Recursion

It is common sense to take a method and try it. If it fails, admit it frankly
and try another. But above all, try something.

— FRANKLIN ROOSEVELT

R ecursion is an elegant and powerful problem-solving technique, used

extensively in both discrete mathematics and computer science. Many

programming languages, such as ALGOL, FORTRAN 90, C+ +, and Java,
support recursion. This chapter investigates this powerful method in detail.

In addition, we will study three simple methods for solving recurrence

relations: iteration, characteristic equations, and generating functions.

We also will establish the validity of recursive algorithms using induction

and analyze their complexities using the big-oh and big-theta notations.

Some of the interesting problems we pursue in this chapter are:

There are three pegs X, Y, and Z on a platform and 64 disks of increasing
sizes at X. We would like to move them from X to Z using Y as an
auxiliary peg subject to the following conditions:

Only one disk can be moved at a time.
No disk can be placed on the top of a smaller disk.

If it takes one second to transfer a disk from one peg to another, how
long will it take to solve the puzzle?

Is there a formula for the number of n-bit words containing no two
consecutive 1’s?

Suppose we introduce a mixed pair (male and female) of 1-month-old
rabbits into a large enclosure on January 1. By the end of each month,
the rabbits become mature, and each pair produces & — 1 mixed pairs
of offspring at the beginning of the following month. Find the average
age of the rabbit pairs at the beginning of the nth month.

Can we estimate the number of divisions required to compute gedia, b}
by the euclidean algorithm?

What is a divide-and-conquer algorithm? If f(n) denotes the number of
operations required by such an algorithm, what can you say about its
order of complexity?

261

262 Chapter 5 Reecursion

5.1 Recursively Defined Funetions

Recall that in Section 2.5 we employed recursion to define sets; we invoked
the recursive clause to construct new elements from known elements. The
same idea can be applied to define functions, and hence sequences as well.

This section illustrates how powerful a problem-solving technique recur-
sion is. We begin with a simple problem:

There are n guests at a sesquicentennial ball. Each person shakes hands
with everybody else exactly once. How many handshakes are made?

Suppose you would like to solve a problem such as this. (See Example 5.3.)
The solution may not be obvious. However, it may turn out that the problem
could be defined in terms of a simpler version of itself. Such a definition is a
recursive definition. Consequently, the given problem can be solved pro-
vided the simpler version can be solved. This idea is pictorially represented
in Figure 5.1.

Figure 5.1

this this

The given

complex can be | simpler can be canbe | simpler
problem wolved | version can) “oolved olved” | version can
if be solved if if be solved
This is
solvable.

Recursive Definition of a Funetion

Leta e Wand X = {a,a + 1,a + 2,...}. The recursive definition of a
function f with domain X consists of three parts, where 2 > 1:

* Basis clause A few initial values of the function f(a), fla + 1),...,
fla +k — 1) are specified. An equation that specifies such initial values
is an initial condition.

* Recursive clause A formula to compute f(n) from the k preced-
ing functional values f(n — 1), f(n — 2), ..., f(n — k) is made. Such a
formula is a recurrence relation (or recursion formula).

¢ Terminal clause Only values thus obtained are valid functional
values. (For convenience, we drop this clause from our recursive
definition.)

LTHEOREN 5.t]

5.1 Recursively Defined Functions 263

Thus the recursive definition of f consists of one or more (a finite number
of) initial conditions, and a recurrence relation.

Is the recursive definition of f a valid definition? In other words, if the &2
initial values f(a), fla+1), ..., fla+k —1) are known and f(n) is defined in
terms of k of its predecessorsf(n—1), f(n—2), ..., f(n—Fk), wheren > a + k&,
isf(n) defined for n > a? Fortunately, the next theorem comes to our rescue.
Its proof uses strong induction and is complicated, so we omit it.

Leta e W, X ={a,a+1,a+2,...},and . € N. Let f : X — R such that
fl),fla+1),...,fla+ % — 1) are known. Let n be any positive integer
> a + k such that f(n) is defined in terms of f(n — 1), f(n — 2), ... and
f(n — k). Then f(n) is defined for every n > a. ’ [|

By virtue of this theorem, recursive definitions are also known as
inductive definitions.

The following examples illustrate the recursive definition of a function.
Define recursively the factorial function f.

SOLUTION:
Recall that the factorial function fis defined by f(n) = n!, where f(0) = 1.
Since n! = n(n — 1)}, f can be defined recursively as follows:

<« initial condition

fO)=1

fin)=n-f(n-1), n

n>1 « recurrence relation

Suppose we would like to compute f(3) using this recursive definition.
We then continue to apply the recurrence relation until the initial condition
is reached, as shown below:

f(3)=3-£(2) (5.1)

return value

(5.2)

return value

f(1)=1-£(0)
&

(5.3)

return value

(5.4)

264

Chapter 5 Recursion

Since f(0) = 1, 1 is substituted for f(0) in Equation (5.3) and f(1) is
computed: f(1) = 1-f(0) = 1-1 = 1. This value is substituted for f(1) in
Equation (5.2) and f(2) is computed: f(2) = 2.-f(1) = 2.1 = 2. This value is
now returned to Equation (5.1) to compute f(3): f(3) =3 -f(2) =3-2 =6,
as expected.

Judy deposits $1000 in a local savings bank at an annual interest rate of
8% compounded annually. Define recursively the compound amount A(n)
she will have in her account at the end of years.

SOLUTION:
Clearly, A(0) = initial deposit = $1000. Let n > 1. Then:

compound amount interest earned
A(n) = | at the end of the + | during the
(n — 1)st year nth year

=A(n-1)+(0.08)A(n - 1)
=1.08A(n — 1)

Thus A(n) can be defined recursively as follows:

A(0) = 1000 <« initial condition

A(n)=108An-1), n=>1 <« recurrence relation .

For instance, the compound amount Judy will have at the end of three
years is

A(3) = 1.08A(2)
= 1.08[1.08 A(1)] = 1.08%A(1)

= 1.082{1.08 A(0)] = 1.083(1000)
~ $1259.71*

The next two examples illustrate an extremely useful problem-solving
technique, used often in discrete mathematics and computer science.

(The handshake problem) There are n guests at a sesquicentennial
ball. Each person shakes hands with everybody else exactly once. Define
recursively the number of handshakes A(n) that occur.

SOLUTION:

Clearly, h(1) = 0, so let n > 2. Let x be one of the guests. By definition,
the number of handshakes made by the remaining n — 1 guests among
themselves is h{(n — 1). Now person x shakes hands with each of these

*The symbol ~ means is approximately equal to.

Figure 5.2

5.1 Recursively Defined Functions 265

n — 1 guests, yielding n — 1 additional handshakes. So the total number of
handshakes made equals 2(n — 1) + (n — 1), where n > 2.
Thus h(n) can be defined recursively as follows:

h(1)=0 <« Initial condition

An)=h(n-1)+0n-1), n=>2 < recurrence relation |

(Tower of Brahma*) According to a legend of India, at the beginning of
creation, God stacked 64 golden disks on one of three diamond pegs on a
brass platform in the temple of Brahma at Benares' (see Figure 5.2). The
priests on duty were asked to move the disks from peg X to peg Z using Y
as an auxiliary peg under the following conditions:

* Only one disk can be moved at a time.
* No disk can be placed on the top of a smaller disk.

The priests were told that the world would end when the job was completed.

|

£

X Y Z

Suppose there are n disks on peg X. Let b,, denote the number of moves
needed to move them from peg X to peg Z, using peg Y as an intermediary.
Define b, recursively.

SOLUTION:
Clearly b; = 1. Assume n > 2. Consider the top n — 1 disks on peg X. By
definition, it takes b, 1 moves to transfer them from X to Y using Z as
an auxiliary. That leaves the largest disk at peg X; it takes one move to
transfer it from X to Z. See Figure 5.3.

Now the n — 1 disks at Y can be moved from Y to Z using X as an
intermediary in b,_; moves, so the total number of moves needed is
bn_1+1+4+b,.1=2b,_1+ 1. Thus b, can be defined recursively as follows:

b 1 ifn=1 < initial condition
" |2b,_1+1 otherwise < recurrence relation []

*A puzzle based on the Tower of Brahma was marketed in 1883 under the name Tower of
Hanoi.
TBenares is now known as Varanasi.

266 Chapter 5 Recursion

Figure 5.3

%:D

X Y Z

For example,

by =2b3+1 =2(2bs +11+1
=4by+2+1 =4{2b; +1]+2+1
=81 +4+2+1 =8(1)+4+2+1
=15

so it takes 15 moves to transfer 4 disks from X to Z, by this strategy.
The next example also illustrates the same technique. We will take it a
step further in Chapter 6.

M Imagine n lines in a plane such that no two lines are parallel, and no three

are concurrent.” Let f;, denote the number of distinct regions into which
the plane is divided by them. Define f,, recursively.

SOLUTION:

If there is just one line ¢; in the plane, then f; = 2 (see Figure 5.4). Now
consider a second line ¢9; it is intersected at exactly one point by ¢;. Each
half of ¢y divides an original region into two, adding two more regions (see
Figure 5.5). Thus fo = f1 + 2 = 4. Suppose we add a third line ¢5. It is

Figure 5.4

Figure 5.5

*Three or more lines in a plane are concurrent if they intersect at a point.

5.1 Recursively Defined Functions 267

intersected by £; and {3 in two points; in other words, line £3 is divided by
¢; and £ into three parts. Each portion divides an existing region into two,
yielding three new regions (see Figure 5.6). Sofs =f3 +3=17.

Figure 5.6
More generally, suppose there aren—11lines £1, 2, ..., £, 1intheplane.
They divide the plane into f,,_1 disjoint regions, by definition. Now add one
more line ¢, (see Figure 5.7). Since no three lines are concurrent, line ¢,
must intersect lines ¢, €9, ..., £,_1 at new points and hence is divided by
Figure 5.7

them into n segments. Each segment divides an existing region into two
subregions, contributing n more regions, so f,, = f,_1 + n. Thus £, can be
defined recursively as follows:

£ = 1 ifn=0
"7 |fu_1+n otherwise n
The next example illustrates how to define recursively the number of
times an assignment is executed by nested for loops.

IM Let a, denote the number of times the assignment statement x < x + 1 is
executed by the following nested for loops. Define a,, recursively.

for i =1 ton do
for j =11to 1 do
for k =1 to j do
X « x +1

SOLUTION:
* First, we must find the initial condition satisfied by a,. When n = 1,
i =j = k =1, so the assignment statement is executed exactly once.
Thusa; = 1.

268

Chapter 5 Recursion

* To find the recurrence relation satisfied by ay:
Let n > 2. Asi runs from 1 through n — 1, by definition, the statement
is executed a,,_{ times.
When i = n, the inner loops become:

for j =1 to n do
for k =1 to j do
X «— x +1

For each value of j, where 1 < j < n, the innermost loop executes the

n 1
statement j times. So these nested loops execute it)}~ j = ﬁn;—)
j=1
times. Therefore,
no. of times the statement no. of times the
an = | is executed as i runs from + | statement is executed
1 throughn —1 wheni=n
L nn+1)
= Q,_ _—
n—1 2
Thus a,, can be defined as follows:
a] = 1
nin+1)
Ap = Aap-1 _— Y n = 2
2
(We shall pursue this definition in Example 5. 11.) |

The next example provides a recursive definition with two initial
conditions. We shall use it often in the following sections and in the next
chapter.

(Fibonacci) Leonardo Fibonacei, the most outstanding Italian math-
ematician of the Middle Ages, proposed the foliowing problem around
1202:
Suppose there are two newborn rabbits, one male and the other female.
Find the number of rabbits produced in a year if:

¢ Each pair takes one month to become mature.

