
Chapter 5

R e c u r s i o n
It is common sense to take a method and try it. I f it fails, admit it frankly

and try another. But above all, try something.

FRANKLIN ROOSEVELT

R ecursion is an elegant and powerful problem-solving technique, used
extensively in both discrete mathematics and computer science. Many

programming languages, such as ALGOL, FORTRAN 90, C + +, and Java,
support recursion. This chapter investigates this powerful method in detail.

In addition, we will study three simple methods for solving recurrence
relations: iteration, characteristic equations, and generating functions.

We also will establish the validity ofrecursive algorithms using induction
and analyze their complexities using the big-oh and big-theta notations.

Some of the interesting problems we pursue in this chapter are:

�9 There are three pegs X, Y, and Z on a platform and 64 disks of increasing
sizes at X. We would like to move them from X to Z using Y as an
auxiliary peg subject to the following conditions:

Only one disk can be moved at a time.
No disk can be placed on the top of a smaller disk.

If it takes one second to transfer a disk from one peg to another, how
long will it take to solve the puzzle?

�9 Is there a formula for the number of n-bit words containing no two
consecutive l 's?

�9 Suppose we introduce a mixed pair (male and female) of l-month-old
rabbits into a large enclosure on January 1. By the end of each month,
the rabbits become mature, and each pair produces k - 1 mixed pairs
of offspring at the beginning of the following month. Find the average
age of the rabbit pairs at the beginning of the nth month.

�9 Can we estimate the number of divisions required to compute gcd{a, b}
by the euclidean algorithm?

�9 What is a divide-and-conquer algorithm? If f (n) denotes the number of
operations required by such an algorithm, what can you say about its
order of complexity?

261

262 Chapter 5 Recursion

F i g u r e 5.1

Recall tha t in Section 2.5 we employed recursion to define sets; we invoked
the recursive clause to construct new elements from known elements. The
same idea can be applied to define functions, and hence sequences as well.

This section il lustrates how powerful a problem-solving technique recur-
sion is. We begin with a simple problem:

i There are n guests at a sesquicentennial ball. Each person shakes hands
with everybody else exactly once. How many handshakes are made?

Suppose you would like to solve a problem such as this. (See Example 5.3.)
The solution may not be obvious. However, it may tu rn out tha t the problem
could be defined in terms of a simpler version of itself. Such a definition is a
r e c u r s i v e def in i t ion . Consequently, the given problem can be solved pro-
vided the simpler version can be solved. This idea is pictorially represented
in Figure 5.1.

can b e can b e can b e

solved r solved Y solved v
if if if

This is
solvable.

Recursive Definition of a Function

Let a ~ W and X - { a , a + 1,a + 2,. . .}. The r e c u r s i v e d e f i n i t i o n of a
function f with domain X consists of three parts, where k > 1"

�9 Bas i s c l a u s e A few initial values of the function f(a), f (a + 1) , . . . ,
f (a + k - 1) are specified. An equation that specifies such initial values
is an in i t ia l c o n d i t i o n .

�9 R e c u r s i v e c l a u s e A formula to compute f (n) from the k preced-
ing functional values f (n - 1), f (n - 2), . . . , f (n - k) is made. Such a
formula is a r e c u r r e n c e r e l a t i o n (or r e c u r s i o n formula) .

�9 T e r m i n a l c l a u s e Only values thus obtained are valid functional
values. (For convenience, we drop this clause from our recursive
definition.)

5.1 Recurslvely Defined Functions 263

Thus the recursive definition of f consists of one or more (a finite n u m b e r
of) initial conditions, and a recurrence relation.

Is the recursive definition of f a valid definition? In other words, if the k
initial values f(a) , f (a + 1) , . . . , f (a + k - 1) are known and f (n) is defined in
te rms ofk of its p r e d e c e s s o r s f (n - 1), f (n - 2) , . . . , f (n - k) , where n > a + k,
i s f (n) defined for n > a? For tunate ly , the next theorem comes to our rescue.
Its proof uses s t rong induction and is complicated, so we omit it.

~ Let a ~ W, X - {a,a + 1,a + 2, . . .}, and k e N. Let f �9 X --~]~ such tha t
f(a) , f (a + 1), . . . , f (a + k - 1) are known. Let n be any positive in teger
> a + k such tha t f (n) is defined in t e rms of f (n - 1), f (n - 2) , . . . and
f (n - k) . Then f (n) is defined for every n _> a. m

By vir tue of this theorem, recursive definitions are also known as]
I i n d u c t i v e de f in i t i ons . .

The following examples i l lustrate the recursive definition of a function.

Define recursively the factorial function f.

S O L U T I O N :
Recall tha t the factorial function f is defined by f (n) = n!, where f(0) - 1.
Since n! - n (n - 1)!, f c a n be defined recursively as follows:

f (o) - 1

f (n) - n . f (n - 1),

~- initial condition

n > 1 ~ recurrence relat ion m

Suppose we would like to compute f(3) us ing this recursive definition.
We then cont inue to apply the recurrence relat ion unt i l the initial condit ion
is reached, as shown below:

f(3) = 3 �9 f(2)

f(2) = 2. f (1) ~ . . .

/

f(1) = 1. f(o)

)

f(o) = 1

return value

return value

return value

(5.1)

(5.2)

(5.3)

(5.4)

264 Chapter 5 Recursion

Since f(0) = 1, 1 is subs t i tu ted for f(0) in Equa t ion (5.3) and f(1) is
computed: f(1) = 1 �9 f(0) = 1 �9 1 = 1. This value is subs t i tu ted for f (1) in
Equa t ion (5.2) and f(2) is computed: f(2) = 2 .f(1) = 2 .1 = 2. This value is
now r e t u r n e d to Equa t ion (5.1) to compute f(3): f(3) = 3 �9 f(2) = 3 . 2 = 6,
as expected.

~ J u d y deposits $1000 in a local savings bank at an annua l in te res t r a t e of
8% compounded annually. Define recursively the compound a m o u n t A (n)

she will have in her account at the end of n years.

SOLUTION:
Clearly, A(0) = initial deposit - $1000. Let n >_ 1. Then:

compound a m o u n t)
A (n) - at the end of the

(n - 1)st year

+

= A (n - 1) + (0.08)A(n - 1)

= 1 . 0 8 A (n - 1)

in teres t ea rned)
dur ing the
n th year

Thus A (n) can be defined recursively as follows"

A (0) - 1000 ~ initial condit ion

A (n) - 1 . 0 8 A (n - 1), n >__ 1 +-- recurrence re la t ion I

For instance, the compound amoun t Judy will have at the end of th ree
years is

A(3) = 1.08A(2)

= 1.08 [1.08 A(1)l - 1.082A(1)

= 1 .08211.08A(0)1- 1.083(1000)

$1259.71"

The next two examples i l lus t ra te an ext remely useful problem-solving
technique, used often in discrete ma themat i c s and computer science.

(The h a n d s h a k e problem) There are n guests at a sesquicentennia l
ball. Each person shakes hands with everybody else exactly once. Define
recursively the number of handshakes h (n) tha t occur.

SOLUTION:
Clearly, h(1) - 0, so let n >_ 2. Let x be one of the guests. By definition,
the n u m b e r of handshakes made by the remain ing n - 1 guests among
themselves is h (n - 1). Now person x shakes hands with each of these

*The symbol ~ means is approximately equal to.

5.1 Recursively Defined Functions 265

n - 1 guests , y ie ld ing n - 1 addi t iona l h a n d s h a k e s . So the tota l n u m b e r of
h a n d s h a k e s m a d e equals h(n - 1) + (n - 1), w h e r e n > 2.

T h u s h(n) can be defined recurs ive ly as follows:

h (1) - 0

h(n) = h(n - 1) + (n - 1), n > 2

~- ini t ial condi t ion

~- r e c u r r e n c e re la t ion I

(T o w e r o f B r a h m a *) According to a legend of India, a t the b e g i n n i n g of

creat ion, God s tacked 64 golden disks on one of t h r ee d i amond pegs on a
b rass p l a t fo rm in the t emple of B r a h m a at Bena re s ~ (see F igure 5.2). T h e
pr ies t s on du ty were asked to move the disks f rom peg X to peg Z u s ing Y
as an auxi l ia ry peg u n d e r the fol lowing conditions"

�9 Only one disk can be moved at a t ime.

�9 No disk can be placed on the top of a smal le r disk.

The pr ies ts were told t h a t the world would end w h e n the job was comple ted .

F i g u r e 5.2

[I)

I
X Y Z

Suppose the re are n disks on peg X. Let bn denote the n u m b e r of moves
needed to move t h e m f rom peg X to peg Z, us ing peg Y as an i n t e rmed ia ry .
Define bn recursively.

S O L U T I O N :

Clear ly bl - 1. A s s u m e n _> 2. Cons ider the top n - 1 disks on peg X. By
definit ion, it t akes b~_l moves to t r a n s f e r t h e m from X to Y us ing Z as
an auxil iary. T h a t leaves the la rges t disk at peg X; it t akes one move to
t r a n s f e r it f rom X to Z. See F igure 5.3.

Now the n - 1 disks at Y can be moved f rom Y to Z us ing X as an
i n t e r m e d i a r y in bn-1 moves, so the to ta l n u m b e r of moves needed is
bn-1 + 1 + bn-1 - 2bn_ 1 + 1. T h u s bn can be defined recurs ive ly as follows"

b n = {1
2bn-1 + 1

if n -- 1 <-- init ial condi t ion

o the rwise <--- r ecu r r ence re la t ion m

*A puzzle based on the Tower of Brahma was marketed in 1883 under the name Tower of
Hanoi.
t Benares is now known as Varanasi.

266 Chapter 5 Recursion

Figure 5.3

�9 I)
(I)

!
Y

For example,

b4 - 2b3 + 1 = 212b2 + 1] + 1

= 4b2 + 2 + 1 = 412bl + 1] + 2 + 1

= 8 b 1 + 4 + 2 + 1 = 8 (1) + 4 + 2 + 1

= 1 5

so it takes 15 moves to t rans fe r 4 disks from X to Z, by this s t ra tegy.
The next example also i l lus t ra tes the same technique. We will t ake it a

step fu r the r in Chap te r 6.

Imagine lines in plane such tha t two lines and th ree n a no parallel, are no
are concurrent .* Let fn denote the n u m b e r of dist inct regions into which
the plane is divided by them. Define fn recursively.

S O L U T I O N :
If there is jus t one line ~1 in the plane, then fl - 2 (see Figure 5.4). Now
consider a second line ~2; it is in tersec ted at exactly one point by el. Each
half of ~2 divides an original region into two, adding two more regions (see
Figure 5.5). Thus f2 = fl + 2 - 4. Suppose we add a th i rd line ~3. It is

Figure 5.4

Figure 5.5

*Three or more lines in a plane are concurrent if they intersect at a point.

5.1 Recursively Defined Functions 267

F i g u r e 5.6

F i g u r e 5.7

intersected by 61 and 62 in two points; in other words, line 63 is divided by
61 and 62 into three parts. Each portion divides an existing region into two,
yielding three new regions (see Figure 5.6). So f3 = f2 + 3 = 7.

More generally, suppose there are n - 1 lines 61,62, . . . , 6n-1 in the plane.
They divide the plane into f n -1 disjoint regions, by definition. Now add one
more line 6n (see Figure 5.7). Since no three lines are concurrent, line 6n

must intersect lines 61,62, . . . , 6n-1 at new points and hence is divided by

ln_l

them into n segments. Each segment divides an existing region into two
subregions, contr ibut ing n more regions, so fn = fn -1 + n. Thus fn can be
defined recursively as follows:

1 if n = 0

fn - f n -1 + n otherwise m

The next example il lustrates how to define recursively the number of
times an assignment is executed by nested fo r loops.

Let denote the number of times the s ta tement 1 is assignment a,~ X X +

executed by the following nested fo r loops. Define an recursively.

f o r i = I t o n do

f o r j - I t o i do

f o r k = i t o j do

x < - - x + 1

SOLUTION:
�9 First, we must find the initial condition satisfied by an. When n = 1,

i = j = k = 1, so the assignment s ta tement is executed exactly once.
Thus al = 1.

268 Chapter 5 Recursion

�9 To f i n d the r e c u r r e n c e r e l a t i o n s a t i s f i e d by an"

Let n > 2. As i runs from i through n - 1, by definition, the s ta tement
is executed a n - 1 times.
When i = n, the inner loops become:

f o r j = 1 to n do

f o r k = 1 t o j do

x < - - x + I

For each value of j , where 1 < j < n, the innermost loop executes the
n n (n + 1)

s ta tement j times. So these nested loops execute it ~ j =
j=l 2

times. Therefore,

no. of times the s tatement)
an - is executed as i runs from +

i through n - 1

- a n - 1 +
n (n + 1)

no. of times the)
s ta tement is executed
when i = n

Thus an can be defined as follows"

a l - 1

n (n + 1)
an - a n - 1 + ~ , n > 2

2

(We shall pursue this definition in Example 5.11.) m

The next example provides a recursive definition with two initial
conditions. We shall use it often in the following sections and in the next
chapter.

(F i b o n a e c i) Leonardo Fibonacci, the most outstanding Italian math-
ematician of the Middle Ages, proposed the following problem around
1202:

Suppose there are two newborn rabbits, one male and the other female.
Find the number of rabbits produced in a year if:

�9 Each pair takes one month to become mature.

�9 Each pair produces a mixed pair every month, from the second month.

�9 No rabbits die.

Suppose, for convenience, that the original pair of rabbits was born on
January 1. They take a month to become mature. So there is still only
one pair on February 1. On March 1, they are 2 months old and produce
a new mixed pair, a total of two pairs. Continuing like this, there will be
three pairs on April 1, five pairs on May 1, and so on. See the last row of
Table 5.1.

5.1 Recursively Defined Functions 269

T a b l e 5.1 No. of
pairs

Adults
Babies
Total

Jan Feb March April May June July Aug

0 1 1 2 3 5 8 13
1 0 1 1 2 3 5 8
1 1 2 3 5 8 13 21

L e o n a r d o Fibonacc i (1170?-1250?), also known as Leonardo of Pisa,
was born in the commercial center of Pisa, Italy, into the Bonacci family. His
father, a customs manager, expected the son to become a merchant and took
him to Bougie, Algeria, to receive good training in arithmetic with Indian
numerals. Leonardo's subsequent business trips to Egypt, Syria, Greece,
and Sicily brought him closer to Indian mathematics.

In 1202, shortly after his return, convinced of the elegance of the Indian
methods of computation, Fibonacci published his famous work, Liber Abaci.
(The word abaci in the title does not refer to the old abacus, but to computa-
tion in general.) This book, devoted to arithmetic and elementary algebra,
introduced the Indian notation and arithmetic algorithms to Europe.

Fibonacci wrote three additional books: Practica Geometriae, a collec-
tion of results in geometry and trigonometry; Liber Quadratorum, a major

work on number theory; and Flos, also on number theory.
Fibonacci's importance and usefulness to Pisa and its citizenry through his teaching and services were

honored by Emperor Frederick II of Pisa.

The numbers 1, 1, 2, 3, 5, 8 , . . . are F i b o n a c c i n u m b e r s . * They have
a fascinating property: Any Fibonacci number , except the first two, is the
sum of the two immediate ly preceding Fibonacci numbers . (At the given
rate, there will be 144 pairs of rabbi ts on December 1.)

This yields the following recursive definition of the n th Fibonacci
number Fn :

F1 - F2 - 1 ~ initial conditions

Fn -Fn-I + Fn-2, n >_ 3 (-- recurrence relation n

The next example illustrates recursion and also shows that Fibonacci
numbers occur in quite unexpected places.

Let denote the number of n-bit words containing two consecutive 1' an no s.

Define an recursively.

*See author's Fibonacci and Lucas Numbers with Applications for a thorough discussion of
Fibonacci numbers.

270 Chapter,5 Recursion

T a b l e 5 .2

S O L U T I O N :
F i r s t , le t us f ind t h e n -b i t w o r d s c o n t a i n i n g no t w o c o n s e c u t i v e l ' s co r r e -
s p o n d i n g to n - 1, 2, 3, a n d 4 (see Tab l e 5.2). I t fol lows f r o m t h e t a b l e t h a t

a l - 2, a2 - 3, a3 -- 5, a n d a4 = 8.

n = l n = 2 n = 3 n = 4

0 00
1 01

10

000
010
100
001
101

0000
0100
1000
0010
1010
0001
0101
1001

Now, c o n s i d e r an a r b i t r a r y n -b i t word . I t m a y e n d in 0 or 1.

C a s e 1 S u p p o s e t h e n -b i t w o r d e n d s in 0. T h e n t h e (n - 1)st b i t can be a
0 or a 1, so t h e r e a r e no r e s t r i c t i o n s on t h e (n - 1)st bit"

n b i t s
r

0
1 0

- - - = - ~ (n - 1) s t b i t

no r e s t r i c t i o n s

T h e r e f o r e , a,z_ 1 n -b i t w o r d s e n d in 0 a n d c o n t a i n no two c o n s e c u t i v e l ' s .

C a s e 2 S u p p o s e t h e n -b i t w o r d e n d s in 1. T h e n t h e (n - 1)st b i t m u s t be
a zero. F u r t h e r , t h e r e a re no r e s t r i c t i o n s on t h e (n - 2)nd bit"

n b i t s
r

0
1

no r e s t r i c t i o n s

0 1
- ~ (n - 1)st b i t

T h u s an -2 n -b i t w o r d s e n d in I a n d c o n t a i n no two c o n s e c u t i v e l ' s .
S ince t h e two cases a re m u t u a l l y exclus ive , by t h e a d d i t i o n p r inc ip le , we

have:

a l - 2 , a 2 - 3

a n ~ a n - 1 4- a n - 2 , n > 3

in i t i a l c o n d i t i o n s

r e c u r r e n c e r e l a t i o n

5.1 Recursively Defined Functions 271

F i g u r e 5.8

Notice that the above recurrence relation is exactly the same as the
Fibonacci recurrence relation, but with different initial conditions! The
resulting numbers are the Fibonacci numbers 2, 3, 5, 8, 13, m

Notice that this example does n o t provide a constructive method for sys-
tematically listing all n-bit words with the required property. It is given in
Exercise 19.

Interestingly enough, the delightful Fibonacci numbers occur in numer-
ous totally unexpected places. For instance, the numbers of spiral arrays
of seeds in mature sunflowers in the clockwise and counterclockwise direc-
tions are often consecutive Fibonacci numbers, usually 34 and 55, or 55
and 89. See Figures 5.8 and 5.9.

F i g u r e 5.9

272 Chapter 5 R e c u r s i o n

Before closing th is section, we es tab l i sh an i m p o r t a n t r e su l t f rom the the-
ory of formal languages . Fi rs t , recall t h a t Z* denotes the set of words over
an a lphabe t Z. Also Z* can be defined recurs ive ly as follows (see Exerc ise 35
in Sect ion 2.6):

�9 ~ E E * .

�9 I f w E Z * a n d s E Z , t h e n w s E E * .

F u r t h e r m o r e , the l eng th Ilwll of a word w over E can be def ined
recurs ive ly as follows:

�9 il~ll = 0 .

�9 If w E E* and s E E, t h e n Ilws[I = Ilwll + 1.

Us ing these defini t ions and induct ion, we prove below t h a t Ilxyll = Ilxll +
Ilyll for any two words x and y in E*.

Let x and be two words over an a lphabe t Z. P rove t h a t II II = Y any x y

Ilxll + Ilyll.

P R O O F (by induct ion):
Let x be any e l emen t in Z*. Let P(y) denote the p red ica te t h a t Ilxyll =
Ilx][+ [[yl], w h e r e y E E*. S i n c e y E E * , y can be the nul l word ~ or a
n o n e m p t y word.

B a s i s s t e p T o s h o w t h a t P(~) is t rue ; t h a t is, IlxZl[= Ilxl[+ [[Zl[:

Since xk - x, IIx~ll - Ilxll = Ilxll + 0 - Ilxll + I1~11. So P(X) is t rue .

I n d u c t i o n s t e p A s s u m e P(y) is t rue , t ha t is, Ilxyll - Ilxll + IlYll (induct ive
hypothesis) . We m u s t show t h a t P(ys) is t rue , t h a t is, Ilxysil - Ilxll + liysll.
Notice tha t :

Then

x y s = (xy) s

llxys II = li (xy) s II

= lixyil + 1

= ([[x[[+ [[y[[) + 1

= [[x[[+ ([[y[[+ 1)

= Ilxll + Itysll

assoc, prop. of conca t ena t i on

leng th is a func t ion

recurs ive def. of l eng th

induct ive hypothes i s

assoc, prop. of add i t ion

recurs ive def. of l eng th

Therefore , P(ys) is t rue . T h u s P(y) implies P(ys).

