difference equation has two equilibrium points, −√
a

and
√

a.

(b) Sketch a stair step diagram for a = 3, x(0) = 1, and x(0) = −1.

(c) What can you conclude from (b)?

3. (Pielou’s Logistic Equation)
E.C. Pielou [119] referred to the following equation as the discrete
logistic equation:

x(n + 1) =
αx(n)

1 + βx(n)
, α > 1, β > 0.

(a) Find the positive equilibrium point.

(b) Demonstrate, using the stair step diagram, that the positive equi-
librium point is asymptotically stable, taking α = 2 and β =
1.

4. Find the equilibrium points and determine their stability for the
equation

x(n + 1) = 5 − 6
x(n)

.

5. (a) Draw a stair step diagram for (1.3.4) for µ = 0.5, 3, and 3.3. What
can you conclude from these diagrams?

(b) Determine whether these values for µ give rise to periodic solutions
of period 2.

6. (The Cobweb Phenomenon [equation (1.3.7)]). Economists define the
equilibrium price p∗ of a commodity as the price at which the demand
function D(n) is equal to the supply function S(n + 1). These are
defined in (1.3.5) and (1.3.6), respectively.
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(a) Show that p* = B
1−A , where A and B are defined as in (1.3.8).

(b) Let ms = 2, bs = 3, md = 1, and bd = 15. Find the equilibrium
price p*. Then draw a stair step diagram, for p(0) = 2.

7. Continuation of Problem 6:
Economists use a different stair step diagram, as we will explain in the
following steps:

(i) Let the x-axis represent the price p(n) and the y-axis represent
S(n + 1) or D(n). Draw the supply line and the demand line and
find their point of intersection p*.

(ii) Starting with p(0) = 2 we find s(1) by moving vertically to the
supply line, then moving horizontally to find D(1) (since D(1) =
S(1)), which determines p(1) on the price axis. The supply S(2)
is found on the supply line directly above p(1), and then D(2) (=
S(2)) is found by moving horizontally to the demand line, etc.

(iii) Is p∗ stable?

8. Repeat Exercises 6 and 7 for:

(a) ms = md = 2, bd = 10, and bs = 2.

(b) ms = 1, md = 2, bd = 14, and bs = 2.

9. Verify that formula (1.3.9) is a solution of (1.3.7).

10. Use formula (1.3.9) to show that:

(a) If −1 < A < 0, then limn→∞ p(n) = B/1 − A.

(b) If A < −1, then p(n) is unbounded.

(c) If A = −1, then p(n) takes only two values:

p(n) =

{
p(0) if n is even,

p(1) = B − p0 if n is odd.

11. Suppose that the supply and demand equations are given by D(n) =
−2p(n) + 3 and S(n + 1) = p2(n) + 1.

(a) Assuming that the market price is the price at which supply equals
demand, find a difference equation that relates p(n + 1) to p(n).

(b) Find the positive equilibrium value of this equation.

(c) Use the stair step diagrams to determine the stability of the positive
equilibrium value.
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12. Consider Baker’s map defined by

B(x) =

⎧⎪⎨⎪⎩
2x for 0 ≤ x ≤ 1

2
,

2x − 1 for
1
2

< x ≤ 1.

(i) Draw the function B(x) on [0,1].

(ii) Show that x ∈ [0, 1] is an eventually fixed point if and only if it is
of the form x = k/2n, where k and n are positive integers,2 with
0 ≤ k ≤ 2n − 1.

13. Find the fixed points and the eventually fixed points of x(n + 1) =
f(x(n)), where f(x) = x2.

14. Find an eventually fixed point of the tent map of Example 1.7 that is
not in the form k/2n.

15. Consider the tent map of Example 1.7. Show that if x = k/2n, where k
and n are positive integers with 0 < k/2n ≤ 1, then x is an eventually
fixed point.

1.4 Numerical Solutions of Differential Equations

Differential equations have been extensively used as mathematical models
for a wide variety of physical and artificial phenomena. Such models de-
scribe populations or objects that evolve continuously in which time (or the
independent variable) is a subset of the set of real numbers. In contrast,
difference equations describe populations or objects that evolve discretely
in which time (or the independent variable) is a subset of the set of integers.
In many instances, one is unable to solve a given differential equation. In
this case, we need to use a numerical scheme to approximate the solutions
of the differential equations. A numerical scheme leads to the construction
of an associated difference equation that is more amenable to computation
either by a graphing-held calculator or by a computer. Here we present a
couple of simple numerical schemes. We begin by Euler’s method, one of
the oldest numerical methods.

1.4.1 Euler’s Method
Consider the first-order differential equation

x′(t) = g(t, x(t)), x(t0) = x0, t0 ≤ t ≤ b. (1.4.1)

2A number x ∈ [0, 1] is called a dyadic rational if it has the form k/2n for
some nonnegative integers k and n, with 0 ≤ k ≤ 2n − 1.



1.4 Numerical Solutions of Differential Equations 21

Let us divide the interval [t0, b] into N equal subintervals. The size of
each subinterval is called the step size of the method and is denoted by
h = (b − t0)/N . This step size defines the nodes t0, t1, t2, . . . , tN , where
tj = t0 + jh. Euler’s method approximates x′(t) by (x(t + h) − x(t))/h.

Substituting this value into (1.4.1) gives

x(t + h) = x(t) + hg(t, x(t)),

and for t = t0 + nh, we obtain

x[t0 + (n + 1)h] = x(t0 + nh) + hg[t0 + nh, x(t0 + nh)] (1.4.2)

for n = 0, 1, 2, . . . , N − 1.
Adapting the difference equation notation and replacing x(t0 + nh) by

x(n) gives

x(n + 1) = x(n) + hg[n, x(n)]. (1.4.3)

Equation (1.4.3) defines Euler’s algorithm, which approximates the solu-
tions of the differential equation (1.4.1) at the node points.

Note that x∗ is an equilibrium point of (1.4.3) if and only if g(x*) = 0.
Thus the differential equation (1.4.1) and the difference equation (1.4.3)
have the same equilibrium points.

Example 1.11. Let us now apply Euler’s method to the differential
equation:

x′(t) = 0.7x2(t)+0.7, x(0) = 1, t ∈ [0, 1] (DE) (see footnote 3).

Using the separation of variable method, we obtain

1
0.7

∫
dx

x2 + 1
=
∫

dt.

Hence

tan−1(x(t)) = 0.7t + c.

Letting x(0) = 1, we get c = π
4 . Thus, the exact solution of this equation

is given by x(t) = tan
(
0.7t + π

4

)
.

The corresponding difference equation using Euler’s method is

x(n + 1) = x(n) + 0.7h(x2(n) + 1), x(0) = 1 (∆E) (see footnote 4)

Table 1.3 shows the Euler approximations for h = 0.2 and 0.1, as well as
the exact values. Figure 1.12 depicts the (n, x(n)) diagram. Notice that the
smaller the step size we use, the better the approximation we have.

3DE ≡ differential equation.
4∆E ≡ difference equation.
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TABLE 1.3.

(∆E) Euler (∆E) Euler
(h = 0.2) (h = 0.1) Exact (DE)

n t x(n) x(n) x(t)
0 0 1 1 1
1 0.1 1.14 1.150
2 0.2 1.28 1.301 1.328
3 0.3 1.489 1.542
4 0.4 1.649 1.715 1.807
5 0.5 1.991 2.150
6 0.6 2.170 2.338 2.614
7 0.7 2.791 3.286
8 0.8 2.969 3.406 4.361
9 0.9 4.288 6.383
10 1 4.343 5.645 11.681
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2

0.1 0 .15 0 .2 0 .25 0 .3 0 .35 0 .4 0 .45 0 .5 0 .55 0 .6 0 .65 0 .7 0 .75 0 .8 0 .85 0 .9 0 .95 1 .0

Exact

h=0.1

h=0.2

t

x(t)

FIGURE 1.12. The (n, x(n)) diagram.

Example 1.12. Consider the logistic differential equation

x′(t) = ax(t)(1 − x(t)), x(0) = x0.

The equilibrium points (or constant solutions) are obtained by letting
x′(t) = 0. Hence ax(1 − x) = 0 and we then have two equilibrium points
x∗

1 = 0 and x∗
2 = 1. The exact solution of the equation is obtained by
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separation of variables,

dx

x(1 − x)
= a dt,∫

dx

x
+
∫

dx

1 − x
=
∫

a dt,

ln
(

x

1 − x

)
= at + c,

x

1 − x
= eat+c = beat, b = ec.

Hence

x(t) =
beat

1 + beat
.

Now x(0) = x0 = b
1+b gives b = x0

1−x0
. Substituting in x(t) yields

x(t) =
x0e

at

1 − x0 + x0eat
=

x0e
at

1 + x0(eat − 1)
.

If a > 0, lim
t→∞ x(t) = 1, and thus all solutions converge to the equilibrium

point x∗
2 = 1. On the other hand, if a < 0, lim

t→∞ x(t) = 0, and thus all
solutions converge to the equilibrium point x∗

1 = 0.
Let us now apply Euler’s method to the logistic differential equation.

The corresponding difference equation is given by

x(n + 1) = x(n) + h ax(n)(1 − x(n)), x(0) = x0.

This equation has two equilibrium points x∗
1 = 0, x∗

2 = 1 as in the
differential equation case.

Let y(n) = ha
1+hax(n). Then we have

y(n + 1) = (1 + ha)y(n)(1 − y(n))

0x

x0

1

x(t)

t

FIGURE 1.13. If a > 0, all solutions with x0 > 0 converge to x∗
2 = 1.
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x(t)

t

1
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FIGURE 1.14. If a < 0, all solutions with x0 < 1 converge to x∗
1 = 0.

or

y(n + 1) = µy(n)(1 − y(n)), y(0) =
ha

1 + ha
x(0), and µ = 1 + ha.

The corresponding equilibrium points are y∗
1 = 0 and y∗

2 = µ−1
µ = ha

1+ha
which correspond to x∗

1 = 0 and x∗
2 = 1, respectively. Using the Cobweb

diagram, we observe that for 1 < µ < 3 (0 < ha < 2), all solutions
whose initial point y0 in the interval (0, 1) converge to the equilibrium point
y∗
2 = ha

1+ha (Figure 1.15) and for 0 < µ < 1 (−1 < ha < 0), all solutions
whose initial point y0 in the interval (0, 1) converge to the equilibrium
point y∗

2 = 0 (Figure 1.16). However, for µ > 3 (ha > 2), almost all
solutions where initial points are in the interval (0, 1) do not converge to
either equilibrium point y∗

1 or y∗
2 . In fact, we will see in later sections that

for µ > 3.57 (ha > 2.57), solutions of the difference equation behave in a
“chaotic” manner (Figure 1.17). In the next section we will explore another
numerical scheme that has been proven effective in a lot of cases [100].

1.4.2 A Nonstandard Scheme
Consider again the logistic differential equation. Now if we replace x2(n)
in Euler’s method by x(n)x(n + 1) we obtain

x(n + 1) = x(n) + hax(n) − hax(n)x(n + 1).

Simplifying we obtain the rational difference equation

x(n + 1) =
(1 + ha)x(n)
1 + hax(n)

or

x(n + 1) =
αx(n)

1 + βx(n)

with α = 1 + ha, β = α − 1 = ha.
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FIGURE 1.15. 0 < ha < 2.
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0.5 10x
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1

FIGURE 1.16. −1 < ha < 0.

This equation has two equilibrium points x∗
1 = 0 and x∗

2 = 1. From the
Cobweb diagram (Figure 1.18) we conclude that lim

n→∞ x(n) = 1 if α > 1.
Since h > 0, α > 1 if and only if a > 0. Thus all solutions converge to

the equilibrium point x∗
2 = 1 if a > 0 as in the differential equation case

regardless of the size of h.
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FIGURE 1.17. ha > 2.57.
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FIGURE 1.18. α = 1 + ha, β = α − 1 = ha.

Exercises 1.4

In Problems 1–5

(a) Find the associated difference equation.

(b) Draw an (n, y(n)) diagram.

(c) Find, if possible, the exact solution of the differential equation and
draw its graph on the same plot as that drawn in part in (b).
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1. y′ = −y2, y(0) = 1, 0 ≤ t ≤ 1, h = 0.2, 0.1.

2. y′ = −y + 4
y , y(0) = 1, 0 ≤ t ≤ 1, h = 0.25.

3. y′ = −y + 1, y(0) = 2, 0 ≤ t ≤ 1, h = 0.25.

4. y′ = y(1 − y), y(0) = 0.1, 0 ≤ t ≤ 1, h = 0.25.

5. y′ = y2 + 2, y(0) = 1
4 , 0 ≤ t ≤ 1, h = 0.25.

6. Use a nonstandard numerical method to find the associated difference
equation of the differential equation in Problem 1.

7. Do Problem 4 using a nonstandard numerical method and compare
your results with Euler’s method.

8. Do Problem 5 using a nonstandard numerical method and compare
your result with Euler’s method.

9. Use both Euler’s method and a nonstandard method to discretize the
differential equation

y′(t) = y2 + t, y(0) = 1, 0 ≤ t ≤ 1, h = 0.2.

Draw the n − y(n) diagram for both methods. Guess which method
gives a better approximation to the differential equation.

10. (a) Use the Euler method with h = 0.25 on [0, 1] to find the value of y
corresponding to t = 0.5 for the differential equation

dy

dt
= 2t + y, y(0) = 1.

(b) Compare the result obtained in (a) with the exact value.

11. Given the differential equation of Problem 10, show that a better
approximation is given by the difference equation

y(n + 1) = y(n) +
1
2
h(y′(n) + y′(n + 1)).

This method is sometimes called the modified Euler method.

1.5 Criterion for the Asymptotic Stability
of Equilibrium Points

In this section we give a simple but powerful criterion for the asymptotic
stability of equilibrium points. The following theorem is our main tool in
this section.

Theorem 1.13. Let x∗ be an equilibrium point of the difference equation

x(n + 1) = f(x(n)), (1.5.1)
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where f is continuously differentiable at x*. The following statements then
hold true:

(i) If |f ′(x*)| < 1, then x∗ is asymptotically stable.

(ii) If |f ′(x*)| > 1, then x∗ is unstable.

Proof.

(i) Suppose that |f ′(x*)| < M < 1. Then there is an interval J = (x*−γ,
x*+γ) containing x∗ such that |f ′(x)| ≤ M < 1 for all x ∈ J . For if
not, then for each open interval In = (x∗ − 1

n , x∗ + 1
n ) (for large n) there

is a point xn ∈ In such that |f ′(xn)| > M . As n → ∞, xn → x∗. Since
f ′ is a continuous function, it follows that

lim
n→∞ f ′(xn) = f ′(x∗).

Consequently,

M ≤ lim
n→∞ |f ′(xn)| = |f ′(x∗)| < M,

which is a contradiction. This proves our statement. For x(0) ∈ J , we
have

|x(1) − x*| = |f(x(0)) − f(x*)|.

By the Mean Value Theorem, there exists ξ between x(0) and x∗ such
that

|f(x(0)) − f(x*)| = |f ′(ξ)| |x(0) − x*|.
Thus

|f(x(0)) − x*| ≤ M |x(0) − x*|.
Hence

|x(1) − x*| ≤ M |x(0) − x*|. (1.5.2)

Since M < 1, inequality (1.5.2) shows that x(1) is closer to x∗ than
x(0). Consequently, x(1) ∈ J .

By induction we conclude that

|x(n) − x*| ≤ Mn|x(0) − x*|.
For ε > 0 we let δ = ε

2M . Thus |x(0) − x*| < δ implies that |x(n) −
x*| < ε for all n > 0. This conclusion suggests stability. Furthermore,
limn→∞ |x(n) − x*| = 0, and thus limn→∞ x(n) = x*; we conclude
asymptotic stability. �

The proof of part (ii) is left as Exercises 1.5, Problem 11.

Remark: In the literature of dynamical systems, the equilibrium point x∗

is said to be hyperbolic if |f ′(x*)| �= 1.
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x(2) x(1)   x0

x

g(x)

FIGURE 1.19. Newton’s method.

Example 1.14. The Newton–Raphson Method

The Newton–Raphson method is one of the most famous numerical meth-
ods for finding the roots of the equation g(x) = 0, where g(x) is continually
differentiable (i.e., its derivative exists and is continuous).

Newton’s algorithm for finding a zero x∗ of g(x) is given by the difference
equation

x(n + 1) = x(n) − g(x(n))
g′(x(n))

, (1.5.3)

where x(0) = x0 is your initial guess of the root x*. Here f(x) = x − g(x)
g′(x) .

Note first that the zero x∗ of g(x) is also an equilibrium point of (1.5.3).
To determine whether Newton’s algorithm provides a sequence {x(n)} that
converges to x∗ we use Theorem 1.13:

|f ′(x*)| =
∣∣∣∣1 − [g′(x*)]2 − g(x*)g′′(x*)

[g′(x*)]2

∣∣∣∣ = 0,

since g(x*) = 0. By Theorem 1.13, limn→∞ x(n) = x∗ if x(0) = x0 is close
enough to x∗ and g′(x*) �= 0.

Observe that Theorem 1.13 does not address the nonhyperbolic case
where |f ′(x*)| = 1. Further analysis is needed here to determine the sta-
bility of the equilibrium point x*. Our first discussion will address the case
where f ′(x*) = 1.

Theorem 1.15. Suppose that for an equilibrium point x∗ of (1.5.1),
f ′(x*) = 1. The following statements then hold:

(i) If f ′′(x*) �= 0, then x∗ is unstable.

(ii) If f ′′(x*) = 0 and f ′′′(x*) > 0, then x∗ is unstable.

(iii) If f ′′(x*) = 0 and f ′′′(x*) < 0, then x∗ is asymptotically stable.
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x(n+1)

x(n)

x(0) x* x(0)

FIGURE 1.20. Unstable. f ′′(x*) > 0 (semistable from the left).

x(n+1)

x(0)    x*                           x 0

x(n)

FIGURE 1.21. Unstable. f ′′(x*) < 0 (semistable from the right).

Proof.
(i) If f ′′(x*) �= 0, then the curve y = f(x) is either concave upward if

f ′′(x*) > 0 or concave downward if f ′′(x*) < 0, as shown in Figures 1.20,
1.21, 1.22, 1.23. If f ′′(x*) > 0, then f ′(x) > 1 for all x in a small interval
I = (x*, x*+ε). Using the same proof as in Theorem 1.13, it is easy to show
that x∗ is unstable. On the other hand, if f ′′(x*) < 0, then f ′(x) > 1 for
all x in a small interval I = (x* − ε, x*). Hence x∗ is again unstable. �
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x(n+1)

x(0)        x*          x(0)
x(n)

FIGURE 1.22. Unstable. f ′(x*) = 1, f ′′(x*) = 0, and f ′′′(x*) > 0.

x(n+1)

x(0)                    x*                         x(0)
x(n)

FIGURE 1.23. Asymptotically stable. f ′(x*) = 1, f ′′(x*) = 0, and f ′′′(x*) < 0.

Proofs of parts (ii) and (iii) remain for the student’s pleasure as Exercises
1.5, Problem 14.

We now use the preceding result to investigate the case f ′(x*) = −1.
But before doing so, we need to introduce the notion of the Schwarzian

derivative of a function f :

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2

[
f ′′(x)
f ′(x)

]2
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Note that if f ′(x∗) = −1, then

Sf(x∗) = −f ′′′(x∗) − 3
2

(f ′′(x∗))2 .

Theorem 1.16. Suppose that for the equilibrium point x∗ of (1.1.1),
f ′(x*) = −1. The following statements then hold:

(i) If Sf(x*) < 0, then x∗ is asymptotically stable.

(ii) If Sf(x*) > 0, then x∗ is unstable.

Proof. Contemplate the equation

y(n + 1) = g(y(n)), where g(y) = f2(y). (1.5.4)

We will make two observations about (1.5.4). First, the equilibrium point
x∗ of (1.1.1) is also an equilibrium point of (1.5.4). Second, if x∗ is asymp-
totically stable (unstable) with respect to (1.5.4), then it is so with respect
to (1.1.1). (Why?) (Exercises 1.5, Problem 12.) Now,

d

dy
g(y) =

d

dy
f(f(y)) = f ′(f(y))f ′(y).

Thus
d

dy
g(x*) = [f ′(x*)]2 = 1. Hence Theorem 1.15 applies to this

situation. We need to evaluate
d2

dy2 g(x∗) :

d2

dy2 g(y) =
d2

dy2 f(f(y)) = [f ′(f(y))f ′(y)]′

= [f ′(y)]2f ′′(f(y)) + f ′(f(y))f ′′(y).

Hence
d2

dy2 g(x*) = 0.