* Each pair produces a mixed pair every month, from the second month.
* No rabbits die.

Suppose, for convenience, that the original pair of rabbits was born on
January 1. They take a month to become mature. So there is still only
one pair on February 1. On March 1, they are 2 months old and produce
a new mixed pair, a total of two pairs. Continuing like this, there will be
three pairs on April 1, five pairs on May 1, and so on. See the last row of
Table 5.1.

Table 5.1

5.1 Recursively Defined Functions 269

No. of
pairs ” Jan Feb March April May June dJuly Aug
Adults 0 1 1 2 3 5 8 13
Babies 1 0 1 1 2 3 5 8
Total 1 1 2 3 5 8 13 21 «

work on number theory; and Flos, also on number theory.
Fibonacct’s importance and usefulness to Pisa and its citizenry through his teaching and services were
honored by Emperor Frederick 11 of Pisa.

Leonardo Fibonacci (1170?-1250?), also known as Leonardo of Pisa,
was born in the commercial center of Pisa, Italy, into the Bonacci family. His
father, a customs manager, expected the son to become a merchant and took
him to Bougie, Algeria, to receive good training in arithmetic with Indian
numerals. Leonardo’s subsequent business trips to Egypt, Syria, Greece,
and Sicily brought him closer to Indian mathematics.

In 1202, shortly after his return, convinced of the elegance of the Indian
methods of computation, Fibonacci published his famous work, Liber Abaci.
(The word abaci in the title does not refer to the old abacus, but to computa-
tion in general.) This book, devoted to arithmetic and elementary algebra,
introduced the Indian notation and arithmetic algorithms to Europe.

Fibonacct wrote three additional books: Practica Geometriae, a collec-
tion of results in geometry and trigonometry, Liber Quadratorum, a major

The numbers 1, 1, 2, 3, 5, 8, ... are Fibonacci numbers.* They have
a fascinating property: Any Fibonacci number, except the first two, is the
sum of the two immediately preceding Fibonacei numbers. (At the given
rate, there will be 144 pairs of rabbits on December 1.)

This yields the following recursive definition of the nth Fibonacci
number F,,:

Fi=Fy=1 < initial conditions
F,=F, {+F, 5, n>3 « recurrence relation n

The next example illustrates recursion and also shows that Fibonacci
numbers occur in quite unexpected places.

Let a, denote the number of n-bit words containing no two consecutive 1’s.
Define a,, recursively.

*See author’s Fibonacci and Lucas Numbers with Applications for a thorough discussion of
Fibonacci numbers.

270 Chapter 5 Recursion

SOLUTION:

First, let us find the n-bit words containing no two consecutive 1’s corre-
sponding ton = 1,2, 3, and 4 (see Table 5.2). It follows from the table that
a1 =2,a9 =3,a3 =5,and aqg = 8.

Table 5.2 n=1 n=2 n=3 n=4
00 000 0000

1 01 010 0100

10 100 1000

001 0010

101 1010

0001

0101

1001

Now, consider an arbitrary n-bit word. It may end in 0 or 1.

Case 1 Suppose the n-bit word ends in 0. Then the (n — 1)st bit can be a
0 or a 1, so there are no restrictions on the (n — 1)st bit:

n bits

0

10
— = = =~ =X%—(n-Dstbit

no restrictions

Therefore, a,,_1 n-bit words end in 0 and contain no two consecutive 1’s.

Case 2 Suppose the n-bit word ends in 1. Then the (n — 1)st bit must be
a zero. Further, there are no restrictions on the (n — 2)nd bit:

n bits

0
1 0 1
~ - = = 4 ~™— (n—Dstbit

no restrictions

Thus a,,_9 n-bit words end in 1 and contain no two consecutive 1’s.
Since the two cases are mutually exclusive, by the addition principle, we
have:

a1 =2, as=3 <« initial conditions

Ap =Ap_1+0ap_2, n=>3 <« recurrence relation

Figure 5.8

Figure 5.9

5.1 Recursively Defined Functions 2

Notice that the above recurrence relation is exactly the same as the
Fibonacci recurrence relation, but with different initial conditions! The
resulting numbers are the Fibonacci numbers 2, 3, 5, 8, 13, [|

Notice that this example does not provide a constructive method for sys-
tematically listing all n-bit words with the required property. It is given in
Exercise 19.

Interestingly enough, the delightful Fibonacci numbers occur in numer-
ous totally unexpected places. For instance, the numbers of spiral arrays
of seeds in mature sunflowers in the clockwise and counterclockwise direc-
tions are often consecutive Fibonacci numbers, usually 34 and 55, or 55
and 89. See Figures 5.8 and 5.9.

272 Chapter 5 Recursion

Before closing this section, we establish an important result from the the-
ory of formal languages. First, recall that ©* denotes the set of words over
an alphabet . Also * can be defined recursively as follows (see Exercise 35
in Section 2.6):

¢ LeX*.
e Ifwe X*ands € T, then ws € T*.

Furthermore, the length |Jw| of a word w over ¥ can be defined
recursively as follows:

* Al =0.
* Ifwe T*ands € X, then [jws| = [w] + 1.

Using these definitions and induction, we prove below that ||xy| = |x| +
llyll for any two words x and y in £*.

M Let x and ¥ be any two words over an alphabet £. Prove that |xy| =
el + Nyl

PROOF (by induction):

Let x be any element in T*. Let P(y) denote the predicate that |xy| =
lxll + l¥ll, where y € Z*. Since y € T*, y can be the null word A or a
nonempty word.

Basis step 7o show that P(A) is true; that is, {xAl| = x| + IAll:
Since xx = x, lxAll = jx|| = Jlxll + 0 = {x|| + {iAll. So P()) is true.

Induction step Assume P(y) is true, that is, flxy|| = ||| + [ly]l (inductive
hypothesis). We must show that P(ys) is true, that is, [xys|l = |x|| + |lys}.
Notice that:

xys = (xy)s assoc. prop. of concatenation
Then
llxysll = [(xy)s]] length is a function
= [lxyll + 1 recursive def. of length

= (flxfl + lIyD + 1 inductive hypothesis
= {lxlt + (iyll + 1) assoc. prop. of addition
= flxll + llys| recursive def. of length

Therefore, P(ys) is true. Thus P(y) implies P(ys).

Therefore, by induction, P(y) is true for every y € T*; that is, ||lxy| =
llxli + {yll for everyx,y € T*. |

5.1 Recursively Defined Functions 273

Finally, we emphasize that the immediate predecessor f;,_1 need not
appear in the recursive definition of a function f at n. For example,
consider the function f: W — W defined by

fo=1, =0 fa=1
fao=/fo-2+2fH-3 n=3

Clearly, f,—1 is not needed to compute f,,, when n > 3. Try f¢ as an
exercise.

Exereises 5.1

In Exercises 1-6, a,, denotes the nth term of a number sequence satisfying
the given initial condition(s) and the recurrence relation. Compute the first
four terms of the sequence.

1.a1=1 2. qp=1
an=a,1+3,n>2 an=a,_1+n,n>1
3. a1 =1 4, a1 =1,a0 =2
an = n Op_1,7 > 2 Qn =Qp_1+0au_2,n >3

- 6. a1 =1,a9=2,a3=3
5. ay=1,a9=10a3=2 1=5%2 3
ap=0an_1+an_9+ap_3,n=4
an=an—1+an—2+an—3,n24 n n—1 n—2 n—3»

7. The nth Lucas number L,, named after the French mathematician
Francois-Edouard-Anatole Lucas, is defined recursively as follows:

Li=1 L¢=3
Lp=Ly 1+Lp2,n>3

(The Lucas sequence and the Fibonacci sequence satisfy the same recur-
rence relation, but have different initial conditions.) Compute the first six
Lucas numbers.

The ged of two integers x (> 0) and y (> 0) can be defined recursively as
follows:

ged{y,x} ify>x
gedix,y} = {« ify<xandy =0
ged{y,xmody} ify<xandy>0

Using this definition, compute the ged of each pair of integers.

8. 28,18 9. 24,75

274

Chapter 5 Reeursion

Francois-Edouard-Anatole Lucas (1842-1891) was born in Amiens,
France. After completing his studies at the Ecole Normale in Amiens, he
worked as an assistant at the Paris Observatory. He served as an artillery
officer in the Franco-Prussian war and then became professor of mathe-
matics at the Lycée Saint-Louis and Lycée Charlemagne, both in Paris. A
gifted and entertaining teacher, Lucas died of a freak accident at a ban-
quet: His cheek was gashed by a piece of a plate that was accidentally
dropped, and he died from infection within a few days.

Lucas loved computing and developed plans for a computer that never
materialized. Besides his contributions to number theory, he is known for
his four-volume classic on recreational mathematics. Best known among
the problems he developed is the Tower of Brahma.

A person deposits $1000 in a bank at an annual interest rate of 6%. Let
A(n) denote the compound amount she will receive at the end of n interest
periods. Define A(n) recursively if interest is compounded:

10. Semiannually 11. Quarterly 12. Monthly

Ned deposits a certain amount Ag in a bank at an annual interest rate of
12% compounded annually. The compound amount he would receive at the
end of n years is given by A, = 1.12A,,_, where n > 1. Determine the
initial deposit Ay if he would receive:

13. $1804.64 at the end of 5 years. 14. $3507.00 at the end of 6 years.

Define recursively each sequence of numbers. (Hint: Look for a pattern and
define the nth term a, recursively.)

15. 1,4,7,10,13 ... 16. 3,8,13,18,23 ...
17. 0,3,9, 21,45 ... 18. 1,2,5,26,677 ...

19. An n-bit word containing no two consecutive ones can be constructed
recursively as follows: Append a 0 to such (n — 1)-bit words or append
a 01 to such (n — 2)-bit words. Using this procedure construct all 5-bit
words containing no two consecutive ones. There are 13 such words.

Define each recursively, where n > 0.

20. The nth power of a positive real number x.

21. The union of n sets.

22, The intersection of n sets.

23. The number S, of subsets of a set with n elements.

24. The nth term a, of an arithmetic sequence with first term o and
common difference d.

5.1 Recursively Defined Funections 275

John McCarthy (1927-), one of the fathers of artificial intelligence (Al), was
born in Boston. He graduated in mathematics from the California Institute
of Technology, receiving his Ph.D. from Princeton in 1951. After teaching
at Princeton, Stanford, Dartmouth, and MIT, he returned to Stanford as a
full professor. While at Princeton, he was named a Proctor Fellow and later
the Higgins Research Instructor in mathematics. At Stanford, he headed the
Artificial Intelligence Laboratory.

During his tenure at Dartmouth, McCarthy coined the term artificial intel-
ligence (Al). He developed LISP (LISt Programming), one of the most widely
used programming languages in Al. He also helped develop ALGOL 58 and
ALGOL 60. In 1971 he received the prestigious Alan M. Turing award for
his outstanding contributions to data processing.

Figure 5.10

25. The nth term a,, of a geometric sequence with first term ¢ and common
ratio .

26. Let f : X — X be bijective. Define f” recursively, where f2 = f o f.

The 91-function f, invented by John McCarthy, is defined recursively on
W as follows.
x—10 if x > 100
flx) =
f(flx+11)) if 0 <x <100

Compute each

27. £(99) 28. f(98) 29. f(f(99)) 30. f(f(91))
31. Show that f(99) = 91.

32. Prove that f(x) = 91 for 90 < x < 100.

33. Prove that f(x) =91 for 0 <x < 90.

(Triangulation of convex polygons) The nth Catalan number C,

denotes the number of ways to divide a convex (n + 2)-gon into triangles

by drawing nonintersecting diagonals. For instance, there are five ways

of triangulating a convex pentagon, as shown in Figure 5.10; therefore,
n

C3 = 5. C, is given recursively by C,y; = > C;C,_;, where Cy = 1.