Therefore , by induct ion, P(y) is t r ue for every y E E*; t h a t is, Ilxyll -
llxll + IlYll for every x, y E Z*. m

5.1 Recursively Defined Functions 273

Finally, we emphasize that the immediate predecessor f n - 1 need not
appear in the recursive definition of a function f at n. For example,
consider the function f" W ~ W defined by

fo= , f =o, f2=1

fn - f n - 2 + 2 f n - 3 , n > 3

Clearly, fn-1 is not needed to compute fn , when n > 3. Try f6 as an
exercise.

, J

Exercises 5.1

In Exercises 1-6, an denotes the nth term of a number sequence satisfying
the given initial condition(s) and the recurrence relation. Compute the first
four terms of the sequence.

1. a 1 - 1

an - a n - 1 --t- 3, n >_ 2

3. a 1 - 1
n

an = ~ a n - 1 , n >_ 2
n - 1

5. a l - 1, a 2 - 1, a 3 - 2

an - a n - 1 + a n - 2 + a n - 3 , n >_ 4

2. a 0 - 1

an - a n - 1 -~- n , n >__ 1

4 . a l - 1, a2 - 2

an - a n - 1 + a n - 2 , n >__ 3

6. a l - 1 , a 2 - 2 , a 3 - 3

a n - a n - 1 -'~ a n - 2 - ~ - a n - 3 , n >_ 4

7. The nth L u c a s n u m b e r L n , named after the French mathematician
Fran~ois-Edouard-Anatole Lucas, is defined recursively as follows"

L1 - 1, L 2 - 3

L n - L n - 1 + L n - 2 , n > 3

(The Lucas sequence and the Fibonacci sequence satisfy the same recur-
rence relation, but have different initial conditions.) Compute the first six
Lucas numbers.
The gcd of two integers x (> 0) and y (_> 0) can be defined recursively as
follows:

I
g c d l y , x l

gcd{x,y} = x

g c d { y , x m o d y}

i f y > x

i fy _< x a n d y - 0

i fy _< x a n d y > 0

Using this definition, compute the gcd of each pair of integers.

8. 28, 18 9. 24, 75

274 Chapter 5 Recursion

Fran~ 'o i s -Edouard-Ana to le L u c a s (1842-1891) was born in Amiens,
France. After completing his studies at the E, cole Normale in Amiens, he
worked as an assistant at the Paris Observatory. He served as an artillery
officer in the Franco-Prussian war and then became professor of mathe-
matics at the Lycde Saint-Louis and Lycde Charlemagne, both in Paris. A
gifted and entertaining teacher, Lucas died of a freak accident at a ban-
quet: His cheek was gashed by a piece of a plate that was accidentally
dropped, and he died from infection within a few days.

Lucas loved computing and developed plans for a computer that never
materialized. Besides his contributions to number theory, he is known for
his four-volume classic on recreational mathematics. Best known among
the problems he developed is the Tower of Brahma.

A person deposits $1000 in a bank at an annua l in te res t ra te of 6%. Let
A(n) denote the compound a m o u n t she will receive at the end of n in te res t
periods. Define A(n) recursively if in teres t is compounded:

10. Semiannua l ly 11. Quar te r ly 12. Month ly

Ned deposits a cer ta in a m o u n t A0 in a bank at an annua l in te res t ra te of
12% compounded annual ly . The compound a m o u n t he would receive at the
end of n years is given by A,, - 1.12A,,_1, where n >_ 1. De te rmine the
initial deposit A0 if he would receive"

13. $1804.64 at the end of 5 years. 14. $3507.00 at the end of 6 years.

Define recursively each sequence of numbers . (Hint: Look for a p a t t e r n and
define the n th t e rm a,, recursively.)

15. 1, 4, 7, 10, 13 ... 16. 3, 8, 13, 18, 23 ...

17. 0, 3, 9, 21, 45 ... 18. 1, 2, 5, 26, 677 ...

19. An n-bit word conta in ing no two consecutive ones can be cons t ruc ted
recursively as follows" Append a 0 to such (n - 1)-bit words or append
a 01 to such (n - 2)-bit words. Using this procedure cons t ruc t all 5-bit
words conta in ing no two consecutive ones. There are 13 such words.

Define each recursively, where n > 0.

20. The n th power of a positive real n u m b e r x.

21. The union of n sets.

22. The intersect ion of n sets.

23. The n u m b e r Sn of subsets of a set wi th n e lements .

24. The n th t e rm an of an a r i thmet ic sequence with first t e rm a and
common difference d.

5.1 Recursively Defined Functions 275

. . "~'.. ~.),:: Z

L ' , , - ' - , :, ' ~ , . "~.

' 1 " �9 b ~ "4

~. " ~?, "t

., " .~ ~'i ~ ' ,

. .

John McCarthy (1927-), one of the fathers of artificial intelligence (AI), was
born in Boston. He graduated in mathematics from the California Institute
of Technology, receiving his Ph.D. from Princeton in 1951. After teaching
at Princeton, Stanford, Dartmouth, and MIT, he returned to Stanford as a
full professor. While at Princeton, he was named a Proctor Fellow and later
the Higgins Research Instructor in mathematics. At Stanford, he headed the
Artificial Intelligence Laboratory.

During his tenure at Dartmouth, McCarthy coined the term artificial intel-
ligence (AI). He developed LISP (LISt Programming), one of the most widely
used programming languages in AI. He also helped develop ALGOL 58 and
ALGOL 60. In 1971 he received the prestigious Alan M. Turing award for
his outstanding contributions to data processing.

F i g u r e 5.10

25. The n th t e rm an of a geometric sequence with first t e rm a and common
ratio r.

26. Let f �9 X ~ X be bijective. Define fn recursively, where f2 _ f o f .

The 9 1 - f u n c t i o n f, invented by John McCarthy, is defined recursively on
W as follows.

f (x) = I x - 10 i f x > 100

[f (f (x + l l)) i f 0 _ < x _ < 1 0 0

Compute each

27. f(99) 28. f(98) 29. f(f(99)) 30. f(f(91))

31. Show tha t f(99) - 91.

32. Prove tha t f(x) = 91 for 90 < x < 100.

33. Prove tha t f (x) - 91 for 0 < x < 90.

(T r i a n g u l a t i o n of c o n v e x p o l y g o n s) The n th Catalan n u m b e r Cn
denotes the n u m b e r of ways to divide a convex (n + 2)-gon into t r iangles
by drawing nonin tersec t ing diagonals. For instance, there are five ways
of t r iangula t ing a convex pentagon, as shown in Figure 5.10; therefore,

n

C 3 - 5. Cn is given recursively by Cn+l - ~ C iCn- i , where Co = 1.
i=O

Compute each.

34. C6 35. C7

276 Chapter ,5 Recursion

1 N
36. The sequence defined by an+l = -~(an -}- ~) can be used to approxi-

an
mate ~ to any desired degree of accuracy, where al is an est imate
of v/N. Use this fact to compute v/ i9 correct to six decimal places.
U s e a l - 4.

Fn+l
37. Let Fn denote the n th Fibonacci number. Compute Fn correct to

eight decimal places for 1 _< n _< 10. Compare each value to (1 + v~)/2
correct to eight decimal places.

38. (For those familiar with the concept of limits) Use Exercise 37 to

predict lim Fn+l.
n - - . oc F n

Prove each, where Fn is the n th Fibonacci number, Ln the n th Lucas
number, and a - (1 + v~)/2, the g o l d e n r a t io .

39. Fn = 2Fn- 2 + Fn- 3 , n > 4

40. F 2 - F n - l F n + l = (-1) n- l , n _> 2

41. F5n is divisible by 5, n >__ 1.

4 2 . F~ < a n - 1, n _> 3

43. Fn <_ 2 n, n >_ 1

44" L e t A - [11 ~] T h e n A n - " Fn + 1 Fn 1
Fn Fn-1

, n >__ 1. Assume F0 = 0.

45. Using Exercise 44, deduce that F,~+ 1 g n - 1 - - F 2 - (-- 1)n.

(Hint" Let A be a square matrix. Then [An[-- In[n, where [A[denotes
the de terminant of A.)

2 n - 2

46. Ln = F n + l + F n - l , n >_ 2 47. L2n - 3 + ~ Lk
k = l

~ n _ ~ n

The nth term bn of a number sequence is defined by bn - where

a - (1 + v/5)/2 and fl - (1 - v/5)/2 are solutions of the equation x 2 = x + 1.
Verify each.

48. bl = 1 49. b 2 - 1 50. b n - bn-1 + bn-2, n >_ 3

(It follows from Exercises 48-50 tha t bn = Fn. It is called the B i n e t f o r m
of the nth Fibonacci number, after the French mathemat ic ian Jacques-
Phillipe-Marie Binet.)
With a and fl as above, let U n - - a n -+- fin, n > 1. Verify each.

5 1 . Ul = 1 5 2 . u 2 - 3 53. U n = U n - 1 + Un-2, n >_ 3

[These exercises indicate tha t Un = Ln, the n th Lucas number. Accordingly,
U n - - a n -Jr- f i n i s the Binet form of L n .]

5.1 Recursively Defined Functions 277

Jacques Phillippe Marie Binet (1786-1865), a French mathematician
and astronomer, was born at Rennes, Brittany. In 1804, he entered the
Ecole Polytechnique in Paris, graduated 2 years later, and took a job in
the Department of Bridges and Roads of the French government. In 1807,
Binet became a teacher at the E, cole Polytechnique, and the following
year became assistant to the professor of applied analysis and descriptive
geometry. In 1814, he was appointed examiner of descriptive geometry,
then professor of mechanics (1815), and then inspector general of studies

. A (1816). In 1821, he was awarded the Chevalier de la Ldgion d'Honneur.
:: ,~ ~ Two years later, Binet was appointed chair of astronomy at the Coll~ge de

~" ":~ - . France.
~ y But the July 1830 revolution was not kind to him. A strong supporter of

Charles X, Binet became a victim of Charles' abdication; he was dismissed
from Ecole Polytechnique by King Louis-PhiUipe in November, 1830.

Binet made many contributions to mathematics, physics, and astronomy. In 1812, he discovered the
rule for matrix multiplication and, in 1840, discovered the explicit formula for the nth Fibonacci number.
In 1843, he was elected to the Academy of Sciences and later became its president. A devout Catholic,
Binet died in Paris.

54. Let al, a2, . . . , an E 1~, where n > 2. Prove that
gcd{al, a2, . . . , an} - -gcd{gcd{a l , a2, . . . , an-1},an}.

Using Exercise 54 compute the gcd of each set of numbers.

55. 6, 12, 20, 38 56. 12, 28, 48, 104, 252

Let an denote the number of times the assignment s tatement x <- x + 1 is
executed by each nested fo r loop. Define an recursively.

5 7 . f o r i = 1 t o n do 5 8 . f o r i = 1 t o n do

f o r j = I t o i do f o r j = I t o i do

x ~ - x + I f o r k = I t o i do

x ~ - - x + l

59. Let an denote the number of rectangles that can be formed on a 1 x n
rectangular board. Find the recurrence relation satisfied by an.
(Hint: Look for a pattern. Every square is also a rectangle.)

A subset of the set S = {1, 2, . . . , n} is a l t e r n a t i n g if its elements, when
arranged in increasing order, follow the pat tern odd, even, odd, even, etc.
For example, { 3 }, { 1, 2, 5 }, and { 3, 4 } are al ternating subsets of { 1, 2, 3, 4, 5 },
whereas { 1, 3, 4} and {2, 3, 4, 5 } are not; 0 is considered alternating.* Let
an denote the number of al ternating subsets of S.

60. Define an recursively.

61. Prove that an =- Fn+2, where Fn denotes the nth Fibonacci number.

*Proposed by Olry Terquem (1782-1862).

278 Chapter 5 Recursion

S t i r l i n g n u m b e r s o f t h e s e c o n d k ind , denoted by S(n , r) and used in
combinatorics, are defined recursively as follows, where n, r ~ N:

1 if r - l o r r - n

S (n , r) - S (n - l , r - 1) + r S (n - l , r) i f l < r < n

0 i f r > n

They are named after the English mathemat ic ian James St i r l ing (1692-
1770). Compute each Stirl ing number .

62. S(2, 2) 63. S(5, 2)

A function of theoretical importance in the study of a lgor i thms is the
A c k e r m a n n ' s f u n c t i o n , named after the German mathemat i c i an and
logician Wilhelm Ackermann (1896-1962). It is defined recursively as
follows, where m , n ~ W:

A (m , n) -

n + 1 i f m - 0

A (m - 1, 1) if n - 0

A (m - 1, A (m , n - 1)) otherwise

Compute each.

64. A(0, 7) 65. A(1, 1)

66. A(4,0) 67. A(2,2)

Prove each for n > 0.
m

68. A(1, n) - n + 2

"70. Predict a formula for A(3, n).

"71. Prove the formula in Exercise 70, where n >_ 0.

69. A(2, n) - 2n + 3

The recursive definition of a function f does not provide us with an explicit
formula for f (n) , but establishes a systematic procedure for finding it. This
section i l lustrates the i terative method of finding a formula for f (n) for a
simple class of recurrence relations.

5.2 Solving Recurrence Relations 279

S o l v i n g the recur rence re la t ion for a funct ion f means f inding an
explicit fo rmula for f (n) . The i t e r a t i v e m e t h o d of solving it involves
two steps"

�9 Apply the recur rence formula i tera t ively and look for a p a t t e r n to
predict an explicit formula.

~ Use induct ion to prove t ha t the fo rmula does indeed hold for every
possible value of the in teger n.

The next example i l lus t ra tes this method.

(The handshake problem continued) By Example 5.3, the n u m b e r of
handshakes made by n guests at a d inner pa r ty is given by

h (1) - 0

h (n) - h (n - 1) + (n - 1),n >_ 2

Solve this recur rence relation.

S O L U T I O N :

S t e p 1 To predict a formula for h (n) "

Using i terat ion, h (n) - h (n - 1) + (n - 1)

= h (n - 2) + (n - 2) + (n - 1)

= h (n - 3) + (n - 3) + (n - 2) + (n - 1)

= h(1) + 1 + 2 + 3 + . . . + (n - 2) + (n - 1)

= 0 + 1 + 2 + 3 + . . . + (n - 1)

n (n - 1)

2

n (n - 1)
S t e p 2 To prove, by induction, t ha t h (n) - ~ , where n > 1:

2

1 . 0
Bas i s s tep When n = 1, h(1) - 2 = 0, which agrees with the ini t ial

condition. So the formula holds when n - 1.

I n d u c t i o n s tep Assume h (k) -

k (k - 1)
for any k > 1. Then:

h (k + 1) - h (k) + k , by the recur rence re la t ion

280 Chapter 5 Recursion

k (k - 1)

2

k (k + 1)

+ k , by the induct ion hypothes i s

Therefore, if the formula holds for n - k, it also holds for n - k + 1.
Thus, by PMI, the resul t holds for n >_ 1.

More generally, us ing i te ra t ion we can solve the recur rence re la t ion

E

an - a n - 1 + f (n) (5.5)

as follows:

an -- a n - 1 + f (n)

= l a n - 2 + f (n - 1)] + f (n) -- a n - 2 + f (n - 1) + f (n)

= l a n - 3 + f (n - 2)] + f (n - 1) + f (n)

= a n - 3 + f (n - 2) + f (n - 1) + f (n)

lz

= ao + r(i)
i=1

(5.6)

You can verify tha t this is the actual solution of the recur rence re la t ion (5.5).
For example, in the handshake problem f (n) - n - 1 and h(0) = 0, so

the solution of the recurrence re la t ion is

r / ?/

h (n) - h(O) + E f (i) - 0 + E (i - 1)
i=1 i=1

n - 1
n (n 1)

- ~ i =
m

2 , n>__l
i=1

which is exactly the solution obta ined in the example.

~ Solve the recurrence re la t ion in Example 5.6.

S O L U T I O N :
Notice t ha t an can be redefined as

n (n + 1)
a n - a n - 1 + - - , n > 1

2

5.2 Solving Recurrence Relat ions 281

f(n) -

where a0 - 0. C o m p a r i n g th is w i th r ecu r r ence re la t ion (5.5), we have

n(n + 1) Therefore , by E q u a t i o n (5.6)
2

n

an -- ao + ~-~f (i)
i=1

n i(i + 1)
= ao + ~--~ 2

i=1

= - i 2 + i
2 i=1

_ 1 [n (n + 1) (2 n + 1)

L 2 6

n

1 E (i 2 + i)

i=l

-4- n(n2 + 1)]

n (n + 1) (2 n + 1 2 --------6----f-i)- n (n + l) 2 n + 4 2 " 6

n(n + 1)(n + 2)
, n > 0 _ m

The following i l lus t ra t ion of the i t e ra t ive m e t h o d br ings us aga in to the
Tower of B r a h m a puzzle.

~ Recall f rom Example 5.4 t h a t the n u m b e r of moves needed to t r a n s f e r n
disks f rom peg X to peg Z is given by

b l - 1

b n - 2bn-1 + 1, n >__ 2

Solve this r ecu r rence re la t ion.

S O L U T I O N :

S t e p 1 To predict a fo rmula for bn"
Using i te ra t ion ,

b n - 2bn-1 + 1

= 212bn_2 + 1] + 1 - 22bn_2 + 2 + 1

= 2212bn_3 + 1] + 2 + 1 - 23bn_3 + 22 + 2 + 1

---- 2 n - l b l + 2 n-2 -+-'''-+- 2 2 A- 2 + 1

__ 2 n-1 jr_ 2n-2 + . . . + 2 + 1

= 2 n -- 1, by Exercise 8 in Sect ion 4.4.

282 Chapter 5 Recursion

S tep 2 You may prove by induc t ion t h a t bn - 2 n - 1, w h e r e n > 1. m

More general ly , you m a y verify t h a t the solut ion of t he r e c u r r e n c e
re la t ion a n - C a n - 1 + 1, whe re c is a c o n s t a n t (r 1), is

an - - c n a O +
C n - - 1

c - 1

For ins tance , in Example 5.12, b0 - 0 and c - 2, so

2 n -- 1
bn - 2 n " O + ~ = 2 n - 1

2 - 1

as expected.
Let us p u r s u e Example 5.12 a bit fu r the r . Suppose t he r e are 64 disks a t

peg X, as in the original puzzle, and it t akes 1 second to move a disk f rom
one peg to ano ther . T h e n it t akes a to ta l of 264 - 1 seconds to solve the
puzzle.

To get an idea how incredibly large th is to ta l is, notice t h a t t h e r e a re
about 3 6 5 . 2 4 . 6 0 . 6 0 - 31,536,000 seconds in a year . There fore ,

Tota l t ime t a k e n - 264 - 1 seconds

1. 844674407 x 1019 seconds

5 .84942417 x 1011 yea r s

600 billion years!

In t r igu ingly , according to some es t ima tes , the un ive r se is only abou t
18 billion yea r s old.

Exercises 5.2

Using the i te ra t ive method , predic t a so lu t ion to each r e c u r r e n c e re la t ion
sa t i s fy ing the given ini t ial condit ion.

1. s 0 - 1

Sn - 2 S n - 1 , n > 1

3. a 0 - 1

a n - a n - 1 + n , n > 1

5. a o - O

a n - a n - 1 + 4 n , n > 1

2. a l = l

a n - - a n - 1 + n , n > 2

4. a 1 = 1

a n -- a n - 1 + (2n - 1), n >_ 2

6. s l = l

Sn - -~Sn - 1 + n3, n _> 2

5.2 Solving Recurrence Relations 283

7. s l = l 8. a 1 - - 1

8n S n - 1 + n 2 = , n > 2 an - 2 a n - 1 + (2 n - 1), n >_ 2

9-16. Using induction, verify the solutions to Exercises 1-8.

17. Using the data in Example 5.2, show tha t the compound a m o u n t J u d y
will receive at the end o fn years is given byA(n) = 1000(1.08) n, where
n > 0 .

Use the recursive definition of fn in Example 5.5 to answer Exercises 18
and 19.