Now, Theorem 1.15 [parts (ii) and (iii)] tells us that the asymptotic stability
of x∗ is determined by the sign of [g(x*)]′′′. Using the chain rule again, one
may show that

[g(x*)]′′′ = −2f ′′′(x*) − 3[f ′′(x*)]2. (1.5.5)

(The explicit proof with the chain rule remains as Exercises 1.5, Problem
13.) This step rewards us with parts (i) and (ii), and the proof of the
theorem is now complete. �

Example 1.17. Consider the difference equation x(n+1) = x2(n)+3x(n).
Find the equilibrium points and determine their stability.
Solution The equilibrium points are 0 and −2. Now, f ′(x) = 2x + 3.
Since f ′(0) = 3, it follows from Theorem 1.13 that 0 is unstable. Now,
f ′(−2) = −1, so Theorem 1.16 applies. Using (1.5.5) we obtain −2f ′′′(−2)−
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x0=.5
x(n)

x0=2.9

x(n+1)

FIGURE 1.24. Stair step diagram for x(n + 1) = x2(n) + 3x(n).

3[f ′′(−2)]2 = −12 < 0. Theorem 1.16 then declares that the equilibrium
point −2 is asymptotically stable. Figure 1.24 illustrates the stair step
diagram of the equation.

Remark: One may generalize the result in the preceding example to a gen-
eral quadratic map Q(x) = ax2 + bx + c, a �= 0. Let x∗ be an equilibrium
point of Q(x), i.e., Q(x∗) = x∗. Then the following statements hold true.

(i) If Q′(x∗) = −1, then by Theorem 1.16, the equilibrium point x∗ is
asymptotically stable. In fact, there are two equilibrium points for Q(x);

x∗
1 = [(1 − b) −

√
(b − 1)2 − 4ac]/2a;

x∗
2 = [(1 − b) +

√
(b − 1)2 − 4ac]/2a.

It is easy to see that Q′(x∗
1) = −1, if (b−1)2 = 4ac+4 and Q′(x∗

2) �= −1.
Thus x∗

1 is asymptotically stable if (b − 1)2 = 4ac + 4 (Exercises 1.5,
Problem 8).

(ii) If Q′(x∗) = 1, then by Theorem 1.15, x∗ is unstable. In this case, we
have only one equilibrium point x∗ = (1 − b)/2a. Thus, x∗ is unstable
if (b − 1)2 = 4ac.

Remark:

(i) Theorem 1.15 fails if for a fixed point x∗, f ′(x∗) = 1, f ′′(x∗) =
f ′′′(x∗) = 0. For example, for the map f(x) = x+(x−1)4 and its fixed
point x∗ = 1, f ′(x∗) = 1, f ′′(x∗) = f ′′′(x∗) = 0, and f (4)(x∗) = 24 > 0.

(ii) Theorem 1.16 fails if f ′(x∗) = −1, and Sf(x∗) = 0. This may be
illustrated by the function f(x) = −x+2x2 −4x3. For the fixed x∗ = 0,
f ′(x∗) = −1, and Sf(x∗) = 0.
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In Appendix A, we present the general theory developed by Dannan,
Elaydi, and Ponomarenko in 2003 [30]. The stability of the fixed points in
the above examples will be determined.

Exercises 1.5

In Problems 1 through 7, find the equilibrium points and determine their
stability using Theorems 1.13, 1.15, and 1.16.

1. x(n + 1) = 1
2 [x3(n) + x(n)].

2. x(n + 1) = x2(n) + 1
8 .

3. x(n + 1) = tan−1 x(n).

4. x(n + 1) = x2(n).

5. x(n + 1) = x3(n) + x(n).

6. x(n + 1) =
αx(n)

1 + βx(n)
, α > 1 and β > 0.

7. x(n + 1) = −x3(n) − x(n).

8. Let Q(x) = ax2 + bx+ c, a �= 0, and let x∗ be a fixed point of Q. Prove
the following statements:

(i) If Q′(x∗) = −1, then x∗ is asymptotically stable. Then prove the
rest of Remark (i).

(ii) If Q′(x∗) = 1, then x∗ is unstable. Then prove the rest of Remark
(ii).

9. Suppose that in (1.5.3), g(x*) = g′(x*) = 0 and g′′(x*) �= 0. Prove
that x∗ is an equilibrium point of (1.5.3).

10. Prove Theorem 1.13, part (ii).

11. Prove that if x∗ is an equilibrium point of (1.5.1), then it is an equi-
librium point of (1.5.1). Show also that the converse is false in general.
For what class of maps f(x) does the converse hold?

12. Prove that if an equilibrium point x∗ of (1.5.1) is asymptotically stable
with respect to (1.5.4) (or unstable, as the case may be), it is also so
with respect to (1.1.1).

13. Verify formula (1.5.5).

14. Prove Theorem 1.15, parts (ii) and (iii).

15. Definition of Semistability. An equilibrium point x∗ of x(n + 1) =
f(x(n)) is semistable (from the right) if given ε > 0 there exists δ > 0
such that if x(0) > x*, x(0) − x∗ < δ, then x(n) − x∗ < ε. Semistabil-
ity from the left is defined similarly. If in addition, limn→∞ x(n) = x∗
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whenever x(0) − x* < η{x* − x(0) < η}, then x∗ is said to be semi-
asymptotically stable from the right {or from the left, whatever the
case may be}.
Suppose that if f ′(x*) = 1, then f ′′(x∗) �= 0. Prove that x∗ is:

(i) semiasymptotically stable from the right from the right if f ′′(x*) <
0;

(ii) semiasymptotically stable from the left from the left if f ′′(x*) > 0.

16. Determine whether the equilibrium point x* = 0 is semiasymptotically
stable from the left or from the right.

(a) x(n + 1) = x3(n) + x2(n) + x(n).

(b) x(n + 1) = x3(n) − x2(n) + x(n).

1.6 Periodic Points and Cycles

The second most important notion in the study of dynamical systems is the
notion of periodicity. For example, the motion of a pendulum is periodic.
We have seen in Example 1.10 that if the sensitivity ms of the suppliers to
price is equal to the sensitivity of consumers to price, then prices oscillate
between two values only.

Definition 1.18. Let b be in the domain of f . Then:

(i) b is called a periodic point of f (or of (1.5.1)) if for some positive integer
k, fk(b) = b. Hence a point is k-periodic if it is a fixed point of fk, that
is, if it is an equilibrium point of the difference equation

x(n + 1) = g(x(n)), (1.6.1)

where g = fk.

The periodic orbit of b, O(b) = {b, f(b), f2(b), . . . , fk−1(b)}, is often
called a k-cycle.

(ii) b is called eventually k-periodic if for some positive integer m, fm(b) is
a k-periodic point. In other words, b is eventually k-periodic if

fm+k(b) = fm(b).

Graphically, a k-periodic point is the x-coordinate of the point where the
graph of fk meets the diagonal line y = x. Figure 1.25 depicts the graph of
f2, where f is the logistic map, which shows that there are four fixed points
of f2, of which two are fixed points of f as shown in Figure 1.26. Hence
the other two fixed points of f2 form a 2-cycle. Notice also that the point
x0 = 0.3 (in Figure 1.26) goes into a 2-cycle, and thus it is an eventually
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x(n+2)

x(n)

FIGURE 1.25. Graph of f2 with four fixed points. f(x) = 3.43x(1 − x).

x(n+1)

x(n)
x0 x*

FIGURE 1.26. x0 goes into a 2-cycle. f(x) = 3.43x(1 − x).

2-periodic point. Moreover, the point x* = 0.445 is asymptotically stable
relative to f2 (Figure 1.27).

Observe also that if A = −1 in (1.3.7), then f2(p0) = −(−p0 +B)+B =
p0. Therefore, every point is 2-periodic (see Figure 1.10). This means that
in this case, if the initial price per unit of a certain commodity is p0, then
the price oscillates between p0 and B − p0.

Example 1.19. Consider again the difference equation generated by the
tent function

T (x) =

⎧⎪⎨⎪⎩
2x for 0 ≤ x ≤ 1

2
,

2(1 − x) for
1
2

< x ≤ 1 .
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x(n+2)

x0=0.35
x(n)

FIGURE 1.27. x∗ ≈ 0.445 is asymptotically stable relative to f2.

This may also be written in the compact form

T (x) = 1 − 2
∣∣∣∣x − 1

2

∣∣∣∣ .
We first observe that the periodic points of period 2 are the fixed points of
T 2. It is easy to verify that T 2 is given by

T 2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4x for 0 ≤ x <
1
4
,

2(1 − 2x) for
1
4

≤ x <
1
2
,

4
(

x − 1
2

)
for

1
2

≤ x <
3
4
,

4(1 − x) for
3
4

≤ x ≤ 1.

There are four equilibrium points (Figure 1.28): 0, 0.4, 2
3 , and 0.8, two of

which, 0 and 2
3 , are equilibrium points of T . Hence {0.4, 0.8} is the only

2-cycle of T . Notice from Figure 1.29 that x* = 0.8 is not stable relative to
T 2.

Figure 1.30 depicts the graph of T 3. It is easy to verify that
{ 2

7 , 4
7 , 6

7

}
is

a 3-cycle. Now,

T

(
2
7

)
=

4
7
, T

(
4
7

)
=

6
7
, T

(
6
7

)
=

2
7
.

Using a computer or hand-held calculator, one may show (using the stair
step diagram) that the tent map T has periodic points of all periods. This
is a phenomenon shared by all equations that possess a 3-cycle. It was
discovered by Li and Yorke [92] in their celebrated paper “Period Three
Implies Chaos.”
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x(n=2)

0.4 2
3

0.8 1
x(n)

FIGURE 1.28. Fixed points of T 2.

x*=0.8

x(n)

x(n+2)

FIGURE 1.29. x* = 0.8 is unstable relative to T 2.

x(n+3)

x(n)

FIGURE 1.30. Fixed points of T 3.
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We now turn our attention to explore the stability of periodic points.

Definition 1.20. Let b be a k-period point of f . Then b is:

(i) stable if it is a stable fixed point of fk,

(ii) asymptotically stable if it is an asymptotically stable fixed point of fk,

(iii) unstable if it is an unstable fixed point of fk.

Notice that if b possesses a stability property, then so does every point
in its k-cycle {x(0) = b, x(1) = f(b), x(2) = f2(b), . . . , x(k − 1) = fk−1(b)}.
Hence we often speak of the stability of a k-cycle or a periodic orbit. Figure
1.29 shows that the 2-cycle in the tent map is not stable, since x* = 0.8
is not stable as a fixed point of T 2, while the 2-cycle in the logistic map is
asymptotically stable (see Figure 1.27).

Since the stability of a k-periodic point b of (1.1.1) reduces to the study
of the stability of the point as an equilibrium point of (1.6.1), one can
use all the theorems in the previous section applied to fk. For example,
Theorem 1.13 may be modified as follows.

Theorem 1.21. Let O(b) = {b = x(0), x(1), . . . , x(k − 1)} be a k-cycle
of a continuously differentiable function f . Then the following statements
hold:

(i) The k-cycle O(b) is asymptotically stable if

|f ′(x(0))f ′(x(1)), . . . , f ′(x(k − 1))| < 1.

(ii) The k-cycle O(b) is unstable if

|f ′(x(0))f ′(x(1)), . . . , f ′(x(k − 1))| > 1.

Proof. We apply Theorem 1.13 to (1.6.1). Notice that by using the chain
rule one may show that

[fk(x(r))]′ = f ′(x(0))f ′(x(1)), . . . , f ′(x(k − 1)).

(See Exercises 1.6, Problem 12.) �

The conclusion of the theorem now follows.

Example 1.22. Consider the map Q(x) = x2−0.85 defined on the interval
[−2, 2]. Find the 2-cycles and determine their stability.
Solution Observe that Q2(x) = (x2 − 0.85)2 − 0.85. The 2-periodic points
are obtained by solving the equation

Q2(x) = x, or x4 − 1.7x2 − x − 0.1275 = 0. (1.6.2)

This equation has four roots, two of which are fixed points of the map Q(x).
These two fixed points are the roots of the equation

x2 − x − 0.85 = 0. (1.6.3)
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To eliminate these fixed points of Q(x) from (1.6.2) we divide the left-hand
side of (1.6.2) by the left-hand side of (1.6.3) to obtain the second-degree
equation

x2 + x + 0.15 = 0. (1.6.4)

The 2-periodic points are now obtained by solving (1.6.4). They are given
by

a =
−1 +

√
0.4

2
, b =

−1 − √
0.4

2
.

To check the stability of the cycle {a, b} we apply Theorem 1.21. Now,

|Q′(a)Q′(b)| = |(−1 +
√

0.4)(−1 −
√

0.4)| = 0.6 < 1.

Hence by Theorem 1.21, part (i), the 2-cycle is asymptotically stable.

Exercises 1.6

1. Suppose that the difference equation x(n + 1) = f(x(n)) has a 2-cycle
whose orbit is {a, b}. Prove that:

(i) the 2-cycle is asymptotically stable if |f ′(a)f ′(b)| < 1,

(ii) the 2-cycle is unstable if |f ′(a)f ′(b)| > 1.

2. Let T be the tent map in Example 1.17. Show that
{2

9 , 4
9 , 8

9

}
is an

unstable 3-cycle for T .

3. Let f(x) = − 1
2x2 − x + 1

2 . Show that 1 is an asymptotically stable
2-periodic point of f .

In Problems 4 through 6 find the 2-cycle and then determine its stability.

4. x(n + 1) = 3.5x(n)[1 − x(n)].

5. x(n + 1) = 1 − x2.

6. x(n + 1) = 5 − (6/x(n)).

7. Let f(x) = ax3 − bx + 1, where a, b ∈ R. Find the values of a and b for
which {0, 1} is an attracting 2-cycle.

Consider Baker’s function defined as follows:

B(x) =

⎧⎪⎨⎪⎩
2x for 0 ≤ x ≤ 1

2
,

2x − 1 for
1
2

< x ≤ 1.

Problems 8, 9, and 10 are concerned with Baker’s function B(x) on [0, 1].

*8. (Hard). Draw Baker’s function B(x). Then find the number of
n-periodic points of B.
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9. Sketch the graph of B2 and then find the 2-cycles of Baker’s function
B.

10. (Hard). Show that if m is an odd positive integer, then x = k/m is
periodic, for k = 1, 2, . . . , m − 1.

11. Consider the quadratic map

Q(x) = ax2 + bx + c, a �= 0.

(a) If {d, e} is a 2-cycle such that Q′(d)Q′(e) = −1, prove that it is
asymptotically stable.

(b) If {d, e} is a 2-cycle with Q′(d)Q′(e) = 1, what can you say about
the stability of the cycle?

12. (This exercise generalizes the result in Problem 1.) Let {x(0), x(1), . . . ,
x(k − 1)} be a k-cycle of (1.2.1). Prove that:

(i) if |f ′(x(0))f ′(x(1)), . . . , f ′(x(k − 1))| < 1, then the k-cycle is
asymptotically stable,

(ii) if |f ′(x(0))f ′(x(1)), . . . , f ′(x(k − 1))| > 1, then the k-cycle is
unstable.

13. Give an example of a decreasing function that has a fixed point and a
2-cycle.

14. (i) Can a decreasing map have a k-cycle for k > 1?

(ii) Can an increasing map have a k-cycle for k > 1?

Carvalho’s Lemma. In [18] Carvalho gave a method to find periodic
points of a given function. The method is based on the following lemma.

Lemma 1.23. If k is a positive integer and x(n) is a periodic sequence
of period k, then the following hold true:

(i) If k > 1 is odd and m = k−1
2 , then

x(n) = c0 +
m∑

j=1

[
cj cos

(
2jnπ

k

)
+ dj sin

(
2jnπ

k

)]
,

for all n ≥ 1.

(ii) If k is even and k = 2m, then

x(n) = c0 + (−1)ncm +
m−1∑
j=1

[
cj cos

(
2jnπ

k

)
+ dj sin

(
2jnπ

k

)]
,

for all n ≥ 1.
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Example 1.24 [23]. Consider the equation

x(n + 1) = x(n) exp(r(1 − x(n)), (1.6.5)

which describes a population with a propensity to simple exponential
growth at low densities and a tendency to decrease at high densities.
The quantity λ = exp(r(1 − x(n))) could be considered the density-
dependent reproductive rate of the population. This model is plausible
for a single-species population that is regulated by an epidemic disease at
high density.

The nontrivial fixed point of this equation is given by x∗ = 1. Now,
f ′(1) = 1 − r. Hence x∗ = 1 is asymptotically stable if 0 < r ≤ 2 (check
r = 2). At r = 2, x∗ = 1 loses its stability and gives rise to an asymptotically
stable 2-cycle. Carvalho’s lemma implies

x(n) = a + (−1)nb.

Plugging this into equation (1.6.5) yields

a − (−1)nb = (a + (−1)nb) exp r(1 − a − (−1)nb).

The shift n 
→ n + 1 gives

a + (−1)nb = (a − (−1)nb) exp r(1 − a + (−1)nb).

Hence

a2 − b2 = (a2 − b2) exp 2r(1 − a).

Thus either a2 = b2, which gives the trivial solution 0, or a = 1. Hence a
2-periodic solution has the form x(n) = 1 + (−1)nb. Plugging this again
into equation (1.6.5) yields

1 − (−1)nb = (1 + (−1)nb) exp((−1)n+1rb).

Let y = (−1)n+1b.Then

1 + y = (1 − y)ery,

r =
1
y

ln
(

1 + y

1 − y

)
= g(y).

The function g has its minimum at 0, where g(0) = 2. Thus, for r <
2, g(y) = r has no solution, and we have no periodic points, as predicted
earlier. However, each r > 2 determines values ±yr and the corresponding
coefficient (−1)nb. Further analysis may show that this map undergoes
bifurcation similar to that of the logistic map.

Exercises 1.6 (continued).

In Problems 15 through 20, use Carvalho’s lemma (Lemma 1.23).
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15. Consider Ricker’s equation

x(n + 1) = x(n) exp(r(1 − x(n))).

Find the 2-period solution when r > 2.

16. The population of a certain species is modeled by the difference equa-
tion x(n + 1) = µx(n)e−x(n), x(n) ≥ 0, µ > 0. For what values of µ
does the equation have a 2-cycle?

17. Use Carvalho’s lemma to find the values of c for which the map

Qc(x) = x2 + c, c ∈ [−2, 0],

has a 3-cycle and then determine its stability.

18*. (Term Project). Find the values of µ where the logistic equation x(n+
1) = µx(n)[1 − x(n)] has a 3-periodic solution.

19. Use Carvalho’s lemma to find the values of µ where the logistic
equation x(n + 1) = µx(n)[1 − x(n)] has a 2-periodic solution.

20. Find the 3-periodic solutions of the equation x(n + 1) = ax(n), a �= 1.

1.7 The Logistic Equation and Bifurcation

Let us now return to the most important example in this chapter: the
logistic difference equation

x(n + 1) = µx(n)[1 − x(n)], (1.7.1)

which arises from iterating the function

Fµ(x) = µx(1 − x), x ∈ [0, 1], µ > 0. (1.7.2)

1.7.1 Equilibrium Points
To find the equilibrium points (fixed points of Fµ) of (1.7.1) we solve the
equation

Fµ(x*) = x*.

Hence the fixed points are 0, x* = (µ − 1)/µ. Next we investigate the
stability of each equilibrium point separately.

(a) The equilibrium point 0. (See Figures 1.31, 1.32.) Since F ′
µ(0) = µ, it

follows from Theorems 1.13 and 1.15 that:

(i) 0 is an asymptotically stable fixed point for 0 < µ < 1,

(ii) 0 is an unstable fixed point for µ > 1.
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x(n+1)

x0

x(n)

FIGURE 1.31. 0 < µ < 1 : 0 is an asymptotically stable fixed point.

x(n+1)

x0 x*
x(n)

FIGURE 1.32. µ > 1 : 0 is an unstable fixed point, x∗ is an asymptotically fixed
point.

The case where µ = 1 needs special attention, for we have F ′
1(0) = 1

and F ′′(0) = −2 �= 0. By applying Theorem 1.15 we may conclude that
0 is unstable. This is certainly true if we consider negative as well as
positive initial points in the neighborhood of 0. Since negative initial
points are not in the domain of Fµ, we may discard them and consider
only positive initial points. Exercises 1.5, Problem 16 tells us that 0 is
semiasymptotically stable from the right, i.e., x∗ = 0 is asymptotically
stable in the domain [0, 1].

(b) The equilibrium point x* = (µ − 1)/µ, µ �= 1. (See Figures 1.32, 1.33.)

In order to have x* ∈ (0, 1] we require that µ > 1. Now, F ′
µ((µ−1)/µ) = 2−

µ. Thus using Theorems 1.13 and 1.16 we obtain the following conclusions:
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x(n)
x x

x(n+1)

0
*

FIGURE 1.33. µ > 3: x∗ is an unstable fixed point.

(i) x∗ is an asymptotically stable fixed point for 1 < µ ≤ 3 (Figure 1.32).

(ii) x∗ is an unstable fixed point for µ > 3 (Figure 1.33).

1.7.2 2-Cycles
To find the 2-cycles we solve the equation F 2

µ(x) = x (or we solve x2 =
µx1(1 − x1), x1 = µx2(1 − x2)),

µ2x(1 − x)[1 − µx(1 − x)] − x = 0. (1.7.3)

Discarding the equilibrium points 0 and x* = µ−1
µ , one may then divide

(1.7.3) by the factor x(x − (µ − 1)/µ) to obtain the quadratic equation

µ2x2 − µ(µ + 1)x + µ + 1 = 0.