=0
Compute each.

SAAGAOAS

34. Cg 35. Cy

276

Chapter 5 Recursion

1 N
36. The sequence defined by a,+1 = é(an + —) can be used to approxi-

n
mate +/N to any desired degree of accuracy, where a; is an estimate
of +/N. Use this fact to compute +/19 correct to six decimal places.
Usea; = 4.

. F
37. Let F, denote the nth Fibonacci number. Compute ! correct to

n+
Fr
eight decimal places for 1 < n < 10. Compare each value to (1 + +/5)/2
correct to eight decimal places.
38. (For those familiar with the concept of limits) Use Exercise 37 to
. . Fn+1
predict lim .
n—-oo n
Prove each, where F, is the nth Fibonacci number, L, the nth Lucas

number, and « = (1 + v/5)/2, the golden ratio.
39. F, =2F, 3+ F,_3,n>4

40, F2 - F, {F,1=D""tn>2

41. F, is divisible by 5, n > 1.

42. F, <o ',n>3

43. F, <2" n>1

44, Let A = B (1)] Then A" = l:FI:i,tl Fiil:" n > 1. Assume Fy = 0.

45. Using Exercise 44, deduce that F,,1F,, 1 — F ,% = (-1)".

(Hint: Let A be a square matrix. Then |A"| = |A|", where |A| denotes
the determinant of A.)

2n—2
46. L, =F, 1+ F,_1,n>2 47. Lo, =3 + Z Ly
k=1
o — ﬁn
The nth term b,, of a number sequence is defined by b, = —————, where
o —

a = (1 ++/5)/2 and B = (1 — v/5)/2 are solutions of the equation x? = x + 1.
Verify each.

48. b1 =1 49. by =1 50. b, =by_1+by_9,n >3

(It follows from Exercises 48-50 that b,, = F,;. It is called the Binet form
of the nth Fibonacei number, after the French mathematician Jacques-
Phillipe-Marie Binet.)

With « and 8 as above, let u, = «” + ", n = 1. Verify each.

51. u1 =1 52. upo =3 53. up=up_1 +up_o,n>3

[These exercises indicate that u, = L, the nth Lucas number. Accordingly,
u, = o + " is the Binet form of L,.]

5.1 Reeursively Defined Functions 277

from Ecole Polytechmque by King Louis-Phillipe in November, 1830.

Binet made many contributions to mathematics, physics, and astronomy. In 1812, he discovered the
rule for matrix multiplication and, in 1840, discovered the explicit formula for the nth Fibonacci number.
In 1843, he was elected to the Academy of Sciences and later became its president. A devout Catholic,
Binet died in Paris.

Jacques Phillippe Marie Binet (1786-1865), a French mathematician
and astronomer, was born at Rennes, Brittany. In 1804, he entered the
Ecole Polytechnique in Paris, graduated 2 years later, and took a job in
the Department of Bridges and Roads of the French government. In 1807,
Binet became a teacher at the Ecole Polytechnique, and the following
year became assistant to the professor of applied analysis and descriptive
geometry. In 1814, he was appointed examiner of descriptive geometry,
then professor of mechanics (1815), and then inspector general of studies
(1816). In 1821, he was awarded the Chevalier de la Légion d’Honneur.
Two years later, Binet was appointed chair of astronomy at the Collége de
France.

But the July 1830 revolution was not kind to him. A strong supporter of
Charles X, Binet became a victim of Charles’ abdication; he was dismissed

54. Letaj, asg,...,a, € N, where n > 2. Prove that
ged{ay, ag, ..., an} = ged{ged{ai, asg, ..., an_1},an}.

Using Exercise 54 compute the gcd of each set of numbers.
55. 6, 12, 20, 38 56. 12, 28, 48, 104, 252

Let a, denote the number of times the assignment statement x <~ x + 1 is
executed by each nested for loop. Define a,, recursively.

57. for i =1 ton do 58. for i =1 ton do
for j =1 to i do for j =1 to i do
X « x +1 for k =1 to i do

X «— X +1

59. Let a, denote the number of rectangles that can be formedonal xn
rectangular board. Find the recurrence relation satisfied by a,.
(Hint: Look for a pattern. Every square is also a rectangle.)

A subset of the set S = {1, 2, ..., n} is alternating if its elements, when
arranged in increasing order, follow the pattern odd, even, odd, even, etc.
For example, {3}, {1,2,5}, and {3,4} are alternating subsetsof {1, 2, 3, 4, 5},
whereas {1, 3,4} and {2, 3,4,5} are not; @ is considered alternating.* Let
a, denote the number of alternating subsets of S.

60. Define a, recursively.

61. Prove that a, = F, 2, where F,, denotes the nth Fibonacci number.

*Proposed by Olry Terquem (1782-1862).

278 Chapter5 Reeursion

Stirling numbers of the second kind, denoted by S{n,r) and used in
combinatorics, are defined recursively as follows, where n, r € N:

1 ifr=1orr=n
Sn,r)=4Sn-Lr—-D+rSn-1,r) ifl<r<n
0 ifr>n

They are named after the English mathematician James Stirling (1692-
1770). Compute each Stirling number.

62. S(2,2) 63. S(5,2)

A function of theoretical importance in the study of algorithms is the
Ackermann’s function, named after the German mathematician and
logician Wilhelm Ackermann (1896-1962). It is defined recursively as
follows, where m,n € W:

n+1 ifm=20
Am,n)= {Alm -1,1) ifn=0

Alm — 1, Alm,n — 1)) otherwise

Compute each.

64. A0,7) 65. A(1,1)

66. A(4,0) 67. A(2,2)

Prove each for n > 0.

68. A(lL,Ln)=n+2 69. A2,n)=2n+3

*70. Predict a formula for A(3,n).

*71. Prove the formula in Exercise 70, where n > 0.

5.2 Solving Recurrenee Relations

The recursive definition of a function f does not provide us with an explicit
formula for f(n), but establishes a systematic procedure for finding it. This
section illustrates the iterative method of finding a formula for f(n) for a
simple class of recurrence relations.

52 Solving Recurrence Relations 279

Solving the recurrence relation for a function f means finding an
explicit formula for f(n). The iterative method of solving it involves
two steps:

» Apply the recurrence formula iteratively and look for a pattern to
predict an explicit formula.

* Use induction to prove that the formula does indeed hold for every
possible value of the integer n.

The next example illustrates this method.

[M (The handshake problem continued) By Example 5.3, the number of
handshakes made by n guests at a dinner party is given by

h(1)=0
hny=hn-1)+n-1),n>2

Solve this recurrence relation.
SOLUTION:
Step 1 To predict a formula for A(n):

Using iteration, hn)=h(n-1)+(n-1)
=hin-2)+n-2)+n-1)
=hin-3)+n-3)+n-2)+n-1

=h(1)+1+2434+---+(n-2)+(n—-1)
=0+4+14+24+3+---+(n—-1)

_nln-1)
N 2
. . nn —1)
Step 2 To prove, by induction, that A(n) = R wheren > 1:
. 1-0 . . .
Basis step Whenn = 1,A(1) = < = 0, which agrees with the initial

condition. So the formula holds when n = 1.

kk—1)
2

Induction step Assume h(k) = for any £ > 1. Then:

hik+1)=h(k) + &, by the recurrence relation

280 Chapter 5 Recursion

il 2— D + £k, by the induction hypothesis

_k(E+1)
o 2

Therefore, if the formula holds for n = &, it also holds for n = 2 + 1.
Thus, by PMI, the result holds forn > 1.]

More generally, using iteration we can solve the recurrence relation
an =ap-1+f(n) (5.5)

as follows:

an =ap 1 +f(n)
=lapo+fn—Di+fn)=a,_9+fln—-1)+Ff(n)
=lap_3+f(n—-2)]+fln -1+ fn)
=a, 3+fn-2)+fn—-1)+f(n)

=ag+ Y f) (5.6)
=1

You can verify that this is the actual solution of the recurrence relation (5.5).
For example, in the handshake problem f(n) = n — 1 and A(0) = 0, so
the solution of the recurrence relation is

hn)=hO)+Y f@) =0+ (-1
=1 =1

nz:li_n(n—l) n> 1
—' - 2 b —
=1

which is exactly the solution obtained in the example.

Im Solve the recurrence relation in Example 5.6.

SOLUTION:
Notice that a,, can be redefined as

nin+1)
2 b

Qp = Ap—1 +

5.2 Solving Recurrence Relations 281

where ¢gp = 0. Comparing this with recurrence relation (5.5), we have

fn) = ﬂn—;—l) Therefore, by Equation (5.6),

an=ao+) f@
i=1

(i + 1 1o .
=a0+zl(12)=0+§Z(12+1)
i=1 i=1

1 n n
-3 (2)
i=1 1=1

_1Tnln+1D@r+1) nr+1)
_5{ 6 T3 }
nn+1) /2n+1 1 nin+1) 2n+4
-2 (6 +§)= 2 6
=n(n+1)(n+2) n>0
6 ’ - |

The following illustration of the iterative method brings us again to the
Tower of Brahma puzzle.

[m Recall from Example 5.4 that the number of moves needed to transfer n
disks from peg X to peg Z is given by

by =1
b, = 2b,_1+1,n>2
Solve this recurrence relation.

SOLUTION:

Step 1 To predict a formula for b,,:
Using iteration,

b, =2b,_1+1
=2[2, 9+1]+1=2%, s +2+1
=2212b, 5+ 1]1+24+41=2%, 3+22+2+1

=201 4 2n 24 422 4241
=2n 42ty 4241
=2" —1, by Exercise 8 in Section 4.4.

282

Chapter 5 Recursion

Step 2 You may prove by induction that b, = 2" — 1, where n > 1. |

More generally, you may verify that the solution of the recurrence
relation a, = ca,_1 + 1, where c is a constant (# 1), is

c" -1

a, = c"ag +
c—1

For instance, in Example 5.12, b5 = 0 and ¢ = 2, so

2" —1
2-1

b, =2".0+ =2"-1
as expected.

Let us pursue Example 5.12 a bit further. Suppose there are 64 disks at
peg X, as in the original puzzle, and it takes 1 second to move a disk from
one peg to another. Then it takes a total of 264 — 1 seconds to solve the
puzzle.

To get an idea how incredibly large this total is, notice that there are
about 365 - 24 - 60 - 60 = 31,536,000 seconds in a year. Therefore,

Total time taken = 2%¢ — 1 seconds
~ 1.844674407 x 10'? seconds

~ 5.84942417 x 10! years
2 600 billion years!

Intriguingly, according to some estimates, the universe is only about
18 billion years old.

Exercises 5.2

Using the iterative method, predict a solution to each recurrence relation
satisfying the given initial condition.

1. =1 2. a1 =1
sp=2s,_1,n>1 ap=Qu_1+n,n>2
3. ap=1 4. a1 =1
an=a,_1+n,n>1 an=0ap_1+2n-1),n>2
5. ag =0 6. s1=1

ap=a,_1+4n,n>1 Sp=Sp_1+n3,n>2

52 Solving Recurrence Relations 283

7. S1 = 1 8. ay = 1
Sp=Sp_1+n%,n>2 anp =20, 1+@2"-1),n>2
9-16. Using induction, verify the solutions to Exercises 1-8.

17. Using the data in Example 5.2, show that the compound amount Judy
will receive at the end of n years is given by A(n) = 1000(1.08)", where
n>0.

Use the recursive definition of f,, in Example 5.5 to answer Exercises 18
and 19.

18. Predict a formula for f,.
19. Prove that the formula holds for n > 1.
20. Using induction, establish the explicit formula for b, in Example 5.12.