18. Predict a formula for fn.

19. Prove tha t the formula holds for n > 1.

20. Using induction, establish the explicit formula for bn in Example 5.12.

Using induction, prove tha t each is a solution to the cor responding
recurrence relation, where c is a cons tant and f (n) a function of n.

n

21. a n - - ao + ~ f(i) , a n - - a n - 1 + f (n)
i=1

c n - 1
22. a n - c n a o + ~ a n - C a n _ l + l (a s s u m e c ~: l)

c - l '
n

23. an -- cnao + ~ c n - i f (i), an -- Can-1 -b f (n)
i=1

Let an denote the numbe r of t imes the s t a t emen t x ~- x + 1 is executed by
the following loops.

f o r i = 1 t o n do

f o r j = 1 to [i / 2] do
x ~ - x + l

24. Define an recursively.

0 if n - 1
25. Show tha t an = an -1 + n /2 if n > 1 and even

a n - l + (n - 1) / 2 if n > l a n d o d d

26. Solve the recurrence relat ion satisfied by an.

Let an denote the number of t imes the s t a t ement x ~ x + 1 is executed by
the following f o r loops:

f o r i = 1 to n do

for j = 1 to [i /2] do
x , - - x + 1

27. Define an recursively.

1
28. Show tha t an -- a n - 1 + n /2

a n - 1 + (n -+- 1)/2

if n - 1
if n > 1 and even
if n > l a n d o d d

284 Chapter 5 Recursion

Figure 5.11

29. Solve the recurrence relation satisfied by an.

Let an denote the number of times the statement x ~ x + 1 is executed by
the nested for loops in Exercise 35 in Section 4.4.

30. Define an recursively.

31. Solve the recurrence relation satisfied by an.

32-33. Redo Exercises 30 and 31 using the loops in Exercise 36 in
Section 4.4.

34-35. Redo Exercises 30 and 31 using the loops in Exercise 37 in
Section 4.4.

36-37. Redo Exercises 30 and 31 using the loops in Exercise 38 in
Section 4.4.

Let tn denote the nth triangular number.

38. Define tn recursively.

39. Find an explicit formula for tn.

40. Prove that 8tn + 1 is a perfect square.

The nth pentagonal number Pn is obtained from its predecessor by
adding three rows of dots plus one. The first four pentagonal numbers
are represented pictorially in Figure 5.11.

�9 �9

�9 �9

�9 �9 �9 �9

�9 �9 �9 �9

�9 �9 �9

�9 �9 �9 �9 �9 �9 �9 �9 �9

�9 �9 �9 �9 �9 �9 �9 �9 �9

P2 = 5 P3 = 12 P4 = 22 p l - - 1

41. Represent P5 pictorially.

42-43. Redo Exercises 38 and 39 usingpn.

The nth hexagonal number hn is obtained from its predecessor by adding
four rows of dots plus one dot. The first four hexagonal numbers are shown
pictorially in Figure 5.12.

44-46. Redo Exercises 41-43 using hn.

47. Prove that hn - Pn + tn -- n, using the explicit formulas for Pn and tn.

48. Prove that hn - Pn + tn - n, using the recurrence relations for Pn

and tn.

5.2 Solving Recurrence Relations 285

F i g u r e 5 .12

�9 �9 �9 �9 �9 �9 �9 Q

h l = 1 h 2 = 6 h 3 = 15 h 4 = 28

Figure 5.13

Triangular pyramidal numbers Tn (or te trahedral numbers) are
posi t ive i n t ege r s t h a t can be r e p r e s e n t e d by t r i a n g u l a r p y r a m i d a l shapes .
The first four t e t r a h e d r a l n u m b e r s a re 1, 4, 10, a n d 20; see F i g u r e 5.13.

T1-- 1 T 2 = 4 T 3 = 10 T 4 = 20

49. Define Tn recurs ively .

50. Con jec tu re an explicit f o r m u l a for Tn.

51. Es t ab l i sh the f o r m u l a in Exerc i se 50.

Square pyramidal numbers Sn a r e posi t ive in t ege r s t h a t can be rep-
r e s e n t e d by p y r a m i d a l shapes , w h e r e t he base is a square . T h e first four
squa re p y r a m i d a l n u m b e r s a re 1, 5, 14, a n d 30; see F igu re 5.14.

5 2 - 5 4 . Redo Exerc ises 49-51 wi th Sn.

Let an deno te t he n u m b e r of subse t s of the set S - { 1, 2, . . . , n } t h a t con ta in
no consecu t ive in tegers , w h e r e n > 0. W h e n n - 0, S - O.t C o m p u t e each.

55. a0 56. a l 57. a2 58. a3

t Proposed by Irving Kaplansky of The University of Chicago.

286 Chapter 5 Recursion

F i g u r e 5.14

a

? ~ - - -

e

�9 ~ - - -

�9

S1 = 1 S 2 = 5 S 3 = 14 S 4 = 30

59. Define an recursively.

60. Solve the recurrence relation satisfied by an.

Suppose we introduce a mixed pair of l -month-old rabbits into a large enclo-
sure on the first day of a certain month. By the end of each month, the
rabbits become mature and each pair produces k - 1 mixed pairs of offspring
at the beginning of the following month. (N o t e : k >_ 2.) For instance, at the
beginning of the second month, there is one pair of 2-month-old rabbits and
k - 1 pairs of 0-month-olds; at the beginning of the third month, there is
one pair of 3-month-olds, k - 1 pairs of l-month-olds, and k (k - 1) pairs of
0-month-olds. Assume the rabbits are immortal . Let a,~ denote the average
age of the rabbit pairs at the beginning of the nth month. (P. Filipponi,
1990)

* '61. Define a , recursively.

**62. Predict an explicit formula for a,~.

**63. Prove the formula in Exercise 64.

64. (For those familiar with the concept of limits) Find lim an .
n - ~

Unfortunately, the i terative method i l lustrated in the preceding section
can be applied to only a small and simple class of recurrence relations. The
present section develops a method for solving two large, impor tant classes
of recurrence relations.

5.3 Solving Recurrence Relations Revisited 287

Linear Homogeneous Recurrence Relations with Constant Coefficients (LHRRWCCs)

A k t h - o r d e r l i n e a r h o m o g e n e o u s r e c u r r e n c e r e l a t i o n w i t h con-
s t a n t c o e f f i c i e n t s is a r e c u r r e n c e re la t ion of the form

a n - - C l a n - 1 4- C 2 a n - 2 4- " ' " 4- C k a n - k (5.7)

whe re Cl , C2,.. . ,Ck E R and ck r 0.

Firs t , a few words of explana t ion : The t e r m l i n e a r m e a n s t h a t every
t e r m on the R H S of E q u a t i o n (5.7) con ta ins a t mos t the first power
of any p redecessor a i . A r e c u r r e n c e re la t ion is h o m o g e n e o u s if every
t e r m on the RHS is a mul t ip le of some a i ; in o the r words , the rela-
t ion is sat isf ied by the sequence {0}; t h a t is, a n - 0 for every n. All
coefficients ci are cons tan ts . Since a n depends on its k i m m e d i a t e pre-
decessors, the o r d e r of the r e c u r r e n c e re la t ion is k. Accordingly, to
solve a k t h - o r d e r LHRRWCC, we will need k ini t ial condi t ions , say,

a0 - Co, a l - e l , . . . , a k - 1 - - C k - 1 .

The next example i l lus t ra tes in detai l the var ious t e r m s in th is definit ion.

�9 The r ecu r r ence re la t ion Sn - 2Sn-1 is a LHRRWCC. Its o rder is one.

�9 The r ecu r r ence re la t ion a n - n a , ~ _ l is l inear and homogeneous . But
the coefficient on the RHS is not a cons tan t . Therefore , it is not a
LHRRWCC.

�9 h n - h n - 1 + (n - 1) is a l inear r e cu r r ence re la t ion. But it is not
homogeneous because of the t e r m n - 1.

2 �9 The r ecu r r ence re la t ion a n - a n _ 1 + 3 a n - 2 is homogeneous . But it is
not l inear since the power of an-1 is 2.

�9 a n - - a n - 1 4- 2 a n - 2 4- 3 a n - 6 is a L H R R W C C of order six. m

Before we discuss solving second-order LHRRWCCs , notice t h a t the solu-
t ion of the r ecu r r ence re la t ion Sn - 2 S n - 1 , w h e r e so - 1, is Sn - 2 n, n >_ 0

(see Exercise 1 in Sect ion 5.2). More general ly , you may verify t h a t the
solut ion of the r ecu r r ence re la t ion a n - o t a n _ l , w h e r e a0 - c, is a n - c a n,

n > 0 .
We now t u r n our a t t e n t i o n to the second-order L H R R W C C

a n - - a a n _ l -~- b a n - 2 (5.8)

whe re a and b are nonzero cons tan ts . If it has a nonzero solut ion of the form
c a n, t hen c a n - acot n - 1 + b c o t n - 2 . Since ca r 0, th is yields c~ 2 - a a + b; t h a t

i s , ot 2 - - a a - b - 0, so a m u s t be a solut ion of the c h a r a c t e r i s t i c e q u a t i o n

X 2 - - a x - b - 0 (5.9)

288 Chapter 5 Recursion

of the recurrence relat ion (5.8). The roots of Equa t ion (5.9) are the
c h a r a c t e r i s t i c r o o t s of recurrence relat ion (5.8).

Theorems 5.2 th rough 5.4 show how character is t ic roots help solve
LHRRWCCs.

~ Let a and fl be the distinct (real or complex) solutions of the equat ion

x 2 - a x - b - 0, where a, b e R and b 4: 0. Then every solution of the
LHRRWCC an - a a n - 1 + b a n - 2 , where a0 - Co and al - C1, is of the form
an - A a n + B fl n for some constants A and B.

P R O O F "
The proof consists of two parts:

�9 First , we will show tha t an = A(~ n + B f l n is a solution of the recurrence
relation for any cons tants A and B.

�9 We will then find the values of A and B satisfying the given initial
conditions.

First, notice tha t since c~ and fl are solutions of equat ion (5.9), ~ 2 _ a~ + b
and ~ 2 __ af t + b.

�9 T o s h o w t h a t an - A a n + B f l n is a s o l u t i o n o f t h e r e c u r r e n c e r e l a t i o n "

a a n - 1 + b a n - 2 - a (A ~ '~-1 + B f l n - l) + b (A a n - 2 + B f l n - 2)

= Ac~'~-2(acv + b) + B f l n - 2 (a f l + b)

= Ac~,~-2 . ol2 + B f l n - 2 f12

= Aol '~ + B f l n

Thus an - A a n + B f l n is a solution of the recurrence relat ion (5.8).

�9 Secondly, let an - A~x n + B f l n be a solution of (5.8). To find the values
of A and B, notice tha t the conditions a0 - Co and a l - C1 yield the
following l inear system"

Co - A + B (5.10)

C1 - A a + B f l (5.11)

Solving this system, we get (Verify.)

A - C1 - Coi l and C0d - C1 (Remember, a 4= ft.)
~ - Z a - t ~

With these values for A and B, an satisfies the initial conditions and the
recurrence relation. Since the recurrence relat ion and the initial conditions
determine a unique sequence, { a n } , an -- A a n + B f l n is indeed the unique
solution of the recurrence relation, m

5.3 Solving Recurrence Relations Revisited 289

A f e w i n t e r e s t i n g o b s e r v a t i o n s :

�9 The solut ions a and ~ are nonzero , since a = 0, for ins tance , would
imply t h a t b = 0.

�9 T h e o r e m 5.2 c a n n o t be appl ied if a - ft. However , it works even if
and fl a re complex n u m b e r s .

�9 The solut ions ot n and fin are the b a s i c s o l u t i o n s of the r e c u r r e n c e
relat ion. In general , the n u m b e r of basic solut ions equals the order of
the r e c u r r e n c e relat ion. The g e n e r a l s o l u t i o n an - Aot n 4- B f l n is a
l i n e a r c o m b i n a t i o n of the basic solutions. The pa r t i cu l a r solut ion is
ob ta ined by select ing A and B in such a way t h a t the ini t ial condi t ions
are satisfied, as in T h e o r e m 5.2.

The next t h r ee examples i l lus t ra te how to solve second-order
L H R R W C C s us ing the i r cha rac te r i s t i c equat ions .

Solve the r e c u r r e n c e re la t ion an - 5 a n - 1 - 6 a n - 2 , w h e r e a0 - 4 and a l - 7.

S O L U T I O N :
�9 T o f i n d t h e g e n e r a l s o l u t i o n o f t h e r e c u r r e n c e r e l a t i o n :

The charac te r i s t i c equa t ion of the r ecu r r ence re la t ion is x 2 - 5x + 6 - 0;
the charac te r i s t i c roots are 2 and 3. Therefore , by T h e o r e m 5.2, the
genera l solut ion of the r e c u r r e n c e re la t ion is an = A . 2 n + B . 3 n. (This
solut ion is used in Example s 5.19 and 5.20.)

�9 To f i n d t h e v a l u e s o f A a n d B:
Using the init ial condi t ions we find:

a0 = A + B = 4

a l = 2A + 3B = 7

Solving this l inear sys t em yields A - 5 and B - - 1 (Verify this.).

T h u s the solut ion of the r e c u r r e n c e re la t ion sa t i s fy ing the given condi-
t ions is an - 5 . 2 n - 3 n, n >_ O. m

The next example finds an explicit f o rmu la for the n t h Fibonacci n u m b e r
Fn, which we have been wa i t ing for.

Solve the Fibonacci r e c u r r e n c e re la t ion Fn - F n - 1 + F n - 2 , where

F1 = 1 - F2.

S O L U T I O N :
The charac te r i s t i c equa t ion of the r ecu r r ence re la t ion is x 2 - x - 1 - O, and

1 + ~ / 5 1 - ~ / 5
its solut ions are a = 2 and fl - ~ . You m a y verify a + fl = 1

and aft - - 1.
The genera l solut ion is Fn - A a n + B f l n. To find A and B, we have:

F1 - Aot + B fl - 1

F2 - A ot 2 --}- B fl 2 - 1

290 Chapter 5 Recursi0n

Solving these two equat ions , we get (Verify)"

A - a _ _ (1 + v/5)/2 _ _ 1 + j 5

1 + c~ 2 (5 + vf5)/2 5 + ~/5

(1 + v ~) (5 - v~) 5 + 5 ~ / 5 - v ~ - 5 1

(5 + v~)(5 - j 5) 25 - 5 j ~

fl 1
and s imilar ly B - 1 + ~2 -- v/~ (Verify this.).

Thus the solution of the recurrence re la t ion sat isfying the given condi-
t ions is

o,n _ _ ~n c~n _ _ ~n
a n ~ - -

which is the Binet form for the n th Fibonacci n u m b e r Fn. (See Example 5.26
for a different method.) m

The next example, proposed by Irving Kaplansky of The Univers i ty of
Chicago, also i l lus t ra tes solving second order LHRRWCCs and is closely
related to Example 5.15.

~ Let denote the n u m b e r of subsets of the set S tha t an { 1, 2 , . . . n} do not
contain consecutive integers, where n >__ 0. When n - 0, S - 0 . Find an
explicit formula for a,,.

S O L U T I O N :
To get an idea about a,,, let us find its value for n - 0, 1, 2, 3, and 4 by
cons t ruc t ing a table, as in Table 5.3. It appears from the table tha t an is a
Fibonacci n u m b e r and a,, - F,+2.

T a b l e 5 .3 S u b s e t s of S that do not
c o n t a i n c o n s e c u t i v e i n t e g e r s

D,
D,{I}
D, {I}, {2}
O, {i}, {2}, {3}, {1,3}
O, {I}, {2}, {3}, {4}, {1,3}, {1,4}, {2,4}

a n

F n + 2

We shall, in fact, prove t ha t an - Fn+2 in two steps" F i r s t we shall define
an recursively and then solve the recur rence re la t ion to obtain this explicit
formula.

�9 To define an recursively"
From Table 5.3, a0 = 1 and a l - 2. So let n >_ 2. Let A be a subset of S
t ha t does not contain two consecutive integers. Then e i ther n e A or
n C A .

5.3 Solving Recurrence Relations Revisited 291

C a s e 1 Suppose n ~ A. Then n - 1 r A. By definition, S* =
{1, 2 , . . . , n - 2} has a n - 2 subsets not conta in ing two consecutive inte-
gers. Add n to each of the subsets. The resu l t ing sets are subsets of S
sat isfying the desired property, so S has a n - 2 such subsets.

C a s e 2 Suppose n r A. By definition, there are a n - 1 such subsets of
S having the requi red property.
Since these two cases are mu tua l ly exclusive, by the addit ion principle,

a n - - a n - 1 zr- a n - 2 .

Thus a n can be defined recursively as

a0 - 1 ,a l - 2

a n - a n - 1 -+- a n - 2 , n > 2 .

�9 T o s o l v e t h e r e c u r r e n c e r e l a t i o n "

This recur rence re la t ion is exactly the same as the Fibonacci one wi th
the initial condit ions a0 = 1, a l = 2. So ins tead of going th rough a
complete solution, as in Example 5.15, notice t ha t this definition yields
the Fibonacci n u m b e r s 1, 2, 3, 5, 8, It follows tha t an = F n + 2 ,

n > 0.
m

Using the values of a and ~ from Example 5.15,

a n + 2 _ f i n + 2

a n - - F n + 2 - - , n > 0 a - - ~ u

(Verify this. See Exercise 13.) m

Theorem 5.2 does not work if the character is t ic roots a and fl are equal,
t ha t is, if a is a root wi th degree of mult ipl ic i ty two. The following theorem,
however, comes to our rescue. It shows that , in addi t ion to a n , n a n is a
basic solution.

Let a, b ~ I~ and b r 0. Let a be a real or complex solution of the equat ion

x 2 - a x - b = 0 wi th degree of mult ipl ic i ty two. Then a n - A a n + B n a n is
the general solution of the LHRRWCC a n - a a n _ 1 -~ b a n - 2 .

P R O O F "
Since a is a root of the equat ion x 2 - a x - b - 0 with degree of multipli-
city two,

x 2 - a x - b - (x - a) 2

= X 2 - - 2ax + a 2

Therefore,

a - 2a and b - - - - a 2 (5.12)

292 Chapter 5 Recursion

�9 T o s h o w t h a t a n - n a n s a t i s f i e s t h e r e c u r r e n c e r e l a t i o n :

Notice t ha t
a a n - 1 + b a n - 2 - a [(n - 1)a n- l] + b [(n - 2)a n-2]

= 2a[(n - l) a n - l] -~- (--a2)[(n -- 2)a n-2]

by (5.12)

= an[2(n - 1) - (n - 2)]

- - n a n - a n

Therefore, n a n is a solution of the recur rence relat ion.

Then a n - A a n + B n f l n is the general solution of the given recur rence
relation, where A and B are selected in such a way t ha t the ini t ial condit ions
are satisfied. (The values of A and B can be found us ing ini t ial conditions,
as in Theo rem 5.2.) n

The next example i l lus t ra tes Theorem 5.3.

Solve the recur rence re la t ion a n - 6 a n - - 9 a n - 2 , where a0 = 2 and a - 3. 1 1

S O L U T I O N :
The character is t ic equat ion of the recur rence relat ion is x 2 - 6x + 9 - 0;
its solution is 3 with degree of mult ipl ic i ty two. Therefore, by T h e o r e m 5.3,
the general solution of the recurrence re la t ion is a, , = A . 3 '2 + B �9 n 3 n . (We
use this in Example 5.21.)

The initial condit ions a0 = 2 and a l = 3 yield the equa t ions

A . 3 ~ + B . 0 . 3 ~ - 2

and A . 3 + B . 1 . 3 - 3 .

Solving these equat ions, we get A - 2 and B - - 1 . (Verify).
Thus the solution of the recurrence relat ion sat isfying the given condi-

t ions is a n - 2 . 3 n - n . 3 n , n >_ O. m

Theorems 5.2 and 5.3 can be combined to yield the following general
result .

~ Let a be a character is t ic root of the LHRRWCC (5.7).

�9 If the degree of mult ipl ic i ty of c~ is 1, then a n is a basic solution of the
LHRRWCC.

�9 If the degree of mult ipl ic i ty of a is m, then a n, n a n , . . . , n m - l a n are basic
solutions of the LHRRWCC. (N o t e : A kth-order LHRRWCC has k basic
solutions.)

�9 The general solution of the LHRRWCC is a l inear combina t ion of all
basic solutions, m

The following example i l lus t ra tes this general theorem.