Solving this equation produces the 2-cycle

x(0) =
[
(1 + µ) −

√
(µ − 3)(µ + 1)

] /
2µ,

x(1) =
[
(1 + µ) +

√
(µ − 3)(µ + 1)

] /
2µ. (1.7.4)

Clearly, there are no periodic points of period 2 for 0 < µ ≤ 3, and there
is a 2-cycle for µ > 3. For our reference we let µ0 = 3.

1.7.2.1 Stability of the 2-Cycle {x(0), x(1)} for µ > 3

From Theorem 1.21, this 2-cycle is asymptotically stable if

|F ′
µ(x(0))F ′

µ(x(1))| < 1,

or

−1 < µ2(1 − 2x(0))(1 − 2x(1)) < 1. (1.7.5)

Substituting from (1.7.4) the values of x(0) and x(1) into (1.7.5), we obtain

3 < µ < 1 +
√

6 ≈ 3.44949.
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Conclusion This 2-cycle is attracting if 3 < µ < 3.44949 . . . .

Question What happens when µ = 1 +
√

6?
In this case, [

F 2
µ(x(0))

]′
= F ′

µ(x(0))F ′
µ(x(1)) = −1. (1.7.6)

(Verify in Exercises 1.7, Problem 7.)
Hence we may use Theorem 1.16, part (i), to conclude that the 2-cycle is

also attracting. For later reference, let µ1 = 1 +
√

6. Moreover, the 2-cycle
becomes unstable when µ > µ1 = 1 +

√
6.

1.7.3 22-Cycles
To find the 4-cycles we solve F 4

µ(x) = x. The computation now becomes
unbearable, and one should resort to a computer to do the work. It turns
out that there is a 22-cycle when µ > 1 +

√
6, which is attracting for

1 +
√

6 < µ < 3.544090 . . . . This 22-cycle becomes unstable at µ > µ2 =
3.544090 . . . .

When µ = µ2, the 22-cycle bifurcates into a 23 cycle. The new 23 cycle
is attracting for µ3 < µ ≤ µ4 for some number µ4. This process of double
bifurcation continues indefinitely. Thus we have a sequence {µn}∞

n=0 where
at µn there is a bifurcation from a 2n−1-cycle to a 2n-cycle. (See Figures
1.34, 1.35.) Table 1.4 provides some astonishing patterns.

From Table 1.4 we bring forward the following observations:

(i) The sequence {µn} seems to converge to a number µ∞ = 3.57 . . . .

(ii) The quotient (µn − µn−1)/(µn+1 − µn) seems to tend to a number δ =
4.6692016 . . . . This number is called the Feigenbaum number after its
discoverer, the physicist Mitchell Feigenbaum [56]. In fact, Feigenbaum
made a much more remarkable discovery: The number δ is universal
and is independent of the form of the family of maps fµ. However, the
number µ∞ depends on the family of functions under consideration.

1                                 3         1+      6

µ

1

x

FIGURE 1.34. Partial bifurcation diagram for {Fµ}.
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µ

FIGURE 1.35. The bifurcation diagram of Fµ.

TABLE 1.4. Feigenbaum table.

n µn µn − µn−1
µn − µn−1

µn+1 − µn

0 3 — —
1 3.449499 . . . 0.449499 . . . —
2 3.544090 . . . 0.094591 . . . 4.752027 . . .
3 3.564407 . . . 0.020313 . . . 4.656673 . . .
4 3.568759 . . . 0.004352 . . . 4.667509 . . .
5 3.569692 . . . 0.00093219 . . . 4.668576 . . .
6 3.569891 . . . 0.00019964 . . . 4.669354 . . .

Theorem 1.25 (Feigenbaum [56] (1978)). For sufficiently smooth fam-
ilies of maps (such as Fµ) of an interval into itself, the number δ =
4.6692016 does not in general depend on the family of maps.

1.7.4 The Bifurcation Diagram
Here the horizontal axis represents the µ values, and the vertical axis repre-
sents higher iterates Fn

µ (x). For a fixed x0, the diagram shows the eventual
behavior of Fn

µ (x0). The bifurcation diagram was obtained with the aid of
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a computer for x0 = 1
2 , taking increments of 1

500 for µ ∈ [0, 4] and plotting
all points

(
µ, Fn

µ

( 1
2

))
for 200 ≤ n ≤ 500.

Question What happens when µ > µ∞?
Answer From Figure 1.35 we see that for µ∞ < µ ≤ 4 we have a large
number of small windows where the attracting set is an asymptotically sta-
ble cycle. The largest window appears at approximately µ = 3.828427 . . .,
where we have an attracting 3-cycle. Indeed, there are attracting k-cycles
for all positive integers k, but their windows are so small that they may
not be noticed without sufficient zooming. As in the situation where
µ < µ∞, these k-cycles lose stability and then double bifurcate into at-
tracting 2nk-cycles. We observe that outside these windows the picture
looks chaotic!

Remarks: Our analysis of the logistic map Fµ may be repeated for any
quadratic map Q(x) = ax2 + bx + c. Indeed, the iteration of the quadratic
map Q (with suitably chosen parameters) is equivalent to the iteration of
the logistic map Fµ. In other words, the maps Q and Fµ possess the same
type of qualitative behavior. The reader is asked, in Exercises 1.7, Problem
11, to verify that one can transform the difference equation

y(n + 1) = y2(n) + c (1.7.7)

to

x(n + 1) = µx(n)[1 − x(n)] (1.7.8)

by letting

y(n) = −µx(n) +
µ

2
, c =

µ

2
− µ2

4
. (1.7.9)

Note here that µ = 2 corresponds to c = 0, µ = 3 corresponds to c = −3
4 ,

and µ = 4 corresponds to c = −2. Naturally, we expect to have the same
behavior of the iteration of (1.7.7) and (1.7.8) at these corresponding values
of µ and c.

Comments: We are still plagued by numerous unanswered questions in
connection with periodic orbits (cycles) of the difference equation

x(n + 1) = f(x(n)). (1.7.10)

Question A. Do all points converge to some asymptotically stable periodic
orbit of (1.7.8)?
The answer is definitely no.

If f(x) = 1 − 2x2 in (1.7.10), then there are no asymptotically stable
(attractor) periodic orbits. Can you verify this statement? If you have some
difficulty here, it is not your fault. Obviously, we need some tools to help
us in verifying that there are no periodic attractors.
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Question B. If there is a periodic attractor of (1.7.10), how many points
converge to it?
Once again, we need more machinery to answer this question.

Question C. Can there be several distinct periodic attractors for (1.7.10)?

This question leads us to the Li–Yorke famous result “Period Three Implies
Chaos” [92]. To explain this and more general results requires the intro-
duction of the so-called Schwarzian derivative of f(x). We will come back
to these questions in Chapter 6.

Exercises 1.7

Unless otherwise stated, all the problems here refer to the logistic difference
equation (1.7.1).

1. Use the stair step diagram for F k
4 on [0, 1], k = 1, 2, 3, . . ., to demon-

strate that F4 has at least 2k periodic points of period k (including
periodic points of periods that are divisors of k).

2. Find the exact solution of x(n + 1) = 4x(n)[1 − x(n)].

3. Let x* = (µ − 1)/µ be the equilibrium point of (1.7.1). Show that:

(i) For 1 < µ ≤ 3, x∗ is an attracting fixed point.

(ii) For µ > 3, x∗ is a repelling fixed point.

4. Prove that limn→∞ Fn
2 (x) = 1

2 if 0 < x < 1.

5. Let 1 < µ ≤ 2 and let x* = (µ − 1)/µ be the equilibrium point of
(1.7.1). Show that if x* < x < 1

2 , then limn→∞ Fn
µ (x) = x*.

6. Prove that the 2-cycle given by (1.7.4) is attracting if 3 < µ < 1 +
√

6.

7. Verify formula (1.7.6). Then show that the 2-cycle in (1.7.4) is
attracting when µ = 1 +

√
6.

8. Verify that µ2 ≈ 3.54 using a calculator or a computer.

*9. (Project). Show that the map Hµ(x) = sin µx leads to the same value
for the Feigenbaum number δ.

10. Show that if |µ − µ1| < ε, then |Fµ(x) − Fµ1(x)| < ε for all x ∈ [0, 1].

11. Show that (1.7.7) can be transformed to the logistic equation (1.7.8),
with c = µ

2 − µ2

4 .

12. (a) Find the equilibrium points y*
1 , y*

2 of (1.7.7).

(b) Find the values of c where y*
1 is attracting or unstable.

(c) Find the values of c where y*
2 is attracting or unstable.
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13. Find the value of c0 where (1.7.7) double bifurcates for c > c0. Check
your answer using (1.7.9).

*14. (Project). Use a calculator or a computer to develop a bifurcation
diagram, as in Figures 1.34, 1.35, for (1.7.6).

*15. (Project). Develop a bifurcation diagram for the quadratic map
Qλ(x) = 1 − λx2 on the interval [−1, 1], λ ∈ (0, 2].

In Problems 16–19 determine the stability of the fixed points of the
difference equation.

16. x(n + 1) = x(n) + 1
π sin(2πx(n)).

17. x(n + 1) = 0.5 sin(πx(n)).

18. x(n + 1) = 2x(n) exp(−x(n)).

19. A population of birds is modeled by the difference equation

x(n + 1) =

{
3.2x(n) for 0 ≤ x(n) ≤ 1,

0.5x(n) for x(n) > 1,

where x(n) is the number of birds in year n. Find the equilibrium points
and then determine their stability.

1.8 Basin of Attraction and Global Stability
(Optional)

It is customary to call an asymptotically stable fixed point or a cycle an
attractor. This name makes sense since in this case all nearby points tend
to the attractor. The maximal set that is attracted to an attractor M is
called the basin of attraction of M . Our analysis applies to cycles of any
period.

Definition 1.26. Let x∗ be a fixed point of map f . Then the basin of
attraction (or the stable set) W s(x∗) of x∗ is defined as

W s(x∗) = {x : lim
n→∞ fn(x) = x∗}.

In other words, W s(x∗) consists of all points that are forward asymptotic
to x∗.

Observe that if x∗ is an attracting fixed point, W s(x∗) contains an open
interval around x∗. The maximal interval in W s(x∗) that contains x∗ is
called the immediate basin of attraction and is denoted by Bs(x∗).

Example 1.27. The map f(x) = x2 has one attracting fixed point x∗ = 0.
Its basin of attraction W s(0) = (−1, 1). Note that 1 is an unstable fixed
point and –1 is an eventually fixed point that goes to 1 after one iteration.
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1

1

2 3 4 5

2

3

4

5

−1−2−3

−3

−2

−1

FIGURE 1.36. The basin of attraction W s(0) = (−1, 1) and W s(4) = [−2, −1) ∪
(1, 4]. The immediate basin of attraction B(4) = (1, 4].

Example 1.28. Let us now modify the map f . Consider the map g :
[−2, 4] → [−2, 4] defined as

g(x) =

{
x2 if −2 ≤ x ≤ 1,

3
√

x − 2 if 1 < x ≤ 4.

The map g has three fixed points x∗
1 = 0, x∗

2 = 1, x∗
3 = 4. The basin

of attraction of x∗
1 = 0, W s(0) = (−1, 1), while the basin of attraction

of x∗
3 = 4, W s(4) = [−2,−1) ∪ (1, 4]. Moreover, the immediate basin of

attractions of x∗
1 = 0 is B(0) = W s(0) = (−1, 1), while B(4) = (1, 4].

Remark: Observe that in the preceding example, the basins of attraction
of the two fixed points x∗

1 = 0 and x∗
3 = 4 are disjoint. This is no accident

and is, in fact, generally true. This is due to the uniqueness of a limit of
a sequence. In other words, if the lim

n→∞ fn(x) = L1 and lim
n→∞ fn(x) = L2,

then certainly L1 = L2.

It is worth noting here that finding the basin of attraction of a fixed point
is in general a difficult task. But even more difficult is providing a rigorous
proof. The most efficient method to determining the basin of attraction
is the method of Liapunov functions, which will be developed in Chapter
4. In this section, we will develop some of the basic topological properties
of the basin of attractions. Henceforth, all our maps are assumed to be
continuous. We begin our exposition by defining the important notion of
invariance.

Definition 1.29. A set M is positively invariant under a map f if
f(M) ⊆ M . In other words, for every x ∈ M , O(x) ⊆ M . Since we are only
considering forward iterations of f , the prefix “positively” will henceforth
be dropped.
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Clearly an orbit of a point is invariant.
Next we show that the basin of attraction of an attracting fixed point is

invariant and open.

Theorem 1.30. Let f : I → I, I = [a, b], be a continuous map and let
x∗ ∈ [a, b] be a fixed point of f . Then the following statements hold true:

(i) The immediate basin of attraction B(x∗) is an interval containing
x∗, which is either an open interval (c, d) or of the form [a, c)(c, b].
Moreover, B(x∗) is invariant.

(ii) W s(x∗) is invariant. Furthermore, W s(x∗) is the union (maybe an
infinite union) of intervals that are either open intervals or of the form
[a, c) or (d, b].

Proof.

(i) We know that B(x∗) is a maximal interval in W s(x∗) containing x∗.
Assume that B(x∗) = [c, d), c �= a. Now for a given small ε > 0 there
exists m ∈ Z

+ such that fm(c) ∈ (x∗ − ε, x∗ + ε) ⊂ (c, d). Since
fm is continuous, there exists δ > 0 such that if x0 ∈ (c − δ, c +
δ), then fm(x0) ∈ (x∗ − ε, x∗ + ε) ⊂ B(x∗). Then x0 ∈ B(x∗) and
hence (c − δ, d) ⊂ W s(x∗) which violates the maximality of B(x∗).
Hence B(x∗) �= [c, a), a contradiction. Analogously, one may show that
W s(x∗) �= (c, d] if d �= b.

To prove the invariance of B(x∗), assume that there exists y ∈ B(x∗)
such that fr(y) /∈ B(x∗) for some r ∈ Z

+. Since B(x∗) is an interval,
it follows by the Intermediate Value Theorem that fr(B(x∗)) is also
an interval. Moreover, this interval fr(B(x∗)) must contain x∗ since
fr(x∗) = x∗. Thus fr(B(x∗))∩B(x∗) �= 0, and hence B(x∗)∪fr(B(x∗))
is an interval in W s(x∗), which violates the maximality of B(x∗).

(ii) The proof of this part is analogous to the proof of part (a) and will be
left to the reader to verify. �

There are several (popular) maps such as the logistic map and Ricker’s
map in which the basin of attraction, for the attractive fixed point, is the
entire space with the exception of one or two points (fixed or eventually
fixed). For the logistic map Fµ(x) = µx(1 − x) and 1 < µ < 3, the basin of
attraction W s(x∗) = (0, 1) for the fixed point x∗ = µ−1

µ . And for Ricker’s
map Rp(x) = xep−x, 0 < p < 2, the basin of attraction W s(x∗) = (0,∞),
for x∗ = p. Here we will consider only the logistic map and leave it to the
reader to prove the statement concerning Ricker’s map.

Notice that |F ′
µ(x)| = |µ−2µx| < 1 if and only if −1 < µ−2µx < 1. This

implies that µ−1
2µ < x < µ+1

2µ . Hence |F ′
µ(x)| < 1 for all x ∈

(
µ−1
2µ , µ+1

2µ

)
.

Observe that x∗ = µ−1
µ ∈

(
µ−1
2µ , µ+1

2µ

)
if and only if 1 < µ < 3. Now
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Fµ

(
µ+1
2µ

)
= Fµ

(
µ−1
2µ

)
= 1

2

[
(µ−1)(µ+1)

2µ

]
. Notice that since 1 < µ < 3,

µ−1
2µ < 1

2 · (µ−1)(µ+1)
2µ < µ+1

2µ . Hence
[

µ−1
2µ , µ+1

2µ

]
⊂ W s(x∗).

If z ∈
(
0, µ−1

2µ

)
, then F ′

µ(z) > 1. By the Mean Value Theorem,
Fµ(z)−Fµ(0)

z−0 = F ′
µ(γ), for some γ with 0 < γ < z. Hence

Fµ(z) − Fµ(0) = Fµ(z) ≥ βz

for some β > 1. Then for some r ∈ Z
+, F r

µ(z) ≥ βrz > µ−1
2µ and F r−1

µ (z) <

µ−1
2µ . Moreover, since F is increasing on

[
0, µ−1

2µ

]
, F r

µ(z) < Fµ

(
µ−1
2µ

)
=

µ
(

µ−1
2µ

)(
1 − µ−1

2µ

)
= µ−1

µ

(
µ+1

4

) ≤ x∗. Thus z ∈ W s(x∗). On the other

hand, Fµ

(
µ+1
2µ , 1

)
⊂ (0, x∗) and hence

(
µ+1
2µ , 1

)
⊂ W s(x∗). This shows

that W s(x∗) = (0, 1).
To summarize

Lemma 1.31. For the logistic map Fµ(x) = µx(1 − x), 1 < µ < 3,
W s(x∗) = (0, 1) for x∗ = µ−1

µ .

We now turn our attention to periodic points. If x̄ is a periodic point
of period k under the map f , then its basin of attraction W s(x̄) is its
basin of attraction as a fixed point under the map fk. Hence W s(x̄) =
{x : lim

n→∞(fk)n(x) = lim
n→∞ fkn(x) = x̄}. Let {x̄1, x̄2, . . . , x̄k} be a k-cycle

of a map f . Then clearly for i �= j, W s(x̄i) ∩ W s(x̄j) = ∅. (Why?) More
generally, if x is a periodic point of period r and y �= x is a periodic point
of period s, then W s(x) ∩ W s(y) = ∅ (Exercises 1.8, Problem 6).

Example 1.32. Consider the function f(x) = −x
1
3 . Then x∗ = 0 is the

only fixed point. There is a 2-cycle {−1, 1} with f(−1) = 1, f2(−1) = −1.
The cobweb diagram (Figure 1.37) shows that W s(1) = (0,∞), W s(−1) =
(−∞, 0).

1−1

FIGURE 1.37.
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Exercises 1.8

1. Investigate the basin of attraction of the fixed points of the map

f(x) =

{
x2 if −3 ≤ x ≤ 1,

4
√

x − 3 if 1 < x ≤ 9.

2. Let f(x) = |x − 1|. Find W s( 1
2 ).

3. Suppose that f : I → I is a continuous and onto map on an interval I.
Let x̄ be an asymptotically stable periodic point of period k ≥ 2. Show
that W s(f(x̄)) = f(W s(x̄)).

4. Describe the basin of attraction of all fixed and periodic points of the
maps:

(i) f(x) = x2,

(ii) g(x) = x3,

(iii) h(x) = 2xe−x,

(iv) q(x) = − 4
π arctanx.

5. Investigate the basin of attraction of the origin for the map

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x

2
if 0 ≤ x ≤ 0.2,

3x − 1
2

if 0.2 < x ≤ 1
2
,

2 − 2x if
1
2

< x ≤ 1.

6. Let f be a continuous map that has two periodic points x and y, x �= y,
with periods r and t, r �= t, respectively. Prove that W s(x)∩W s(y) = ∅.

7*. Suppose that a set M is invariant under a one-to-one continuous map
f . A point x ∈ M is said to be an interior point if (x − δ, x + δ) ⊂ M
for some δ > 0. Prove that the set of all interior points of M , denoted
by int(M), is invariant.

8. Let x∗ be an attracting fixed point under a continuous map f . If the
immediate basin of attraction B(x∗) = (a, b), show that the set {a, b}
is invariant. Then conclude that there are only three scenarios in this
case: (1) both a and b are fixed points, or (2) a or b is fixed and the
other is an eventually fixed point, or (3) {a, b} is a 2-cycle.

9. Show that for Ricker’s map

Rp(x) = xep−x, 0 < p < 2,

W s(x∗) = (0,∞), where x∗ = p.

10. (Term Project). Consider the logistic map Fµ(x) = µx(1 − x) with
3 < µ < 1 +

√
6. Let c = {x̄1, x̄2} be the attracting 2-cycle. Show that
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W s(c) = W s(x̄1) ∪ W s(x̄2) is all the points in (0, 1) except the set of
eventually fixed points (including the fixed point µ−1

µ ).





2
Linear Difference Equations
of Higher Order

In this chapter we examine linear difference equations of high order, namely,
those involving a single dependent variable.1 Such equations arise in almost
every field of scientific inquiry, from population dynamics (the study of a
single species) to economics (the study of a single commodity) to physics
(the study of the motion of a single body). We will become acquainted
with some of these applications in this chapter. We start this chapter by
introducing some rudiments of difference calculus that are essential in the
study of linear equations.

2.1 Difference Calculus

Difference calculus is the discrete analogue of the familiar differential and
integral calculus. In this section we introduce some very basic properties of
two operators that are essential in the study of difference equations. These
are the difference operator (Section 1.2)

∆x(n) = x(n + 1) − x(n)

and the shift operator

Ex(n) = x(n + 1).