Using induction, prove that each is a solution to the corresponding
recurrence relation, where ¢ is a constant and f(n) a function of n.

21. an =ag+ 3 f0), an = an_ +f(n)

i=1

-1
22. a, =c"ag + c—l, ap, =ca,_1+ 1 (assumec # 1)
c a—
n A
23. ap =c"ag+ Y. "), an =can_1 +f(n)
i=1

Let a, denote the number of times the statement x < x + 1 is executed by
the following loops.

for i =1 ton do
for j =1 to [i/2] do
X «— x +1

24. Define a, recursively.

0 fn=1
25. Show that a, = {a,_1 + n/2 if n > 1 and even
an_1+n—-1)Y2 ifn>1andodd

26. Solve the recurrence relation satisfied by a,.

Let a,, denote the number of times the statement x < x + 1 is executed by
the following for loops:
for i =1 ton do
for j =1 to [1/2] do
X «— X +1

27. Define a, recursively.

1 ifn=1
28. Show that a, = {a,_1 +n/2 if n > 1 and even
an_1+n+1)2 if n > 1andodd

284

Figure 5.11

Chapter 5 Recursion

29. Solve the recurrence relation satisfied by a,,.

Let a, denote the number of times the statement x < x + 1 is executed by
the nested for loops in Exercise 35 in Section 4.4.

30. Define a, recursively.
381. Solve the recurrence relation satisfied by a,,.

32-33. Redo Exercises 30 and 31 using the loops in Exercise 36 in
Section 4.4.

34-35. Redo Exercises 30 and 31 using the loops in Exercise 37 in
Section 4.4.

36-37. Redo Exercises 30 and 31 using the loops in Exercise 38 in
Section 4.4.

Let ¢, denote the nth triangular number.
38. Define ¢, recursively.

39. Find an explicit formula for ¢,.

40. Prove that 8¢, + 1 is a perfect square.

The nth pentagonal number p, is obtained from its predecessor by
adding three rows of dots plus one. The first four pentagonal numbers
are represented pictorially in Figure 5.11.

p1=1 p=5 p3 =12 pg =22

41. Represent ps pictorially.
42-43. Redo Exercises 38 and 39 using p;,.

The nth hexagonal number £, is obtained from its predecessor by adding
four rows of dots plus one dot. The first four hexagonal numbers are shown
pictorially in Figure 5.12.

44-46. Redo Exercises 41-43 using h,,.
47. Prove that h, = p, + ¢, — n, using the explicit formulas for p, and ¢,.

48. Prove that h, = p, + ¢, — n, using the recurrence relations for p,
and ¢,.

Figure 5.12

Figure 5.13

52 Solving Recurrence Relations 285

hlzl h2:6 h3:15 h4=28

Triangular pyramidal numbers T, (or tetrahedral numbers) are
positive integers that can be represented by triangular pyramidal shapes.
The first four tetrahedral numbers are 1, 4, 10, and 20; see Figure 5.13.

A
A N

lel T2:4 T3:10 T4:20

49. Define T, recursively.
50. Conjecture an explicit formula for T',.

51. Establish the formula in Exercise 50.

Square pyramidal numbers S, are positive integers that can be rep-
resented by pyramidal shapes, where the base is a square. The first four
square pyramidal numbers are 1, 5, 14, and 30, see Figure 5.14.

52-54. Redo Exercises 49-51 with S,,.

Let a,, denote the number of subsets oftheset S = {1, 2, ..., n}that contain
no consecutive integers, where n > 0. When n = 0, S = @.T Compute each.
55. ag 56. a; 57. ag 58. ag

TProposed by Irving Kaplansky of The University of Chicago.

286 Chapter 5 Reeursion

Figure 5.14

S;=1 S;=5 Sy =14

59. Define a, recursively.

60. Solve the recurrence relation satisfied by a,,.

Suppose we introduce a mixed pair of 1-month-old rabbits into a large enclo-
sure on the first day of a certain month. By the end of each month, the
rabbits become mature and each pair produces £ — 1 mixed pairs of offspring
at the beginning of the following month. (Note: k > 2.) For instance, at the
beginning of the second month, there is one pair of 2-month-old rabbits and
k — 1 pairs of 0-month-olds; at the beginning of the third month, there is
one pair of 3-month-olds, £ — 1 pairs of 1-month-olds, and £(k — 1) pairs of
0-month-olds. Assume the rabbits are immortal. Let a,, denote the average
age of the rabbit pairs at the beginning of the nth month. (P. Filipponi,
1990)

**61. Define q, recursively.
**§2, Predict an explicit formula for a,,.
#%683. Prove the formula in Exercise 64.

64. (For those familiar with the concept of limits) Find nlirgo a,.

5.3 Solving Recurrence Relations Revisited

Unfortunately, the iterative method illustrated in the preceding section
can be applied to only a small and simple class of recurrence relations. The
present section develops a method for solving two large, important classes
of recurrence relations.

5.3 Solving Recurrence Relations Revisited 287

Linear Homogeneous Recurrence Relations with Constant Coefficients (LHRRWCCs)

A kth-order linear homogeneous recurrence relation with con-
stant coefficients is a recurrence relation of the form

Qpn =C10p-1 +€20p-2 + - - +CrQp_ (6.7)

where ¢1,¢9,...,¢, € Rand ¢, # 0.

First, a few words of explanation: The term linear means that every
term on the RHS of Equation (5.7) contains at most the first power
of any predecessor a¢;. A recurrence relation is homogeneous if every
term on the RHS is a multiple of some q;; in other words, the rela-
tion is satisfied by the sequence {0}; that is, a, = 0 for every n. All
coefficients ¢; are constants. Since a,, depends on its £ immediate pre-
decessors, the order of the recurrence relation is k2. Accordingly, to
solve a kth-order LHRRWCC, we will need % initial conditions, say,
ag = Co, a; = Cl, ey Qp1 = Ck—l-

.

The next example illustrates in detail the various terms in this definition.

[m * The recurrence relation s, = 2s,,_; is a LHRRWCC. Its order is one.

¢ The recurrence relation a, = na,_1 is linear and homogeneous. But
the coefficient on the RHS is not a constant. Therefore, it is not a
LHRRWCC.

* h, = h,_1+ (n — 1) is a linear recurrence relation. But it is not
homogeneous because of the term n — 1.

* The recurrence relation a, = a371 + 3a,_2 is homogeneous. But it is
not linear since the power of a,,_1 is 2.

* a, =a,_-1+2a,_9+ 3a,_¢ is a LHRRWCC of order six. n

Before we discuss solving second-order LHRRWCCs, notice that the solu-
tion of the recurrence relation s,, = 2s,_1, wheresy =1,iss, =2, n >0
(see Exercise 1 in Section 5.2). More generally, you may verify that the
solution of the recurrence relation a,, = «a, _1, where ayg = ¢, is a,, = ca”,
n=>0.

We now turn our attention to the second-order LHRRWCC

a, =aa,-1+ ba,_o (5.8)
where a and b are nonzero constants. If it has a nonzero solution of the form
ca™, then ca™ = aca™ ! +bea” 2. Since ca # 0, this yields «? = ax +b; that

is, «® —aa —b = 0, so o must be a solution of the characteristic equation

2 —ax—-b=0 (5.9)

288 Chapter 5 Reeursion

of the recurrence relation (5.8). The roots of Equation (5.9) are the
characteristic roots of recurrence relation (5.8).

Theorems 5.2 through 5.4 show how characteristic roots help solve
LHRRWCCs.

m Let o and B be the distinct (real or complex) solutions of the equation

x2 —ax —b = 0, where a,b € R and b # 0. Then every solution of the
LHRRWCC a,, = aa,,_1 + ba,_g, where ¢y = Cy and a1 = C1, is of the form
a, = Aa™ + BB" for some constants A and B.

PROOF:
The proof consists of two parts:

* First, we will show that a,, = Ae™ + BB" is a solution of the recurrence
relation for any constants A and B.

* We will then find the values of A and B satisfying the given initial
conditions.

First, notice that since « and g are solutions of equation (5.9), a2 = ao + b
and 82 =ap +b.

* To show that a, = Aa™ + BB" is a solution of the recurrence relation:
aay-1 +ba,_g = alAa™ 1 + B 1) + bAc" % + BB Y
=Ad""*(ax +b) + B 2ap + b)
=Ad" % o* + B2 B2
= Ao" + BS"
=a,
Thus a,, = Aa™ + BS" is a solution of the recurrence relation (5.8).

* Secondly, let a, = Aa™ + BB" be a solution of (5.8). To find the values
of A and B, notice that the conditions ¢y = Cg and a; = C; yield the
following linear system:

Co=A+B (5.10)
C, =Aa + BB (5.11)

Solving this system, we get (Verify.)

€1 - Cop and —C—Oa—_-ﬁgl- (Remember, o # 8.)

a—pB o —

A=

With these values for A and B, a, satisfies the initial conditions and the
recurrence relation. Since the recurrence relation and the initial conditions
determine a unique sequence, {a,}, a, = Ac" + BB" is indeed the unique
solution of the recurrence relation.]

5.3 Solving Recurrence Relations Revisited 289

A few interesting observations:

¢ The solutions @ and g are nonzero, since @ = 0, for instance, would
imply that b = 0.

* Theorem 5.2 cannot be applied if « = 8. However, it works even if o
and g are complex numbers.

* The solutions «” and " are the basic solutions of the recurrence
relation. In general, the number of basic solutions equals the order of
the recurrence relation. The general solution a, = Ac™ + Bg" is a
linear combination of the basic solutions. The particular solution is
obtained by selecting A and B in such a way that the initial conditions
are satisfied, as in Theorem 5.2.

The next three examples illustrate how to solve second-order
LHRRWCCs using their characteristic equations.

[m Solve the recurrence relation a, = 5a,_1 —6a,_g, whereag = 4andaj = 7.

SOLUTION:
* To find the general solution of the recurrence relation:
The characteristic equation of the recurrence relation is x2 — 5x+6 = 0;
the characteristic roots are 2 and 3. Therefore, by Theorem 5.2, the
general solution of the recurrence relationisa, = A-2" + B . 3". (This
solution is used in Examples 5.19 and 5.20.)

* To find the values of A and B:
Using the initial conditions we find:

ay=A+B=4
a1 =2A+3B=17
Solving this linear system yields A = 5 and B = —1 (Verify this.).
Thus the solution of the recurrence relation satisfying the given condi-
tionsisa, =5-2" - 3", n > 0. [|

The next example finds an explicit formula for the nth Fibonacei number
F,,, which we have been waiting for.

[m Solve the Fibonacci recurrence relation F, = F, 1 + F,_ 2, where

F, =1 = Fs.

SOLUTION:

The characteristic equation of the recurrence relation isx? —x — 1 = 0, and
5 1-+5

its solutions are o = /5 and 8 = 2f. You may verify e + 8 = 1

and aff = —1.
The general solution is F,, = Aa™ + BB"™. To find A and B, we have:

Fi=Aa+Bg=1
Fo=Ac® +Bg? =1

290

Table 5.3

Chapter 5 Recursion

Solving these two equations, we get (Verify):

o« _ (1+v5h)2 _1++5
1+oa2 (5+/5)/2 5++5
1+ VBB -V5) _5+5/5-/5-5 _ 1
C B5+VB6G-vE) 25-5 V5
p__ 1

and similarly B = 1T 52 = 7 (Verify this.).

Thus the solution of the recurrence relation satisfying the given condi-
tions is
ot — ﬁn at — ﬁn
an = i

V5 a—p

which is the Binet form for the nth Fibonacci number F,. (See Example 5.26
for a different method.) | |

The next example, proposed by Irving Kaplansky of The University of
Chicago, also illustrates solving second order LHRRWCCs and is closely
related to Example 5.15.