5.3 Solving Recurrence Relations Revisited 293

Solve t h e r e c u r r e n c e r e l a t i o n - 7an-1 - 13an-2 - 3an-3 + 18an-4 , w h e r e an

a0 - 5 , a l - 3 ,a2 - 6, a n d a3 - - 2 1 .

S O L U T I O N :
T h e c h a r a c t e r i s t i c e q u a t i o n of t h e L H R R W C C i sx 4 - 7X 3 + 13X 2 +3X-- 18 -- 0.
Since x 4 - 7 x 3 + 13x 2 + 3x - 18 -- (x + 1)(x - 2)(x - 3) 2, t h e c h a r a c t e r i s t i c

roo t s are:

a n d

- 1 a n d 2 w i th d e g r e e of m u l t i p l i c i t y one each

3 w i th d e g r e e of m u l t i p l i c i t y two

Since 3 is a roo t w i th d e g r e e of m u l t i p l i c i t y two, it y ie lds two bas ic
so lu t ions , 3 n a n d n3 n. T h u s t h e g e n e r a l so lu t i on of t h e L H R R W C C is a
l i nea r c o m b i n a t i o n of t h e basic so lu t ions (- 1) n , 2 n , 3 n, a n d n3n; t h a t is,
an -= A (- 1) n -+- B 2 n + C3 n -~- D n 3 n.

To f i n d the va lues o f A, B, C, a n d D:

Since a0 - 5, a l - 3, a2 - 6, a n d a3 - - 2 1 , we h a v e

and

A + B + C = 5

- A + 2B + 3C + 3D = 3

A + 4B + 9C + 18D = 6

- A + 8B + 27C + 81D = - 2 1

Solv ing th i s l i n e a r sys t em, we ge t A - 2 - C, B - 1, a n d D - - 1 (Verify
this .) . T h u s t h e so lu t ion of t h e L H R R W C C sa t i s fy ing t h e in i t ia l c o n d i t i o n s
is an - 2 (- 1) n _+_ 2 n _+_ 2 . 3 n -- n3 n, n >_ O. m

T h e t e c h n i q u e of so lv ing L H R R W C C s c a n n o t be app l ied to t h e s e e m i n g l y

s imple r e c u r r e n c e r e l a t i o n s fn - fn -1 + n (E x a m p l e 5.5) a n d bn -- 2bn-1 + 1

(E x a m p l e 5.4), wh ich a r e l inear , b u t n o n h o m o g e n e o u s . So we now t u r n to
so lv ing l i n e a r n o n h o m o g e n e o u s r e c u r r e n c e r e l a t i o n s w i t h c o n s t a n t
c o e f f i c i e n t s (L N H R R W C C s) .

LNHRRWCCs

T h e genera l f o r m of a L N H R R W C C is

an - Clan-1 + C2an-2 + "'" + Ckan-k + f (n) (5.13)

w h e r e cl , C 2 , . . . , Ck E R, Ck 7 s O, a n d f (n) is not iden t i ca l ly zero. I t s so lu t i on
d e p e n d s on t h a t of t h e a s s o c i a t e d l i n e a r h o m o g e n e o u s r e c u r r e n c e
r e l a t i o n w i t h c o n s t a n t c o e f f i c i e n t s (A L H R R W C C s)

an - Clan-1 + C2an-2 + "'" + Ckan-k (5.14)

we s t u d i e d ear l ie r .

294 Chapter 5 Recursion

Solving LNHRRWCCs

To solve the LNHRRWCCs (5.13), let a(n h) denote the general solution of the

ALHRRWCCs (5.14). Suppose we know some solution a(n p) of the recurrence

relat ion (5.13); a(n p) is a p a r t i c u l a r s o l u t i o n of the LNHRRWCCs (5.13).
Then the g e n e r a l s o l u t i o n of (5.13) is given by

a n - a (nh) + a (n p)

This fact is confirmed by the following theorem; we leave its proof as an
exercise (see Exercise 44).

Let a(n h) denote the general solution of the ALHRRWCCs (5.14) and a(n p) a
par t icular solution of the LNHRRWCC (5.13). Then an -- a(n h) + a(n p) is the
general solution of the LNHRRWCCs (5.13). I

It follows from this theorem tha t solving the LNHRRWCCs (5.13)
depends on finding a par t icular solution a~n p . Although no general algo-
r i thm exists for solving an a rb i t ra ry LNHRRWCCs, two special cases can
be handled fairly easily. When f (n) is a polynomial in n or is of the form
Cot n, a part icular solution can be extracted with ease, as the next two exam-
ples demonstrate , where C and a are constants. The techniques we employ
are similar to those used to solve linear nonhomogeneous differential
equations.

Solve the LNHRRWCCs an - 5 a n - 1 - 6a~_2 + 8n 2, where a0 - 4 and

a l - 7 .

SOLUTION:
It follows from Example 5.14 tha t the general solution of the ALHRRWCCs
an - 5 a n - 1 - 6 a n - 2 is given by a(n h/ = A . 2 n + B . 3 n. Since f (n) - 8n 2 is
a quadrat ic polynomial in n, it seems reasonable to look for a par t icular
solution of the same form, say, an - a n 2 + b n + c . Then the given recurrence
relation yields

a n 2 + b n + c - 51a (n - 1) 2 + b (n - 1) + c] - 6 1 a (n - 2) 2 + b (n - 2) + c] + 8 n 2

= (8 - a) n 2 + (1 4 a - b) n - 19a+ 7 b - c

Equat ing the coefficients of like terms, we get the l inear system-

a - 8 - a

b = 1 4 a - b

c = - 1 9 a + 7 b - c

Solving the system, we get a - 4, b - 28, and c - 60 (Verify). We now claim

tha t -(P) 4n 2 + 28n + 60 is a par t icular solution (Verify). t t n - -

5.3 Solving Recurrence Relations Revisited 295

Thus , by T h e o r e m 5.5, the genera l solut ion of the given r e c u r r e n c e
re la t ion is

a n - a (nh) + a (n p)

= A . 2 n + B . 3 n + 4n 2 + 28n + 60

Us ing the two given ini t ial condit ions, th is yields the l inear sys tem:

A + B - - 5 6

2A + 3B -- - 8 5

This yields A - - 8 3 and B - 27 (Verify th is also.).
T h u s the des i red solut ion is

a n - (- 8 3) . 2 n + 2 7 . 3 n ~- 4n 2 A- 28n + 60, n > 0 m

The next example i l lus t ra tes how to solve the L N H R R W C C s (5.13) w h e n
f (n) is of the form C a n, where C and a a re cons tan ts .

Solve the L N H R R W C C s - 5 a n - 1 6 a n - 2 3 . whe re - 4 a n d a n + 5 n , a0
a l = 7 .

S O L U T I O N :
As in Example 5.19, the genera l solut ion of the A L H R R W C C s a n - 5 a n - 1 -

6 a n - 2 is given by a(n h) - A . 2 n -4- B . 3 n . Since f (n) - 3 . 5 n, we sea rch for a
pa r t i cu l a r solut ion of the form a n = c �9 5 n . T h e n we m u s t have

c . 5 n - 5(c. 5 n - l) - 6(c. 5 n-2) -4- 3 . 5 n

Canceling 5 n-2 f rom both sides, the r e su l t i ng equa t ion yields c - 25/2.
We now claim t h a t a n - (25/2)5 n is a pa r t i cu l a r solut ion of the r e c u r r e n c e
re la t ion (Verify this.).

T h u s the genera l solut ion of the L N H R R W C C s is

a n - A . 2 n -+- B . 3 n -+- (25/2)5 n

Us ing the init ial condit ions, we get the l inear sys tem:

A + B - - 1 7 / 2

2A + 3B - - 1 1 1 / 2

Solving this sys tem, we get A - 30 and B - - 7 7 / 2 (Verify this.).
T h u s the solut ions of the given r e c u r r e n c e re la t ion are given by

a n - (30). 2 n - (77/2). 3 n -+- (25/2). 5 n, n > 0

(Verify this also.) m

296 Chapter 5 Recursion

A n impor tan t observation: In th is example, notice t h a t t he 5 in f (n) is
not a charac ter i s t ic root of the ALHRRWCCs. If it were, we wou ld have
needed to make a d j u s t m e n t s in our search for a pa r t i cu l a r solut ion, as
in T h e o r e m 5.3. We shall p u r s u e th is case short ly.

The following t h e o r e m justif ies the t echn iques d e m o n s t r a t e d in these
two examples; we omit its p roof in the in te res t of brevity.

In the LNHRRWCCs (5.13), suppose f (n) = (bk nk + bk_ ln k-1 + . . . + b in +

bo)(~ n. If a is not a charac ter i s t ic root of the ALHRRWCCs (5.14), t h e n a
pa r t i cu la r solut ion is of the form (dk nk + d k _ l n k-1 + . . . + d i n 4- do)or n.
If a is a charac ter i s t ic root wi th mul t ip l ic i ty m, t hen a pa r t i cu l a r so lu t ion
is of the f o r m nm(ekn k + ek_l nk-1 + . . . + e l n + eo)ot n. m

We conclude this section wi th the following example, which i l lus t ra tes
this t heo rem when a is a charac te r i s t ic root of the ALHRRWCCs.

Solve the LNHRRWCCs - 6an-1 - 9an-2 + 4(n + 1)3 n, whe re a0 = 2 an
a n d a l - 3.

S O L U T I O N :
F r o m Example 5.17, the general solut ion of the ALHRRWCCs is a ~) =
A. 3 ~ + B. n3 n, where n >_ 0. Since 3 is a charac ter i s t ic root wi th mul t ip l ic i ty
2, we search for a pa r t i cu la r solut ion of the form n2(cn + d)3 n, where the
cons tan t s c and d are to be de te rmined . Then we m u s t have

n2(cn + d) 3 n - 6{(n - 1)21c(n - 1) + d l 3 n-l}

- 9{(n - 2)2[c(n - 2) + dl3 n-2 } + 4(n + 1)3 'z

E q u a t i n g the coefficients of like t e rms , this yields c - 2/3 and d - 4 (Verify);
- (p) _ 2n2(n + 6)3 n-1 SO ~n

Thus the general so|ution of the recurrence relation is

an - A . 3 n + B . n3 n + 2n2(n + 6)3 n - l , n _> 0

Using the initial condit ions, this yields

an - (6 - 19n) . 3 n-1 + 2n2(n + 6)3 n-1 , n > _ 0 i

(You can confirm this.)

Exerc i ses 5.3

Dete rmine if each recur rence re la t ion is a LHRRWCC.

1. Ln - Ln-1 + Ln-2

3. an -- 1 .08an_l

2. Dn - nDn-1 + (- 1) n

4. bn = 2bn-1 + 1

5.3 Solving Recurrence Relations Revisited 297

5. an -- a n - 1 + n

7. an -- a n - 1 + 2 a n - 2 + 3 a n - 5

S o l v e e a c h L H R R W C C .

9. an -- a n - 1 + 2 a n - 2 , a o -- 3 , a l = 0

10. an - 5 a n - 1 - 6 a n - 2 , ao = 4, a l - 7

11. an = a n - 1 + 6 a n _ 2 , a o = 5 , a l = 0

12 . an = 4 a n - 2 , a o = 2 , a l = - 8

13. an - - a n - 1 + a n - 2 , a o = 1 , a l -- 2

14 . an = a n - 1 + a n - 2 , ao -- 2, a l = 3

15 . Ln = L n - 1 + L n - 2 , L1 = 1, L2 = 3

16. an = 4 a n - 1 - 4 a n _ 2 , a o = 3 , a l = 10

17 . an = 6 a n - 1 - - 9 a n - 2 , ao = 2, a l - ~ 3

6. an -- 2 a n - 1 + (2 n -- 1)

8 . an -- a n - 1 + 2 a n - 3 + n 2

18. an = 3 a n - 1 + 4 a n - 2 - 1 2 a n _ 3 , a o -- 3 , a l = - 7 , a 2 = 7

19 . an -- 8 a n - 1 - 2 1 a n - 2 + 1 8 a n _ 3 , a o -- 0 , a l ---- 2 , a 2 = 13

20. an -- 7 a n - 1 -- 1 6 a n - 2 + 1 2 a n _ 3 , a o -- 0 , a l ---- 5 , a 2 -- 19

2 1 . an = - - a n - 1 + 1 6 a n - 2 + 4 a n - 3 - 4 8 a n _ 4 , a o = 0 , a l = 1 6 , a 2 -- --2,

a3 = 142

22. an = 1 3 a n - 2 - 3 6 a n - 4 , a0 = 7, a l = --6, a2 = 38, a3 -- - -84

23. an = 9 a n - 1 - 3 0 a n - 2 + 4 4 a n _ 3 -- 2 4 a n - 4 , a o = 5 , a l = 1 2 , a 2 = 38,

a3 = 126

2 4 . an = 8 a n - 1 - 2 4 a n - 2 + 3 2 a n - 3 -- 1 6 a n - 4 , a o = 1 , a l = 4 , a 2 = 44,

a3 = 2 7 2

F i n d t h e g e n e r a l f o r m of a p a r t i c u l a r s o l u t i o n o f t h e L N H R R W C C s (5 .13)

c o r r e s p o n d i n g to e a c h f u n c t i o n f (n) .

25. f (n) = n 2 6 . f (n) = 1 2 7 . f (n) = 3 n 2

28. f (n) = 3 n 2 9 . f (n) - n 2 n 3 0 . f (n) - 4 3 n 2 5 n

F i n d t h e g e n e r a l f o r m of a p a r t i c u l a r s o l u t i o n o f t h e L N H R R W C C s

an -- 4 a n - 1 - 4 a n - 2 + f (n) c o r r e s p o n d i n g to e a c h f u n c t i o n f (n) .

3 1 . f (n) = 3 - 2 n 32. f (n) = n 2 n

33. f (n) - 2 3 n 2 2 n 3 4 . (1 7 n 3 - 1)2 n

S o l v e e a c h L N H R R W C C s .

35. an - 2 a n - 1 -+ 1, a 0 - 1

36. an -- 7 a n - 1 - 10an_2 + n 2, ao = 0, a l = 1

298 Chapter 5 Recursion

37. an - 7 a n - 1 - 12an-2 + 3n,a0 - 0 , a l = 2

38. an - 7 a n - 1 - 12an-2 + 3 n 4 n , a o = 0 , a l - 2

*39. a n - a n - 1 ~- n , ao - 1

*40. a n - a n - 1 -+- n - 1 ,a l - 0

41. Let rn and Sn be two solutions of the recurrence relat ion (5.8). Prove
tha t a n - - r n + S n is also a solution.

42. Let a be a solution of the equat ion x k - C l x k - 1 Ck -- 0. S h o w

tha t c~ n is a solution of LHRRWCC (5.7).

43. Let a be a characterist ic root of the LHRRWCC an = a a n _ 1 -+- b a n - 2 -+-

C a n - 3 with degree of multiplicity three. Show tha t a n, n(~ n, n 2 a n are
solutions of LHRRWCC.

44. Let a(n h) denote the general solution of the ALHRRWCCs (5.14) and

a(n p) a par t icular solution of the LNHRRWCCs (5.13). Prove t ha t

an - a(n h) + a(n p) is the general solution of the LNHRRWCCs (5.13).

Genera t ing functions provide a powerful tool for solving LHRRWCCs, as
will be seen shortly. They were invented in 1718 by the F rench mathe-
matician Abraham De Moivre, when he used them to solve the Fibonacci
recurrence relat ion (see Example 5.26). Genera t ing functions can also solve
combinatorial problems, as the next chapter shows.

To begin with, notice tha t the polynomial 1 + x + x ~ + x a + X 4 ~ -X 5 can
x 6 - 1

be wri t ten as ~ . You may verify this by ei ther cross-mult ipl icat ion
x - - 1

the familiar long division method, or Exercise 8 in Section 4.4. Accord-
X 6 - 1

ingly, f (x) - ~ i s called the g e n e r a t i n g f u n c t i o n of the sequence of
x - - 1

coefficients 1, 1, 1, 1, 1, 1 in the polynomial.
More generally, we make the following definition.

Generating Function

Let a0, a l , a2 , . . , be a sequence of real numbers . Then the funct ion

g (x) - ao + a I x + a2 x2 + . . . + a n x n + . . . (5.15)

is the g e n e r a t i n g f u n c t i o n for the sequence {an }. Genera t ing funct ions
for the finite sequence a0, a l , . . . , an can also be defined by le t t ing ai = 0 for
i > n; thus g (x) - ao + a l x + a2 x2 + . . . + a n x n is the genera t ing funct ion
for the finite sequence a0, a l , . . . , a n .

5.4 Generating Functions 299

.' - . . ' . , - ~ . '

: , . , ,,' ..$

A b r a h a m De Moivre (1667-1754), son of a surgeon, was born in Vitry-le-
Francois, France. His formal education began at the Catholic village school,
and then continued at the Protestant Academy at Sedan and later at Saumur .
He did not receive good training in mathematics until he moved to Paris in
1684, where he studied Euclid's later books and other texts.

Around 1686, De Moivre emigrated to England, where he began his life-
long profession, tutoring in mathematics, and mastered Newton's Principia
Mathematica. In 1695 he presented a paper, his first, on Newton's theory
of fluxions to the Royal Society of London and 2 years later he was elected a
member of the Society. Unfortunately, despite his influential friends, he could
not f ind an academic position. He had to earn a living as a tutor, author, and
expert on applications of probability to gambl ing and annuities.

He dedicated his first book, a masterpiece, The Doctrine of Chances, to
Newton. His most notable discovery concerns probability theory: The binomial probability distribution can
be approximated by the normal distribution.

De Moivre died in London.

For example,

g(x) - 1 + 2x + 3x 2 + . . . + (n + 1)x n + . . .

is the genera t ing function for the sequence of positive integers and

f (x) - 1 + 3x + 6x 2 + . . . + n(n + 1)x2 + . . .
2

is the genera t ing function for the sequence of t r i angula r numbers . Since

x n - 1

x - 1
= 1 + x -+-x 2 -~-... + x n-1

g(x) -
x n -- 1

x - 1
is the genera t ing function for the sequence of n ones.

A w o r d o f caut ion" The RHS of Equa t ion (5.15) is a f o r m a l p o w e r
ser ies in x. The le t ter x does not represen t anything. The various powers
x n of x are simply used to keep t rack of the corresponding t e rms an of
the sequence. In o ther words, t h ink of the powers x n as placeholders.
Consequently, unl ike in calculus, the convergence of the series is of no
in teres t to us.

,, ,, ,

Equality of Generating Functions

Two genera t ing functions f (x) - ~ anx n and g(x) = ~ bnx n are equal if
n =0 n =0

an -- bn for every n >__ 0.

300 Chapter 5 Recurslon

For example, let f (x) = 1 + 3x + 6X 2 q- 10x 3 + - . . and

2 . 3 3 . 4 x 2 4 . 5 x3 g(x) - 1 + - - ~ x + - ~ - + -~ + Then f (x) = g(x) .

A genera t ing funct ion we will use f requent ly is

= 1 + a x + a 2 x 2 -n t- . . . --[-- a n x n -Jr- " " (5.16)
X - a x

1
= 1 + x + x 2 + . . . - f - X n -Jr-''' (5.17) Then 1 - x

Can we add and mul t ip ly genera t ing functions? Yes! Such opera t ions are
per formed exactly the same way as polynomials are combined.