1Difference equations that involve more than one dependent variable are called
systems of difference equations; we will inspect these equations in Chapter 3.

57
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It is easy to see that

Ekx(n) = x(n + k).

However, ∆kx(n) is not so apparent. Let I be the identity operator, i.e.,
Ix = x. Then, one may write ∆ = E − I and E = ∆ + I.

Hence,

∆kx(n) = (E − I)kx(n)

=
k∑

i=0

(−1)i

(
k

i

)
Ek−ix(n),

∆kx(n) =
k∑

i=0

(−1)i

(
k

i

)
x(n + k − i). (2.1.1)

Similarly, one may show that

Ekx(n) =
k∑

i=0

(
k

i

)
∆k−ix(n). (2.1.2)

We should point out here that the operator ∆ is the counterpart of the
derivative operator D in calculus. Both operators E and ∆ share one of
the helpful features of the derivative operator D, namely, the property of
linearity.

“Linearity” simply means that ∆[ax(n)+by(n)] = a∆x(n)+b∆y(n) and
E[ax(n) + by(n)] = aEx(n) + bEy(n), for all a and b ∈ R. In Exercises
2.1, Problem 1, the reader is allowed to show that both ∆ and E are linear
operators.

Another interesting difference, parallel to differential calculus, is the
discrete analogue of the fundamental theorem of calculus. 2

Lemma 2.1. The following statements hold:

(i)

n−1∑
k=n0

∆x(k) = x(n) − x(n0), (2.1.3)

2The fundamental theorem of calculus states that:

(i)
∫ b

a
df(x) = f(b) − f(a),

(ii) d
(∫ x

a
f(t) dt

)
= f(x).
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(ii)

∆

(
n−1∑
k=n0

x(k)

)
= x(n). (2.1.4)

Proof. The proof remains as Exercises 2.1, Problem 3. �

We would now like to introduce a third property that the operator ∆
has in common with the derivative operator D.

Let

p(n) = a0n
k + a1n

k−1 + · · · + ak

be a polynomial of degree k. Then

∆p(n) =
[
a0(n + 1)k + a1(n + 1)k−1 + · · · + ak

]
− [a0n

k + a1n
k−1 + · · · + ak

]
= a0knk−1 + terms of degree lower than (k − 1).

Similarly, one may show that

∆2p(n) = a0k(k − 1)nk−2 + terms of degree lower than (k − 2).

Carrying out this process k times, one obtains

∆kp(n) = a0k!. (2.1.5)

Thus,

∆k+ip(n) = 0 for i ≥ 1. (2.1.6)

2.1.1 The Power Shift
We now discuss the action of a polynomial of degree k in the shift operator
E on the term bn, for any constant b.

Let

p(E) = a0E
k + a1E

k−1 + · · · + akI (2.1.7)

be a polynomial of degree k in E.
Then

p(E)bn = a0b
n+k + a1b

n+k−1 + · · · + akbn

= (a0b
k + a1b

k−1 + · · · + ak)bn

= p(b)bn. (2.1.8)

A generalization of formula (2.1.8) now follows.
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Lemma 2.2. Let p(E) be the polynomial in (2.1.7) and let g(n) be any
discrete function. Then

p(E)(bng(n)) = bnp(bE)g(n). (2.1.9)

Proof. This is left to the reader as Exercises 2.1, Problem 4. �

2.1.2 Factorial Polynomials
One of the most interesting functions in difference calculus is the factorial
polynomial x(k) defined as follows. Let x ∈ R. Then the kth factorial of x
is given by

x(k) = x(x − 1) · · · (x − k + 1), k ∈ Z
+.

Thus if x = n ∈ Z
+ and n ≥ k, then

n(k) =
n!

(n − k)!

and

n(n) = n!.

The function x(k) plays the same role here as that played by the poly-
nomial xk in differential calculus. The following Lemma 2.3 demonstrates
this fact.

So far, we have defined the operators ∆ and E on sequences f(n). One
may extend the definitions of ∆ and E to continuous functions f(t), t ∈ R,
by simply letting ∆f(t) = f(t + 1) − f(t) and Ef(t) = f(t + 1). This
extension enables us to define ∆f(x) and Ef(x) where f(x) = x(k) by

∆x(k) = (x + 1)(k) − x(k) and Ex(k) = (x + 1)(k).

Using this definition one may establish the following result.

Lemma 2.3. For fixed k ∈ Z
+ and x ∈ R, the following statements hold:

(i)

∆x(k) = kx(k−1); (2.1.10)

(ii)

∆nx(k) = k(k − 1), . . . , (k − n + 1)x(k−n); (2.1.11)

(iii)

∆kx(k) = k!. (2.1.12)
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Proof. (i)

∆x(k) = (x + 1)(k) − x(k)

= (x + 1)x(x − 1) · · · (x − k + 2) − x(x − 1)
· · · (x − k + 2)(x − k + 1)

= x(x − 1) · · · (x − k + 2) · k

= kx(k−1).

The proofs of parts (ii) and (iii) are left to the reader as Exercises 2.1,
Problem 5. �

If we define, for k ∈ Z
+,

x(−k) =
1

x(x + 1) · · · (x + k − 1)
(2.1.13)

and x(0) = 1, then one may extend Lemma 2.3 to hold for all k ∈ Z. In other
words, parts (i), (ii), and (iii) of Lemma 2.3 hold for all k ∈ Z (Exercises
2.1, Problem 6).

The reader may wonder whether the product and quotient rules of the
differential calculus have discrete counterparts. The answer is affirmative,
as may be shown by the following two formulas, where proofs are left to
the reader as Exercises 2.1, Problem 7.
Product Rule:

∆[x(n)y(n)] = Ex(n)∆y(n) + y(n)∆x(n). (2.1.14)

Quotient Rule:

∆
[
x(n)
y(n)

]
=

y(n)∆x(n) − x(n)∆y(n)
y(n)Ey(n)

. (2.1.15)

2.1.3 The Antidifference Operator
The discrete analogue of the indefinite integral in calculus is the antidif-
ference operator ∆−1, defined as follows. If ∆F (n) = 0, then ∆−1(0) =
F (n) = c for some arbitrary constant c. Moreover, if ∆F (n) = f(n), then
∆−1f(n) = F (n) + c, for some arbitrary constant c. Hence

∆∆−1f(n) = f(n),

∆−1∆F (n) = F (n) + c,

and

∆∆−1 = I but ∆−1∆ �= I.
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Using formula (2.1.4) one may readily obtain

∆−1f(n) =
n−1∑
i=0

f(i) + c. (2.1.16)

Formula (2.1.16) is very useful in proving that the operator ∆−1 is linear.

Theorem 2.4. The operator ∆−1 is linear.

Proof. We need to show that for a, b ∈ R, ∆−1[ax(n) + by(n)] =
a∆−1x(n) + b∆−1y(n). Now, from formula (2.1.16) we have

∆−1[ax(n) + by(n)] =
n−1∑
i=0

ax(i) + by(i) + c

= a

n−1∑
i=0

x(i) + b

n−1∑
i=0

y(i) + c

= a∆−1x(n) + b∆−1y(n). �

Next we derive the antidifference of some basic functions.

Lemma 2.5. The following statements hold:

(i)

∆−k0 = c1n
k−1 + c2n

k−2 + · · · + ck. (2.1.17)

(ii)

∆−k1 =
nk

k!
+ c1n

k−1 + c2n
k−2 + · · · + ck. (2.1.18)

(iii)

∆−1n(k) =
n(k+1)

k + 1
+ c, k �= −1. (2.1.19)

Proof. The proofs of parts (i) and (ii) follow by applying ∆k to the
right-hand side of formulas (2.1.17) and (2.1.18) and then applying formulas
(2.1.6) and (2.1.5), respectively. The proof of part (iii) follows from formula
(2.1.10).

Finally, we give the discrete analogue of the integration by parts formula,
namely, the summation by parts formula:

n−1∑
k=0

y(k)∆x(k) = x(n)y(n) −
n−1∑
k=0

x(k + 1)∆y(k) + c. (2.1.20)

To prove formula (2.1.20) we use formula (2.1.14) to obtain

y(n)∆x(n) = ∆(x(n)y(n)) − x(n + 1)∆y(n).
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Applying ∆−1 to both sides and using formula (2.1.16), we get
n−1∑
k=0

y(k)∆x(k) = x(n)y(n) −
n−1∑
k=0

x(k + 1)∆y(k) + c. �

Exercises 2.1

1. Show that the operators ∆ and E are linear.

2. Show that Ekx(n) =
k∑

i=0

(
k

i

)
∆k−ix(n).

3. Verify formulas (2.1.3) and (2.1.4).

4. Verify formula (2.1.9).

5. Verify formulas (2.1.11) and (2.1.12).

6. Show that Lemma 2.3 holds for k ∈ Z.

7. Verify the product and quotient rules (2.1.14) and (2.1.15).

8. (Abel’s Summation Formula). Prove that

n∑
k=1

x(k)y(k) = x(n + 1)
n∑

k=1

y(k) −
n∑

k=1

(
∆x(k)

k∑
r=1

y(r)

)
.

9. (Newton’s Theorem). If f(n) is a polynomial of degree k, show that

f(n) = f(0) +
n(1)

1!
∆f(0) +

n(2)

2!
∆2f(0) + · · · +

n(k)

k!
∆(k)f(0).

10. (The Discrete Taylor Formula). Verify that

f(n) =
k−1∑
i=0

(
n

i

)
∆if(0) +

n−k∑
s=0

(
n − s − 1

k − 1

)
∆kf(s).

11. (The Stirling Numbers). The Stirling numbers of the second kind si(k)
are defined by the difference equation si(m + 1) = si−1(m) + isi(m)
with si(i) = s1(i) = 1 and 1 ≤ i ≤ m, s1(k) = 0 for 1 > k. Prove that

xm =
m∑

i=1

si(m)x(i). (2.1.21)

12. Use (2.1.21) to verify Table 2.1 which gives the Stirling numbers si(k)
for 1 ≤ i, k ≤ 7.

13. Use Table 2.1 and formula (2.1.21) to write x3, x4, and x5 in terms of
the factorial polynomials x(k) (e.g., x2 = x(1) + x(2)).

14. Use Problem 13 to find
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TABLE 2.1. Stirling numbers si(k).

i\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 3 7 15 31 63
3 1 6 25 90 301
4 1 10 65 350
5 1 15 140
6 1 21
7 1

(i) ∆−1(n3 + 1).

(ii) ∆−1
(

5
n(n + 3)

)
.

15. Use Problem 13 to solve the difference equation y(n + 1) = y(n) + n3.

16. Use Problem 13 to solve the difference equation y(n+1) = y(n)−5n2.

17. Consider the difference equation3

y(n + 1) = a(n)y(n) + g(n). (2.1.22)

(a) Put y(n) =
(∏n−1

i=0 a(i)
)

u(n) in (2.1.22). Then show that

∆u(n) = g(n)/
∏n

i=0 a(i).

(b) Prove that

y(n) =

(
n−1∏
i=0

a(i)

)
y0 +

n−1∑
r=0

(
n−1∏

i=r+1

a(i)

)
g(r), y0 = y(0).

(Compare with Section 1.2.)

2.2 General Theory of Linear Difference Equations

The normal form of a kth-order nonhomogeneous linear difference equation
is given by

y(n + k) + p1(n) y(n + k − 1) + · · · + pk(n) y(n) = g(n), (2.2.1)

where pi(n) and g(n) are real-valued functions defined for n ≥ n0 and
pk(n) �= 0 for all n ≥ n0. If g(n) is identically zero, then (2.2.1) is said to
be a homogeneous equation. Equation (2.2.1) may be written in the form

y(n + k) = −p1(n) y(n + k − 1) − · · · − pk(n) y(n) + g(n). (2.2.2)

3This method of solving a nonhomogeneous equation is called the method of
variation of constants.
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By letting n = 0 in (2.2.2), we obtain y(k) in terms of y(k − 1), y(k −
2), · · · , y(0). Explicitly, we have

y(k) = −p1(0)y(k − 1) − p2(0)y(k − 2) − · · · − pk(0)y(0) + g(0).

Once y(k) is computed, we can go to the next step and evaluate y(k + 1)
by letting n = 1 in (2.2.2). This yields

y(k + 1) = −p1(1)y(k) − p2(1)y(k − 1) − · · · − pk(1)y(1) + g(1).

By repeating the above process, it is possible to evaluate all y(n) for n ≥ k.
Let us now illustrate the above procedure by an example.

Example 2.6. Consider the third-order difference equation

y(n + 3) − n

n + 1
y(n + 2) + ny(n + 1) − 3y(n) = n, (2.2.3)

where y(1) = 0, y(2) = −1, and y(3) = 1. Find the values of y(4), y(5),
y(6), and y(7).

Solution First we rewrite (2.2.3) in the convenient form

y(n + 3) =
n

n + 1
y(n + 2) − ny(n + 1) + 3y(n) + n. (2.2.4)

Letting n = 1 in (2.2.4), we have

y(4) =
1
2
y(3) − y(2) + 3y(1) + 1 =

5
2
.

For n = 2,

y(5) =
2
3
y(4) − 2y(3) + 3y(2) + 2 = −4

3
.

For n = 3,

y(6) =
3
4
y(5) − 3y(4) + 3y(3) + 3 = −3

2
.

For n = 4,

y(7) =
4
5
y(6) − 4y(5) + 3y(4) + 4 = 20.9.

Now let us go back to (2.2.1) and formally define its solution. A sequence
{y(n)}∞

n0
or simply y(n) is said to be a solution of (2.2.1) if it satisfies the

equation. Observe that if we specify the initial data of the equation, we are
led to the corresponding initial value problem

y(k + n) + p1(n)y(n + k − 1) + · · · + pk(n)y(n) = g(n), (2.2.5)
y(n0) = a0, y(n0 + 1) = a1, . . . , y(n0 + k − 1) = ak−1, (2.2.6)

where the ai’s are real numbers. In view of the above discussion, we
conclude with the following result.
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Theorem 2.7. The initial value problems (2.2.5) and (2.2.6) have a
unique solution y(n).

Proof. The proof follows by using (2.2.5) for n = n0, n0 + 1, n0 + 2, . . . .
Notice that any n ≥ n0 + k may be written in the form n = n0 + k +
(n − n0 − k). By uniqueness of the solution y(n) we mean that if there is
another solution ỹ(n) of the initial value problems (2.2.5) and (2.2.6), then
ỹ(n) must be identical to y(n). This is again easy to see from (2.2.5). �

The question still remains whether we can find a closed-form solution
for (2.2.1) or (2.2.5) and (2.2.6). Unlike our amiable first-order equations,
obtaining a closed-form solution of (2.2.1) is a formidable task. However, if
the coefficients pi in (2.2.1) are constants, then a solution of the equation
may be easily obtained, as we see in the next section.

In this section we are going to develop the general theory of kth-order
linear homogeneous difference equations of the form

x(n + k) + p1(n)x(n + k − 1) + · · · + pk(n)x(n) = 0. (2.2.7)

We start our exposition by introducing three important definitions.

Definition 2.8. The functions f1(n), f2(n), . . . , fr(n) are said to be lin-
early dependent for n ≥ n0 if there are constants a1, a2, . . . , ar, not all zero,
such that

a1f1(n) + a2f2(n) + · · · + arfr(n) = 0, n ≥ n0.

If aj �= 0, then we may divide (2.2.7) by aj to obtain

fj(n) = −a1

aj
f1(n) − a2

aj
f2(n) · · · − ar

aj
fr(n)

= −
∑
i�=j

ai

aj
fi(n). (2.2.8)

Equation (2.2.8) simply says that each fj with nonzero coefficient is a
linear combination of the other fi’s. Thus two functions f1(n) and f2(n)
are linearly dependent if one is a multiple of the other, i.e., f1(n) = af2(n),
for some constant a.

The negation of linear dependence is linear independence. Explicitly put,
the functions f1(n), f2(n), . . . , fr(n) are said to be linearly independent for
n ≥ n0 if whenever

a1f1(n) + a2f2(n) + · · · + arfr(n) = 0

for all n ≥ n0, then we must have a1 = a2 = · · · = ar = 0.

Let us illustrate this new concept by an example.

Example 2.9. Show that the functions 3n, n3n, and n23n are linearly
independent on n ≥ 1.
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Solution Suppose that for constants a1, a2, and a3 we have

a13n + a2n3n + a3n
23n = 0, for all n ≥ 1.

Then by dividing by 3n we get

a1 + a2n + a3n
2 = 0, for all n ≥ 1.

This is impossible unless a3 = 0, since a second-degree equation in n pos-
sesses at most two solutions n ≥ 1. Hence a1 = a2 = a3 = 0. Similarly,
a2 = 0, whence a1 = 0, which establishes the linear independence of our
functions.

Definition 2.10. A set of k linearly independent solutions of (2.2.7) is
called a fundamental set of solutions.

As you may have noticed from Example 2.9, it is not practical to check the
linear independence of a set of solutions using the definition. Fortunately,
there is a simple method to check the linear independence of solutions using
the so-called Casoratian W (n), which we now define for the eager reader.

Definition 2.11. The Casoratian4 W (n) of the solutions x1(n), x2(n), . . . ,
xr(n) is given by

W (n) = det

⎛⎜⎜⎜⎜⎝
x1(n) x2(n) . . . xr(n)

x1(n + 1) x2(n + 1) . . . xr(n + 1)
...

x1(n + r − 1) x2(n + r − 1) . . . xr(n + r − 1)

⎞⎟⎟⎟⎟⎠ .

(2.2.9)

Example 2.12. Consider the difference equation

x(n + 3) − 7x(n + 1) + 6x(n) = 0.

(a) Show that the sequences 1, (−3)n, and 2n are solutions of the equation.

(b) Find the Casoratian of the sequences in part (a).

Solution

(a) Note that x(n) = 1 is a solution, since 1 − 7 + 6 = 0. Furthermore,
x(n) = (−3)n is a solution, since

(−3)n+3 − 7(−3)n+1 + 6(−3)n = (−3)n[−27 + 21 + 6] = 0.

Finally, x(n) = 2n is a solution, since

(2)n+3 − 7(2)n+1 + 6(2)n = 2n[8 − 14 + 6] = 0.

4This is the discrete analogue of the Wronskian in differential equations.
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(b) Now,

W (n) = det

⎛⎜⎝1 (−3)n 2n

1 (−3)n+1 2n+1

1 (−3)n+2 2n+2

⎞⎟⎠
=

∣∣∣∣∣(−3)n+1 (2)n+1

(−3)n+2 (2)n+2

∣∣∣∣∣− (−3)n

∣∣∣∣∣1 (2)n+1

1 (2)n+2

∣∣∣∣∣
+ (2)n

∣∣∣∣∣1 (−3)n+1

1 (−3)n+2

∣∣∣∣∣
= (2)n+2(−3)n+1 − (2)n+1(−3)n+2 − (−3)n((2)n+2 − (2)n+1)

+ (2)n((−3)n+2 − (−3)n+1)
= −12(2)n(−3)n − 18(2)n(−3)n − 4(2)n(−3)n

+ 2(2)n(−3)n + 9(2)n(−3)n + 3(2)n(−3)n

= −20(2)n(−3)n.

Next we give a formula, called Abel’s formula, to compute the Caso-
ratian W (n). The significance of Abel’s formula is its effectiveness in the
verification of the linear independence of solutions.

Lemma 2.13 (Abel’s Lemma). Let x1(n), x2(n), . . . , xk(n) be so-
lutions of (2.2.7) and let W (n) be their Casoratian. Then, for n ≥
n0,

W (n) = (−1)k(n−n0)

(
n−1∏
i=n0

pk(i)

)
W (n0). (2.2.10)

Proof. We will prove the lemma for k = 3, since the general case may
be established in a similar fashion. So let x1(n), x2(n), and x3(n) be three
independent solutions of (2.2.7). Then from formula (2.2.9) we have

W (n + 1) = det

⎛⎜⎝x1(n + 1) x2(n + 1) x3(n + 1)
x1(n + 2) x2(n + 2) x3(n + 2)
x1(n + 3) x2(n + 3) x3(n + 3)

⎞⎟⎠ . (2.2.11)

From (2.2.7) we have, for 1 ≤ i ≤ 3,

xi(n + 3) = −p3(n)xi(n) − [p1(n)xi(n + 2) + p2(n)xi(n + 1)] . (2.2.12)
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Now, if we use formula (2.2.12) to substitute for x1(n + 3), x2(n + 3),
and x3(n + 3) in the last row of formula (2.2.11), we obtain

W (n + 1) = det

⎛⎜⎜⎜⎜⎜⎜⎝
x1(n + 1) x2(n + 1) x3(n + 1)
x1(n + 2) x2(n + 2) x3(n + 2)
−p3x1(n) −p3x2(n) −p3x3(n)

−(p2x1(n + 1) −(p2x2(n + 1) −(p2x3(n + 1)
+p1x1(n + 2)

)
+p1x2(n + 2)

)
+p1x3(n + 2)

)

⎞⎟⎟⎟⎟⎟⎟⎠ .