Let a, denote the number of subsets of the set S = {1,2,..., n} that do not
contain consecutive integers, where n > 0. Whenn = 0, S = @. Find an
explicit formula for a,,.

SOLUTION:

To get an idea about a,, let us find its value for n = 0, 1, 2, 3, and 4 by
constructing a table, as in Table 5.3. It appears from the table that a, is a
Fibonacci number and a,, = F,, ;9.

n | Subsets of S that do not an
contain consecutive integers

09, 1
110, {1} 2
2 | ©,11}, {2} 3
3 1 @,{1}, {2}, {3}, {1,3} 5
4 | 9, {1}, {2}, {3}, {4}, {1,3}, {1,4},{2,4} | 8

1

Fn+2

We shall, in fact, prove that a,, = F,, o in two steps: First we shall define
a, recursively and then solve the recurrence relation to obtain this explicit
formula.

* To define a,recursively:
From Table 5.3, a9 = 1 and a; = 2. So let n > 2. Let A be a subset of S
that does not contain two consecutive integers. Then either n € A or
n¢A.

5.3 Solving Recurrence Relations Revisited 291

Case 1 Suppose n € A. Then n — 1 ¢ A. By definition, S* =
{1,2,...,n — 2} has a,_9 subsets not containing two consecutive inte-
gers. Add n to each of the subsets. The resulting sets are subsets of S
satisfying the desired property, so S has a,,_s such subsets.

Case 2 Suppose n ¢ A. By definition, there are a,,_1 such subsets of
S having the required property.

Since these two cases are mutually exclusive, by the addition principle,
ap =0ap-1+ap-2.

Thus a, can be defined recursively as

ao=1a; =2

Gn =0Qp_1+Qan_3, n=>2.

s To solve the recurrence relation:

This recurrence relation is exactly the same as the Fibonacci one with
the initial conditions ap = 1, a; = 2. So instead of going through a
complete solution, as in Example 5.15, notice that this definition yields
the Fibonacci numbers 1, 2, 3, 5, 8, It follows that a, = F, o,
n> 0.

Using the values of @ and g from Example 5.15,

n+2 _ gn+2
an=Fup=2—"0 " nxo
a—f
(Verify this. See Exercise 13.) []

Theorem 5.2 does not work if the characteristic roots @ and g are equal,
that is, if ¢ is a root with degree of multiplicity two. The following theorem,
however, comes to our rescue. It shows that, in addition to o”, na® is a
basic solution.

Let a,b € R and b # 0. Let o be a real or complex solution of the equation

x? — ax — b = 0 with degree of multiplicity two. Then a, = Aa™ + Bna” is

the general solution of the LHRRWCC a, = aa,_1 + ba,_2.

PROOF:
Since « is a root of the equation x* — ax — b = 0 with degree of multipli-
city two,
2 —ax—b=(x—a)?
=x% - 2ax + a?
Therefore,

a=2x and b= -—a? (5.12)

292 Chapter 5 Reecursion

» To show that a, = na®™ satisfies the recurrence relation:
Notice that

aa,_1 +ban_2 = af(n — Do 1]+ bl(n — 22
= 2a[(n — Da"] + (—=a®)[(n - 2)a" %]
by (5.12)
=a"[2(n-1)— (n - 2)]

=na" =ay
Therefore, na™ is a solution of the recurrence relation.

Then a, = Ac™ + Bng" is the general solution of the given recurrence
relation, where A and B are selected in such a way that the initial conditions
are satisfied. (The values of A and B can be found using initial conditions,
as in Theorem 5.2.)]

The next example illustrates Theorem 5.3.

m Solve the recurrence relation a, = 6a,.1 —9a,_2, whereag = 2anda; = 3.

SOLUTION:
The characteristic equation of the recurrence relation is x> — 6x + 9 = 0;
its solution is 3 with degree of multiplicity two. Therefore, by Theorem 5.3,
the general solution of the recurrence relationisa, = A-3" + B-n3". (We
use this in Example 5.21.)

The initial conditions ag = 2 and a1 = 3 yield the equations

A-3°+B.0-3°=2
and A-3+B-1-3=3.
Solving these equations, we get A = 2 and B = —1. (Verify).

Thus the solution of the recurrence relation satisfying the given condi-
tionsisag, =2-3"—n-3*,n>0. B

Theorems 5.2 and 5.3 can be combined to yield the following general
result.

M Let a be a characteristic root of the LHRRWCC (5.7).

* If the degree of multiplicity of « is 1, then «” is a basic solution of the
LHRRWCC.

» If the degree of multiplicity of « is m, then &, na™, ... ,n™ o™ are basic
solutions of the LHRRWCC. (Note: A kth-order LHRRWCC has % basic
solutions.)

* The general solution of the LHRRWCC is a linear combination of all
basic solutions. []

The following example illustrates this general theorem.

LNHRRWCCs

53 Solving Recurrence Relations Revisited 293

Solve the recurrence relation a, = 7a,,_1 — 13a,_2 — 3a,,_3 + 18a,,_4, where
ag = 5,a1 = 3,a2 = 6, and ag = —21.

SOLUTION:
The characteristic equation of the LHRRWCC is x* —7x3+13x2+3x—18 = 0.
Since x* — 7x3 + 18x2 + 3x — 18 = (x + 1)(x — 2)(x — 3)?, the characteristic
roots are:
—1 and 2 with degree of multiplicity one each

and 3 with degree of multiplicity two

Since 3 is a root with degree of multiplicity two, it yields two basic
solutions, 3" and n3". Thus the general solution of the LHRRWCC is a

linear combination of the basic solutions (—1)*,2", 3", and n3"; that is,
an = A(-=1)" + B2" + C3" + Dn3".

To find the values of A, B, C, and D:
Since ag = 5,a1 = 3,a9 = 6, and ag = —21, we have
A+B+C=5
—-A+2B+3C+3D=3
A+4B+9C+ 18D =6
and ~A+8B+27C +81D = -21
Solving this linear system, we get A =2 = C,B = 1, and D = —1 (Verify

this.). Thus the solution of the LHRRWCC satisfying the initial conditions
Isa, =2(-1)"+2"+2.3"—n3", n>0. |

The technique of solving LHRRWCCs cannot be applied to the seemingly
simple recurrence relations f,, = f,,_1 +n (Example 5.5) and b,, = 2b,,_; +1
(Example 5.4), which are linear, but nonhomogeneous. So we now turn to
solving linear nonhomogeneous recurrence relations with constant
coefficients (LNHRRWCCs).

The general form of a LNHRRWCC is

An =C1Qp-1+C2Qn_9+ -+ Cra,_p + () (5.13)
where c1,¢2,...,cp € R ¢, # 0, and f(n) is not identically zero. Its solution
depends on that of the associated linear homogeneous recurrence
relation with constant coefficients (ALHRRWCCs)

ap =C1Qp-1 +C2ap_9+ ---+Cpa,_p (5.14)

we studied earlier.

294

Chapter5 Recursion

Solving LNHRRWCCs

To solve the LNHRRWCCs (5.13), let a”‘) denote the general solution of the
ALHRRWCCs (5.14). Suppose we know some solution a P of the recurrence

relation (5.13); a(p Visa particular solution of the LNHRRWCCs (5.13).
Then the general solution of (5.13) is given by

an = (h) + a<p)

This fact is confirmed by the following theorem; we leave its proof as an
exercise (see Exercise 44).

Let @' denote the general solution of the ALHRRWCCs (5.14) and alP a
partlcular solution of the LNHRRWCC (5.13). Then a,, = o + afzp) is the
general solution of the LNHRRWCCs (5.13). [|

It follows from this theorem that solvmg the LNHRRWCCs (5.13)
depends on finding a particular solution aP’. Although no general algo-
rithm exists for solving an arbitrary LNHRRWCCS two special cases can
be handled fairly easily. When f(n) is a polynomial in n or is of the form
Ca”, a particular solution can be extracted with ease, as the next two exam-
ples demonstrate, where C and « are constants. The techniques we employ
are similar to those used to solve linear nonhomogeneous differential
equations.

Solve the LNHRRWCCs a,, = 5a,_1 — 6a,_2 + 8n?, where ag = 4 and
a] = 7.

SOLUTION:

It follows from Example 5.14 that the general solution of the ALHRRWCCs
an = Ba,_1 — 6a,_g is given by @) = A . 2" + B - 3" Since f(n) = 8n? is
a quadratic polynomial in n, it seems reasonable to look for a particular

solution of the same form, say, a, = an?+bn+-c. Then the given recurrence
relation yields

5la(n — 12 +b(n— 1) +c]—6laln —2)2 +b(n —2) +c] + 8n?
(8—an?+(14a -bn—19a+7b—c¢

an? +bn+c

Equating the coefficients of like terms, we get the linear system:

a=8—-a
b=14a - b
c=-19+7b—c¢

Solving the system, we get a = 4,5 = 28, and ¢ = 60 (Verify). We now claim
that a'”’ = 4n? + 28n + 60 is a particular solution (Verify).

53 Solving Recurrence Relations Revisited 295

Thus, by Theorem 5.5, the general solution of the given recurrence
relation is

an = aﬁlh) + aﬁlp)

=A-2"+B-3"+4n% + 28n + 60
Using the two given initial conditions, this yields the linear system:

A+B=-56
2A +3B=-85

This yields A = —83 and B = 27 (Verify this also.).
Thus the desired solution is

an =(—83).2"4+27-3" +4n% + 281 +60, n>0]
The next example illustrates how to solve the LNHRRWCCs (5.13) when

f(n) is of the form Ca™, where C and « are constants.

Solve the LNHRRWCCs a,, = ba,_1 — 6a,_2 + 3 - 5", where ag = 4 and
a; = 1.

SOLUTION:

As in Example 5.19, the general solution of the ALHRRWCCs a,, = 5a,,_1 —
6a,_g is given by a,(lh) =A- 2"+ B-3" Since f{n) = 3 - 5", we search for a
particular solution of the form a, = ¢ - 5”. Then we must have

¢c-5"=5(c-5" 1 —6(c-5"2)+3.5"
Canceling 5"~2 from both sides, the resulting equation yields ¢ = 25/2.
We now claim that a,, = (25/2)5" is a particular solution of the recurrence
relation (Verify this.).
Thus the general solution of the LNHRRWCCs is
a, =A-2" +B.3" +(25/2)5"

Using the initial conditions, we get the linear system:

A+B=-17/2
2A + 3B = —111/2

Solving this system, we get A = 30 and B = —77/2 (Verify this.).
Thus the solutions of the given recurrence relation are given by

ap =(30)-2" —(77/2) - 3" +(25/2)- 5", n>0

(Verify this also.) n

296

Chapter 5 Reeursion

An important observation: In this example, notice that the 5 in f(n) is
not a characteristic root of the ALHRRWCCs. If it were, we would have
needed to make adjustments in our search for a particular solution, as
in Theorem 5.3. We shall pursue this case shortly.

The following theorem justifies the techniques demonstrated in these
two examples; we omit its proof in the interest of brevity.

In the LNHRRWCCs (5.13), suppose f(n) = (bpn* +bp_n* 1+ ... +bin +
bo)a™. If « is not a characteristic root of the ALHRRWCCs (5.14), then a
particular solution is of the form (dpn® + dp_1n* 1 + .- +din + dga™.
If « is a characteristic root with multiplicity m, then a particular solution
is of the form n™(eyn* +e;,_1n* 1 + ... +e1n + eg)a™. ||

We conclude this section with the following example, which illustrates
this theorem when « is a characteristic root of the ALHRRWCCs.