Addition and Multiplication of Generating Functions
CO CO

Let f (x) = ~ anX n and g(x) - ~ b n x n be two genera t ing functions. T h e n
n=0 n=0

) f (x) + g(x) - ~ (an + b n) x n and f (x)g(x) - ~ ~ a i b n _ i X n
n=0 n=0 i=0

For example,

(1 - x) 2

1 1

1 - x 1 - x

)) - - X i X i -- 1 . 1 x n

n=O

CX~

= E (n + 1)x n

n=O

= 1 + 2 x + 3x 2 + . . . + (n + 1)x n + . . . (5.18)

and

1 1 1

(l - x) 3 1 - x (l - x) 2

- - X n (n + 1) X n

Ln =0

1 . (n + 1 - i) x n

n=0

(X)

= ~ [(n + 1) + n + . . . + 1] x n

n--0

5.4 Generating Functions 301

(x)

= E (n + 1)(n + 2)xn
2

n - - 0

= 1 + 3x + 6x 2 + 10x 3 + . . . (5.19)

Before exploring how valuable genera t ing functions are in solving
LHRRWCCs, we i l lustrate how the technique of p a r t i a l f r a c t i o n d e e o m -
p o s i t i o n , used in integral calculus, enables us to express the quot ien t

p(x) of two polynomials p(x) and q(x) as a sum of proper fractions, where
q(x)
degp(x) < deg q(x). t

For example,

6 X + 1 1 2

(2X- 1)(2X + 3) 2 X - 1 2X + 3

Par t ia l Frac t ion Decomposit ion Rule for p (x) where d e g p (x) < deg q(x)
q (x) '

If q(x) has a factor of the form (ax + b) m, then the decomposit ion contains
a sum of the form

A1 A2 Am
t + ' " +

ax + b (ax + b) 2 (ax + b) m

where Ai is a ra t ional number .
Examples 5.22-5.24 i l lustrate the part ia l fraction decomposit ion tech-

nique. We use thei r results to solve the recurrence relat ions in Examples
5.25-5.27.

x
~ Express (1 - x)(1 - 2x) of part ial fractions. as a sum

S O L U T I O N :
Since the denomina to r contains two linear factors, we let

x A B
= +

(1 - x)(1 - 2x) 1 - x 1 - 2x

To find the constants A and B, mult iply both sides by (1 - x)(1 - 2x)"

x - A (1 - 2x) + B (1 - x)

Now give convenient values to x. Set t ing x - i yields A - - 1 and set t ing
x - 1/2 yields B - 1. (The values of A and B can also be found by equat ing

tdeg f(x) denotes the degree of the polynomial f(x).

302 Chapter 5 Recursion

coe f f i c i en t s o f l ike t e r m s f r o m e i t h e r s ide o f t h e e q u a t i o n a n d s o l v i n g t h e

r e s u l t i n g l i n e a r s y s t e m .)

x - 1 1
- - - - . . J_

(1 - x) (1 - 2x) 1 - x 1 - 2x

(You m a y v e r i f y t h i s b y c o m b i n i n g t h e s u m o n t h e R H S i n t o a s i n g l e

f r a c t i o n .) W e u s e t h i s r e s u l t in E x a m p l e 5 .25. II

x
E x p r e s s 1 - x - X 2 as a s u m of p a r t i a l f r a c t i o n s .

S O L U T I O N :
F i r s t , f a c t o r 1 - x - x 2"

1-F w/5
w h e r e c~ =
a - fl - v ~ .) 2

L e t

1 - x - x 2 = (1 - a x) (1 - f i x)

a n d fl -
1 - J 5
~ . (N o t i c e t h a t a + fl - 1, aft - - 1 , a n d

T h e n

x A B
= t

1 - x - x 2 1 - a x 1 - f i x

x - A (1 - f i x) + B (1 - o tx)

E q u a t i n g coe f f i c i en t s o f l ike t e r m s , w e get"

A + B - O

- f l A - o t B - 1

S o l v i n g t h i s l i n e a r s y s t e m y i e l d s A -

T h u s

1

,/g = - B (Ver i fy th i s .) .

(1 - x - x 2)
111

v/5 1 - c ~ x

1]
1 - fix

W e u s e t h i s r e s u l t in E x a m p l e 5 .26.

2 - 9x

1 - 6x + 9x 2
E x p r e s s

S O L U T I O N :

as a s u m of p a r t i a l f r a c t i o n s .

A g a i n , f a c t o r t h e d e n o m i n a t o r :

m

l - - 6 X + 9 X 2 - - (l - - 3 X) 2

5.4 Generating Funct ions 303

By t h e d e c o m p o s i t i o n rule , let

T h e n

2 - 9x A B
= t

1 - 6x + 9x 2 1 - 3x (1 - 3x) 2

2 - 9x - A(1 - 3x) + B

Th i s y ie lds A - 3 a n d B - - 1 (Verify this .) .

T h u s

2 - 9 x 3 1

1 - 6 x + 9x 2 1 - 3x (1 - 3x) 2

We use th i s r e s u l t in E x a m p l e 5.27. I

N o w we a re r e a d y to use pa r t i a l f r ac t ion d e c o m p o s i t i o n s a n d g e n e r a t i n g

f u n c t i o n s to solve r e c u r r e n c e r e l a t i o n s in t h e n e x t t h r e e examples .

Use g e n e r a t i n g f u n c t i o n s to solve t h e r e c u r r e n c e r e l a t i o n bn - 2bn-1 + 1,

w h e r e bl - 1.

S O L U T I O N :
Fi rs t , no t ice t h a t t h e cond i t i on bl - i y ie lds b0 = 0. To find t h e s e q u e n c e
{bn} t h a t sat isf ies t h e r e c u r r e n c e re la t ion , cons ide r t h e c o r r e s p o n d i n g

g e n e r a t i n g f u n c t i o n

T h e n

Also,

g (x) -- bo + b l x +

2 x g (x) =

1 - x
= l + x +

b2 x2 + b3 x 3 + . . . + bnx n q - . . .

2blx 2 + 2b2x 3 + . �9 �9 + 2bn_ 1 x n - J r - " �9 �9

X 2 + X 3-Jr-" �9 �9 -~- X n -J r - " �9 �9

T h e n

g (x) - 2 x g (x)
1 - x

= - 1 + (bl - 1)x + (b2 - 2bl - 1)x 2 + . . .

+ (bn - 2bn-1 - 1)x n -Jr- ' ' '

= - 1

s ince bl - I a n d bn - 2bn-1 + 1 for n >_ 2. T h a t is,

T h e n

1 x
(1 - 2x)g (x) - 1 -

1 - x 1 - x

g (x) =
(1 - x) (1 - ~ c)

304 Chapter 5 Recursion

1 1
= § by E x a m p l e 5.22

1 - x 1 - 2 x '

= - x n + 2nx n , by (5.16)

: E (2 n - 1)X n

n=O

OG

But g (x) - ~ bnx n, so bn - 2 n - 1, n > 1. (Notice t h a t th is is the s a m e
n : 0

solut ion ob ta ined in E x a m p l e 5.12.) II

Us ing g e n e r a t i n g funct ions , solve the Fibonacci r e c u r r e n c e re la t ion Fn -

F n - 1 + F n - 2 , w h e r e F1 - 1 - F2.

S O L U T I O N :
Notice t h a t the two init ial condi t ions yield F0 - 0. Let

g (x) - Fo + F i x + F 2 x 2 4 - . . . 4- F n x n 4 - ' "

be the g e n e r a t i n g funct ion of the Fibonacci sequence. Since the o rders of
F n - 1 and F n - 2 are 1 and 2 less t h a n the order of Fn, respect ively, we find
x g (x) and x2g(x)"

x g (x) - F i x 2 4- F 2x 3 4- F3 x4 4 - . . . 4- F n - 1 xn 4 - ' "

x2 g (x) - F i x 3 4- F 2 x 4 4- F3 x5 4 - . . . 4- Fn_2 xn 4 - . . .

T h e n

g (x) - x g (x) - x 2 g (x) - F i x 4- (F2 - F1)x 2 4- (F3 - F2 - F1)x 3 + . . .

+ (Fn - F , _ 1 - F n - 2) xn 4- "'"

= X

since F2 - F1 and Fn = F n - 1 + F n - 2 .

T h a t is,

(1 - x - x 2) g (x) -- x

g (x) =
1 - - X - - X 2

111
1 - a x

1]
1 - f ix ' by Example 5.23

whe re a =
1 + V / 5

and fl =
1-4

2 2

5.4 Generating Functions 305

Then

So

~ / 5 g (x) -- 1 1
1 -- otX 1 -- fiX

oo oo (DO

o4)
g (x) - ~ (Oln -- ~ n) x n

n=0 x/~

-- E o l n x n - - E ~ n x n - - E (o l n

n-0 n-0 n=0

Therefore, by the equal i ty of genera t ing functions,

oln _ fin otn _ fin
F n - , / - g ~ - ~

-- ~ n) x n

(Recall t ha t this is the B i n e t f o r m of F n .) m

We close this section with the following example.

~ Using genera t ing functions, solve the recur rence re la t ion - 6 a n - 1 - an

9 a n - 2 , where ao - 2 and a l - 3.

g (x) - ao + a l x + a2 x2 + . . . + anX n + . . .

S O L U T I O N :
Let

Then

Then

6 x g (x) = 6 a o x + 6 a l x 2 + 6a2x 3 + . . . + 6 a n _ i X n + . . .

9 x 2 g (x) - 9a0x 2 + 9alx 3 + 9a2x 4 + . . . + 9 a n _ 2 xn + . . .

g (x) - 6 x g (x) + 9 x 2 g (x) - ao + (a l - 6a0)x + (a2 - 6al + 9a0)x 2 + . . .

+ (an -- 6 a n - 1 + 9 a n - 2) x n + ' "

= 2 - - 9 x

us ing the given conditions. Thus

Therefore,

(1 - 6x + 9 x 2) g (x) = 2 - 9x

g (x) =
2 - - 9 x

1 - 6 x + 9x 2

306 Chapter 5 Recursion

T h u s

3 1
= 1 - 3X - (1 - 3x) 2' by E x a m p l e 5.24

"- 3 3 n x n -- (n + 1) 3 n x n

n--O

(x:)

-- E [3 n+l - - (n + 1) 3 n] x n

n---0

(x)

-- E 3n(2 - n) x n

n- -0

an - (2 - n) 3 n n > 0 m

The fol lowing exerc ises provide amp le prac t ice in th is p rob lem-so lv ing
t echn ique .

Exercises 5.4

Express each quo t i en t as a sum of pa r t i a l f ract ions .

x + 7 4X 2 - - 3 x - 25
1. 2.

(x - 1)(x + 3) (x + 1) (x - 2)(x + 3)

5 2 + 4 x

3. l _ x _ 6 x 2 4. l + 8 x + 1 5 x 2

x (x + 2) - - 2 X 2 - - 2x + 2 5.
(2 + 3x)(x 2 + 1) 6. (x - 1)(x 2 + 2x)

X 3 ~ - X 2 + X ~- 3 - -X 3 + 2X 2 ~ - X
7.

x 4 + 5x 2 + 6 8. x 4 + x 3 + x + 1

3x 3 - x 2 + 4x x 3 + x 2 + 5x - 2
9.

X 4 - - X 3 -~- 2X 2 - - X -~- 1 *10.
X 4 - - X 2 + X - - 1

Using g e n e r a t i n g funct ions , solve each LHRRWCC.

1 1 . an = 2 a n _ l , ao = 1

12. a n = a n - 1 + 1 , a l = 1

13. an = a n - l + 2 , a l = 1

14. an = a n - 1 + 2 a n - 2 , ao = 3, a l = 0

15. an = 4 a n - 2 , ao = 2, a l = - 8

16. a n = a n - 1 + 6 a n - 2 , ao = 5, a l = 0

5.5 Recursive Algorithms 307

17. a n = 5 a n - z - 6 a n - 2 , a o = 4 ,a1 = 7

18. a n - a n - 1 + a n - 2 , a o = 1 , a l = 2

19. a n = a n - 1 + a n - 2 , a o = 2 , a l -- 3

20. L n - L n - 1 + L n - 2 , L 1 = 1, L2 = 3

21. a n = 4 a n - 1 - 4 a n - 2 , a0 = 3, a l = 10

22. a n - 6 a n - 1 - 9 a n - 2 , a o - 2 ,a1 - 3

23. a n - 3 a n - z + 4 a n - 2 - 12an-3 , a0 = 3, a l = - 7 , a2 = 7

24. a n - 8 a n - 1 - 2 1 a n - 2 + 1 8 a n _ 3 , a o = 0, a l = 2, a2 = 13

25 . a n = 7 a n - 1 - 16an-2 + 12an-3 , a0 = 0, a l = 5, a2 = 19

26. a n = 3 a n - 1 + 4 a n - 2 - 12an_3, a0 = 3, a l = - 7 , a2 = 7

27. a n = 6 a n - 1 - 12an-2 + 8 a n _ 3 , a o = 0 , a l = 2 ,a2 = - 2

28. a n -- 13an-2 - 3 6a n -4 , a0 = 7, a l - - - - 6 , a2 = 38, a3 = - 8 4

29. a n = - a n - z + 3 a n - 2 + 5 a n - 3 + 2 a n - 4 , a o = 0, a l = - 8 , a 2 = 4 , a3 = - 4 2

Recal l t h a t t h e r e c u r s i v e de f in i t ion of t h e fac to r i a l f u n c t i o n f e x p r e s s e s
f (n) in t e r m s of i t se l f w i t h a s m a l l e r a r g u m e n t n - 1. Accord ing ly , it can be
e m p l o y e d to w r i t e a s imp le a l g o r i t h m to c o m p u t e n! T h i s a l g o r i t h m ha s t h e
i n t e r e s t i n g p r o p e r t y t h a t it i nvoke s i t se l f w i t h a s m a l l e r a r g u m e n t . S u c h
an a l g o r i t h m is a r e c u r s i v e a l g o r i t h m .

Recursive Algorithm

An a l g o r i t h m is r e c u r s i v e if it i nvoke s i t se l f w i t h a s m a l l e r a r g u m e n t ; t h a t
is, if it i n v o k e s a r e d u c e d v e r s i o n of i tself. (See F i g u r e 5.1.)

R e c u r s i v e de f in i t i ons i n v a r i a b l y lead to r e c u r s i v e a l g o r i t h m s . T h i s sec-
t ion t r a n s l a t e s s o m e of t h e e x a m p l e s d i s c u s s e d in Sec t i on 5.1 in to r e c u r s i v e
a l g o r i t h m s a n d p r e s e n t s a few n e w o n e s - - g c d , b i n a r y sea rch , a n d m e r g e
sor t .

~ W r i t e a r e c u r s i v e a l g o r i t h m to c o m p u t e n!, w h e r e n >__ 0.

S O L U T I O N :
W h e n n = 0, t h e a l g o r i t h m m u s t t e r m i n a t e a n d y ie ld t h e va lue 1. W h e n
n > 0, t h e r e c u r r e n c e r e l a t i o n f (n) = n . f (n - 1) m u s t be appl ied: t h e
a l g o r i t h m m u s t i n v o k e i t s e l f w i th n - 1 as t h e n e w a r g u m e n t . T h e r e c u r s i v e
a l g o r i t h m is g iven in A l g o r i t h m 5.1.

308 Chapter 5 Reeurslon

Algorithm factorial (n)
(* This algorithm computes n! using recursion *)
O. Begin (* algorithm *)
i . i f n = 0 then (* base case *)
2. factorial ~-- I
3. else (* invoke the algorithm *)
4. factorial +-n �9 f ac to r i a l (n - 1)
5. End (* algorithm *)

Algorithm 5.1 l

Figure 5.15 shows the resul t of invoking the factorial a lgor i thm with
n - 3, where f means f a c t o r i a l .

F i g u r e 5 .15

�9 / f recursive I ' �9
<____'3./ [call [" /

gets the value 3-2=6

call

returns
value

---~f(l)

/
J ' <--. I f(~O

call

returns
value

----~f(0)

/ f e - I

Every recursive a lgor i thm has two impor t an t character is t ics , or cases:

�9 The b a s e c a s e ensures the sequence of recursive calls will t e r m i n a t e
af ter a finite n u m b e r of steps. This case corresponds to the initial
condition(s) of a recursive definition.

�9 The g e n e r a l c a s e cont inues to call i tself so long as the base case is not
satisfied.

The next example presents an a lgor i thm for comput ing the n u m b e r of
handshakes made by n guests, discussed in Example 5.3.

~ Using Example 5.3 wri te a recursive a lgor i thm to the n u m b e r of compute
handshakes made by n guests.

S O L U T I O N :

B a s e c a s e The a lgor i thm t e r m i n a t e s when n -- 1, in which case the
n u m b e r of handshakes made is zero.

G e n e r a l c a s e When n > 2, the a lgor i thm invokes i tself us ing the
recurrence relat ion h (n) - h (n - 1) + (n - 1).

These two cases lead to Algor i thm 5.2.

Algorithm handshake(n)
(* This algorithm computes the number of handshakes made

by n guests at a party by recursion. *)
0. Begin (* algorithm *)

5.5 Recursive Algorithms 309

I . i f n = 1 then (* basis case *)
2. handshake <-- 0
3. else (* general case *)
4. handshake < -handshake(n - I) + (n - I)
5. End (* algorithm *)

Algorithm 5.2 B

~ Write a recursive algori thm to pr int the moves and the total number of
moves needed to t ransfer the n disks from peg X to peg Z in the Tower of
Brahma puzzle in Example 5.4.

S O L U T I O N :
Recall tha t solving the puzzle involves three steps:

�9 Move the top n - 1 disks from X to Y using Z as an auxiliary peg;

�9 Move disk n from X to Z; and

�9 Move the n - 1 disks from Y to Z using X as an auxiliary.

We also must count the moves made. The resul t ing Algori thm 5.3 follows.

Algorithm tower (X,Z,Y,n,count)
(* This algori thm, using recursion, p r in ts the various moves

O.
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

needed to solve the Tower of Brahma puzzle and returns
the to ta l number of moves needed in the global var iable count.
Count must be i n i t i a l i z e d to 0 in the ca l l i ng module. *)

Begin (* algori thm *)
i f n = i then (* base case *)

begin (* i f *)
move disk 1 from X to Z
count <-- count + i

endif
else (* general case *)

begin (* else *)
t ower (X ,Y ,Z ,n - 1,count) (* move the top n - i disks *)
move disk n from X to Z
count <-- count + I
t ower (Y ,Z ,X ,n - 1,count)

endel se
End (* algori thm *)

Algorithm 5.3 B

Suppose we invoke this algori thm by tower (X,Y,Z,3,count). The tree
diagram in Figure 5.16 i l lustrates the various recursive calls, where t s tands
for tower and c for count . Seven moves are needed:

move 1 from X to Z; move 2 from X to Y; move 1 from Z to Y; move 3
from X to Z; move 1 from Y to X; move 2 from Y to Z; move 1 from X
to Z.

You may verify this.

310 Chapter 5 Reeursion

Figure 5.16 t (X,Z,Y, 3,c)

t (X, Y,Z,2,c) t (Y,Z,X,2,c)

t (X,Z,Y,i ,c) t (Z,Y,X,I,c) t (Y,X,Z,I ,c) t (X,Z,Y,I,c)

The next example displays a Fibonacci algorithm.

~ Write a recursive algori thm to the nth Fibonacci n u m b e r compute Fn.

S O L U T I O N :
Recall from Example 5.7 tha t the recursive definition of Fn involves two
initial conditions F1 - 1 - F2, and the recurrence relat ion Fn = Fn-1 +
Fn-2, where n >_ 3. These two cases can be combined into s t ra ight forward
Algorithm 5.4.

Algorithm Fibonacci (n)
(* This a l go r i t hm computes the nth Fibonacci number

using recu rs ion . *)
O. Begin (* a l go r i t hm *)
I . i f n = I or n - 2 then (* base cases *)
2. Fibonacci . - I
3. e lse (* general case *)
4. Fibonacci <-- F ibonacc i (n - I) + F ibonacc i (n - 2)
5. End (* algorithm *)

AI gori thm 5.4 I I

The tree diagram in Figure 5.17 i l lustrates the recursive comput ing of
F5, where each dot represents an addition.

Figure 5.17 F5

F4

" F2

F2 F!

F3

/ Q
F 2 k'~

5.5 Recursive Algorithms 311

The next example shows how we can use recursion to compute the gcd
of two positive integers x and y.

~ Write a recursive algori thm to compute the gcd of two positive integers x
and y.

S O L U T I O N :
If x > y, gcd{x,y} -- gcd{x - y , y } . (See Exercise 34 in Section 4.2.) We use
this fact to write Algorithm 5.5.

AI gorithm gcd (x,y)
(* This algori thm computes the gcd of two pos i t ive

integers x and y using recursion. *)
O. Begin (* algori thm *)
I . i f x > y then
2. gcd ~- gcd{x - y , y }
3. else i f x < y then
4. gcd <- gcd{y,x}
5. else
6. gcd <-- x
7. End (* algori thm *)

Algorithm 5.5

(As an exercise, use this algori thm to compute gcd{x,y} with x - 28 and
y = 12, x = 13 a n d y = 20, a n d x = 17 a n d y - y .) m

We now tu rn our a t tent ion to the recursive version of the binary search
algorithm, presented in Example 4.28 in Section 4.5. Recall tha t b inary
search, a divide-and-conquer technique, is an efficient method for searching
an ordered list for a key (say, for example, a certain name in your local
telephone directory).