(2.2.13)
Using the properties of determinants, it follows from (2.2.13) that

W (n + 1) = det

⎛⎜⎝ x1(n + 1) x2(n + 1) x3(n + 1)
x1(n + 2) x2(n + 2) x3(n + 2)

−p3(n)x1(n) −p3(n)x2(n) −p3(n)x3(n)

⎞⎟⎠ (2.2.14)

= −p3(n) det

⎛⎜⎝x1(n + 1) x2(n + 1) x3(n + 1)
x1(n + 2) x2(n + 2) x3(n2)

x1(n) x2(n) x3(n)

⎞⎟⎠
= −p3(n)(−1)2 det

⎛⎜⎝ x1(n) x2(n) x3(n)
x1(n + 2) x2(n + 2) x3(n + 2)
x1(n + 1) x2(n + 1) x3(n + 1)

⎞⎟⎠ .

Thus

W (n + 1) = (−1)3p3(n)W (n). (2.2.15)

Using formula (1.2.3), the solution of (2.2.15) is given by

W (n) =

[
n−1∏
i=n0

(−1)3p3(i)

]
W (n0) = (−1)3(n−n0)

n−1∏
i=n0

p3(i)W (n0).

�

This completes the proof of the lemma for k = 3. The general case is left
to the reader as Exercises 2.2, Problem 6.

We now examine and treat one of the special cases that arises as we try
to apply this Casoratian. For example, if (2.2.7) has constant coefficients
p1, p2, . . . , pk, then we have

W (n) = (−1)k(n−n0)p
(n−n0)
k W (n0). (2.2.16)

Formula (2.2.10) has the following important correspondence.

Corollary 2.14. Suppose that pk(n) �= 0 for all n ≥ n0. Then the
Casoratian W (n) �= 0 for all n ≥ n0 if and only if W (n0) �= 0.

Proof. This corollary follows immediately from formula (2.2.10) (Exer-
cises 2.2, Problem 7). �
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Let us have a close look at Corollary 2.14 and examine what it really says.
The main point in the corollary is that either the Casoratian is identically
zero (i.e., zero for all n ≥ n0, for some n0) or never zero for any n ≥ n0.
Thus to check whether W (n) �= 0 for all n ∈ Z

+, we need only to check
whether W (0) �= 0. Note that we can always choose the most suitable n0
and compute W (n0) there.

Next we examine the relationship between the linear independence of
solutions and their Casoratian. Basically, we will show that a set of k so-
lutions is a fundamental set (i.e., linearly independent) if their Casoratian
W (n) is never zero.

To determine the preceding statement we contemplate k solutions
x1(n), x2(n), . . . , xk(n) of (2.2.7). Suppose that for some constants a1,
a2, . . . , ak and n0 ∈ Z

+,

a1x1(n) + a2x2(n) + · · · + ak(n) xk(n) = 0, for all n ≥ n0.

Then we can generate the following k − 1 equations:

a1x1(n + 1) + a2x2(n + 1) + · · · + akxk(n + 1) = 0,
...

a1x1(n + k − 1) + a2x2(n + k − 1) + · · · + akxk(n + k − 1) = 0.

This assemblage may be transcribed as

X(n)ξ = 0, (2.2.17)

where

X(n) =

⎛⎜⎜⎜⎜⎝
x1(n) x2(n) . . . xk(n)

x1(n + 1) x2(n + 1) . . . xk(n + 1)
...

...
...

x1(n + k − 1) x2(n + k − 1) . . . xk(n + k − 1)

⎞⎟⎟⎟⎟⎠ ,

ξ =

⎛⎜⎜⎜⎜⎝
a1

a2

...
ak

⎞⎟⎟⎟⎟⎠ .

Observe that W (n) = detX(n).
Linear algebra tells us that the vector (2.2.17) has only the trivial (or

zero) solution (i.e., a1 = a2 = · · · = ak = 0) if and only if the matrix X(n)
is nonsingular (invertible) (i.e., det X(n) = W (n) �= 0 for all n ≥ n0). This
deduction leads us to the following conclusion.
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Theorem 2.15. The set of solutions x1(n), x2(n), . . . , xk(n) of (2.2.7)
is a fundamental set if and only if for some n0 ∈ Z+, the Casoratian
W (n0) �= 0.

Proof. Exercises 2.2, Problem 8. �

Example 2.16. Verify that {n, 2n} is a fundamental set of solutions of
the equation

x(n + 2) − 3n − 2
n − 1

x(n + 1) +
2n

n − 1
x(n) = 0.

Solution We leave it to the reader to verify that n and 2n are solutions of
the equation. Now, the Casoratian of the solutions n, 2n is given by

W (n) = det

(
n 2n

n + 1 2n+1

)
.

Thus

W (0) = det

(
0 1
1 2

)
= −1 �= 0.

Hence by Theorem 2.15, the solutions n, 2n are linearly independent and
thus form a fundamental set.

Example 2.17. Consider the third-order difference equation

x(n + 3) + 3x(n + 2) − 4x(n + 1) − 12x(n) = 0.

Show that the functions 2n, (−2)n, and (−3)n form a fundamental set of
solutions of the equation.

Solution

(i) Let us verify that 2n is a legitimate solution by substituting x(n) = 2n

into the equation:

2n+3 + (3)(2n+1) − (4)(2n+1) − (12)(2n) = 2n[8 + 12 − 8 − 12] = 0.

We leave it to the reader to verify that (−2)n and (−3)n are solutions
of the equation.

(ii) To affirm the linear independence of these solutions we construct the
Casoratian

W (n) = det

⎛⎜⎝ 2n (−2)n (−3)n

2n+1 (−2)n+1 (−3)n+1

2n+2 (−2)n+2 (−3)n+2

⎞⎟⎠ .
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Thus

W (0) = det

⎛⎜⎝1 1 1
2 −2 3
4 4 9

⎞⎟⎠ = −20 �= 0.

By Theorem 2.15, the solutions 2n, (−2)n, and 3n are linearly independent,
and thus form a fundamental set.

We are now ready to discuss the fundamental theorem of homogeneous
linear difference equations.

Theorem 2.18 (The Fundamental Theorem). If pk(n) �= 0 for all
n ≥ n0, then (2.2.7) has a fundamental set of solutions for n ≥ n0.

Proof. By Theorem 2.7, there are solutions x1(n), x2(n), . . . , xk(n) such
that xi(n0 + i−1) = 1, xi(n0) = xi(n0 +1) = · · · = xi(n0 + i−2) = xi(n0 +
i) = · · · = xi(n0 + k − 1) = 0, 1 ≤ i ≤ k. Hence x1(n0) = 1, x2(n0 + 1) =
1, x3(n0 +2) = 1, . . . , xk(n0 +k−1) = 1. It follows that W (n0) = det I = 1.
This implies by Theorem 2.15 that the set {x1(n), x2(n), . . . , xk(n)} is a
fundamental set of solutions of (2.2.7). �

We remark that there are infinitely many fundamental sets of solutions
of (2.2.7). The next result presents a method of generating fundamental
sets starting from a known set.

Lemma 2.19. Let x1(n) and x2(n) be two solutions of (2.2.7). Then the
following statements hold:

(i) x(n) = x1(n) + x2(n) is a solution of (2.2.7).

(ii) x̃(n) = ax1(n) is a solution of (2.2.7) for any constant a.

Proof. (Exercises 2.2, Problem 9.) �

From the preceding lemma we conclude the following principle.

Superposition Principle. If x1(n), x2(n), . . . , xr(n) are solutions of
(2.2.7), then

x(n) = a1x1(n) + a2x2(n) + · · · + arxr(n)

is also a solution of (2.2.7) (Exercises 2.2, Problem 12).
Now let {x1(n), x2(n), . . . , xk(n)} be a fundamental set of solutions of

(2.2.7) and let x(n) be any given solution of (2.2.7). Then there are con-
stants a1, a2, . . . , ak such that x(n) =

∑k
i=1 aixi(n). To show this we use

the notation (2.2.17) to write X(n)ξ = x̂(n), where

x̂(n) =

⎛⎜⎜⎜⎜⎝
x(n)

x(n + 1)
...

x(n + k − 1)

⎞⎟⎟⎟⎟⎠ .
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Since X(n) is invertible (Why?), it follows that

ξ = X−1(n)x̂(n),

and, for n = n0,

ξ = X−1(n0)x̂(n0).

The above discussion leads us to define the general solution of (2.2.7).

Definition 2.20. Let {x1(n), x2(n), . . . , xk(n)} be a fundamental set of
solutions of (2.2.7). Then the general solution of (2.2.7) is given by x(n) =∑k

i=1 aixi(n), for arbitrary constants ai.

It is worth noting that any solution of (2.2.7) may be obtained from the
general solution by a suitable choice of the constants ai.

The preceding results may be restated using the elegant language of
linear algebra as follows: Let S be the set of all solutions of (2.2.7) with
the operations +, · defined as follows:

(i) (x + y)(n) = x(n) + y(n), for x, y ∈ S, n ∈ Z+,

(ii) (ax)(n) = ax(n), for x ∈ S, a constant.

Equipped with linear algebra we now summarize the results of this section
in a compact form.

Theorem 2.21. The space (S, +, ·) is a linear (vector) space of dimension
k.

Proof. Use Lemma 2.19. To construct a basis of S we can use the
fundamental set in Theorem 2.18 (Exercises 2.2, Problem 11). �

Exercises 2.2

1. Find the Casoratian of the following functions and determine whether
they are linearly dependent or independent:

(a) 5n, 3 · 5n+2, en.

(b) 5n, n 5n, n2 5n.

(c) (−2)n, 2n, 3.

(d) 0, 3n, 7n.

2. Find the Casoratian W (n) of the solutions of the difference equations:

(a) x(n + 3) − 10x(n + 2) + 31x(n + 1) − 30x(n) = 0, if W (0) = 6.

(b) x(n + 3) − 3x(n + 2) + 4x(n + 1) − 12x(n) = 0, if W (0) = 26.

3. For the following difference equations and their accompanied solutions:

(i) determine whether these solutions are linearly independent, and
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(ii) find, if possible, using only the given solutions, the general
solution:
(a) x(n + 3) − 3x(n + 2) + 3x(n + 1) − x(n) = 0; 1, n, n2,

(b) x(n + 2) + x(n) = 0; cos
(nπ

2

)
, sin
(nπ

2

)
,

(c) x(n+3)+x(n+2)−8x(n+1)−12x(n) = 0; 3n, (−2)n, (−2)n+3,
(d) x(n + 4) − 16x(n) = 0; 2n, n2n, n22n.

4. Verify formula (2.2.10) for the general case.

5. Show that the Casoratian W (n) in formula (2.2.9) may be given by
the formula

W (n) = det

⎛⎜⎜⎜⎜⎝
x1(n) x2(n) . . . xk(n)

∆x1(n) ∆x2(n) . . . ∆xk(n)
...

...
...

∆k−1x1(n) ∆k−1x2(n) . . . ∆k−1xk(n)

⎞⎟⎟⎟⎟⎠ .

6. Verify formula (2.2.16).

7. Prove Corollary 2.14.

8. Prove Theorem 2.15.

9. Prove Lemma 2.19.

10. Prove the superposition principle: If x1(n), x2(n), . . . , xr are solutions
of (2.2.7), then any linear combination of them is also a solution of
(2.2.7).

11. Prove Theorem 2.21.

12. Suppose that for some integer m ≥ n0, pk(m) = 0 in (2.2.1).

(a) What is the value of the Casoratian for n ≥ m?

(b) Does Corollary 2.14 still hold? (Why?)

*13. Show that the equation ∆2y(n) = p(n)y(n + 1) has a fundamental set
of solutions whose Casoratian W (n) = −1.

14. Contemplate the second-order difference equation u(n+2)+p1(n)u(n+
1) + p2(n)u(n) = 0. If u1(n) and u2(n) are solutions of the equation
and W (n) is their Casoratian, prove that

u2(n) = u1(n)

[
n−1∑
r=0

W (r)/u1(r)u1(r + 1)

]
. (2.2.18)

15. Contemplate the second-order difference equation u(n+2)− (n+3)
(n+2)u(n+

1) + 2
(n+2)u(n) = 0.
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(a) Verify that u1(n) = 2n

n! is a solution of the equation.

(b) Use formula (2.2.18) to find another solution u2(n) of the
equation.

16. Show that u(n) = (n+1) is a solution of the equation u(n+2)−u(n+
1)− 1/(n+1)u(n) = 0 and then find a second solution of the equation
by using the method of Exercises 2.2, Problem 15.

2.3 Linear Homogeneous Equations
with Constant Coefficients

Consider the kth-order difference equation

x(n + k) + p1x(n + k − 1) + p2x(n + k − 2) + · · · + pkx(n) = 0, (2.3.1)

where the pi’s are constants and pk �= 0. Our objective now is to find
a fundamental set of solutions and, consequently, the general solution of
(2.3.1). The procedure is rather simple. We suppose that solutions of (2.3.1)
are in the form λn, where λ is a complex number. Substituting this value
into (2.3.1), we obtain

λk + p1λ
k−1 + · · · + pk = 0. (2.3.2)

This is called the characteristic equation of (2.3.1), and its roots λ are called
the characteristic roots. Notice that since pk �= 0, none of the characteristic
roots is equal to zero. (Why?) (Exercises 2.3, Problem 19.)

We have two situations to contemplate:

Case (a). Suppose that the characteristic roots λ1, λ2, . . . , λk are distinct.
We are now going to show that the set {λn

1 , λn
2 , . . . , λn

k} is a fundamental
set of solutions. To prove this, by virtue of Theorem 2.15 it suffices to show
that W (0) �= 0, where W (n) is the Casoratian of the solutions. That is,

W (0) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
λ1 λ2 . . . λk

λ2
1 λ2

2 . . . λ2
k

...
...

...

λk−1
1 λk−1

2 . . . λk−1
k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.3.3)

This determinant is called the Vandermonde determinant.
It may be shown by mathematical induction that

W (0) =
∏

1≤i<j≤k

(λj − λi). (2.3.4)

The reader will prove this conclusion in Exercises 2.3, Problem 20.
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Since all the λi’s are distinct, it follows from (2.3.4) that W (0) �= 0.
This fact proves that {λn

1 , λn
2 , . . . , λn

k} is a fundamental set of solutions of
(2.3.1). Consequently, the general solution of (2.3.1) is

x(n) =
k∑

i=1

aiλ
n
i , ai a complex number. (2.3.5)

Case (b). Suppose that the distinct characteristic roots are λ1, λ2, . . . , λr

with multiplicities m1, m2, . . . , mr with
∑r

i=1 mi = k, respectively. In this
case, (2.3.1) may be written as

(E − λ1)m1(E − λ2)m2 · · · (E − λr)mrx(n) = 0. (2.3.6)

A vital observation here is that if ψ1(n), ψ2(n), . . . , ψmi
(n) are solutions of

(E − λi)mix(n) = 0, (2.3.7)

then they are also solutions of (2.3.6). For if Ψs(n) is a solution of (2.3.7),
then (E − λi)miΨs(n) = 0. Now

(E − λ1)m1 · · · (E − λi)mi · · · (E − λr)mrΨs(n)
= (E − λ1)m1 · · · (E − λi−1)mi−1(E − λi+1)mi+1 · · ·
(E − λr)mr (E − λi)miΨs(n) = 0.

Suppose we are able to find a fundamental set of solutions for each (2.3.7),
1 ≤ i ≤ r. It is not unreasonable to expect, then, that the union of these
r fundamental sets would be a fundamental set of solutions of (2.3.6). In
the following lemma we will show that this is indeed the case.

Lemma 2.22. The set Gi =
{

λn
i ,
(
n
1

)
λn−1

i ,
(
n
2

)
λn−2

2 , . . . ,
(

n
mi−1

)
λn−mi+1

i

}
is a fundamental set of solutions of (2.3.7) where

(
n
1

)
= n,

(
n
2

)
=

n(n−1)
2! , . . . ,

(
n
r

)
= n(n−1)···(n−r+1)

r! .

Proof. To show that Gi is a fundamental set of solutions of (2.3.7), it
suffices, by virtue of Corollary 2.14, to show that W (0) �= 0. But

W (0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0
λi 1 . . . 0

λ2
i 2λi . . . 0
...

...
...

λmi−1
i

(mi − 1)
1!

λmi−2
i . . .

1
2!3! · · · (mi − 2)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Hence

W (0) =
1

(2!3! . . . (mi − 2)!
�= 0.
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It remains to show that
(
n
r

)
λn−r

i is a solution of (2.3.7). From equation
(2.1.9) it follows that

(E − λi)mi

(
n

r

)
λn−r

i = λn−r
i (λiE − λi)mi

(
n

r

)
= λn+mi−r

i (E − I)mi

(
n

r

)
= λn+mi−r

i ∆mi

(
n

r

)
= 0 using (2.1.6). �

Now we are finally able to find a fundamental set of solutions.

Theorem 2.23. The set G =
⋃r

i=1 Gi is a fundamental set of solutions
of (2.3.6).

Proof. By Lemma 2.22, the functions in G are solutions of (2.3.6). Now

W (0) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 1 0 . . .

λ1 1 . . . λr 1 . . .

λ2
1 2λ1 . . . λ2

r 2λr . . .

...
...

...
...

λk−1
1 (k − 1)λk−2

1 . . . λk−1
r (k − 1)λk−2

r . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.3.8)
This determinant is called the generalized Vandermonde determinant. (See
Appendix B.) It may be shown [76] that

W (0) =
∏

1≤i<j≤k

(λj − λi)mjmi . (2.3.9)

As λi �= λj , W (0) �= 0. Hence by Corollary 2.14 the Casoratian W (n) �=
0 for all n ≥ 0. Thus by Theorem 2.15, G is a fundamental set of
solutions. �

Corollary 2.24. The general solution of (2.3.6) is given by

x(n) =
r∑

i=1

λn
i

(
ai0 + ai1n + ai2n

2 + · · · + ai,mi−1n
mi−1) . (2.3.10)

Proof. Use Lemma 2.22 and Theorem 2.23. �

Example 2.25. Solve the equation

x(n + 3) − 7x(n + 2) + 16x(n + 1) − 12x(n) = 0,
x(0) = 0, x(1) = 1, x(2) = 1.
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Solution The characteristic equation is

r3 − 7r2 + 16r − 12 = 0.

Thus, the characteristic roots are λ1 = 2 = λ2, λ3 = 3.
The characteristic roots give us the general solution

x(n) = a02n + a1n2n + b13n.

To find the constants a0, a1, and b1, we use the initial data

x(0) = a0 + b1 = 0,

x(1) = 2a0 + 2a1 + 3b1 = 1,

x(2) = 4a0 + 8a1 + 9b1 = 1.

Finally, after solving the above system of equations, we obtain

a0 = 3, a1 = 2, b1 = −3.

Hence the solution of the equation is given by x(n) = 3(2n)+2n(2n)−3n+1.

Example 2.26. Complex Characteristic Roots

Suppose that the equation x(n + 2) + p1x(n + 1) + p2x(n) = 0 has the
complex roots λ1 = α + iβ, λ2 = α − iβ. Its general solution would then be

x(n) = c1(α + iβ)n + c2(α − iβ)n.

Recall that the point (α, β) in the complex plane corresponds to the
complex number α + iβ. In polar coordinates,

α = r cos θ, β = r sin θ, r =
√

α2 + β2, θ = tan−1
(

β

α

)
.

Hence,5

x(n) = c1(r cos θ + ir sin θ)n + c2(r cos θ − ir sin θ)n

= rn[(c1 + c2) cos(nθ) + i(c1 − c2) sin(nθ)]
= rn[a1 cos(nθ) + a2 sin(nθ)], (2.3.11)

where a1 = c1 + c2 and a2 = i(c1 − c2).
Let

cos ω =
a1√

a2
1 + a2

2

, sinω =
a2√

a2
1 + a2

2

, ω = tan−1
(

a2

a1

)
.

5We used De Moivre’s Theorem: [r(cos θ + i sin θ)]n = rn(cos nθ + i sin nθ).



2.3 Linear Homogeneous Equations with Constant Coefficients 79

Then (2.3.11) becomes

x(n) = rn
√

a2
1 + a2

2[cos ω cos(nθ) + sin ω sin(nθ)]

= rn
√

a2
1 + a2

2 cos(nθ − ω),

x(n) = Arn cos(nθ − ω). (2.3.12)

Example 2.27. The Fibonacci Sequence (The Rabbit Problem)

This problem first appeared in 1202, in Liber abaci, a book about the
abacus, written by the famous Italian mathematician Leonardo di Pisa,
better known as Fibonacci. The problem may be stated as follows: How
many pairs of rabbits will there be after one year if starting with one
pair of mature rabbits, if each pair of rabbits gives birth to a new pair
each month starting when it reaches its maturity age of two months? (See
Figure 2.1.)

Table 2.2 shows the number of pairs of rabbits at the end of each month.
The first pair has offspring at the end of the first month, and thus we have
two pairs. At the end of the second month only the first pair has offspring,
and thus we have three pairs. At the end of the third month, the first and
second pairs will have offspring, and hence we have five pairs. Continuing
this procedure, we arrive at Table 2.2. If F (n) is the number of pairs of
rabbits at the end of n months, then the recurrence relation that represents
this model is given by the second-order linear difference equation

F (n + 2) = F (n + 1) + F (n), F (0) = 1, F (1) = 2, 0 ≤ n ≤ 10.