Solve the LNHRRWCCs a, = 6a,_-1 — 9a,_2 + 4(n + 1)3", where ag = 2
and a; = 3.

SOLUTION:

From Example 5.17, the general solution of the ALHRRWCCs is o/ =
A-3"+B-n3" wheren > 0. Since 3 is a characteristic root with multiplicity
2, we search for a particular solution of the form n?(cn + d)3", where the
constants ¢ and d are to be determined. Then we must have

n(cn +d)3" = 6{(n — 1)%lc(n — 1) +d|3* 1}
~9{(n —2%c(n — 2 +d13" 2} + 4(n + D3"

Equating the coefficients of like terms, this yieldsc¢ = 2/3 and d = 4 (Verify);
SO aﬁlp) =2n%(n +6)3" L.
Thus the general solution of the recurrence relation is

an=A-3"+B-n3" +2n2n +6)3"", n>0
Using the initial conditions, this yields
an=6-19n)-3" 1+ 2n2(n +6)3""!, n>0]

{(You can confirm this.)

Exercises 5.3

Determine if each recurrence relation is a LHRRWCC.
1. L, = Ln—l +L,_9 2. D, = nDn_l + (=1)*
3. a, =1.08a,_1 4. b, = 2bn~1 +1

5.3 Selving Recurrenee Relations Revisited 297

5. ap,=a,_1+n 6. a, =2a,.1+2"-1)
7. ap =a,_1+ 20,92+ 3a,_5 8. ap =ap_1+2a,_5+n?
Solve each LHRRWCC.

9. ¢, =a,-1+2a,_2,a0=38,a1 =0
10. a, =5a,_1 —6a,_g,a0 =4,a, =7
11. a, =ap-1 +6a,-2,090 =5,01 =0
12, a, =4a,_ 9,00 = 2,01 = -8
13. a, =a,-1+a,-92,00 =1,a1 =2
14. ¢, =a, 1 +ap_2,a0=2,a1 =3
15. L,=L, 1+L, 92, L1 =1,Ly =3
16. a, = 4a,_1 —4a,_9,a0 = 3,a1 =10
17. a, =6a,,_1 —9a,_92,00 = 2,01 =3
18. a;, =3a,_1 +4a,_9 — 12a,_3,a0 = 3,a1 = —T,a9 =7
19. a, = 8a, 1 —21a, 92+ 18a,_3,a0 = 0,a; = 2,a9 = 13
20. a, = Ta,_1 — 16a,_9 + 12a,,_3,a90 = 0,a1 = 5,a9 = 19

21. a, = —a,_1 + 16a,_2 + 4a,_3 — 48a, 4,00 = 0,01 = 16,a9 = -2,
as = 142

22. a, = 13a,.9 — 36a, 4,00 = 7,a; = —6,a9 = 38,a3 = —84

23. a, = 9a,_1 — 30a,_¢ + 44a, 3 — 24a,_4,a9 = 5,01 = 12,a9 = 38,
ag = 126

24. a, = 8a,_1 — 24a,_2 + 32a,_3 — 16a, 4,00 = l,a1 = 4,00 = 44,
asz = 272

Find the general form of a particular solution of the LNHRRWCCs (5.13)
corresponding to each function f(n).

25. f(n)=n 26. f(n)=1 27. f(n) = 3n?
28. f(n) = 3" 29. f(n) =n2" 30. f(n) = 43n25"

Find the general form of a particular solution of the LNHRRWCCs
an = 4a,_1 — 4a,-2 + f(n) corresponding to each function f(n).

31. f(n)=3-27 32. f(n) =n2"
33. f(n) = 23n22n 34. (1708 — 1)2n
Solve each LNHRRWCCs.

35. a, =2a,_1+1,a9=1

36. a, = Ta,_1 — 10a,_2 +n% a9 =0,a; =1

298 Chapter 5 Recursion

37. ap, =Ta,_1—12a, 92+ 3,00 =0,a1 =2
38. a, =7a,_1—12a, 2+ 3n4"*, 090 = 0,a; =2
*39. ¢, =a,_1+n,a0=1
*40. a, = a,_1+n-1,a; =0

41. Let r, and s, be two solutions of the recurrence relation (5.8). Prove
that a, = r, + s, is also a solution.

42. Let a be a solution of the equation xk —eqxtl -~ ¢ = 0. Show

that o is a solution of LHRRWCC (5.7).

43. Let a be a characteristic root of the LHRRWCC a,, = aa,_1 +ba,_s+
ca,_3 with degree of multiplicity three. Show that o”, na”, n2a" are

solutions of LHRRWCC.

44. Let o/ denote the general solution of the ALHRRWCCs (5.14) and
af a particular solution of the LNHRRWCCs (5.13). Prove that
an =a® + aiF’ is the general solution of the LNHRRWCCs (5.13).

5.4 Generating Funetions

Generating functions provide a powerful tool for solving LHRRWCCs, as
will be seen shortly. They were invented in 1718 by the French mathe-
matician Abraham De Moivre, when he used them to solve the Fibonacci
recurrence relation (see Example 5.26). Generating functions can also solve
combinatorial problems, as the next chapter shows.

To begin with, notice that the polynomial 1 +x + x? + %3 + x* + x® can
6

be written as x . You may verify this by either cross-multiplication,

x

the familiar long division method, or Exercise 8 in Section 4.4. Accord-
61

ingly, f(x) = p 1 is called the generating function of the sequence of
x —

coefficients 1, 1, 1, 1, 1, 1 in the polynomial.

More generally, we make the following definition.

Generating Funetion
Let ag,ay,a9,... be a sequence of real numbers. Then the function

g(x) =ao +aix +agx® + - +apx" + - (5.15)

is the generating function for the sequence {a,}. Generating functions
for the finite sequence ag, a1, . .. ,a, can also be defined by letting a; = 0 for
i > n; thus g(x) = agp + a1x + agx® + - - - + a,x” is the generating function
for the finite sequence ag,a1,...,a,.

54 Generating Funetions 299

Abraham De Moivre (1667-1754), son of a surgeon, was born in Vitry-le-
Francois, France. His formal education began at the Catholic village school,
and then continued at the Protestant Academy at Sedan and later at Saumur.
He did not receive good training in mathematics until he moved to Paris in
1684, where he studied Euclid’s later books and other texts.

Around 1686, De Moivre emigrated to England, where he began his life-
long profession, tutoring in mathematics, and mastered Newton’s Principia
Mathematica. In 1695 he presented a paper, his first, on Newton’s theory
of fluxions to the Royal Society of London and 2 years later he was elected a
member of the Society. Unfortunately, despite his influential friends, he could
not find an academic position. He had to earn a living as a tutor, author, and
expert on applications of probability to gambling and annuities.

He dedicated his first book, a masterpiece, The Doctrine of Chances, to
Newton. His most notable discovery concerns probability theory: The binomial probability distribution can
be approximated by the normal distribution.

De Moivre died in London.

For example,
gx)=1+2c+3%+ +(n+1x"+...

is the generating function for the sequence of positive integers and

nin+1) ,
_—X 4

f)=1+8c+6x2+ -+ 5

is the generating function for the sequence of triangular numbers. Since

x—1
T = l+x+a?+.. +x"71
xfl
glx) = T is the generating function for the sequence of n ones.
x —

A word of caution: The RHS of Equation (5.15) is a formal power
seriesinx. The letter x does not represent anything. The various powers
x™ of x are simply used to keep track of the corresponding terms a,, of
the sequence. In other words, think of the powers x* as placeholders.
Consequently, unlike in calculus, the convergence of the series is of no
interest to us.

Equality of Generating Functions

x0 o>
Two generating functions f{x) = > a,x" and g(x) = bpx" are equal if

n=0 n=0
a, = b, foreveryn > 0.

300 Chapter 5 Recursion

For example, let f(x) = 1+ 3x + 6x% + 10x3 + ... and

2.3 3-4 4.5
gx)=1+ 3 x4+ 5 x? + 9 %%+ ---. Then f(x) = gx).
A generating function we will use frequently is

1
1—_—=1+ax+a2x2+---+a”x"+--~ (5.16)
1

Then Tj;=1+x+x2+---+x"+~. (5.17)

Can we add and multiply generating functions? Yes! Such operations are
performed exactly the same way as polynomials are combined.

Addition and Multiplication of Generating Functlons

Let f(x) = Z anx™ and g{x) = Z b,x" be two generating functions. Then
n=0 n=0

flx) +g(x) = Z(an +b,)x" and f(x)g(x) = Z (Z aibn- z)

n=0 n=0
For example,

1 1 1
1-x2 1-x 1-—x

() E)-TlE)
=0 i=0 n=0 \i=0

Y (n+ 1"

n=0

=1+2+32 4+ + @+ x4 (5.18)

and

1 1 1
(1-x3 1-x (1-x)2

(i x") lii.::(n + 1)4

Z[Zl (n+1—l):|

n: :

=Z(n+1)+n+~--+1]x”

54 Generating Funetions 301

i n+Dn+2) ,
= #x
n=0

=1+48x+6x%+10x3 + - -- (5.19)

Before exploring how wvaluable generating functions are in solving
LHRRWCCs, we illustrate how the technique of partial fraction decom-
position, used in integral calculus, enables us to express the quotient
% of two polynomials p(x) and g(x) as a sum of proper fractions, where
degp(x) < deg g(x).}

For example,

6x+1 _ 1 + 2
(2 —1)(2x+3) 2x—-1 20+3

Partial Fraction Decomposition Rule for %, where deg p(x) < deg g(x)

If g(x) has a factor of the form (ax +)™, then the decomposition contains
a sum of the form
Ay Ag A
b @rbZ et b

where A; is a rational number.
Examples 5.22-5.24 illustrate the partial fraction decomposition tech-
nique. We use their results to solve the recurrence relations in Examples

5.25-5.27.
[m Express m as a sum of partial fractions.
SOLUTION:

Since the denominator contains two linear factors, we let

X _ A 4 B
1-x)(1-20) 1-x 1-2x

To find the constants A and B, multiply both sides by (1 — x)(1 — 2x):
x=A(l-2x)+B(1—x)

Now give convenient values to x. Setting x = 1 yields A = —1 and setting
x = 1/2 yields B = 1. (The values of A and B can also be found by equating

Tdeg f(x) denotes the degree of the polynomial f(x).

302

Chapter 5 Recursion
coefficients of like terms from either side of the equation and solving the
resulting linear system.)

x _ -1 + 1
(1-x)(1-20) 1-x 1-—2«

(You may verify this by combining the sum on the RHS into a single
fraction.) We use this result in Example 5.25. |

Express 1 as a sum of partial fractions.

—x_ a2

SOLUTION:

First, factor 1 — x — x2:

1—x—x2=(1—ax)(1-px)

1 1-+5

where o = +2\/5 and 8 = 2«/—‘ {(Notice that « + 8 = 1,08 = —1, and
a—pB=+5)

Let

x A B
= +
1—x-x2 1-ax 1-p8x
Then

x = A(l — Bx) + B(1 — ax)
Equating coefficients of like terms, we get:
A+B=0
—BA—aB=1

1
Solving this linear system yields A = ﬁ = —B (Verify this.).
Thus

_;__L[LI
1-x—x2) JBll—ax 1-§x

We use this result in Example 5.26.]
2— 9«
1 — 6x + 9x2

SOLUTION:
Again, factor the denominator:

Express as a sum of partial fractions.

1—6x +9x% = (1 — 3x)?

54 Generating Functions 303

By the decomposition rule, let

2 —9x _ A + B
1-6x+9%2 1—-3x (1-—3x)2

Then
2-9x=A(1-3x)+B

This yields A = 3 and B = —1 (Verify this.).