~ (B i n a r y S e a r c h A l g o r i t h m) Write recursive to search algori thm a an
ordered list X of n items and determine if a certain item (key) occurs in the
list. Re turn the location of key if the search is successful.

S O L U T I O N :
Because the algori thm is extremely useful, we first outline it:

compute the middle index.
i f key = middle value then

we are done and ex i t
else i f key < middle value then

search the lower ha l f
else

search the upper ha l f .

The algori thm is given in Algorithm 5.6.

Algorithm binary search(X, low,high,key, found,mid)
(* The algori thm returns the locat ion of key in the

var iable mid in the l i s t X i f the search is successful.

312 Chapter ,5 Recursion

Low, mid, and high denote the lowest, middle, and highest
indices of the l i s t . Found is a boolean variable;
i t is true i f key is found and false otherwise. *)

O. Begin (* algorithm *)
I. i f low _< high then (* l i s t is nonempty *)
2. begin (* i f *)
3. found +-- false (* boolean flag *)
4. mid ~ L(low + high)/2]
5. i f key = Xmi d then
6. found <-- true (* we are done. *)
7. else
8. i f key < Xmi d then (* search the lower half *)
9. binary search(X, low,mid - 1,key,found,mid)

10. else (* search the upper half *)
11. binary search(X,mid + 1,high,key,found,mid)
12. endif
13. End (* algorithm *)

Algorithm 5.6

(As an exercise, use this algori thm to search the list [3,5,8, 13,21,34,
55, 89] with key - 5 and key - 23.) m

The Merge Algorithm

Before presenting the merge sort algori thm that sorts a list into ascending
order, we show how the m e r g e a l g o r i t h m works. It combines two ordered
lists A and B into an ordered list C, el iminating all duplicate elements.

Consider the two lists A and B:

1 2 3 1 2 3 4 5

Clearly, the combined sorted list contains at most 8 elements.
Let ai denote the ith element of A, b i t h e j t h element of B, and ch the kth

element of C, where 1 _< i _< 3, 1 _<j _< 5, and 1 _< k _< 8.

Step 1 Initially, compare al and bl. Since bl < al , store bl in Cl. This
yields the following

1 2 3 4 5 6 7 8

Step 2 Compare al and b2. al < b2. So store al in C2"

1 2 3 4 5 6 7 8

5.5 Recursive Algorithms 313

Step 3 Compare a2 and b2. Since they are equal, store a2 in c3:

C

1 2 3 4 5 6 7 8

Step 4 Since a3 = b3, store a3 in c4:

1 2 3 4

C [1 1 2 1 3 1 5 I

5 6 7 8

Step 5 There are no more elements left in A, so copy the remaining
elements of B into C. This yields the following sorted list:

1 2 3 4 5 6 7 8

We now explore the merge sort algorithm, which uses both recursion
and the merge algorithm.

The Merge Sort Algorithm

The merge sort a lgor i thm sorts a list X of n elements into increasing
order. First, partition the list into one-element sublists by successively
dividing lists in two. Then invoke the merge algorithm successively to
merge the sublists, a pair at a time, into increasing order until the entire
list is sorted.

For instance, suppose the one-element sublists after successive division
are X l , X 2 , . . . , and Xn; then merge the sublists Xl and x2, x3 and x4, etc., to
form new sublists x12,x34, etc.; now merge the sublists x12,x34,.., pair by
pair; continue like this until there is a single ordered list.

The following example illustrates this method.

Using the sort algorithm, sort the list 13, 8, 3, 5, 2 into ascending merge

order.

SOLUTION:
Divide the given list into two sublists of equal or about the same size:
[13, 8, 3] and [5, 2]. Split each sublist into two sublists, resulting in four
sublists: [13, 8], [3], [5], [2]. Now divide the first sublist into two sublists,
resulting in five one-element sublists: [13], [8], [3], [5], [2].

The tree diagram in Figure 5.18 illustrates this splitting process.
Now the merge algorithm combines them successively in pairs into sorted

sublists until the original list is sorted, as shown by the upside-down tree
in Figure 5.19.

The recursive merge sort algorithm is given in Algorithm 5.7. Use it to
sort the list [13, 55, 3, 8, 34, 5, 2, 31, 29, 6].

�9

p

co

cr
~ ~o

e
~

=

r

o
l

~
r

~.
~o

o
"

"q

o

o
~

D

0 _~
~

�9

~

~

.

~

~

~

~

~

_
~
.

~
.

~
-

E
t

::
:t

~

1
E

t
~

~
-'

.
X-

-
'
-

fl
)

CI
)

f
b

-
~
.

-
'
-

"-
-~

..
~

-~

-~

--

~
~

_

~
l

o
,~

"~

~
-

o
o

,l~

~
.

~
r

~

-'
-

~
-~

-~

/

--
-~

-,

-
o

:~
"

~
-

-.
.

.-
~

v

~

--
~-

0
~-

~
tl

~

0.
~

-~

--
'

=
:i

~-

0
--

~
-

t'D

-~
.

~
-

~
-S

t~

~

-~
"

--
~

.
--

~
.

r
+

+
Q
_
~
_

u
~

r
+

~
r
b

V

o
~ :::

i
m

~

to
-

o
o

~
"

-s

-s

tl
~

tD

::

5-

t-
~

0

�9
 .~

_.
~.

c
-

0

.._
~.

~
(1

)
0

--
'.

~

~
"S

.

:,I
-

v

0 c
-

t'D

t~

r 0 ('1
)

u
~

?D

t~

c
-

O
-

._
~.

t~

._
,.

"0

._
~.

"-

S

t~

_
~

.

0 0 t'D

tD

c
-

O
"

t~

O
"

i N
 +

f~

o c~

c
-

c~

o o tD

tD

E
t

(1
)

tD

..
~

.

--
t

.._
~.

c
- ...
~.

o ...
~.

.._
~.

x o ..
-h

t~

t~

r,

.~

~
_

-.
.o

".

m

1"
.2

b
O

t
t

t
t

t
t

t
t

~
.

~
..

e-

~

I

5.5 Recursive Algorithms 315

Using Algorithm 5.4, find the number of computat ions needed to com-
pute the n th Fibonacci number Fn for each value of n. (Hint: Draw a tree
diagram.)

5 . 4 6 . 5 7 . 6 8 . 7

9. Let an denote the number of additions needed to compute Fn using
recursion. Use Exercises 5-8 to predict a formula for an.

10. Using induction, prove the formula in Exercise 9 for every n > 1.

11. Write an iterative algori thm to compute the n th Fibonacci number .

12. Mrs. Zee deposits A dollars at a bank at an annual interest rate of r%
compounded semiannually. Write a recursive algori thm to compute
the compound amount she will receive at the end of n years.

Using the recursive binary search algori thm in Example 5.33, determine if
the given key occurs in the corresponding list. Show the successive values
of low, high, and mid.

13. 2, 3, 5, 8, 13, 21; key - 13 14. 3, 5, 7, 8, 10; key - 9

Using the merge sort algorithm, arrange each list into ascending order.

15. 9, 5, 2, 7, 19, 17, 3, 11 16. 9, 11, 6, 2, 12, 3, 8, 5, 31, 13

17. Write an algori thm to compute the nth Lucas number Ln using
recursion.

18. Let x be a positive real number and n a nonnegative integer. Write a
recursive algori thm to compute x n.

Let X - [Xl,X2,... ,Xn] and Y - [Yl,y2,...,Yn] be two lists of numbers .
Write a recursive algori thm to accomplish the tasks in Exercises 19-31.

19. Find the sum of the numbers from left to right.

20. Find the sum of the numbers from right to left.

21. Compute the product of the numbers from left to right.

22. Compute the product of the numbers from right to left.

23. Find the maximum of the numbers in the list.

24. Find the min imum of the numbers in the list.

25. Pr int the numbers in the given order xl, x2 , . . . , Xn.

26. Pr int the numbers in the reverse order Xn, Xn- 1,- . . , X2, Xl.

27. (L i n e a r s e a r c h) Search the list for a specific i tem (key). Return the
location of key if the search is successful.

28. Determine if two lists X and Y of n items of the same type are identical.

316 Chapter 5 Recursion

29. Determine if a word of n a lphanumeric characters is a pal indrome.

30. Evaluate Ackermann 's functionA(x,y) , wherex andy are nonnegat ive
integers. See Exercises 5.1 for a definition of A(x,y).

31. Sort the list X using bubble sort.

32. Use the recursive bubble sort algori thm to sort the list 13, 5, 2, 8, 3.

Q u i c k s o r t , invented in 1962 by C. Anthony R. Hoare of Oxford Universi ty,
is an extremely efficient technique for sort ing a large list X of n i tems
X l ,X2,. . . ,Xn. It is based on the fact tha t it is easier to sort two small lists
than one large list. Choose the first element x l as the pivot. To place the
pivot in its final resting place, compare it to each element in the list. Move
the elements less than x 1 to the front of the list and those greater t han Xl to
the rear. Now place pivot in its final position. Par t i t ion the list X into two
sublists such tha t the elements in the first sublist are less than X l and the
elements in the second sublist are greater than xl. Continue this procedure
recursively with the two sublists.

*33. Use quicksort to sort the list 7, 8, 13, 11, 5, 6, 4.

*34. Use quicksort to write a recursive algori thm to sort a list X of n
elements.

We now use induction to establish the correctness of two well-known recur-
sive algorithms, linear search and bubble sort. We begin with the l inear
search algorithm.

Recall tha t the linear search algori thm searches a list X of n e lements for
a given key. If the search is successful, the algori thm re turns the location of
key; otherwise, it re turns zero. A recursive version is given in Algori thm 5.8.
Again, as an exercise, use it to search the list X = [13, 5, 47, 7, 11, 8, 3] for
key - 11.

Algorithm linear search (X,n,key,location)
(* This a lgor i thm returns the pos i t ion of key in the

var iab le loca t ion . I f loca t ion = O, then key does
not ex is t in the l i s t . *)

O. Begin (* a lgor i thm *)
i . i f n = 0 then (* unsuccessful search *)
2. locat ion +- 0
3. else i f Xn = key then
4. locat ion ,-- n
5. else
6. l i nea r search(X,n - l , k e y , l o c a t i o n)
7. End (* a lgor i thm *)

Algorithm 5.8

5.6 Correctness of Recursive Algorithms 317

~ Establish the correctness of Algorithm 5.8.

P R O O F (by PMI):
To prove the correctness of the algorithm, we must show tha t it works
correctly for n > 0. Let P(n)" The algori thm re turns the correct value of
location for every list of size n.

B a s i s s t e p When n - 0, lines 3 through 6 in the algori thm are skipped
and the algori thm re turns the value 0 from line 2. So the algori thm works
correctly when n - 0.

I n d u c t i o n s t e p Let k be an arbi t rary integer k > 0 such tha t P(k) is
true; that is, assume the algori thm works correctly for a list of arbi t rary
size k > 0. To prove tha t P(k + 1) is true, invoke the algori thm for a list X
of size k + 1. Note that k + 1 > 1.

C a s e 1
line 4.

If Xk+ 1 - - k e y , the algori thm re turns the value k + 1 from

C a s e 2 IfXk+l r key, line 6 is executed; so the algori thm is invoked for a
list with k elements. By our inductive hypothesis, the algori thm works for
such a list.

Thus in both cases, the algori thm re turns the correct value of location.
Therefore, P(k + 1) is true.

Consequently, P(n) holds for n > 0 by induction; tha t is, the algori thm
works correctly for every list. m

Next we verify the correctness of the recursive version of the bubble sort
algorithm, given in Algorithm 5.9. To get used to it, you may use it to sort
the list X - [13, 5, 47, 7, 11, 8, 3].

Algorithm Bubble Sort(X,n)
(* This algorithm sorts a l i s t X of n items using recursion. *)
O. Begin (* algorithm *)
i . i f n > 1 then (* l i s t contains at least two elements *)
2. begin (* i f *)
3. for i = 1 to n - 1 do
4. i f x i > Xi+ I then (* they are out of order *)
5. swap xi and xi + i
6. bubble sort(X,n - I)
7. endi f
8. End (* algorithm *)

Algorithm 5.9

~ Establish the correctness of Algorithm 5.9.

P R O O F (by PMI)"
Let P(n)" The algori thm works for every list of size n.

318 Chapter 5 Recursion

B a s i s s t ep When n - 0, the list contains no elements. So the a lgor i thm
works by default. Thus, P(0) is true.

I n d u c t i o n s tep Assume P(k) is t rue for an arbi t rary integer k >_ 0; t ha t
is, the algori thm correctly sorts every list ofk (>_ 0) elements. To prove t ha t
P(k + 1) is true, invoke the algori thm for a list X with k + 1 elements, where
k + 1 > 1 .

If k + 1 - 1, the fo r loop is not entered. So P(k + 1) is true, by default.
If k + 1 > 1, the fo r loop is entered. Consecutive elements xi and Xi+l

are compared in line 4 and switched in line 5 if necessary. When we exit
the loop, the largest of the k + 1 elements is placed in the correct position,
in location k + 1.

This leaves a sublist of k elements, x l , . . . , xk. By the inductive hypothe-
sis, the algori thm correctly sorts such a list.

Thus if P(k) is true, then P(k + 1) is also true.
Therefore, by induction, P(n) is t rue for every n >__ 0: the algori thm sorts

every list of every size n >_ 0. m

The following exercises provide additional opportunit ies to establish the
correctness of recursive algorithms.

Exercises 5.6

Establish the correctness of each algorithm.

1. The factorial algorithm in Example 5.28.

2. The handshake algori thm in Example 5.29.

3. The Tower of Brahma algori thm in Example 5.30.

4. The Fibonacci algori thm in Example 5.31.

5. The binary search algori thm in Example 5.33.

6. The merge sort algori thm in Algorithm 5.7.

7-17. The algorithms in Exercises 19-29 of Section 5.5.

Algorithm 5.10 computes the n th power of a positive real number x, where
n > 0. Use it to answer Exercises 18-24.

Algorithm exponentiation (x,n)
(* This algorithm computes the nth power of x using recursion

and returns the value in the variable answer. *)
O. Begin (* algorithm *)
1. i f n = 0 then
2. answer <- I
3. else i f n - i then
4. answer ~- x
5. else

5.7 Complexities of Recursive Algorithms (optional) 319

6. begin (* else *)

7. value ~-- exponent iat ion(x,Ln/2])

8. answer <-- value �9 value
9. i f n is odd then

10. answer <-- answer �9 x
11. ende] se
12. End (* algori thm *)

A] gori thm 5. I0

Let an denote the number of multiplications (lines 7-10) required by the
algorithm to compute x n. Compute each.

18. a0 19. a l 20. a4 21. a5

22. Find the recurrence relation satisfied by an.

23. Solve the recurrence relation in Exercise 22, where n - 2 k.

24. Establish the correctness of Algorithm 5.10.

25. Prove the correctness of the iterative Fibonacci algorithm in
Exercise 11 of Section 5.5.

Using the big-oh and big-theta notations, we now investigate the com-
plexities of a few standard recursive algorithms: linear search, Fibonacci,
selection sort, binary search, and merge sort. In addition, using Fibonacci
numbers, we estimate the number of divisions needed to compute gcd{a, b }
using the euclidean algorithm.

We begin our analysis with the recursive linear search algorithm.

Use the recursive linear search in Algorithm 5.8 to estimate the worst time
required to search for a key in a list X of n items.

SOLUTION:
Let Cn denote the maximum number of element comparisons needed in
line 3 of the algorithm. To find a big-oh estimate of Cn, first define it
recursively.

Clearly, co - O. When n >_ 1

/ m a x i m u m number of calls~
Cn - - [f rom the recursive call in | +

\ l ine 6]
= C n - l + 1

number of)
comparisons
in line 3

320 Chapter 5 Recursion

Thus

CO -- 0

Cn - - C n - 1 ~ 1, n > l
D

Solving this recurrence relation (try) yields C n : n , n > 0; so C n - - O (n) =

(~)(n). Thus, in the worst case, the algori thm takes O(n) - | comparisons
to locate the key, the same as the iterative version, m

Next we analyze the recursive and iterative Fibonacci algorithms.

~ Using the recursive algori thm in Example 5.31, est imate the number of
additions an needed to compute the n th Fibonacci number.

SOLUTION:
By Exercises 9 and 10 in Section 5.5, a n - F n - 1, n >_ 1. But, by Exercise 43
in Section 5.1, F n <_ 2 n, where n >_ 1. Therefore,

an _< 2 n - 1

< 2 n

-- O (2 n)

Thus, the recursive Fibonacci algori thm takes 0(2 n) additions, m

For comparison, we now study the complexity of the iterative version of
the Fibonacci algorithm.

Est imate the number of additions a,~ required in line 5 to compute the n th
Fibonacci number F , by Algorithm 5.11.

Algorithm iterative Fibonacci(n)
(* This i t e r a t i v e a lgor i thm uses the values of the

var iab les of the las t and the cur rent Fibonacci
numbers to compute the next Fibonacci number. *)

O. Begin (* a lgor i thm *)
I . l as t ~- i
2. cur rent ~-- I
3. f o r i = 2 to n do
4. begin (* fo r *)
5. next , - l as t + cur rent
6. l as t ~- cur rent
7. cur rent ,-- next
8. endfor
9. End (* a lgor i thm *)

A]gorithm 5.11

SOLUTION:
The first two Fibonacci numbers need no computations; therefore, a l -
0 = a2. Suppose n > 2. It takes one addition to compute the next i tem

5.7 Complexities of Recursive Algorithms (optional) 321

Fn from the current term Fn-1. So an -- an-1 -~- 1. Solving this recurrence
relation (try), we get

a n - n - 2 , n>_2

= |

Thus the iterative version takes | additions to compute Fn. B

The time it takes to compute Fn by the recursive algorithm grows expo-
nentially with n, whereas by the iterative algorithm it grows only linearly.
As n gets larger and larger, it takes more time to compute Fn by recursion
than by iteration. Thus, by dividing and conquering the problem, we have
made it complicated.

Should we prefer the iterative method to the recursive method? Since
every recursive algorithm has a nonrecursive version, if the algorithm
makes just one recursive call to itself, as in the factorial algorithm, the
iterative approach will, in general, save time. On the other hand, if the
problem has a recursive definition, it will be easy to write a recursive algo-
r i thm for the problem. Writing the nonrecursive version of a recursive
algorithm is often a painful task and the resulting algorithm is often much
longer, complicated, and difficult to understand. For instance, the nonre-
cursive version of the Tower of Brahma algorithm is longer and that of
quicksort is ra ther complicated.

Next we estimate the number of element-comparisons required by
the recursive selection sort algorithm presented in Algorithm 5.12. (See
Algorithm 4.11 in Chapter 4 for an iterative version.)

Algorithm selection sort(X,n)
(* This algorithm invokes a subalgorithm called swap

which switches two elements. MoxZndex denotes the
index of the largest of the n elements. *)

O. Begin (* algorithm *)
I. maxindex ~- n (* i n i t i a l i z e maxindex at each pass *)
2. for i = 1 to n - 1 do
3. i f xi > Xmaxindex then
4. maxindex ~- i
5. i f maxindex # n then (* swap the corresponding items *)
6. swap Xmaxindex and Xn
7. selection sort(X,n - 1)
8. End (* algorithm *)

Algorithm 5.12

Estimate the number of comparisons (lines 3 and 5) required Cn by
Algorithm 5.12.

SOLUTION:
To estimate Cn, first define it recursively.

If the list contains just one element, lines 3 and 5 are not executed;
therefore, c1 - 0.

322 Chapter 5 Recursion

Suppose n > 2. Since the f o r loop is executed n - 1 t imes, line 3 is
executed n - I times. Fu r the rmore , line 5 is executed once. Therefore,

C n - - C n - 1 n t- (n - 1) + 1

=Cn-1 -~-n, n > 2

Solving the recurrence relat ion by the i terat ive method, we get

n (n + 1)
Cn - -

2

-- (~)(n 2)

- 1 , n>__l

Thus the a lgor i thm takes (-)(n 2) comparisons to sort a list of n items, as in
the i terative version, m

Example 5.41 investigates one of the many propert ies of Fibonacci num-
bers. Example 5.42 uses the proper ty to es t imate the n u m b e r of divisions
in the euclidean algori thm.