This example is a special case of the Fibonacci sequence, given by

F (n + 2) = F (n + 1) + F (n), F (0) = 0, F (1) = 1, n ≥ 0.
(2.3.13)

The first 14 terms are given by 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
and 377, as already noted in the rabbit problem.

Month 0 Month 1 Month2

FIGURE 2.1.

TABLE 2.2. Rabbits’ population size.

Month 0 1 2 3 4 5 6 7 8 9 10 11 12
Pairs 1 2 3 5 8 13 21 34 55 89 144 233 377
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The characteristic equation of (2.3.13) is

λ2 − λ − 1 = 0.

Hence the characteristic roots are α = 1+
√

5
2 and β = 1−√

5
2 .

The general solution of (2.3.13) is

F (n) = a1

(
1 +

√
5

2

)n

+ a2

(
1 − √

5
2

)n

, n ≥ 1. (2.3.14)

Using the initial values F (1) = 1 and F (2) = 1, one obtains

a1 =
1√
5
, a2 = − 1√

5
.

Consequently,

F (n) =
1√
5

[(
1 +

√
5

2

)n

−
(

1 − √
5

2

)n]
=

1√
5
(αn − βn). (2.3.15)

It is interesting to note that limn→∞
F (n+1)

F (n) = α ≈ 1.618 (Exercises 2.3,
Problem 15). This number is called the golden mean, which supposedly
represents the ratio of the sides of a rectangle that is most pleasing to the
eye. This Fibonacci sequence is very interesting to mathematicians; in fact,
an entire publication, The Fibonacci Quarterly, dwells on the intricacies of
this fascinating sequence.

Exercises 2.3

1. Find homogeneous difference equations whose solutions are:

(a) 2n−1 − 5n+1.

(b) 3 cos
(nπ

2

)
− sin

(nπ

2

)
.

(c) (n + 2)5n sin
(nπ

4

)
.

(d) (c1 + c2n + c3n
2)7n.

(e) 1 + 3n − 5n2 + 6n3.

2. Find a second-order linear homogeneous difference equation that gen-
erates the sequence 1, 2, 5, 12, 29, . . . ; then write the solution of the
obtained equation.

In each of Problems 3 through 8, write the general solution of the difference
equation.

3. x(n + 2) − 16x(n) = 0.

4. x(n + 2) + 16x(n) = 0.

5. (E − 3)2(E2 + 4)x(n) = 0.
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6. ∆3x(n) = 0.

7. (E2 + 2)2x(n) = 0.

8. x(n + 2) − 6x(n + 1) + 14x(n) = 0.

9. Consider Example 2.26. Verify that x1(n) = rn cos nθ and x2(n) =
rn sinnθ are two linearly independent solutions of the given equation.

10. Consider the integral defined by

Ik(ϕ) =
∫ π

0

cos(kθ) − cos(kϕ)
cos θ − cos ϕ

dθ, k = 0, 1, 2, . . . , ϕ ∈ R.

(a) Show that Ik(ϕ) satisfies the difference equation

In+2(ϕ)−2 cos ϕIn+1(ϕ)+In(ϕ) = 0, I0(ϕ) = 0, I1(ϕ) = π.

(b) Solve the difference equation in part (a) to find In(ϕ).

11. The Chebyshev polynomials of the first and second kinds are defined,
respectively, as follows:

Tn(x) = cos(n cos−1(x)), Un(x) =
1√

1 − x2
sin[(n + 1) cos−1(x)],

for |x| < 1.

(a) Show that Tn(x) obeys the difference equation

Tn+2(x) − 2xTn+1(x) + Tn(x) = 0, T0(x) = 1, T1(x) = x.

(b) Solve the difference equation in part (a) to find Tn(x).

(c) Show that Un(x) satisfies the difference equation

Un+2(x)−2xUn+1(x)+Un(x) = 0, U0(x) = 1, U1(x) = 2x.

(d) Write down the first three terms of Tn(x) and Un(x).

(e) Show that Tn(cos θ) = cos nθ and that

Un(cos θ) = (sin[(n + 1)θ])/ sin θ.

12. Show that the general solution of

x(n + 2) − 2sx(n + 1) + x(n) = 0, |s| < 1,

is given by

x(n) = c1Tn(s) + c2Un(s).

13. Show that the general solution of x(n + 2) + p1x(n + 1) + p2x(n) =
0, p2 > 0, p2

1 < 4p2, is given by x(n) = rn[c1Tn(s)+c2Un−1(s)], where
r =

√
p2 and s = P1/(2

√
p2).
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14. The Lucas numbers Ln are defined by the difference equation

Ln+2 = Ln+1 + Ln, n ≥ 0, L0 = 2, L1 = 1.

Solve the difference equation to find Ln.

15. Show that limn→∞(F (n + 1))/F (n) = α, where α = (1 +
√

5)/2.

16. Prove that consecutive Fibonacci numbers F (n) and F (n + 1) are
relatively prime.

17. (a) Prove that F (n) is the nearest integer to 1/
√

5((1 +
√

5)/2)n.

(b) Find F (17), F (18), and F (19), applying part (a).

*18. Define x = a mod p if x = mp + a. Let p be a prime number with
p > 5.

(a) Show that F (p) = 5(p−1)/2 mod p.

(b) Show that F (p) = ±1 mod p.

19. Show that if pk �= 0 in (2.3.1), then none of its characteristic roots is
equal to zero.

20. Show that the Vandermonde determinant (2.3.3) is equal to∏
1≤i<j≤k

(λj − λi).

21. Find the value of the n × n tridiagonal determinant

D(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b a 0 . . . 0 0
a b a . . . 0 0
0 a b . . . 0 0
...

...
...

0 0 0 . . . b a

0 0 0 . . . a b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

22. Find the value of the n × n tridiagonal determinant

D(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 . . . 0 0
c a b . . . 0 0
0 c a . . . 0 0
...

...
...

...
...

0 0 0 . . . a b

0 0 0 . . . c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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2.4 Linear Nonhomogeneous Equations: Method
of Undetermined Coefficients

In the last two sections we developed the theory of linear homogeneous
difference equations. Moreover, in the case of equations with constant co-
efficients we have shown how to construct their solutions. In this section
we focus our attention on solving the kth-order linear nonhomogeneous
equation

y(n + k) + p1(n)y(n + k − 1) + · · · + pk(n)y(n) = g(n), (2.4.1)

where pk(n) �= 0 for all n ≥ n0. The sequence g(n) is called the forcing
term, the external force, the control, or the input of the system. As we will
discuss later in Chapter 6, equation (2.4.1) represents a physical system in
which g(n) is the input and y(n) is the output (Figure 2.2). Thus solving
(2.4.1) amounts to determining the output y(n) given the input g(n). We
may look at g(n) as a control term that the designing engineer uses to force
the system to behave in a specified way.

Before proceeding to present general results concerning (2.4.1) we would
like to raise the following question: Do solutions of (2.4.1) form a vector
space? In other words, is the sum of two solutions of (2.4.1) a solution of
(2.4.1)? And is a multiple of a solution of (2.4.1) a solution of (2.4.1)? Let
us answer these questions through the following example.

Example 2.28. Contemplate the equation

y(n + 2) − y(n + 1) − 6y(n) = 5(3n).

(a) Show that y1(n) = n(3n−1) and y2(n) = (1 + n)3n−1 are solutions of
the equation.

(b) Show that y(n) = y2(n) − y1(n) is not a solution of the equation.

(c) Show that ϕ(n) = cn(3n−1) is not a solution of the equation, where c
is a constant.

Solution

(a) The verification that y1 and y2 are solutions is left to the reader.

(b) y(n) = y2(n)−y1(n) = 3n−1. Substituting this into the equation yields

3n+1 − 3n − 63n−1 = 3n[3 − 1 − 2] = 0 �= 5(3n).

(c) By substituting for ϕ(n) into the equation we see easily that ϕ(n) is
not a solution.

output  y(n)input  g(n) system

FIGURE 2.2. Input–output system.
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Conclusion

(i) From the above example we conclude that in contrast to the situation
for homogeneous equations, solutions of the nonhomogeneous equa-
tion (2.4.1) do not form a vector space. In particular, neither the sum
(difference) of two solutions nor a multiple of a solution is a solution.

(ii) From part (b) in Example 2.28 we found that the difference of the
solutions y2(n) and y1(n) of the nonhomogeneous equation is actually
a solution of the associated homogeneous equation. This is indeed true
for the general nth-order equation, as demonstrated by the following
result.

Theorem 2.29. If y1(n) and y2(n) are solutions of (2.4.1), then x(n) =
y1(n) − y2(n) is a solution of the corresponding homogeneous equation

x(n + k) + p1(n)x(n + k − 1) + · · · + pk(n)x(n) = 0. (2.4.2)

Proof. The reader will undertake the justification of this theorem in
Exercises 2.4, Problem 12. �

It is customary to refer to the general solution of the homogeneous equa-
tion (2.4.2) as the complementary solution of the nonhomogeneous equation
(2.4.1), and it will be denoted by yc(n). A solution of the nonhomoge-
neous equation (2.4.1) is called a particular solution and will be denoted
by yp(n). The next result gives us an algorithm to generate all solutions of
the nonhomogeneous equation (2.4.1).

Theorem 2.30. Any solution y(n) of (2.4.1) may be written as

y(n) = yp(n) +
k∑

i=1

aixi(n),

where {x1(n), x2(n), . . . , xk(n)} is a fundamental set of solutions of the
homogeneous equation (2.4.2).

Proof. Observe that according to Theorem 2.29, y(n) − yp(n) is a
solution of the homogeneous equation (2.4.2). Thus y(n) − yp(n) =∑k

i=1 aixi(n), for some constants ai.
The preceding theorem leads to the definition of the general solution of

the nonhomogeneous equation (2.4.1) as

y(n) = yc(n) + yp(n). (2.4.3)
�

We now turn our attention to finding a particular solution yp of
nonhomogeneous equations with constant coefficients such as

y(n + k) + p1y(n + k − 1) + · · · + pky(n) = g(n). (2.4.4)
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Because of its simplicity, we use the method of undetermined coefficients
to compute yp.

Basically, the method consists in making an intelligent guess as to the
form of the particular solution and then substituting this function into the
difference equation. For a completely arbitrary nonhomogeneous term g(n),
this method is not effective. However, definite rules can be established for
the determination of a particular solution by this method if g(n) is a linear
combination of terms, each having one of the forms

an, sin(bn), cos(bn), or nk, (2.4.5)

or products of these forms such as

an sin(bn), annk, annk cos(bn), . . . . (2.4.6)

Definition 2.31. A polynomial operator N(E), where E is the shift
operator, is said to be an annihilator of g(n) if

N(E)g(n) = 0. (2.4.7)

In other words, N(E) is an annihilator of g(n) if g(n) is a solution of
(2.4.7). For example, an annihilator of g(n) = 3n is N(E) = E − 3, since
(E − 3)y(n) = 0 has a solution y(n) = 3n. An annihilator of g(n) = cos nπ

2
is N(E) = E2 + 1, since (E2 + 1)y(n) = 0 has a solution y(n) = cos nπ

2 .
Let us now rewrite (2.4.4) using the shift operator E as

p(E)y(n) = g(n), (2.4.8)

where p(E) = Ek + p1E
k−1 + p2E

k−2 + · · · + pkI.
Assume now that N(E) is an annihilator of g(n) in (2.4.8). Applying

N(E) on both sides of (2.4.8) yields

N(E)p(E)y(n) = 0. (2.4.9)

Let λ1, λ2, . . . , λk be the characteristic roots of the homogeneous equation

p(E)y(n) = 0, (2.4.10)

and let µ1, µ2, . . . , µk be the characteristic roots of

N(E)y(n) = 0. (2.4.11)

We must consider two separate cases.

Case 1. None of the λi’s equals any of the µi’s. In this case, write yp(n) as
the general solution of (2.4.11) with undetermined constants. Substituting
back this “guesstimated” particular solution into (2.4.4), we find the values
of the constants. Table 2.3 contains several types of functions g(n) and their
corresponding particular solutions.

Case 2. λi = µj for some i, j. In this case, the set of characteristic roots
of (2.4.9) is equal to the union of the sets {λi}, {µj} and, consequently,
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TABLE 2.3. Particular solutions yp(n).

g(n) yp(n)
an c1a

n

nk c0 + c1n + · · · + cknk

nkan c0a
n + c1nan + · · · + cknkan

sin bn, cos bn c1 sin bn + c2 cos bn
an sin bn, an cos bn (c1 sin bn + c2 cos bn)an

annk sin bn, annk cos bn (c0 + c1n + · · · + cknk)an sin(bn)
+ (d0 + d1n + · · · dknk)an cos(bn)

contains roots of higher multiplicity than the two individual sets of char-
acteristic roots. To determine a particular solution yp(n), we first find the
general solution of (2.4.9) and then drop all the terms that appear in yc(n).
Then proceed as in Case 1 to evaluate the constants.

Example 2.32. Solve the difference equation

y(n + 2) + y(n + 1) − 12y(n) = n2n. (2.4.12)

Solution The characteristic roots of the homogeneous equation are λ1 = 3
and λ2 = −4.

Hence,

yc(n) = c13n + c2(−4)n.

Since the annihilator of g(n) = n2n is given by N(E) = (E − 2)2 (Why?),
we know that µ1 = µ2 = 2. This equation falls in the realm of Case 1, since
λi �= µj , for any i, j. So we let

yp(n) = a12n + a2n2n.

Substituting this relation into equation (2.4.12) gives

a12n+2 + a2(n + 2)2n+2 + a12n+1 + a2(n + 1)2n+1 − 12a12n − 12a2n2n = n2n,

(10a2 − 6a1)2n − 6a2n2n = n2n.

Hence

10a2 − 6a1 = 0 and − 6a2 = 1,

or

a1 =
−5
18

, a2 =
−1
6

.

The particular solution is

yp(n) =
−5
18

2n − 1
6
n2n,

and the general solution is

y(n) = c13n + c2(−4)n − 5
18

2n − 1
6
n2n.
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Example 2.33. Solve the difference equation

(E − 3)(E + 2)y(n) = 5(3n). (2.4.13)

Solution The annihilator of 5(3n) is N(E) = (E − 3). Hence, µ1 = 3. The
characteristic roots of the homogeneous equation are λ1 = 3 and λ2 = −2.
Since λ1 = µ1, we apply the procedure for Case 2.

Thus,

(E − 3)2(E + 2)y(n) = 0. (2.4.14)

Now yc(n) = c13n + c2(−2)n.
We now know that the general solution of (2.4.14) is given by

ỹ(n) = (a1 + a2n)3n + a3(−2)n.

Omitting from ỹ(n) the terms 3n and (−2)n that appeared in yc(n), we set
yp(n) = a2n3n. Substituting this yp(n) into (2.4.13) gives

a2(n + 2)3n+2 − a2(n + 1)3n+1 + 6a2n3n = 5.3n,

or

a2 =
1
3
.

Thus yp(n) = n3n−1, and the general solution of (2.4.13) is

y(n) = c13n + c2(−2)n + n3n−1.

Example 2.34. Solve the difference equation

y(n + 2) + 4y(n) = 8(2n) cos
(nπ

2

)
. (2.4.15)

Solution The characteristic equation of the homogeneous equation is

λ2 + 4 = 0.

The characteristic roots are

λ1 = 2i, λ2 = −2i.

Thus r = 2, θ = π/2, and

yc(n) = 2n
(
c1 cos

(nπ

2

)
+ c2 sin

(nπ

2

))
.

Notice that g(n) = 2n cos
(

nπ
2

)
appears in yc(n). Using Table 2.3, we set

yp(n) = 2n
(
an cos

(nπ

2

)
+ bn sin

(nπ

2

))
. (2.4.16)

Substituting (2.4.16) into (2.4.15) gives

2n+2
[
a(n + 2) cos

(nπ

2
+ π
)

+ b(n + 2) sin
(nπ

2
+ π
)]

+ (4)2n
[
an cos

(nπ

2

)
+ bn sin

(nπ

2

)]
= 8(2n) cos

(nπ

2

)
.
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Replacing cos((nπ)/2 + π) by –cos((nπ)/2), and sin((nπ)/2 + π) by
–sin((nπ)/2) and then comparing the coefficients of the cosine terms leads
us to a = −1. Then by comparing the coefficients of the sine terms, we
realize that b = 0.

By substituting these values back into (2.4.16), we know that

yp(n) = −2nn cos
(nπ

2

)
,

and the general solution of (2.4.15), arrived at by adding yc(n) and yp(n),
is

y(n) = 2n
(
c1 cos

nπ

2
+ c2 sin

(nπ

2

)
− n cos

(nπ

2

))
.

Exercises 2.4.

For Problems 1 through 6, find a particular solution of the difference
equation.

1. y(n + 2) − 5y(n + 1) + 6y(n) = 1 + n.

2. y(n + 2) + 8y(n + 1) + 12y(n) = en.

3. y(n + 2) − 5y(n + 1) + 4y(n) = 4n − n2.

4. y(n + 2) + 8y(n + 1) + 7y(n) = nen.

5. y(n + 2) − y(n) = n cos
(nπ

2

)
.

6. (E2 + 9)2y(n) = sin
(nπ

2

)
− cos

(nπ

2

)
.

For Problems 7 through 9 find the solution of the difference equation.

7. ∆2y(n) = 16, y(0) = 2, y(1) = 3.

8. ∆2y(n) + 7y(n) = 2 sin
(nπ

4

)
, y(0) = 0, y(1) = 1.

9. (E − 3)(E2 + 1)y(n) = 3n, y(0) = 0, y(1) = 1, y(2) = 3.

For Problems 10 and 11 find the general solution of the difference equation.

10. y(n + 2) − y(n) = n2n sin
(nπ

2

)
.

11. y(n + 2) + 8y(n + 1) + 7y(n) = n2n.

12. Prove Theorem 2.29.

13. Consider the difference equation y(n+2)+p1y(n+1)+p2y(n) = g(n),
where p2

1 < 4p2 and 0 < p2 < 1. Show that if y1 and y2 are two
solutions of the equation, then y1(n) − y2(n) → 0 as n → ∞.

14. Determine the general solution of y(n+2)+λ2y(n) =
∑N

m=1 am sin(mπn),
where λ > 0 and λ �= mπ, m = 1, 2, . . . , N .
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15. Solve the difference equation

y(n + 2) + y(n) =

{
1 if 0 ≤ n ≤ 2,

−1 if n > 2,

with y(0) = 0 and y(1) = 1.

2.4.1 The Method of Variation of Constants (Parameters)
Contemplate the second-order nonhomogeneous difference equation

y(n + 2) + p1(n)y(n + 1) + p2(n)y(n) = g(n) (2.4.17)

and the corresponding homogeneous difference equation

y(n + 2) + p1(n)y(n + 1) + p2(n)y(n) = 0. (2.4.18)

The method of variation of constants is commonly used to find a particular
solution yp(n) of (2.4.17) when the coefficients p1(n) and p2(n) are not
constants. The method assumes that a particular solution of (2.4.17) may
be written in the form

y(n) = u1(n)y1(n) + u2(n)y2(n), (2.4.19)

where y1(n) and y2(n) are two linearly independent solutions of the homo-
geneous equation (2.4.18), and u1(n), u2(n) are sequences to be determined
later.

16. (a) Show that

y(n + 1) = u1(n)y1(n + 1) + u2(n)y2(n + 1)
+ ∆u1(n)y1(n + 1) + ∆u2(n)y2(n + 1). (2.4.20)

(b) The method stipulates that

∆u1(n)y1(n + 1) + ∆u2(n)y2(n + 1) = 0. (2.4.21)

Use (2.4.20) and (2.4.21) to show that

y(n + 2) = u1(n)y1(n + 2) + u2(n)y2(n + 2)
+ ∆u1(n)y1(n + 2) + ∆u2(n)y2(n + 2).

(c) By substituting the above expressions for y(n), y(n+1), and y(n+
2) into (2.4.17), show that

∆u1(n)y1(n + 2) + ∆u2(n)y2(n + 2) = g(n). (2.4.22)

(d) Using expressions (2.4.21) and (2.4.22), show that

∆u1(n) =
−g(n)y2(n + 1)

W (n + 1)
, u1(n) =

n−1∑
r=0

−g(r)y2(r + 1)
W (r + 1)

,

(2.4.23)
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∆u2(n) =
g(n)y1(n + 1)

W (n + 1)
, u2(n) =

n−1∑
r=0

g(r)y1(r + 1)
W (r + 1)

,

(2.4.24)
where W (n) is the Casoratian of y1(n) and y2(n).

17. Use formulas (2.4.23) and (2.4.24) to solve the equation

y(n + 2) − 7y(n + 1) + 6y(n) = n.

18. Use the variation of constants method to solve the initial value problem

y(n + 2) − 5y(n + 1) + 6y(n) = 2n, y(1) = y(2) = 0.