Thus
2—-9x 3 B 1
1-6x+92 1-3x (1-3x)2
We use this result in Example 5.27.]

Now we are ready to use partial fraction decompositions and generating
functions to solve recurrence relations in the next three examples.

M Use generating functions to solve the recurrence relation b, = 2b,_; + 1,
where by = 1.

SOLUTION:

First, notice that the condition ; = 1 yields by = 0. To find the sequence
{b,} that satisfies the recurrence relation, consider the corresponding
generating function

glx) = by + bix+ b2x2 + b3x3+~~~+ bpx+ -

Then
2xg(x) = 2b1x% + 2box3+ -+ 2b, _1x+ - - -
Also,
=1+x+ 2+ xS+ Xl
1—x
Then

1
gx) = 24g(x) — 7—— =1+ (b1~ D+ (bp — 2b1 — D" + -

+(bp —2bp—1 — Dx" + - -
=1

since by = 1 and b, = 2b,,_; + 1 for n > 2. That is,

X

1
-2 =g -1=73

Then
x

g0 =0 pd 29

304 Chapter 5 Recursion

1 1
1- 1

() (e ”),by(5.16)
n=0

oo

Z — 1x”

by Example 5.22

But glx) = Z bpat, so b, = 2" — 1, n > 1. (Notice that this is the same
solution obtamed in Example 5.12.)]
M Using generating functions, solve the Fibonacci recurrence relation F,, =
F,_ 1+ F,_ o whereF; =1=Fs.
SOLUTION:
Notice that the two initial conditions yield Fy = 0. Let
gx)=Fy+Fix +Fox®>+ -+ Fpx" + - -

be the generating function of the Fibonacci sequence. Since the orders of
F, 1 and F,,_o are 1 and 2 less than the order of F),, respectively, we find
xg(x) and x2g(x):

xg(x) = Fix? + Fox® + Fax* 4+ + Fr_1x™ + - -
x2g(x) = F1x® + Fox* + Fsx® + - + Fry_ox + - --
Then
gx) —xg(x) —x2g(x) = Fix + (Fy — F)x2 + (Fg = Fy — Fx® + -+
+(Fy—Fy_y —Fr_o)x™ + - --
=x

sinceFo=Fiand F, =F, 1+ F, 9.
That is,

A-x—-x*gk) =x

W =1
1 1 1
= — - E .
Jg[l—ax 1—ﬂx}’by xample 5.23
1 1-
where a = +2\/5 and 8 = 3 5

5.4 Generating Functions 305

Then
1 1
Vog(x) = l—ax 1-px
o o o0
— Zanxn _ Zﬁnxn — Z(an — B
n=0 n=0 n=0
So

i o — ") N
gx) = —_—x

n=0 \/5

Therefore, by the equality of generating functions,

o — B o — g

NEY

(Recall that this is the Binet form of F},.) [|

Fnz

We close this section with the following example.

Using generating functions, solve the recurrence relation a, = 6a,_; —
9a,_2, where ag = 2 and a1 = 3.

SOLUTION:
Let
gx) =ag+a1x +agx® 4+ +ax + -
Then
6xg(x) = 6agx + 6aix’ + Baox® + -+ + 6ap_1x" + - -
92g(x) = 9agx? + 9a1x® + agx? + - + 9a,_ox + - -
Then

glx) — 6xg(x) + 9x2g(x) = ap + (a1 — 6ag)x + (az — 6a; + ag)x® + - - -
+ (an —6an_1 +9a,_2)x™ +---
=2-9

using the given conditions. Thus
(1—6x+9%%)glx) =2 -9

Therefore,

— 9x

g = 1 — 6x + 9x2

306 Chapter 5 Recursion

3 1
- - by Example 5.24
1-8x (1—3o2 - -Xample

=3 (i 3”x") - Z(n +1)3%x"

n=0 n=0

=) 3"~ (n+ D3"I"

n=0
0
=) 3"2-ni"
n=0
Thus
ap=12-n)3" n=>0 []

The following exercises provide ample practice in this problem-solving
technique.

Exereises 5.4

Express each quotient as a sum of partial fractions.

. x+7 9 4x? — 3x — 25
(x — Dilx+3) T4 Dx—-2)0x+3)
3. 5 2+ 4x
1—x— 622 T 14 8c+ 1522
x(x +2) —2%2 - 2x+ 2
" @2780aZ+ D) b T DhErm
4% +x+3 xS+ 22+ x
LT S e e
3x3 —x% + 4x . 2 +x2+5x—2
Tt o342 _x 41 10.

xt—x24+x-1
Using generating functions, solve each LHRRWCC.

11. a, =2a,,_1,00 =1

12. g, =a, 1+ 1,01 =1

13. ap=a,_1+2,a1 =1

14. ¢, =a,-1+ 209,00 =3,a1 =0

15. a, = 4a,_9,00 = 2,a1 = —8

16. a, =a,_1 +6a,-2,00 =5, =0

Recursive Algorithms 307

.Cﬂ
(28

17. an, =Ba,_1 —6a,._9,a0 =4,a1 =7

18. a, =a,_1+an_9,a0 = l,a1 =2

19. a, =a,-1 +an_9,a0 =2,01 =3

20. L,=L, 1+Lp9,L1=1,Lyg=3

21. a, =4a,.1 —4a,_9,a0 =3,a1 =10

22. a, =6a,_1 —9%,_92,a0 =2,a1 =3

23. a, =3a,_1+4a,_o —12a,_3,a0 =3,a; = —T,a0 =7
24, a, =8a,_1 — 2la,_o + 18a,_3,a0 = 0,01 = 2,09 = 13
25. a, = Ta,_1 — 16a,_2 + 12a, _3,a0 = 0,a1 = 5,a2 = 19
26. a, =3a,_1 +4a,_9 —12a,,_3,a0 =3,a1 = -7,a2 =7
27. a, =6a,_1— 12a,_9 + 8a,.3,a90 =0,a; =2,a9 = -2
28. a, = 13a,_9 — 36a,_4,a0 = 7,a1 = —6,a2 = 38,a3 = —84

29. a, = —au-1+3a,_9+5a,_3+2a, 4,00 = 0,a1 = —8,09 = 4,a3 = —42

5.5 Recursive Algorithms

Recall that the recursive definition of the factorial function f expresses
f(n) in terms of itself with a smaller argument n — 1. Accordingly, it can be
employed to write a simple algorithm to compute n! This algorithm has the
interesting property that it invokes itself with a smaller argument. Such
an algorithm is a recursive algorithm.

Reecursive Algorithm

An algorithm is recursive if it invokes itself with a smaller argument; that
is, if it invokes a reduced version of itself. (See Figure 5.1.)

Recursive definitions invariably lead to recursive algorithms. This sec-
tion translates some of the examples discussed in Section 5.1 into recursive
algorithms and presents a few new ones— gcd, binary search, and merge
sort.

M Write a recursive algorithm to compute n!, where n > 0.

SOLUTION:

When n = 0, the algorithm must terminate and yield the value 1. When
n > 0, the recurrence relation f(n) = n - f(n — 1) must be applied: the
algorithm must invoke itself with n — 1 as the new argument. The recursive
algorithm is given in Algorithm 5.1.

308

Figure 5.15

Chapter 5 Recursion

Algorithm factorial(n)

(* This algorithm computes n! using recursion *)
0. Begin (* algorithm *)

1 if n = 0 then (* base case *)

2 factorial « 1

3. else (* invoke the algorithm *)
4 factorial « n . factorial(n - 1)

5. End (* algorithm *)

Algorithm 5.1 n

Figure 5.15 shows the result of invoking the factorial algorithm with
n = 3, where f means factorial.

f3) / f(2) —>f(1) f(0)
. recursive . @‘ . @ .

call) call - call

[« 3f2) f e« 2:f(1) f < 1:0) fel
B N - . _// * - .
: returns : returns ’ returns

X ' value . value) value

gets the value 3-2=6

Every recursive algorithm has two important characteristics, or cases:

* The base case ensures the sequence of recursive calls will terminate
after a finite number of steps. This case corresponds to the initial
condition(s) of a recursive definition.

* The general case continues to call itself so long as the base case is not
satisfied.

The next example presents an algorithm for computing the number of
handshakes made by n guests, discussed in Example 5.3.

Using Example 5.3 write a recursive algorithm to compute the number of
handshakes made by n guests.

SOLUTION:

Base case The algorithm terminates when n = 1, in which case the
number of handshakes made is zero.

General case When n > 2, the algorithm invokes itself using the
recurrence relation A(n) = h(n — 1) + (n — 1).

These two cases lead to Algorithm 5.2.

Algorithm handshake(n)

(* This algorithm computes the number of handshakes made
by n guests at a party by recursion. *)

0. Begin (* algorithm *)

5.5 Reeursive Algorithms 309

if n =1 then (* basis case *)
handshake « 0
else (* general case *)
handshake <« handshake(n - 1) + (n - 1)
End (* algorithm *)

(S T
o s e e e

Algorithm 5.2 [|

Im Write a recursive algorithm to print the moves and the total number of

moves needed to transfer the n disks from peg X to peg Z in the Tower of
Brahma puzzle in Example 5.4.

SOLUTION:
Recall that solving the puzzle involves three steps:

* Move the top n —1 disks from X to Y using Z as an auxiliary peg;
* Move disk n from X to Z; and
* Move the n —1 disks from Y to Z using X as an auxiliary.

We also must count the moves made. The resulting Algorithm 5.3 follows.

Algorithm tower (X,Z,Y,n,count)

(* This algorithm, using recursion, prints the various moves
needed to solve the Tower of Brahma puzzle and returns
the total number of moves needed in the global variable count.
Count must be initialized to 0 in the calling module. *)

0. Begin {* algorithm *)

1 if n =1 then (* base case *)

2 begin (* if *)

3. move disk 1 from X to Z

4, count <« count + 1

5 endif

6 else (* general case *)

7 begin (* else *)

8 tower(X,Y,Z,n - 1,count) (* move the top n - 1 disks *)

9. move disk n from X to Z

10. count « count + 1

11. tower(Y,Z,X,n - 1,count)

12. endelse

13. End (* algorithm *)

Algorithm 5.3 |
Suppose we invoke this algorithm by tower (X,Y,Z,3,count). The tree

diagram in Figure 5.16 illustrates the various recursive calls, where ¢ stands
for tower and ¢ for count. Seven moves are needed:

move 1 from X to Z; move 2 from X to Y; move 1 from Z to Y; move 3
from X to Z; move 1 from Y to X; move 2 from Y to Z; move 1 from X
to Z.

You may verify this.

310 Chapter 5 Recursion

Figure 5.16 t(X,Z,Y,3,)

t(X.,Y.Z,2,¢c) t(Y,Z,X.2,¢c)

t(X.,Z.Y.l.c) t{Z,Y.X.le) t(Y.XZ1c) t(X.Z.Y.1.0)

The next example displays a Fibonacci algorithm.
m Write a recursive algorithm to compute the nth Fibonacci number F,,.

SOLUTION:
Recall from Example 5.7 that the recursive definition of F,, involves two
initial conditions F; = 1 = F9, and the recurrence relation F,, = F,_; +

F,_o, where n > 3. These two cases can be combined into straightforward
Algorithm 5.4.

Algorithm Fibonacci(n)
(* This algorithm computes the nth Fibonacci number
using recursion., *)

0. Begin (* algorithm *)

1. if n=1o0rn-=2 then (* base cases *)

2. Fibonacci <« 1

3. else (* general case *)

4, Fibonacci « Fibonacci{(n - 1) + Fibonacci{(n - 2)
5. End (* algorithm *)

Algorithm 5.4]

The tree diagram in Figure 5.17 illustrates the recursive computing of
Fx, where each dot represents an addition.