1 + , / 5
Let F,~ denote the n th Fibonacci n u m b e r and c~ = Prove tha t

c~ n - 2 < g n < c~ n - 1 n > 3.

P R O O F (by s t rong induction):
(We shall prove tha t c~ '~-2 < Fn and leave the o ther half as an exercise.)
You may verify tha t a is a solution of the equat ion x 2 - x + 1, so a2 _ a + 1.
Let P(n)" O~ n - 2 < F , , where n > 3.

B a s i s s t e p Since the induct ion step below uses the recurrence relat ion
Fk+i - Fk + Fh-1, the basis step involves verifying tha t both P(3) and P(4)
are true.

�9 To s h o w t h a t P(3) is true: W h e n n - 3,

1 + ~ / ~ 1 + 3
ot n - 2 - - o~ - - < = 2 - F 3

2 2

So P(3) is true.

�9 To s h o w t h a t P(4) is true:

3 + ~ / 5

3 + 3
< - 3 - F 4

2

Thus P(4) is also true.

5.7 Complexities of Recursive Algorithms (optional) 323

I n d u c t i o n s t e p Assume P(3), P (4) , . . . , P(k) are t rue; t ha t is, a s sume
~ i - 2 < Fi f o r 3 < i _< k. We mus t show t h a t P (k + l) is t rue; t h a t is,
(~k-1 < Fk+l"

We have

Mul t ip ly ing both sides by c~ k - 3 ,

c~ k - 1 - - of k - 2 -+- o~ k - 3 (Note: k - 3 > 2.)

< Fk + F k - 1 ,

= Fk+ I ,

by the induct ive hypothesis

by the recur rence re la t ion

Thus P(k + 1) is t rue.

Therefore, by the s t rong version of induction, P(n) is t rue for n > 3; t h a t
i s , Of n-2 < Fn for every n > 3. m

Now we can es t imate the n u m b e r of divisions requi red by the eucl idean
a lgor i thm to compute gcd{a, b }.

(L a m ~ ' s T h e o r e m) The n u m b e r of divisions needed to compute g{a, b} by
the euclidean a lgor i thm is no more t han five t imes the n u m b e r of decimal
digits in b, where a > b > 2.

P R O O F :
Let Fn denote the n th Fibonacci number , a - r0, and b - r l . By the repea ted
application of the division a lgor i thm we have"

ro -- r lq l + r2 0 <_ r2 < rl

rl -- r2q2 + r3 0 <_ r3 < r2

rn -2 -- r n - l q n - 1 + rn 0 <_ rn < rn -1

rn -1 - rnqn

Clearly, it takes n divisions to evaluate gcd{a,b} - rn. Since ri < r i -1 ,

qi >_ 1 for 1 _< i _< n. In par t icular , since rn < rn -1 , qn >_ 2; SO rn >_ 1 and
rn-1 > 2 -- F3. Consequent ly , we have:

rn -2 ---- r n - l q n - 1 -t- rn

>__ rn-1 + rn

> F 3 + l

= F3 + F2 - F4

324 Chapter 5 Recursion

r n - 3 -- r n - 2 q n - 2 + r n - 1

>__ r n - 2 + r n - 1

>_ F4 + F 3 - F 5

Cont inu ing like this,

Tha t is,

r l -- r2q2 + r3

> r2 + r3

>_ Fn + Fn-1 - Fn+l

b >_Fn+l

B y Example 5.41, Fn+ 1 > c~ n - l , w h e r e a =

b >C~ n - 1

Then

1 + ~/5. Therefore ,
2

log b > (n - 1) log

Since a -
1 + v / 5 1

1.618033989, log c~ ~ 0.2089876403 > ~. So

n - 1
log b >

5

Suppose b contains k decimal digits. Then b < 10 h. Therefore, log b < k
n - 1

and hence k > ~ . Thus n < 5k + 1 or n < 5k. Tha t is, the n u m b e r of
5

divisions needed by the a lgor i thm is no more than five t imes the n u m b e r
of decimal digits in n. n

Let us pursue this example a bit fur ther . Since log b >

1 + 5 log b. Also, since b > 2,

n - 1
~ , n <

Thus

5 log b >_ 5 log 2

> 1

n < 1 + 51ogb

< 51ogb + 51ogb

= 10 logb

= O(log b)

Thus it takes O(log b) divisions to compute gcd{a,b} by the euclidean
algori thm.

5.7 Complexities of Recursive Algorithms (optional) 325

Gabriel Lamd (1795-1870) was born in Tours, France. After graduating from
the Ecole Polytechnique in 1817, he continued his studies at the E, cole des Mines,
from which he graduated in 1820.

The same year Lamd was appointed director of the School of Highways and
Transportation in St. Petersburg, Russia. There he taught mathematics, physics,
and chemistry and planned roads and bridges in and around the city. In 1832, he
returned to Paris to form an engineering firm. Within a few months, however, he
left it to become the chair of physics at the Ecole Polytechnique, where he remained
until 1844. While teaching, he served as a consulting engineer, becoming the chief
engineer of mines in 1836. He helped build the railroads from Paris to Versailles
and to St. Germain.

In 1844, Lamd became graduate examiner for the University of Paris in math-
ematical physics and probability, and professor 7 years later. In 1862, he became

deaf and resigned his positions. He died in Paris.
Although Lam4 did original work in number theory and mathematical physics, his greatest contribu-

tion was the development of the curvilinear coordinates and their applications. His work on the curvilinear
system led him to number theory. In 1840, he proved Fermat's Last Theorem for n = 7.

Gauss considered Lamd the foremost French mathematician of his time. French mathematicians,
however, considered him too practical, and French scientists, too theoretical.

The next example, due to S. H. Friedberg, explores the number of multi-
plications needed to compute the de te rminan t of an n x n matr ix by cofactor
expansion. (It may be omitted by those not familiar with de te rminan ts and
calculus.)

(optional) Let fn denote the number of multiplications needed to compute
detA, the de te rminan t of an a rb i t ra ry n x n matr ix A = (aij) by cofactor
expansion. Es t imate fn.

S O L U T I O N :
We est imate fn in three steps:

�9 Define fn recursively.

�9 Solve the recurrence relation.

�9 Use the solution to est imate fn.

�9 To define fn recursively:
Let Cij denote the (n - 1) x (n - 1) de te rminan t obtained from de tA by
deleting its i th row a n d j t h column. By expanding detA with respect to
the first row, we have

n

d e t A - E (- 1) J + Z a l j C l j
j=l

cofactor expansion by row 1

326 Chapter 5 Recursion

In particular let : [a
Clearly, two mult ipl icat ions are needed to evaluate d e tA and hence
f2 - 2. Also fl = 0.
Suppose n _> 3. Then, by definition, it takes fn -1 mult ip l ica t ions to
compute Clj. Therefore, it takes fn-1 + 1 mul t ip l icat ions to evaluate
a l jC l j and hence n (f n - i + 1) mult ipl icat ions to compute detA.

Thus fn can be defined recursively as follows:

f l - 0

fn - n (f n - 1 + 1), n >_ 2 (5.20)

(This is a l inear nonhomogeneous recurrence relat ion with noncons tan t
coefficients.)

�9 To solve the recurrence re la t ion (5.20)"
Let fn = n!gn. Since fl - 0, g l - 0. Subs t i t u t ing for fn in
Equat ion (5.20), we get

n!gn = n [(n - 1)!gn-1 + 1]

= n!gn-1 + n

So

(g n - - gn-1)n! = n

1
gn - g n - 1 -

(n - 1)!
(Note: g l - 0.)

Solving this yields (see Exercise 64)

So,

Therefore,

'•• 1 1
gn - -~, since gl = 0

I I , .

k=l

n - l l)

fn = n ' g n - - n ' (k ~ _ _ l ~ .

1)
=n! ~. - 1

1)
fn <n! ~ - i

= n!(e - 1) - 1, by calculus

< en!
m

= O(n!)

5.7 Complexities of Recursive Algorithms (optional) 327

Thus the evaluation of detA by cofactor expansion takes O(n!)
multiplications. II

Divide-and-Conquer Algorithms

We can now analyze the complexities of a special class of recursive
algorithms called divide-and-conquer algorithms.

The binary search algori thm presented in Algorithm 5.6 is based on the
divide-and-conquer approach. To search an ordered list of n items for a
given key, we divide the list into two smaller and similar sublists of about
the same size. If the middle value ~= key, then we search either the lower
half or the upper half, and continue this procedure until we are done. This
exemplifies a divide-and-conquer algorithm.

More generally, consider a problem of size n. Suppose the problem can
be solved for a small initial value of n, and it can be broken up into a smaller
and similar subproblems of approximately the same size, usually Ln/bJ or
In~b], where a, b E N, 1 _< a < n, and 1 < b < n. Assume that we can solve
each of the subproblems and employ their solutions to solve the original
problem. Such an algori thm is a divide-and-conquer algorithm.

Let f (n) denote the number of operations required to solve the original
problem and g(n) the number of operations result ing from the splitting.
Then, assuming b is a factor of n,

f (n) - a f (n/b) + g(n)

This is the divide-and-conquer recurrence relation result ing from the
algorithm.

The binary search algorithm manifests the complexities of the divide-
and-conquer technique.

(b i n a r y s e a r c h) Using the recursive binary search in Algorithm 5.6, let
Cn denote the maximum number of element comparisons needed to search
for a given item (key) in an ordered list X of n items. If n = 1, then low =
high = mid = i and the condition in line 5 is tested exactly once; so Cl = 1.

Suppose n > 1. Then the middle te rm is XL(n+l)/2 j. Compare key to
X [(n + l) / 2 j . If they are not equal, search the lower sublist or the upper sub-

L n + l j L2J list, but not both. If n is even, 2 - ; so the upper half contains
n �9 �9 n n / n / / \

- [~ J elements and the lower half contains ~ - 1 . (< L2A)elements .

n + 1 n + 1
On the other hand, if n is odd, then / / 2 ~ - T ; so both sublists con-

tain n - 1 LnJ 2 = ~ elements each. Thus, in any case, the maximum number

of comparisons needed is Ckn/2] + 1. So

C 1 - - 1

C n - C[n/2J q- 1, n >_ 2 (5.21)

328 Chapter 5 Recursion

To solve this r ecur rence relat ion, assume, for convenience, t h a t n is
a power of 2, say n - 2 k, whe re k >_ 0. Let Cn - a k . T h e n the r ecu r r ence
re la t ion (5.21) becomes ak - ak-1 + 1, where a0 = 1. Solving th is r ecu r r ence
re la t ion yields ak - k + 1, k >_ 0 (Verify.). Since n = 2 k, k - l gn , so
cn = 1 + lg n, n >_ 1. Thus , if n is a power of 2, t hen Cn - (O(lg n).

Suppose n is n o t a power of 2. Then, by induct ion, it can be shown t h a t
cn - 1 + llg n J, where n >_ 1 (see Exercise 44), so Cn - (')(lg n).

Thus, in bo th cases, the a lgo r i thm takes (-)(lg n) e l emen t compar i sons in
the wors t case. m

The preceding example is a special case of the following t heo rem. Since
the proof is s o m e w h a t complicated, we skip it (see Exercises 65 and 66).

Let b E 1~ and d ~ IR + wi th b > 2. Let f be a nondec rea s ing funct ion* a, c,

such t h a t f (n) - a f (n / b) + c and f(1) - d. Then

O(lgn) if a - 1

f (n) - O(nlogba) o therwise m

For example, let f be a nondec reas ing funct ion such t h a t f (n) =

3 f (n / 2) + 5 and f(1) - 8. Then , by T h e o r e m 5.7, f (n) - O(nlgS).
The next t h e o r e m is a genera l iza t ion of T h e o r e m 5.7. We s ta te it w i t hou t

proof (see Exercises 67-69 for special cases of the theorem) and apply it in
Example 5.45.

Let a, b ~ N and c, d e IR + wi th b >_ 2. Let f be a nondec reas ing funct ion

such t ha t f (n) - a f (n / b) + c n d . Then

f (n) -

O(n d) if a < b d

O (n d l g n) i f a - b d

O(nlogba) if a > b d m

(optional) Let A - (a i j) and B - (bij) be two n x n matr ices . Let C =
n

(ci j) be the i r p roduc t where cij = ~ a i h b k j . Since C has n 2 en t r ies and
k=l

each takes n mul t ip l icat ions , the p roduc t C can be compu ted us ing n 3 =
O(n 3) mul t ip l icat ions; in fact, it can be computed us ing O(n 3) c o m p u t a t i o n s
(addit ions and mult ipl icat ions) , as Exercises 40 and 41 indicate, m

We close this section wi th an analysis of the merge sor t a lgor i thm, a
d iv ide-and-conquer s t ra tegy.

(m e r g e s o r t) The merge sort me thod in Algor i thm 5.7 sor ts a list of n
e lements . Assume, for convenience, t h a t n is a power of 2, say, n - 2 k, k >_ 0.

*Let S c_ IR. A function f �9 S -~ •+ is said to be nondecreasing ifx < y implies f (x) <_ f(y) .

5.7 Complexities of Recursive Algorithms (optional) 329

Let Cn denote the max imum n u m b e r of e lement comparisons needed in line
6. Show tha t Cn - O(n lg n).

S O L U T I O N :
When n = 2, one comparison is needed in line 6; therefore, c2 = 1. So, let
n > 2. The list is split into two, with each sublist containing n/2 elements.
In the worst case, the n u m b e r of comparisons resul t ing from line 4 is Cn/2,
as it is from line 5. When the merge a lgor i thm is invoked in line 6, each
sublist contains n/2 elements; so the m a x i m u m n u m b e r of compar isons
from line 6 is n - 1. Thus

c 2 - 1

Cn -- 2Cn/2 + (n -- 1), n > 3

Let ak - Cn where n - 2 k, k _> 0. Then

a 1 - 1

ak - - 2 a k _ l + (2 k - 1), k > 2

This recurrence relation (see Exercise 8 in Section 5.2) yields

Thus

ak - (k - 1)2 k + 1,

= k . 2 k - 2 k + 1

k > l

c,~ - (lg n)n - n + 1

_ < n l g n + l

< 2 n l g n , n>__2

= O(n lg n) m

More generally, it can be shown tha t in the worst case the merge sort
requires O(n lg n) e lement comparisons for a list of n elements. This t ime
est imate is the best among all sor t ing algori thms.

Exercises 5.7

Find a big-oh est imate for each.

1. The number h(n) of handshakes made by n guests at a party, us ing
Example 5.3.

2. The n u m b e r bn of moves needed to t ransfer n disks in the Tower of
B rahma puzzle in Example 5.4.

3. The n u m b e r fn of regions formed by n lines, using Example 5.5.

330 Chapter 5 Recursion

Estimate the solution fn of each recurrence relation (see Exercises 5.2).

4. f l - - 1

f n - - f n - l + (2 n - 1) , n > 2

6. f -2

fn = f n - l +n , n > 2

5. f 0 = 0

fn = fn -1 +4n , n > 1

7. f -1

fn - -2fn-1 + (2 n - 1), n >_ 2

Find the number of comparisons needed to search for key - 13 in each
ordered list using the recursive binary search algorithm in Example 5.33.

8. 1 , 2 , 3 , 5 , 8 , 13 9. 5,8, 13,21,34

10. 3, 7, 8, 13, 21 11. 15, 16, 19, 21

Compute the maximum number of comparisons needed to search for a par-
ticular item in an ordered list containing the following number of items,
using the recursive binary search algorithm.

12. 8 13. 20 14. 25 15. 31

Let bn denote the number of multiplications needed to compute n! using
the recursive factorial algorithm in Example 5.1.

16. Define bn recursively.

17. Solve the recurrence relation satisfied by b,~.

18. Show that bn = O(n).

19-22. Estimate the number of times a,~ the assignment statement, x
x + 1, is executed by the nested for loops in Exercises 35-38 of
Section 4.4.

Estimate the number a,~ of times the statement, x ~ x + 1, is executed by
each nested for loop.

2 3 . f o r i = 1 to n do 2 4 .

f o r j = 1 to L i / 2] do

x < - - x + l

" 2 5 , f o r i : 1 to n do * 2 6 .

f o r j = 1 to i do

f o r k = 1 to j do

f o r 1 = I t o j do

x + - x + l

f o r i = I t o n do

f o r j = I t o F i / 2] do

x ~ - x + l

f o r i = 1 to n do

f o r j = 1 to i do

f o r k = 1 to j do

f o r 1 = 1 t o k do

x ~ - x + l

Let bn denote the number of element-comparisons needed by the bubble
sort algorithm in Algorithm 5.9.

27. Define bn recursively.

28. Solve the recurrence relation.

29. Find a big-oh estimate of bn.

5.7 Complexities of Recursive Algorithms (optional) 331

30. Let an denote the n u m b e r of addit ions needed to compute the n th
n - 2

Fibonacci n u m b e r Fn , using Algori thm 5.4. Prove tha t an - ~ E l ,
i=l

n > 3 . m

Solve each recurrence relation.

31. c 0 - 1

Cn - Cn_l + b, n > 1

33. C l - 0

Cn - -Cn-1 ~ bn , n > 2

The number of operat ions f (n) required by an a lgor i thm is given by
f (n) - f (n - 1) + (n - 1) + (n - 2), where f(1) - 1.

35. Find an explicit formula for f (n) .

36. Show tha t f (n) - O(n2).

Let f (n) denote the n u m b e r of bits in the binary represen ta t ion of a positive
integer n.

3 2 . a 2 - 0

an - a n - 1 -+ b, n >_ 3

34. c l - a

Cn -- Cn-1 + b n 3 n > 2

37. Find a formula for f (n) . 38. Show tha t f (n) - O(lg n).

39. Let x ~ R + and n ~ N. The technique of s u c c e s s i v e s q u a r i n g can be
applied to compute x n faster than mult iplying x by itself n - 1 times.
For example, to find X 43 , first evaluate X2,X4,X8,X 16, and X 3 2 ; then
multiply X32,X8,X 2, and x 1" X 43 - - X 32 �9 X 8 �9 X 2 �9 X 1. This process takes
only 5 + 3 - 8 mult ipl icat ions instead of the conventional method ' s
42. The powers of x used in comput ing x n are the place values of the
bits in the b inary representa t ion of n; in fact, the numbe r of powers of
x used equals the numbe r of nonzero bits in the b inary represen ta t ion
of n. Let f (n) denote the n u m b e r of mult ipl icat ions needed to compute
x n by successive squaring. Show tha t f (n) - O(lg n).

Let A - (aij) and B - (bij) be two n • n matrices. Let fn denote the n u m b e r
of computa t ions (additions and multiplications) to compute their product

n

C - (cij) , w h e r e cij - ~ aikbkj.
k = l

40. Evaluate fn . 41. Es t imate fn .

42. Solve the recurrence relat ion Cn - 2Cn/2 + 1, where C1 - a and n is a
power of 2.

43. Show tha t Cn - O (n) .

44. Let Cn denote the max imum numbe r of comparisons needed to search
for a k e y in an ordered list X of n elements, us ing the recursive binary
search algori thm. Prove tha t Cn - 1 + [lg nJ, for every n >__ 1.

332 Chapter 5 Recursion

45. Let a, b, k e N, b > 2, and n = b k. Consider the func t ion f def ined by
k - 1

f (n) = a f (n / b) + g (n) . Show t h a t f (n) - a k f (1) + Y]~ a i g (n / b i) .
i=O

46. Solve the r ecur rence re la t ion an - 2an~2 -+- n, where a l - 0 and n = 2 k.

47. Use Exercise 46 to show t h a t an - O (n lg n).

Let f be a funct ion defined by f (n) - a f (n / b) + cn, where a, b e N, b > 2,
c e R +, and f(1) - d. Assume n is a power ofb.

48. Solve the recur rence re la t ion.

49. Let a - b and d - 0. Show t h a t f (n) - O (n lg n).

Consider the recur rence re la t ion Cn = C[n/2j -t- C[(n+l)/2j Jr- 2, w h e r e Cl = 0.

50. Compu te c3 and c4.

51. Solve the recur rence re la t ion when n is a power of 2.

52. F ind the order of m a g n i t u d e of Cn w h e n n is a power of 2.

Let t be a funct ion defined by

a i f n - 1

t (n) - t(Ln/2]) + t([n/2]) + bn otherwise

where a, b e IR +. (Such a funct ion occurs in the analysis of merge sort .)