19. Use Problem 16(d) to show that the unique solution of (2.4.17) with
y(0) = y(1) = 0 is given by

y(n) =
n−1∑
r=0

y1(r + 1)y2(n) − y2(r + 1)y1(n)
W (r + 1)

.

20. Consider the equation

x(n + 1) = ax(n) + f(n). (2.4.25)

(a) Show that

x(n) = an

[
x(0) +

f(0)
a

+
f(1)
a2 + · · · +

f(n − 1)
an

]
(2.4.26)

is a solution of (2.4.25).

(b) Show that if |a| < 1 and {f(n)} is a bounded sequence, i.e.,
|f(n)| ≤ M , for some M > 0, n ∈ Z

+, then all solutions of
(2.4.25) are bounded.

(c) Suppose that a > 1 and {f(n)} is bounded on Z
+. Show that if

we choose

x(0) = −
(

f(0)
a

+
f(1)
a2 + · · · +

f(n)
an+1 + · · ·

)
= −

∞∑
i=0

f(i)
ai+1 ,

(2.4.27)
then the solution x(n) given by (2.4.26) is bounded on Z

+. Give
an explicit expression for x(n) in this case.

(d) Under the assumptions of part (c), show that for any choice
of x(0), excepting that value given by (2.4.27), the solution of
(2.4.25) is unbounded.
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2.5 Limiting Behavior of Solutions

To simplify our exposition we restrict our discussion to the second-order
difference equation

y(n + 2) + p1y(n + 1) + p2y(n) = 0. (2.5.1)

Suppose that λ1 and λ2 are the characteristic roots of the equation. Then
we have the following three cases:

(a) λ1 and λ2 are distinct real roots. Then y1(n) = λn
1 and y2(n) = λn

2 are
two linearly independent solutions of (2.5.1). If |λ1| > |λ2|, then we
call y1(n) the dominant solution, and λ1 the dominant characteristic
root. Otherwise, y2(n) is the dominant solution, and λ2 is the dominant
characteristic root. We will now show that the limiting behavior of the
general solution y(n) = a1λ

n
1 + a2λ

n
2 is determined by the behavior

of the dominant solution. So assume, without loss of generality, that
|λ1| > |λ2|. Then

y(n) = λn
1

[
a1 + a2

(
λ2

λ1

)n]
.

Since ∣∣∣∣λ2

λ1

∣∣∣∣ < 1,

it follows that (
λ2

λ1

)n

→ 0 as n → ∞.

Consequently, limn→∞ y(n) = limn→∞ a1λ
n
1 . There are six different

situations that may arise here depending on the value of λ1 (see Figure
2.3).

1. λ1 > 1: The sequence {a1λ
n
1} diverges to ∞ (unstable system).

2. λ1 = 1: The sequence {a1λ
n
1} is a constant sequence.

3. 0 < λ1 < 1: The sequence {a1λ
n
1} is monotonically decreasing to

zero (stable system).

4. −1 < λ1 < 0: The sequence {a1λ
n
1} is oscillating around zero (i.e.,

alternating in sign) and converging to zero (stable system).

5. λ1 = −1: The sequence {a1λ
n
1} is oscillating between two values

a1 and −a1.

6. λ1 < −1: The sequence {a1λ
n
1} is oscillating but increasing in

magnitude (unstable system).
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FIGURE 2.3. (n, y(n)) diagrams for real roots.
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(b) λ1 = λ2 = λ.
The general solution of (2.5.1) is given by y(n) = (a1+a2n)λn. Clearly,
if |λ| ≥ 1, the solution y(n) diverges either monotonically if λ ≥ 1 or by
oscillating if λ ≤ −1. However, if |λ| < 1, then the solution converges
to zero, since limn→∞ nλn = 0 (Why?).

(c) Complex roots: λ1 = α + iβ and λ2 = α − iβ, where β �= 0.
As we have seen in Section 2.3, formula (2.3.12), the solution of (2.5.1)
is given by y(n) = arn cos(nθ − ω), where

r =
√

α2 + β2, θ = tan−1
(

β

α

)
.

The solution y(n) clearly oscillates, since the cosine function oscillates.
However, y(n) oscillates in three different ways depending on the lo-
cation of the conjugate characteristic roots, as may be seen in Figure
2.4.

1. r > 1: Here λ1 and λ2 = λ1 are outside the unit circle. Hence y(n)
is oscillating but increasing in magnitude (unstable system).

2. r = 1: Here λ1 and λ2 = λ1 lie on the unit circle. In this case y(n)
is oscillating but constant in magnitude.

3. r < 1: Here λ1 and λ2 = λ1 lie inside the unit disk. The solution
y(n) oscillates but converges to zero as n → ∞ (stable system).

Finally, we summarize the above discussion in the following theorem.
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Theorem 2.35. The following statements hold:

(i) All solutions of (2.5.1) oscillate (about zero) if and only if the
characteristic equation has no positive real roots.

(ii) All solutions of (2.5.1) converge to zero (i.e., the zero solution is
asymptotically stable) if and only if max{|λ1|, |λ2|} < 1.

Next we consider nonhomogeneous difference equations in which the
input is constant, that is, equations of the form

y(n + 2) + p1y(n + 1) + p2y(n) = M, (2.5.2)

where M is a nonzero constant input or forcing term. Unlike (2.5.1), the
zero sequence y(n) = 0 for all n ∈ Z

+ is not a solution of (2.5.2). Instead,
we have the equilibrium point or solution y(n) = y*. From (2.5.2) we have

y* + p1y* + p2y* = M,

or

y* =
M

1 + p1 + p2
. (2.5.3)

Thus yp(n) = y* is a particular solution of (2.5.2). Consequently, the
general solution of (2.5.2) is given by

y(n) = y* + yc(n). (2.5.4)

It is clear that y(n) → y* if and only if yc(n) → 0 as n → ∞. Furthermore,
y(n) oscillates6 about y* if and only if yc(n) oscillates about zero. These
observations are summarized in the following theorem.

Theorem 2.36. The following statements hold:

(i) All solutions of the nonhomogeneous equation (2.5.2) oscillate about
the equilibrium solution y* if and only if none of the characteristic
roots of the homogeneous equation (2.5.1) is a positive real number.

(ii) All solutions of (2.5.2) converge to y* as n → ∞ if and only if
max{|λ1|, |λ2|} < 1, where λ1 and λ2 are the characteristic roots of
the homogeneous equation (2.5.1).

Theorems 2.35 and 2.36 give necessary and sufficient conditions under
which a second-order difference equation is asymptotically stable. In many
applications, however, one needs to have explicit criteria for stability based
on the values of the coefficients p1 and p2 of (2.5.2) or (2.5.1). The following
result provides us with such needed criteria.

6We say y(n) oscillates about y* if y(n)−y* alternates sign, i.e., if y(n) > y*,
then y(n + 1) < y*.
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Theorem 2.37. The conditions

1 + p1 + p2 > 0, 1 − p1 + p2 > 0, 1 − p2 > 0 (2.5.5)

are necessary and sufficient for the equilibrium point (solution) of equations
(2.5.1) and (2.5.2) to be asymptotically stable (i.e., all solutions converge
to y*).

Proof. Assume that the equilibrium point of (2.5.1) or (2.5.2) is asymp-
totically stable. In virtue of Theorems 2.35 and 2.36, the roots λ1, λ2 of
the characteristic equation λ2 + p1λ + p2 = 0 lie inside the unit disk, i.e.,
|λ1| < 1 and |λ2| < 1. By the quadratic formula, we have

λ1 =
−p1 +

√
p2
1 − 4p2

2
and λ2 =

−p1 −
√

p2
1 − 4p2

2
. (2.5.6)

Then we have two cases to consider.

Case 1. λ1, λ2 are real roots, i.e., p2
1 − 4p2 ≥ 0. From formula (2.5.6) we

have

−2 < −p1 +
√

p2
1 − 4p2 < 2,

or

−2 + p1 <
√

p2
1 − 4p2 < 2 + p1. (2.5.7)

Similarly, one obtains

−2 + p1 < −
√

p2
1 − 4p2 < 2 + p1. (2.5.8)

Squaring the second inequality in expression (2.5.7) yields

1 + p1 + p2 > 0. (2.5.9)

Similarly, if we square the first inequality in expression (2.5.8) we obtain

1 − p1 + p2 > 0. (2.5.10)

Now from the second inequality of (2.5.7) and the first inequality of (2.5.8)
we obtain

2 + p1 > 0 and 2 − p1 > 0 or |p1| < 2

since p2
1 − 4p2 ≥ 0, p2 ≤ p2

1/4 < 1. This completes the proof of (2.5.5) in
this case.

Case 2. λ1 and λ2 are complex conjugates, i.e., p2
1 − 4p2 < 0. In this case

we have

λ1,2 =
−p1

2
± i

2

√
4p2 − p2

1.

Moreover, since p2
1 < 4p2, it follows that −2

√
p2 < p1 < 2

√
p2. Now |λ1|2 =

p2
1
4 + 4p2

4 − p2
1
4 = p2. Since |λ1| < 1, it follows that 0 < p2 < 1.
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Hence to show that the first two inequalities of (2.5.5) hold we need to
show that the function f(x) = 1 + x − 2

√
x > 0 for x ∈ (0, 1). Observe

that f(0) = 1, and f ′(x) = 1 − 1√
x
. Thus x = 1 is a local minimum as f(x)

decreases for x ∈ (0, 1). Hence f(x) > 0 for all x ∈ (0, 1).
This completes the proof of the necessary conditions. The converse is left

to the reader as Exercises 2.5, Problem 8. �

Example 2.38. Find conditions under which the solutions of the equation

y(n + 2) − α(1 + β)y(n + 1) + αβy(n) = 1, α, β > 0,

(a) converge to the equilibrium point y*, and

(b) oscillate about y*.

Solution Let us first find the equilibrium point y*. Be letting y(n) = y* in
the equation, we obtain

y* =
1

1 − α
, α �= 1.

(a) Applying condition (2.5.5) to our equation yields

α < 1, 1 + α + 2αβ > 0, αβ < 1.

Clearly, the second inequality 1+α+2αβ > 0 is always satisfied, since
α, β are both positive numbers.

(b) The solutions are oscillatory about y* if either λ1, λ2 are negative real
numbers or complex conjugates. In the first case we have

α2(1 + β)2 > 4αβ, or α >
4β

(1 + β)2
,

and

α(1 + β) < 0,

which is impossible. Thus if α > 4β/(1 + β)2, we have no oscillatory
solutions.

Now, λ1 and λ2 are complex conjugates if

α2(1 + β)2 < 4αβ or α <
4β

(1 + β)2
.

Hence all solutions are oscillatory if

α <
4β

(1 + β)2
.

For the treatment of the general kth-order scalar difference equations, the
reader is referred to Chapter 4, on stability, and Chapter 8, on oscillation.
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Exercises 2.5.

In Problems 1 through 4:

(a) Determine the stability of the equilibrium point by using Theorem 2.35
or Theorem 2.36.

(b) Determine the oscillatory behavior of the solutions of the equation.

1. y(n + 2) − 2y(n + 1) + 2y(n) = 0.

2. y(n + 2) + 1
4y(n) = 5

4 .

3. y(n + 2) + y(n + 1) +
1
2
y(n) = −5.

4. y(n + 2) − 5y(n + 1) + 6y(n) = 0.

5. Determine the stability of the equilibrium point of the equations
in Problems 1 through 4 by using Theorem 2.37.

6. Show that the stability conditions (2.5.5) for the equation y(n +
2) − αy(n + 1) + βy(n) = 0, where α, β are constants, may be
written as

−1 − β < α < 1 + β, β < 1.

7. Contemplate the equation y(n+2)−p1y(n+1)−p2y(n) = 0. Show
that if |p1| + |p2| < 1, then all solutions of the equation converge
to zero.

8. Prove that conditions (2.5.5) imply that all solutions of (2.5.2)
converge to the equilibrium point y*.

9. Determine conditions under which all solutions of the difference
equation in Problem 7 oscillate.

10. Determine conditions under which all solutions of the difference
equation in Problem 6 oscillate.

11. Suppose that p is a real number. Prove that every solution of the
difference equation y(n + 2) − y(n + 1) + py(n) = 0 oscillates if
and only if p > 1

4 .

*12. Prove that a necessary and sufficient condition for the asymptotic
stability of the zero solution of the equation

y(n + 2) + p1y(n + 1) + p2y(n) = 0

is

|p1| < 1 + p2 < 2.
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13. Determine the limiting behavior of solutions of the equation

y(n + 2) = αc + αβ(y(n + 1) − y(n))

if:

(i) αβ = 1,

(ii) αβ = 2,

(iii) αβ =
1
2
,

provided that α, β, and c are positive constants.

14. If p1 > 0 and p2 > 0, show that all solutions of the equation

y(n + 2) + p1y(n + 1) + p2y(n) = 0

are oscillatory.

15. Determine the limiting behavior of solutions of the equation

y(n + 2) − β

α
y(n + 1) +

β

α
y(n) = 0,

where α and β are constants, if:

(i) β > 4α,

(ii) β < 4α.

2.6 Nonlinear Equations Transformable
to Linear Equations

In general, most nonlinear difference equations cannot be solved explic-
itly. However, a few types of nonlinear equations can be solved, usually by
transforming them into linear equations. In this section we discuss some
tricks of the trade.

Type I. Equations of Riccati type:

x(n + 1)x(n) + p(n)x(n + 1) + q(n)x(n) = 0. (2.6.1)

To solve the Riccati equation, we let

z(n) =
1

x(n)

in (2.6.1) to give us

q(n)z(n + 1) + p(n)z(n) + 1 = 0. (2.6.2)

The nonhomogeneous equation requires a different transformation

y(n + 1)y(n) + p(n)y(n + 1) + q(n)y(n) = g(n). (2.6.3)
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If we let y(n) = (z(n + 1)/z(n)) − p(n) in (2.6.3) we obtain

z(n + 2) + (q(n) − p(n + 1))z(n + 1) − (g(n) + p(n)q(n))z(n) = 0.

Example 2.39. The Pielou Logistic Equation

The most popular continuous model of the growth of a population is the
well-known Verhulst–Pearl equation given by

x′(t) = x(t)[a − bx(t)], a, b > 0, (2.6.4)

where x(t) is the size of the population at time t; a is the rate of the growth
of the population if the resources were unlimited and the individuals did
not affect one another, and −bx2(t) represents the negative effect on the
growth due to crowdedness and limited resources. The solution of (2.6.4)
is given by

x(t) =
a/b

1 + (e−at/cb)
.

Now,

x(t + 1) =
a/b

1 +
(
e−a(t+1)/cb

)
=

ea(a/b)
1 + (e−at/cb) + (ea − 1)

.

Dividing by [1 + (e−at/cb)], we obtain

x(t + 1) =
eax(t)[

1 + b
a (ea − 1)x(t)

] ,
or

x(n + 1) =
αx(n)

[1 + βx(n)]
, (2.6.5)

where α = ea and β = b
a (ea − 1).

This equation is titled the Pielou logistic equation.

Equation (2.6.5) is of Riccati type and may be solved by letting x(n) =
1/z(n). This gives us the equation

z(n + 1) =
1
α

z(n) +
β

α
,

whose solution is given by

z(n) =

⎧⎪⎨⎪⎩
[
c − β

α − 1

]
α−n + (β/(α − 1)) if α �= 1,

c + βn if α = 1.
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x(n+1)

x(n)
0.5

FIGURE 2.5. Asymptotically stable equilibrium points.

Thus

x(n) =

⎧⎨⎩
αn(α − 1)/[βαn + c(α − 1) − β] if α �= 1,

1
c + βn

if α = 1.

Hence

lim
n→∞ x(n) =

{
(α − 1)/β if α �= 1,

0 if α = 1.

This conclusion shows that the equilibrium point (α − 1)/β is globally
asymptotically stable if α �= 1. Figure 2.5 illustrates this for α = 3, β = 1,
and x(0) = 0.5.

Type II. Equations of general Riccati type:

x(n + 1) =
a(n)x(n) + b(n)
c(n)x(n) + d(n)

(2.6.6)

such that c(n) �= 0, a(n)d(n) − b(n)c(n) �= 0 for all n ≥ 0.

To solve this equation we let

c(n)x(n) + d(n) =
y(n + 1)

y(n)
. (2.6.7)

Then by substituting

x(n) =
y(n + 1)
c(n)y(n)

− d(n)
c(n)
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into (2.6.6) we obtain

y(n + 2)
c(n + 1)y(n + 1)

− d(n + 1)
c(n + 1)

=
a(n)

[
y(n + 1)
c(n)y(n)

− d(n)
c(n)

]
+ b(n)

y(n + 1)
y(n)

.

This equation simplifies to

y(n + 2) + p1(n)y(n + 1) + p2(n)y(n) = 0,
y(0) = 1, y(1) = c(0)x(0) + d(0), (2.6.8)

where

p1(n) = −c(n)d(n + 1) + a(n)c(n + 1)
c(n)

,

p2(n) = (a(n)d(n) − b(n)c(n))
c(n + 1)

c(n)
.

Example 2.40. Solve the difference equation

x(n + 1) =
2x(n) + 3
3x(n) + 2

.

Solution Here a = 2, b = 3, c = 3, and d = 2. Hence ad − bc �= 0. Using the
transformation

3x(n) + 2 =
y(n + 1)

y(n)
, (2.6.9)

we obtain, as in (2.6.8),

y(n + 2) − 4y(n + 1) − 5y(n) = 0, y(0) = 1, y(1) = 3x(0) + 2,

with characteristic roots λ1 = 5, λ2 = −1.
Hence

y(n) = c15n + c2(−1)n. (2.6.10)

From formula (2.6.9) we have

x(n) =
1
3

y(n + 1)
y(n)

− 2
3

=
1
3

c15n+1 + c2(−1)n+1

c15n + c2(−1)n
− 2

3

=
(c15n − c2(−1)n)
(c15n + c2(−1)n)

=
5n − c(−1)n

5n + c(−1)n
,

where

c =
c1

c2
.

Type III. Homogeneous difference equations of the type

f

(
x(n + 1)

x(n)
, n

)
= 0.
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Use the transformation z(n) = x(n+1)
x(n) to convert such an equation to a

linear equation in z(n), thus allowing it to be solved.

Example 2.41. Solve the difference equation

x2(n + 1) − 3x(n + 1)x(n) + 2x2(n) = 0. (2.6.11)

Solution Dividing by x2(n), equation (2.6.11) becomes[
x(n + 1)

x(n)

]2
− 3
[
x(n + 1)

x(n)

]
+ 2 = 0, (2.6.12)

which is of Type III.
Letting z(n) = x(n+1)

x(n) in (2.6.12) creates

z2(n) − 3z(n) + 2 = 0.

We can factor this down to

[z(n) − 2][z(n) − 1] = 0,

and thus either z(n) = 2 or z(n) = 1.
This leads to

x(n + 1) = 2x(n) or x(n + 1) = x(n).

Starting with x(0) = x0, there are infinitely many solutions x(n) of (2.6.11)
of the form

x0, . . . , x0; 2x0, . . . , 2x0; 22x0, . . . , 22x0; . . . .7

Type IV. Consider the difference equation of the form

(y(n + k))r1 (y(n + k − 1))r2 · · · (y(n))rk+1 = g(n). (2.6.13)

Let z(n) = ln y(n), and rearrange to obtain

r1z(n + k) + r2z(n + k − 1) + · · · + rk+1z(n) = ln g(n). (2.6.14)

Example 2.42. Solve the difference equation

x(n + 2) =
x2(n + 1)

x2(n)
. (2.6.15)

Solution Let z(n) = lnx(n) in (2.6.15). Then as in (2.6.12) we obtain

z(n + 2) − 2z(n + 1) + 2z(n) = 0.

The characteristic roots are λ1 = 1 + i, λ2 = 1 − i.
Thus,

z(n) = (2)n/2
[
c1 cos

(nπ

4

)
+ c2 sin

(nπ

4

)]
.

7This solution was given by Sebastian Pancratz of the Technical University of
Munich.
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Therefore,

x(n) = exp
[
(2)n/2

{
c1 cos

(nπ

4

)
+ c2 sin

(nπ

4

)}]
.

Exercises 2.6

1. Find the general solution of the difference equation

y2(n + 1) − 2y(n + 1)y(n) − 3y2(n) = 0.

2. Solve the difference equation

y2(n + 1) − (2 + n)y(n + 1)y(n) + 2ny2(n) = 0.

3. Solve y(n + 1)y(n) − y(n + 1) + y(n) = 0.

4. Solve y(n + 1)y(n) − 2
3
y(n + 1) +

1
6
y(n) =

5
18

.

5. Solve y(n + 1) = 5 − 6
y(n)

.

6. Solve x(n + 1) =
x(n) + a

x(n) + 1
, 1 �= a > 0.

7. Solve x(n + 1) = x2(n).

8. Solve the logistic difference equation

x(n + 1) = 2x(n)(1 − x(n)).

9. Solve the logistic equation

x(n + 1) = 4x(n)[1 − x(n)].

10. Solve x(n + 1) =
1
2

(
x(n) − a

x(n)

)
, a > 0.

11. Solve y(n + 2) = y3(n + 1)/y2(n).

12. Solve x(n + 1) =
2x(n) + 4
x(n) − 1

.

13. Solve y(n + 1) =
2 − y2(n)

2(1 − y(n))
.

14. Solve x(n + 1) =
2x(n)

x(n) + 3
.

15. Solve y(n + 1) = 2y(n)
√

1 − y2(n).

16. The “regular falsi” method for finding the roots of f(x) = 0 is given
by

x(n + 1) =
x(n − 1)f(x(n)) − x(n)f(x(n − 1))

f(x(n)) − f(x(n − 1))
.
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(a) Show that for f(x) = x2, this difference equation becomes

x(n + 1) =
x(n − 1)x(n)

x(n − 1) + x(n)
.

(b) Let x(1) = 1, x(2) = 1 for the equation in part (a). Show that the
solution of the equation is x(n) = 1/F (n), where F (n) is the nth
Fibonacci number.

2.7 Applications

2.7.1 Propagation of Annual Plants
The material of this section comes from Edelstein–Keshet [37] of plant
propagation. Our objective here is to develop a mathematical model that
describes the number of plants in any desired generation. It is known that
plants produce seeds at the end of their growth season (say August), after
which they die. Furthermore, only a fraction of these seeds survive the
winter, and those that survive germinate at the beginning of the season
(say May), giving rise to a new generation of plants.

Let

γ = number of seeds produced per plant in August,
α = fraction of one-year-old seeds that germinate in May,

β = fraction of two-year-old seeds that germinate in May,

σ = fraction of seeds that survive a given winter.

If p(n) denotes the number of plants in generation n, then

p(n) =

(
plants from

one-year-old seeds

)
+

(
plants from

two-year-old seeds

)
,

p(n) = αs1(n) + βs2(n), (2.7.1)

where s1(n) (respectively, s2(n)) is the number of one-year-old (two-year-
old) seeds in April (before germination). Observe that the number of seeds
left after germination may be written as

seeds left =

(
fraction

not germinated

)
×
(

original number
of seeds in April

)
.

This gives rise to two equations:

s̃1(n) = (1 − α)s1(n), (2.7.2)

s̃2(n) = (1 − β)s2(n), (2.7.3)
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Year k=n Year k=n+1 Year k=n+2

April-May August Winter April-May August Winter April-May August

γ

s0(n)

σ

α

α

s1(n+1) s1(n+1)
β

γ

s0(n+1)

p(n+2) s0(n+2)

s1(n+1)

p(n+1)p(n)

s0(n+2)

σ σ

FIGURE 2.6. Propogation of annual plants.

where s̃1(n) (respectively, s̃2(n)) is the number of one-year (two-year-old)
seeds left in May after some have germinated. New seeds s0(n) (0-year-old)
are produced in August (Figure 2.6) at the rate of γ per plant,

s0(n) = γp(n). (2.7.4)

After winter, seeds s0(n) that were new in generation n will be one year
old in the next generation n+1, and a fraction σs0(n) of them will survive.
Hence

s1(n + 1) = σs0(n),

or, by using formula (2.7.4), we have

s1(n + 1) = σγp(n). (2.7.5)

Similarly,

s2(n + 1) = σs̃1(n),

which yields, by formula (2.7.2),

s2(n + 1) = σ(1 − α)s1(n),
s2(n + 1) = σ2γ(1 − α)p(n − 1). (2.7.6)
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Substituting for s1(n + 1), s2(n + 1) in expressions (2.7.5) and (2.7.6) into
formula (2.7.1) gives

p(n + 1) = αγσp(n) + βγσ2(1 − α)p(n − 1),

or

p(n + 2) = αγσp(n + 1) + βγσ2(1 − α)p(n). (2.7.7)

The characteristic equation (2.7.7) is given by

λ2 − αγσλ − βγσ2(1 − α) = 0

with characteristic roots

λ1 =
αγσ

2

[
1 +

√
1 +

4β

γα2 (1 − α)

]
,

λ2 =
αγσ

2

[
1 −
√

1 +
4β

γα2 (1 − α)

]
.

Observe that λ1 and λ2 are real roots, since 1 − α > 0. Furthermore,
λ1 > 0 and λ2 < 0. To ensure propagation (i.e., p(n) increases indefinitely
as n → ∞) we need to have λ1 > 1. We are not going to do the same with
λ2, since it is negative and leads to undesired fluctuation (oscillation) in
the size of the plant population. Hence

αγσ

2

[
1 +

√
1 +

4β

γα2 (1 − α)

]
> 1,

or

αγσ

2

√
1 +

4β(1 − α)
γα2 > 1 − αγσ

2
.

Squaring both sides and simplifying yields

γ >
1

ασ + βσ2(1 − α)
. (2.7.8)

If β = 0, that is, if no two-year-old seeds germinate in May, then condition
(2.7.8) becomes

γ >
1

ασ
. (2.7.9)

Condition (2.7.9) says that plant propagation occurs if the product of the
fraction of seeds produced per plant in August, the fraction of one-year-old
seeds that germinate in May, and the fraction of seeds that survive a given
winter exceeds 1.
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2.7.2 Gambler’s Ruin
A gambler plays a sequence of games against an adversary in which the
probability that the gambler wins $1.00 in any given game is a known
value q, and the probability of his losing $1.00 is 1 − q, where 0 ≤ q ≤ 1.
He quits gambling if he either loses all his money or reaches his goal of
acquiring N dollars. If the gambler runs out of money first, we say that the
gambler has been ruined. Let p(n) denote the probability that the gambler
will be ruined if he possesses n dollars. He may be ruined in two ways. First,
winning the next game; the probability of this event is q; then his fortune
will be n + 1, and the probability of being ruined will become p(n + 1).
Second, losing the next game; the probability of this event is 1 − q, and
the probability of being ruined is p(n − 1). Hence applying the theorem of
total probabilities, we have

p(n) = qp(n + 1) + (1 − q)p(n − 1).

Replacing n by n + 1, we get

p(n + 2) − 1
q
p(n + 1) +

(1 − q)
q

p(n) = 0, n = 0, 1, . . . , N, (2.7.10)

with p(0) = 1 and p(N) = 0. The characteristic equation is given by

λ2 − 1
q
λ +

1 − q

q
= 0,

and the characteristic roots are given by

λ1 =
1
2q

+
1 − 2q

2q
=

1 − q

q
,

λ2 =
1
2q

− 1 − 2q

2q
= 1.

Hence the general solution may be written as

p(n) = c1 + c2

(
1 − q

q

)n

, if q �= 1
2
.

Now using the initial conditions p(0) = 1, P (N) = 0 we obtain

c1 + c2 = 1, c1 + c2

(
1 − q

q

)N

= 0,

which gives

c1 =
−
(

1 − q

q

)N

1 −
(

1 − q

q

)N
, c2 =

1

1 −
(

1 − q

q

)N
.
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Thus

p(n) =

(
1 − q

q

)n

−
(

1 − q

q

)N

1 −
(

1 − q

q

)N
. (2.7.11)

The special case q = 1
2 must be treated separately, since in this case we

have repeated roots λ1 = λ2 = 1. This is certainly the case when we have
a fair game. The general solution in this case may be given by

p(n) = a1 + a2n,

which with the initial conditions yields

p(n) = 1 − n

N
=

N − n

N
. (2.7.12)

For example, suppose you start with $4, the probability that you win a
dollar is 0.3, and you will quit if you run out of money or have a total of
$10. Then n = 4, q = 0.3, and N = 10, and the probability of being ruined
is given by

p(4) =

(
7
3

)4

−
(

7
3

)10

1 −
(

7
3

)10 = 0.994.

On the other hand, if q = 0.5, N = $100.00, and n = 20, then from formula
(2.7.12) we have

p(20) = 1 − 20
100

= 0.8.

Observe that if q ≤ 0.5 and N → ∞, p(n) tends to 1 in both formulas
(2.7.11) and (2.7.12), and the gambler’s ruin is certain.

The probability that the gambler wins is given by

p̃(n) = 1 − p(n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 −
(

1 − q

q

)n

1 −
(

1 − q

q

)N
, if q �= 0.5,

n

N
, if q = 0.5.

(2.7.13)

2.7.3 National Income
In a capitalist country the national income Y (n) in a given period n may
be written as

Y (n) = C(n) + I(n) + G(n), (2.7.14)
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where

C(n) = consumer expenditure for purchase of consumer goods,
I(n) = induced private investment for buying capital equipment, and
G(n) = government expenditure,

where n is usually measured in years.
We now make some assumptions that are widely accepted by economists

(see, for example, Samuelson [129]).

(a) Consumer expenditure C(n) is proportional to the national income
Y (n − 1) in the preceding year n − 1, that is,

C(n) = αY (n − 1), (2.7.15)

where α > 0 is commonly called the marginal propensity to consume.

(b) Induced private investment I(n) is proportional to the increase in
consumption C(n) − C(n − 1), that is,

I(n) = β[C(n) − C(n − 1)], (2.7.16)

where β > 0 is called the relation.

(c) Finally, the government expenditure G(n) is constant over the years,
and we may choose our units such that

G(n) = 1. (2.7.17)

Employing formulas (2.7.15), (2.7.16), and (2.7.17) in formula (2.7.14)
produces the second-order difference equation

Y (n + 2) − α(1 + β)Y (n + 1) + αβY (n) = 1, n ∈ Z
+. (2.7.18)

Observe that this is the same equation we have already studied, in
detail, in Example 2.38. As we have seen there, the equilibrium state
of the national income Y * = 1/(1−α) is asymptotically stable (or just
stable in the theory of economics) if and only if the following conditions
hold:

α < 1, 1 + α + 2αβ > 0, αβ < 1. (2.7.19)

Furthermore, the national income Y (n) fluctuates (oscillates) around
the equilibrium state Y * if and only if

α <
4β

(1 + β)2
. (2.7.20)

Now consider a concrete example where α = 1
2 , β = 1. Then Y * = 2, i.e.,

Y * = twice the government expenditure. Then clearly, conditions (2.7.19)
and (2.7.12) are satisfied. Hence the national income Y (n) always converges
in an oscillatory fashion to Y * = 2, regardless of what the initial national
income Y (0) and Y (1) are. (See Figure 2.7.)
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1 2 3 4 5 6 7 8 9 10
n

3
2
1

Y(n)

FIGURE 2.7. Solution of Y (n + 2) − Y (n + 1) + Y (n) = 1, Y (0) = 1, Y (1) = 2.

The actual solution may be given by

Y (n) = A

(
1√
2

)n

cos
(nπ

4
− ω
)

+ 2.

Figure 2.7 depicts the solution Y (n) if Y (0) = 1 and Y (1) = 2. Here we
find that A = −√

2 and ω = π/4 and, consequently, the solution is

Y (n) = −
(

1√
2

)n−1

cos
[
(n + 1)

4
π

]
+ 2.

Finally, Figure 2.8 depicts the parameter diagram (β − α), which shows
regions of stability and regions of instability.

2.7.4 The Transmission of Information
Suppose that a signaling system has two signals s1 and s2 such as dots and
dashes in telegraphy. Messages are transmitted by first encoding them into
a string, or sequence, of these two signals. Suppose that s1 requires exactly
n1 units of time, and s2 exactly n2 units of time, to be transmitted. Let
M(n) be the number of possible message sequences of duration n. Now, a
signal of duration time n either ends with an s1 signal or with an s2 signal.

β

α

1

Real roots
unstable

Real roots
stable

Imaginary
roots
stable

Imaginary roots
unstable

1

FIGURE 2.8. Parametric diagram (β − α).
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...

... ; M(n–n1) possible message

; M(n–n2) possible message

FIGURE 2.9. Two signals, one ends with s1 and the other with s2.

If the message ends with s1, the last signal must start at n − n1 (since
s1 takes n1 units of time). Hence there are M(n−n1) possible messages to
which the last s1 may be appended. Hence there are M(n − n1) messages
of duration n that end with s1. By a similar argument, one may conclude
that there are M(n − n2) messages of duration n that end with s2. (See
Figure 2.9.) Consequently, the total number of messages x(n) of duration
n may be given by

M(n) = M(n − n1) + M(n − n2).

If n1 ≥ n2, then the above equation may be written in the familiar form
of an n1th-order equation

M(n + n1) − M(n + n1 − n2) − M(n) = 0. (2.7.21)

On the other hand, if n1 ≤ n2, then we obtain the n2th-order equation

M(n + n2) − M(n + n2 − n1) − M(n) = 0. (2.7.22)

An interesting special case is that in which n1 = 1 and n2 = 2. In this case
we have

M(n + 2) − M(n + 1) − M(n) = 0,

or

M(n + 2) = M(n + 1) + M(n),

which is nothing but our Fibonacci sequence {0, 1, 1, 2, 3, 5, 8, . . .}, which we
encountered in Example 2.27. The general solution (see formula (2.3.14))
is given by

M(n) = a1

(
1 +

√
5

2

)n

+ a2

(
1 − √

5
2

)n

, n = 0, 1, 2, . . . . (2.7.23)

To find a1 and a2 we need to specify M(0) and M(1). Here a sensible
assumption is to let M(0) = 0 and M(1) = 1. Using these initial data in
(2.7.23) yields

a1 =
1√
5
, a2 = − 1√

5
,

and the solution of our problem now becomes

M(n) =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1 − √

5
2

)n

. (2.7.24)
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In information theory, the capacity C of the channel is defined as

C = lim
n→∞

log2 M(n)
n

, (2.7.25)

where log2 denotes the logarithm base 2.
From (2.7.24) we have

C = lim
n→∞

log2
1√
5

n
+ lim

n→∞
1
n

log2

[(
1 +

√
5

2

)
−
(

1 − √
5

2

)n]
.

(2.7.26)

Since
(

1−√
5

2

)
≈ 0.6 < 1, it follows that

(
1−√

5
2

)n

→ 0 as n → ∞.
Observe also that the first term on the right-hand side of (2.7.26) goes

to zero as n → ∞.
Thus

C = lim
n→∞

1
n

log2

(
1 +

√
5

2

)n

,

C = log2

(
1 +

√
5

2

)
≈ 0.7. (2.7.27)

Exercises 2.7

1. The model for annual plants was given by (2.7.7) in terms of the plant
population p(n).

(a) Write the model in terms of s1(n).

(b) Let α = β = 0.01 and σ = 1. How big should γ be to ensure that
the plant population increases in size?

2. An alternative formulation for the annual plant model is that in which
we define the beginning of a generation as the time when seeds are
produced. Figure 2.10 shows the new method.

Write the difference equation in p(n) that represents this model. Then
find conditions on γ under which plant propagation occurs.

3. A planted seed produces a flower with one seed at the end of the first
year and a flower with two seeds at the end of two years and each year
thereafter. Suppose that each seed is planted as soon as it is produced.

(a) Write the difference equation that describes the number of flowers
F (n) at the end of the nth year.

(b) Compute the number of flowers at the end of 3, 4, and 5 years.

4. Suppose that the probability of winning any particular bet is 0.49.
If you start with $50 and will quit when you have $100, what is the
probability of ruin (i.e., losing all your money):
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(i) if you make $1 bets?

(ii) if you make $10 bets?

(iii) if you make $50 bets?

5. John has m chips and Robert has (N − m) chips. Suppose that John
has a probability p of winning each game, where one chip is bet on in
each play. If G(m) is the expected value of the number of games that
will be played before either John or Robert is ruined:

(a) Show that G(m) satisfies the second-order equation

G(m + 2) + pG(m + 1) + (1 − p)G(m) = 0. (2.7.28)

(b) What are the values of G(0) and G(N)?

(c) Solve the difference equation (2.7.28) with the boundary condi-
tions in part (b).

6. Suppose that in a game we have the following situation: On each play,
the probability that you will win $2 is 0.1, the probability that you
will win $1 is 0.3, and the probability that you will lose $1 is 0.6.
Suppose you quit when either you are broke or when you have at least
N dollars. Write a third-order difference equation that describes the
probability p(n) of eventually going broke if you have n dollars. Then
find the solution of the equation.

7. Suppose that Becky plays a roulette wheel that has 37 divisions: 18
are red, 18 are black, and one is green. Becky can bet on either the
red or black, and she wins a sum equal to her bet if the outcome is a
division of that color; otherwise, she loses the bet. If the bank has one

σ σ

σ

α

α

γ

s0(n)

p(n)

s0(n+1)

p(n+1)

β

FIGURE 2.10. Annual plant model.
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million dollars and she has $5000, what is the probability that Becky
can break the bank, assuming that she bets $100 on either red or black
for each spin of the wheel?

8. In the national income model (2.7.14), assume that the government
expenditure G(n) is proportional to the national income Y (n − 2) two
periods past, i.e., G(n) = γY (n − 2), 0 < γ < 1. Derive the difference
equation for the national income Y (n). Find the conditions for stability
and oscillations of solutions.

9. Determine the behavior (stability, oscillations) of solutions of (2.7.18)
for the cases:

(a) α =
4β

(1 + β)2
.

(b) α >
4β

(1 + β)2
.

10. Modify the national income model such that instead of the government
having fixed expenditures, it increases its expenditures by 5% each time
period, that is, G(n) = (1.05)n.

(a) Write down the second-order difference equation that describes
this model.

(b) Find the equilibrium value.

(c) If α = 0.5, β = 1, find the general solution of the equation.

11. Suppose that in the national income we make the following assump-
tions:

(i) Y (n) = C(n) + I(n), i.e., there is no government expenditure.

(ii) C(n) = a1Y (n − 1) + a2Y (n − 2) + K, i.e., consumption in any
period is a linear combination of the incomes of the two preceding
periods, where a1, a2, and K are constants.

(iii) I(n + 1) = I(n) + h, i.e., investment increases by a fixed amount
h > 0 each period.

(a) Write down a third-order difference equation that models the
national income Y (n).

(b) Find the general solution if a1 =
1
2
, a2 =

1
4
.

(c) Show that Y (n) is asymptotic to the equilibrium Y * = α+βn.

12. (Inventory Analysis). Let S(n) be the number of units of consumer
goods produced for sale in period n, and let T (n) be the number of
units of consumer goods produced for inventories in period n. Assume
that there is a constant noninduced net investment V0 in each period.



2.7 Applications 115

Then the total income Y (n) produced in time n is given by Y (n) =
T (n) + S(n) + V0.

(a) Develop a difference equation that models the total income Y (n),
under the assumptions:

(i) S(n) = βY (n − 1),

(ii) T (n) = βY (n − 1) − βY (n − 2).

(b) Obtain conditions under which:

(i) solutions converge to the equilibrium,

(ii) solutions are oscillatory.

(c) Interpret your results in part (b).

13. Let I(n) denote the level of inventories at the close of period n.

(a) Show that I(n) = I(n − 1) + S(n) + T (n) − βY (n) where
S(n), T (n), Y (n) are as in Problem 12.

(b) Assuming that S(n) = 0 (passive inventory adjustment), show
that

I(n) − I(n − 1) = (1 − β)Y (n) − V0

where V0 is as in Problem 12.

(c) Suppose as in part (b) that s(n) = 0. Show that

I(n + 2) − (β + 1)I(n + 1) + βI(n) = 0.

(d) With β �= 1, show that

I(n) =
(

I(0) − c

1 − β

)
βn +

c

1 − β
,

where (E − β)I(n) = c.

14. Consider (2.7.21) with n1 = n2 = 2 (i.e., both signals s1 and s2 take
two units of time for transmission).

(a) Solve the obtained difference equation with the initial conditions
M(2) = M(3) = 2.

(b) Find the channel capacity c.

15. Consider (2.7.21) with n1 = n2 = 1 (i.e., both signals take one unit of
time for transmission).

(a) Solve the obtained difference equation.

(b) Find the channel capacity c.
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16. (Euler’s method for solving a second-order differential equation.) Re-
call from Section 1.4.1 that one may approximate x′(t) by (x(n +
1) − x(n))/h, where h is the step size of the approximation and
x(n) = x(t0 + nh).

(a) Show that x′′(t) may be approximated by

x(n + 2) − 2x(n + 1) + x(n)
h2 .

(b) Write down the corresponding difference equation of the differen-
tial equation

x′′(t) = f(x(t), x′(t)).

17. Use Euler’s method described in Problem 16 to write the corresponding
difference equation of

x′′(t) − 4x(t) = 0, x(0) = 0, x′(0) = 1.

Solve both differential and difference equations and compare the
results.

18. (The Midpoint Method). The midpoint method stipulates that one
may approximate x′(t) by (x(n + 1) − x(n − 1))/h, where h is the step
size of the approximation and t = t0 + nh.

(a) Use the method to write the corresponding difference equation of
the differential equation x′(t) = g(t, x(t)).

(b) Use the method to write the corresponding difference equation of
x′(t) = 0.7x2 + 0.7, x(0) = 1, t ∈ [0, 1]. Then solve the obtained
difference equation.

(c) Compare your findings in part (b) with the results in Section 1.4.1.
Determine which of the two methods, Euler or midpoint, is more
accurate.
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