53. Eva lua te t(5) and t(6).

54. Prove t ha t t (n) is a nondec reas ing funct ion; t h a t is, t (n) < t (n + 1),
where n > 1.

55. Show t h a t t (n) - O (n lg n), where n is a power of 2.

Let f (n) = 2 f (n / 2) + cn 2, where f(1) - d and n is a power of 2.

56. Solve the recur rence relat ion. 57. Show tha t f (n) - O(n2).

n(1)
The n u m b e r hn = ~ - called the h m ' m o n i e n u m b e r , occurs fre-

i=1 i '
quen t ly in the analysis of a lgor i thms.

58. Compu te h4 and hs. 59. Define hn recursively.

n

60. Prove t h a t E hi - (n + 1)hn - n, n >_ 1.
i=1

m
61. Prove t h a t h 2 m >__ 1 + -~ , m >__ O.

n + l
62. Prove t ha t hn <_ ~ .

2

Chapter Summary 333

*63. (For those famil iar wi th calculus) Let hn denote the n t h h a r m o n i c
n

n u m b e r h n - i ~ l (1) . S h o w t h a t h n - O (l g n) .

(Hint: Use in tegra t ion .)

64. Solve the r ecur rence re la t ion gn - g n - 1 -- 1/(n -- 1)!, where g l - 0.

L e t a, b e N and c, d e]~+ wi th b >_ 2. Let f be a nondec reas ing funct ion
such t h a t f (n) - a f (n / b) + c and f(1) - d. Prove each.

**65. If a - 1, t hen f (n) - O(lg n).

**66. I f a # 1, t hen f (n) - O (n l ~

Let a, b, n e N, b >__ 2, c, d e R +, f (1) - d, and n is a power of b. Let f be a
nondec reas ing funct ion such t h a t f (n) - a f (n/b) + cn 2. Prove each.

**67. If a - b 2, t hen f (n) - n2d + cn 2 log b n.

**68. If a # b 2, t hen f (n) - A n 2 + B n l~ where A -

B - d +
b2c

a - b 2"

**69. O(n 2) if a < b 2

f (n) - O(n 2 lgn) i f a - b 2

O(nlog~a) i f a > b 2

b2c

52 - a
and

This chap te r p resen ted a new class of funct ions and hence sequences: recur-
sively defined functions. The defini t ions of such funct ions can be t r ans l a t ed
into recurs ive a lgor i thms. J u s t as the big-oh and b ig- the ta no ta t ions worked
well in ana lyz ing the t ime complexi t ies of a lgor i thms, so does induct ion in
proving the correc tness of recurs ive a lgor i thms.

Recursion

�9 The recurs ive def ini t ion of a funct ion consists of one or more init ial
condi t ions and a r ecur rence re la t ion (page 262).

Solving Recurrence Relations

�9 A simple class of r ecur rence re la t ions can be solved us ing the i tera t ive
me thod (page 279).

�9 Every solut ion of the r ecur rence re la t ion an - an-1 + f (n) is of the form
n

an -- ao + ~ f (i) (page 280).
i=l

334 Chapter ,5 Recursion

�9 Every solution of the recurrence relat ion an : C a n - 1 -~- 1 is of the form
c n - 1

an - c n a o + ~ where c ~: 1 (page 282)
c - - l '

k

�9 A kth-order LHRRWCC is of the form an = ~ C i a n - i , where ck r 0
i=l

(page 287).

�9 The characteristic equation of this recurrence re la t ion is x k -
k

Ci xk- i : 0 (page 287).
i = 1

�9 The character is t ic roots of a LHRRWCCs can be used to solve the
LHRRWCCs (page 288).

�9 The general solution of a LNHRRWCCs is given by an - aCn h) + a ~ ~)

(page 294).

Generating Functions

�9 g (x) - ~ a n X n is the generating function of the real n u m b e r seque-
n--0

nce a0, a 1, a2 , . . . (page 298).

�9 Genera t ing functions and the part ial fraction decomposit ion rule can
be used to solve LHRRWCCs (page 301).

Recursive Algorithms
�9 A recursive algorithm consists of two cases" base case(s) and a

general case (page 307).

�9 L a m ~ ' s T h e o r e m The euclidean a lgor i thm for comput ing gcd{a,b}
takes no more than five t imes the n u m b e r of decimal digits in b, where
a >_ b > 2 (page 323).

Divide-and-Conquer Algorithms
�9 The recurrence relat ion of a divide-and-conquer a lgor i thm is of the form

f (n) - a f (n / b) + g (n) (page 327).

Revlew Exercises

In Exercises 1 and 2, the n th t e rm an of a n u m b e r sequence is defined
recursively. Compute a5.

1. a l - a 2 = 1 , a 3 - 2

an - a n - 1 ~ a n - 2 �9 a n - 3 , n > 4

Chapter Summary 335

2. al - O , a2 - a 3 - 1

an -- a n - 1 + 2 a n - 2 + 3an_3 ,n >__ 4

3. The n u m b e r of addit ions an needed to compute the n th Fibonacci num-
ber Fn by recurs ion is given by an - Fn - 1, n __ 1. F ind the recur rence
re la t ion satisfied by an.

(A m o d i f i e d h a n d s h a k e p r o b l e m) Mr. and Mrs. Mat r ix hosted a pa r ty
for n mar r i ed couples. At the par ty , each person shook hands wi th everyone
else, except the spouse. Let h (n) denote the total n u m b e r of handshakes
made.

4. Define h (n) recursively.

5. Predict an explicit formula for h(n) .

6. Prove the formula obta ined in Exercise 5, where n _>_ 1.

Using the i tera t ive method, predict an explicit fo rmula satisfied by each
recurrence relat ion.

7. a 1 - 1 . 2

an - a n - 1 + n (n + 1),n >_ 2

9. a 1 - - 1

an - - a n - 1 + 2 n - l , n >_ 2

8. a l - 2 . 3

an - 3 a n _ l , n >__ 2

10. a 0 - 0

an - a n - 1 + (3 n - 1), n >_ 1

11-14. Using induction, prove the formulas obta ined in Exercises 7-10.

Solve each recurrence relat ion.

15. an = an -1 + a n - 2 , a l -- 2,a2 - 3

16. an -= an -1 + a n - 2 , a l = a2 - a

17. an = 2an -1 + 7 a n - 2 - 8 a n - 3 - 1 2 a n _ 4 ,a o = 4 , a l = 10,a2 = 18,a3 = 58

18. an = 4an -1 + 2 a n - 2 - 1 2 a n - 3 - 9 a n _ 4 , a o -- 4 , a l = 0,a2 = 4,a3 - - 3 2

19. an = 10an-1 - 21an-2 + 5n, ao = O, a l = 3

20. a n = 8an-1 - 15an-2 + 4 n 5 n , a o = 1 ,a l = 3

21. Let an denote the n u m b e r of mul t ip l icat ions (lines 7-10) in Algo-
r i t hm 5.10. Show tha t an = O(n) .

Let Cn denote the n u m b e r of e lement compar isons made (line 4) by the
recursive bubble sort a lgor i thm in Algor i thm 5.9.

22. Define Cn recursively.

23. Solve the recurrence relation.

24. Show tha t Cn = O(n2).

336 Chapter 5 Recursion

n

A l g o r i t h m 5.13 e v a l u a t e s t h e p o l y n o m i a l f (x) - ~ a ix ~ at x - a . U s e it for

Exe rc i s e s 25-29 . i=o

Algorithm evaluate poly(f,n,~,answer)
(* This a lgo r i thm re turns the value of a polynomial f

of degree n at c~ in the va r i ab le onswer. *)
O. Begin (* a lgo r i thm *)
I . answer , - ao
2. power ~- i
3. f o r i = i to n do
4. begin (* f o r *)
5. power <- power *
6. answer ,-- answer + ai * power
7. endfor
8. End (* a lgo r i thm *)

Algorithm 5.13

E v a l u a t e each p o l y n o m i a l a t x - - 1 .

25. f (x) - x 3 + 2 x 2 - 3 x + 4 26. f (x) - 2x 3 -+- 5x - 6

Let c,~ d e n o t e t h e n u m b e r of o p e r a t i o n s (l ines 5-6) r e q u i r e d to e v a l u a t e a
po lynomia l a t x - a .

27. Def ine cn recurs ive ly .

29. Show t h a t c , - O(n2).

28. Solve t h e r e c u r r e n c e r e l a t i on .

Use H o r n e r ' s a l g o r i t h m (A lgo r i t hm 5.14) to e v a l u a t e t h e p o l y n o m i a l
t l

f (x) - ~ a ix ~ at x - a for Exerc i ses 30-35 .
i=0

Algorithm Horner(f,n, i ,~)
(* This a lgo r i thm evaluates a polynomial f of degree n at

x - ~ by recurs ion and is invoked by Horner(f ,n ,O,c~) . *)
O. Begin (* a lgo r i thm *)
i . i f i = n then
2. Horner ~-- an
3. else
4. Horner K-- H o r n e r (f , n , i + 1,e() �9 (x + ai
5. End (* a lgo r i thm *)

Algorithm 5.14

E v a l u a t e each p o l y n o m i a l a t x - 2.

30. f (x) - 3x 2 + 4x - 5 31. f (x) - 2x 3 - 5x + 3

Let bn d e n o t e t h e n u m b e r of o p e r a t i o n s (add i t ion and m u l t i p l i c a t i o n)
n e e d e d in l ine 4.

32. Def ine bn recurs ive ly .

33. Solve t he r e c u r r e n c e re la t ion .

Chapter Summary 337

34. Show tha t bn - - O(n).

35. Le tan denote the n u m b e r of n-bit words t ha t do not contain the p a t t e r n
111. Define a n recursively.

Let a n denote the n u m b e r of ways a 2 • n r ec t angu la r board can be covered
with 2 • i dominoes.

36. Define a n recursively. 37. Find an explicit formula for a n .

(Hint: Consider 2 • (n - 1) and 2 • (n - 2) boards.)

Wri te a recursive a lgor i thm to compute each sum.

38. The sum of the first n even positive integers.

39. The sum of the first n odd positive integers.

40-41 . Es tabl ish the correctness of the a lgor i thms in Exercises 38 and 39.

42. Wri te an i tera t ive a lgor i thm to find the m i n i m u m and the m a x i m u m
of a list X of n e lements .

Let Cn denote the n u m b e r of e lement comparisons made by the m i n m a x
a lgor i thm in Exercise 42.

43. Define Cn recursively. 44. Solve the recur rence relation.

45. Show tha t bn - O(n) .

Prove each, where a and fl are the solutions of the equat ion x 2 = x + 1,
Fn the n th Fibonacci number , and L n the n th Lucas number . Ident i t ies in
Exercises 46-53 were discovered in 1876 by Lucas.

n ~
46. ~ Fi = Fn + 2 -- 1 47. F 2 i - 1 - - F 2 n

i= l i= l

n n

48. ~ F2i = F2n+l - 1 49. ~ L i = L n + 2 - 3
i=l i= l

n n

50. ~ L 2 i - 1 =- L 2 n - 2 5 1 . ~ L 2 i = L 2 n + l - 1
i=1 i=1

52. F 2 n+l ~- F2 -- g2n+l 53. F2+1 - F2_1 - g 2 n

54. gcd{Fn,Fn+l} - 1, n >_ 1 55. x n - Fnx + Fn-1 , n >_ 2
(~n _ f in

56. F n = , n > l

Let C(n) denote the n u m b e r of comparisons needed by quicksort to sort
a list of n i tems. In the worst case, C(n) = C(n - 1) + (n - 1), where
C(0) = 0 = C(1).

57. Solve the recur rence relation. 58. Show tha t C(n) = O(n2).

(Note: This shows tha t , in the worst case, quicksor t is as bad as selection
sort.)

338 Chapter 5 Recursion

Let A (n) denote the average n u m b e r of comparisons needed by quicksort .
1 n

Then A (n) = (n + 1) + - ~ [A (i - 1) + A (n - i)], where A(0) = 0 - A(1).
n i-1

Use this fact to answer Exercises 59 and 60.

n+l(1)
*59. S h o w t h a t A (n) = 2 ~ - .

n + l i -3 i

*60. Show tha t A (n) - O(n lg n).
(Hin t : Use integration.)

Supplementary Exercises

A side of the equilateral t r iangle in Figure 5.20 is n uni ts long. Let an denote
the number of t r iangles point ing north.

F i g u r e 5 .20

1. Define an recursively. 2. Solve the recurrence relation.

The n th F e r m a t n u m b e r fn is defined by fn 2 2" - + l , n > _ 0 .

3. Prove tha t fn+ 1 - f 2 _ 2fn + 2. (J. M. Schram, 1983)

4. Using Exercise 3, compute fl, f2, f3, and f4.

5. Let an be an infinite sequence with al - 1, a5 - 5, a12 -- 144, and
an + an+3 - 2an+2. Prove tha t an - Fn. (H. Larson, 1977)

1+4~
6. Let a = and Fn the n th Fibonacci number . Prove tha t

2
lim F~+I = ~.

n--,~ gn

*7. Let Sn denote the sum of the number s in the n th t e rm of the
sequence of sets of pentagonal numbers { 1}, {5, 12}, {22, 35, 51},
{70, 92,117, 145}, Find a formula for Sn .

*8. Let Sn denote the sum of the numbers in the n th t e rm of the sequence
of sets of Fibonacci number s {1}, {1,2}, {3,5,8}, {13,21,34,55},
Find a formula for Sn .

Chapter Summary 339

Describe the behavior of each number sequence {an }, where a0 - a, a l - b,
and a2 - c are positive numbers . (R. L. Graham, 1991)

9. an+2 - (1 + an+l)/an 10. an+3 - (1 + an+l + an+2)/an

Let n E N and ~ Euler ' s phi-function. Define ~k _ ~gk-1 o q), where ~1 _
and o denotes composition. Let f (n) - ~(n) + ~2(n) + ~3(n) + . . . + q~(1).
(D. L. Silverman, 1981)

11. Compute f(5) and f(8).

12. Prove tha t if n - 2 k, then f (n) - n.

13. Prove tha t f (n) is even. [Hint: ~(n) is even for n > 2.]

14. Consider the sequence of r ight t r iangles Tn, n > 1, with legs An and
Bn, and hypotenuse Cn such tha t An+l - Bn and Bn+l - Cn. Compute

lim Bn Cn
n - - * ~ An and n--.eclim ~ . (M. Flavio, 1980)

A set of integers A is f a t if each of its e lements is >__ IAI. For example,
{5, 7, 91} is a fat set, but {3, 7, 36, 41} is not. ~ is considered a fat set. Let
fn denote the number of fat subsets of the set {1, 2 , . . . , n}. (G. F. Andrews)

"15. Define fn recursively. * 16. Find an explicit formula for fn.

Let f (n , k) denote the number of k-element subsets of the set S -
{1, 2 , . . . ,n} tha t do not contain consecutive integers. Let fn denote the
total number of subsets of S that do not contain consecutive integers.
(I. Kaplansky)

"17. Define f(n, k) recursively. "18. Find an explicit formula for fn.

Computer Exercises

Write a program to perform each task.

1. Read in a positive integer n < 20, and pr int the various moves and the
number of moves needed to t ransfer n disks from peg X to peg Z, using
the rules in Example 5.4.

2. Read in a positive integer n, and pr int the first n t r iangular and
te t rahedra l numbers.

3. Pr in t the t r iangular numbers _< 1000 tha t are perfect squares.

4. Pr in t the t r iangular numbers < 1000 tha t are primes.

5. There are eight palindromic t r iangular numbers < 1000. Find them.

6. Search for two t r iangular numbers tn such tha t tn and n are palin-
dromic, where 9 < n < 100.

7. Read in a positive integer n and pr int the first n Fibonacci numbers ,
using recursion and iteration.

340 Chapter 5 Recursion

8. Read in a positive integer n _< 20 and pr int the first n Lucas numbers .

9. Read in a positive integer n < 25 and pr int the values of Fn+l and
- F n

Ln+l correct to 10 decimal places, where Fn denotes the n th Fibonacci
Ln

number and Ln the n th Lucas number.

Read in a list of n positive integers. Use recursion to pr int each.

10. Their sum, product, maximum, and minimum.

11. The list in the given order.

12. The list in the reverse order.

13. Read in a key and search the list for key. Pr in t the location if the search
is successful; otherwise, pr int a suitable message.

14. Read in a key and a sorted list of n items; determine if key occurs in
the list using recursion and iteration. Pr in t the location of key if the
search is successful.

15. Read in a list of n words and determine if each is a palindrome, using
recursion.

16. Read in two lists of n integers. Determine if they are identical, using
recursion.

17. Read in a nonnegative real number x and a nonnegat ive integer n;
compute the nth power ofx.

18. Read in a positive integer n < 100 and a positive real number x < 2.
Use the binary representa t ion of n and the technique of successive
squaring to compute x n. Pr in t the number of multiplications needed
to compute it.

n

19. Read in a number a, and a polynomial ~ aix ~ (that is, coefficients and

the corresponding exponents); print t t~e~ of the polynomial at a,
using Horner ' s method.

20. Read in n positive integers and print their min imum and maximum,
using both i terat ion and recursion.

21. Read in a positive integer n < 10 and ar range the Stirl ing numbers of
the second kind S(n, r) in a t r iangular form, where 1 < r < n.

22. Read in n positive integers and sort them using bubble sort, selection
sort, and insertion sort. Pr in t the number of element-comparisons
needed by each algorithm.

23. Read in n four-letter words. Sort them, using merge sort and quick-
sort. Pr in t the number of element comparisons needed by each
sort.

Chapter Summary 341

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Describe the properties of Fibonacci numbers, their occurrences in
nature, applications to various disciplines, and relationships to Lucas
numbers.

2. Explain how the golden ratio is related to Fibonacci and Lucas
numbers. Describe its various occurrences in nature.

3. Describe the various forms of Ackermann's function. Investigate its
importance in the study of recursive functions and the analysis of
algorithms.

4. Investigate the Josephus problem, named for the first century Jewish
historian Flavius Josephus (37?-100?).

5. Describe how, using Fibonacci numbers Fn (n >_ 2) as bases, non-
negative integers can be represented as binary numbers with no two
adjacent l 's. Express the integers 1-25 as such binary numbers.

6. Define continued fractions and describe their relationship to Fibonacci
numbers.

7. Describe the Game of Life, invented in 1970 by British mathematician
John H. Conway, now at Princeton University.

8. Describe the Game of Halma, invented in 1883 by George H. Monks,
a Harvard Medical School graduate.

9. Examine the history of Catalan numbers and their properties and
applications. Include a biography of E. C. Catalan.

10. Write an essay on the Tower of Brahma (Hanoi).

11. Write an essay on Quicksort.

12. Discuss the fifteen puzzle, invented by American puzzlist Samuel Loyd
(1841-1911).

13. Discuss Markov chains, named after Russian mathematician Andrei A.
Markov (1856-1922), who developed the theory of stochastic processes,
and their applications to business.

Enrichment Readings

1. G. Brassard and P. Bratley, Algorithmics: Theory & Practice, Prentice-
Hall, Englewood Cliffs, NJ, 1986, pp. 26-34, 48-61.

342 Chapter 5 Recursion

2. R. P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied
Introduction, 4th edition, Addison-Wesley, Boston, MA, 1999, pp. 351-
403.

3. B. W. Jackson and D. Thro, Applied Combinatorics with Problem
Solving, Addison-Wesley, Reading, MA, 1990, pp. 226-252.

4. T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley,
New York, 2001.

5. C. Oliver, "The Twelve days of Christmas," Mathematics Teacher,
Vol. 70 (Dec. 1977), pp. 752-754.

6. S. Sahni, Concepts in Discrete Mathematics, 2nd ed., Camelot, Fridley,
MN, 1985, pp. 205-335.

7. R. Sedgewick, Algorithms, 2nd ed., Addison-Wesley, Reading, MA,
1988, pp. 3-189.

8. K. B. Strangeman, "The Sum of n Polygonal Numbers," Mathematics
Teacher, Vol. 67 (Nov. 1974), pp. 655-658.

9. C. W. Trigg, "Palindromic Triangular Numbers," J. Recreational
Mathematics, Vol. 6 (Spring 1973), pp. 146-147.

10. A. Tucker, Applied Combinatorics, Wiley, New York, 1984, pp.
222-298.

11. H. S. Wilf, Algorithms and Complexity, Prentice-Hall, Englewood
Cliffs, NJ, 1986, pp. 26-34, 48-61.

	sdarticle7