Figure 5.17 ks

5.5 Reeursive Algorithms 311

The next example shows how we can use recursion to compute the ged
of two positive integers x and y.

Write a recursive algorithm to compute the ged of two positive integers x
and y.
SOLUTION:

Ifx > y, ged{x,y} = gedix — y,y}. (See Exercise 34 in Section 4.2.) We use
this fact to write Algorithm 5.5.

Algorithm gcd(x,y)
(* This algorithm computes the gcd of two positive
integers x and y using recursion. *)

0. Begin (* algorithm *)

1 if x > y then

2 ged <« ged{x - y,y}
3 else if x <y then

4, ged <« ged{y, x}
5 else

6 gcd « Xx

7. End (* algorithm *)

Algorithm 5.5

(As an exercise, use this algorithm to compute ged{x,y} with x = 28 and
y=12,x=13andy =20,andx =17 andy =y.) [|

We now turn our attention to the recursive version of the binary search
algorithm, presented in Example 4.28 in Section 4.5. Recall that binary
search, a divide-and-conquer technique, is an efficient method for searching
an ordered list for a key (say, for example, a certain name in your local
telephone directory).

(Binary Search Algorithm) Write a recursive algorithm to search an
ordered list X of n items and determine if a certain item (key) occurs in the
list. Return the location of key if the search is successful.

SOLUTION:
Because the algorithm is extremely useful, we first outline it:

compute the middle index.
if key = middle value then
we are done and exit
else if key < middle value then
search the lower half
else
search the upper half.

The algorithm is given in Algorithm 5.6.

Algorithm binary search(X,low,high,key,found,mid)
(* The algorithm returns the location of key in the
variable mid in the list X if the search is successful.

312 Chapter 5 Recursion

Low, mid, and high denote the lowest, middle, and highest
indices of the list. Found is a boolean variable;
it is true if key is found and faise otherwise. *)

0. Begin (* algorithm *)

1. if low < high then (* list is nonempty *)

2. begin (* if *)

3. found <« false (* boolean flag *)

4, mid « |(low + high)/2]

5. if key = Xpiq then

6. found < true {* we are done. *)

7. else

8. if key < Xpiq then (* search the lower half *)
g. binary search(X,low,mid - 1,key,found,mid)
10. else (* search the upper half *)

11. binary search(X,mid + 1,high,key,found,mid)
12. endif

13. End (* algorithm *)
Algorithm 5.6

(As an exercise, use this algorithm to search the list [3,5, 8,13, 21, 34,
55, 89| with key = 5 and key = 23.) []

The Merge Algorithm

Before presenting the merge sort algorithm that sorts a list into ascending

order, we show how the merge algorithm works. It combines two ordered

lists A and B into an ordered list C, eliminating all duplicate elements.
Consider the two lists A and B:

1 2 3 1 2 3 4 5
Al2}1315 Bl 1135 }8]13

Clearly, the combined sorted list contains at most 8 elements.
Let a; denote the ith element of A, b; the jth element of B, and ¢;, the kth
element of C, where 1 <i < 3,1 <j<5,and1 <k <8

Step 1 Initially, compare a; and b;. Since b1 < ay, store b; in ¢;. This
yields the following

Cl1

5.5 Recursive Algorithms 313

Step 3 Compare ag and by. Since they are equal, store ay in c3:

1 2 3 4 5 6 7 8
cl1},2]3

Step 4 Since ag = b3, store ag in c4:

1 2 3 4 5 6 7 8
Cl112]|3|5

Step 5 There are no more elements left in A, so copy the remaining
elements of B into C. This yields the following sorted list:

1 2 3 4 5 6 7 8
clf1]12|3|5]|8]13

We now explore the merge sort algorithm, which uses both recursion
and the merge algorithm.

The Merge Sort Algorithm

The merge sort algorithm sorts a list X of n elements into increasing
order. First, partition the list into one-element sublists by successively
dividing lists in two. Then invoke the merge algorithm successively to
merge the sublists, a pair at a time, into increasing order until the entire
list is sorted.

For instance, suppose the one-element sublists after successive division
are x1,x9,..., and x,; then merge the sublists x; and x9, x3 and x4, etc., to
form new sublists x19,x34, etc.; now merge the sublists x12,x34,... pair by
pair; continue like this until there is a single ordered list.

The following example illustrates this method.

m Using the merge sort algorithm, sort the list 13, 8, 3, 5, 2 into ascending

order.

SOLUTION:

Divide the given list into two sublists of equal or about the same size:
{13, 8,3] and [5,2]. Split each sublist into two sublists, resulting in four
sublists: {13, 8], [3], [5], [2]. Now divide the first sublist into two sublists,
resulting in five one-element sublists: [13], [8], [3], [5], [2].

The tree diagram in Figure 5.18 illustrates this splitting process.

Now the merge algorithm combines them successively in pairs into sorted
sublists until the original list is sorted, as shown by the upside-down tree
in Figure 5.19.

The recursive merge sort algorithm is given in Algorithm 5.7. Use it to
sort the list [13, 55, 3, 8, 34, 5, 2, 31, 29, 6].

314 Chapter 5 Recursion

Figure 5.18 13, 8, 3,5 2 «—- griginal list
/\
13, 8.3 5.2 - first splitting
13, 8 3 5 2 «— second splitting
13 8 «— third splitting into

one-element sublists

Figure 5.19 13 8 5 2 «— start merging in pairs
813 3 2,5 «— merge
LRI «— merge again
235,813 «— sorted list (]

Algorithm merge sort{X,low,high)
(* This recursive algorithm successively divides a Tist X of
high - low + 1 elements into sublists of one element. Then it
continues to merge sublists in pairs into ordered subliists by
invoking the merge algorithm until the whole list is ordered. *)
Begin (* algorithm *)
if low < high then(*1ist contains more than one element*)
begin (* if *)
middle « [(Tow + high)/2]
merge sort{X,low,middle) (* sort the lower sublist *)
merge sort{X,middle + 1,high) (* sort the upper list*}
merge the two sublists
endif
End (* algorithm *)

O~ WO
PN

Algorithm 5.7

Exereises 5.5

Using Algorithm 5.4, compute the nth Fibonacci number for each value
of n.

1. 3 2. 6 3. 7 4. 10

55 Recursive Algorithms 315

Using Algorithm 5.4, find the number of computations needed to com-
pute the nth Fibonacci number F), for each value of n. (Hint: Draw a tree
diagram.)

5. 4 6. 5 7. 6 8. 7

9. Let @, denote the number of additions needed to compute F,, using
recursion. Use Exercises 5-8 to predict a formula for a,,.

10. Using induction, prove the formula in Exercise 9 for every n > 1.
11. Write an iterative algorithm to compute the nth Fibonacci number.

12. Mrs. Zee deposits A dollars at a bank at an annual interest rate of r%
compounded semiannually. Write a recursive algorithm to compute
the compound amount she will receive at the end of n years.

Using the recursive binary search algorithm in Example 5.33, determine if
the given key occurs in the corresponding list. Show the successive values
of low, high, and mid.

13. 2,3,5,8,13,21; key = 13 14. 3,5,7,8,10;key =9
Using the merge sort algorithm, arrange each list into ascending order.

15. 9,5,2,7,19, 17,3, 11 16. 9,11, 6,2, 12, 3,8, 5, 31, 13

17. Write an algorithm to compute the nth Lucas number L, using
recursion.

18. Let x be a positive real number and rn a nonnegative integer. Write a
recursive algorithm to compute x”.

Let X = [x1,x2,...,xp] and Y = [y1,¥2,...,¥n] be two lists of numbers.
Write a recursive algorithm to accomplish the tasks in Exercises 19-31.

19. Find the sum of the numbers from left to right.

20. Find the sum of the numbers from right to left.

21. Compute the product of the numbers from left to right.
22. Compute the product of the numbers from right to left.
23. Find the maximum of the numbers in the list.

24. Find the minimum of the numbers in the list.

25. Print the numbers in the given order x1,x9,...,x,.

26. Print the numbers in the reverse order x,,x,_1,...,%x2,%1.

27. (Linear search) Search the list for a specific item (key). Return the
location of key if the search is successful.

28. Determine if two lists X and Y of n items of the same type are identical.

316 Chapter 5 Recursion

29. Determine if a word of n alphanumeric characters is a palindrome.

30. Evaluate Ackermann’s function A(x,y), wherex and y are nonnegative
integers. See Exercises 5.1 for a definition of A(x,y).

31. Sort the list X using bubble sort.
32. Use the recursive bubble sort algorithm to sort the list 13, 5, 2, 8, 3.

Quicksort, invented in 1962 by C. Anthony R. Hoare of Oxford University,
is an extremely efficient technique for sorting a large list X of n items
x1,X2,...,Xn. It is based on the fact that it is easier to sort two small lists
than one large list. Choose the first element x; as the pivot. To place the
pivot in its final resting place, compare it to each element in the list. Move
the elements less than x; to the front of the list and those greater than x; to
the rear. Now place pivot in its final position. Partition the list X into two
sublists such that the elements in the first sublist are less than x; and the
elements in the second sublist are greater than x;. Continue this procedure
recursively with the two sublists.

*33. Use quicksort to sort the list 7, 8, 13, 11, 5, 6, 4.

*34. Use quicksort to write a recursive algorithm to sort a list X of n
elements.

5.6 Correctness of Recursive Algorithms

We now use induction to establish the correctness of two well-known recur-
sive algorithms, linear search and bubble sort. We begin with the linear
search algorithm.

Recall that the linear search algorithm searches a list X of n elements for
a given key. If the search is successful, the algorithm returns the location of
key; otherwise, it returns zero. A recursive version is given in Algorithm 5.8.
Again, as an exercise, use it to search the list X = {13,5,47,7,11, 8, 3] for
key = 11.

Algorithm linear search (X,n,key,location)

(* This algorithm returns the position of key in the
variable location. If location = 0, then key does
not exist in the list. *)

0. Begin (* algorithm *)

1 if n = 0 then (* unsuccessful search *)

2 location « 0

3 else if xp = key then

4, location < n

5 else

6 linear search(X,n - 1,key,location)
7 End (* algorithm *)

Algorithm 5.8

5.6 Correetness of Recursive Algorithms 317

[M Establish the correctness of Algorithm 5.8.

PROOF (by PMD:

To prove the correctness of the algorithm, we must show that it works
correctly for n > 0. Let P(n): The algorithm returns the correct value of
location for every list of size n.

Basis step When n = 0, lines 3 through 6 in the algorithm are skipped
and the algorithm returns the value 0 from line 2. So the algorithm works
correctly whenn = 0.

Induction step Let & be an arbitrary integer 2 > 0 such that P(k) is
true; that is, assume the algorithm works correctly for a list of arbitrary
size & > 0. To prove that P(k + 1) is true, invoke the algorithm for a list X
of sizek + 1. Notethat 2 + 1 > 1.

Case 1 If x,,; = key, the algorithm returns the value £ + 1 from
line 4.

Case 2 Ifx;,1 # key, line 6 is executed; so the algorithm is invoked for a
list with & elements. By our inductive hypothesis, the algorithm works for
such a list.

Thus in both cases, the algorithm returns the correct value of location.
Therefore, P(k + 1) is true.

Consequently, P(n) holds for n > 0 by induction; that is, the algorithm
works correctly for every list. []

Next we verify the correctness of the recursive version of the bubble sort
algorithm, given in Algorithm 5.9. To get used to it, you may use it to sort
the list X = [13,5,47,7,11, 8, 3).

Algorithm Bubble Sort(X,n)
(* This algorithm sorts a list X of n items using recursion. *)
0. Begin {* algorithm *)

1 if n>1 then (* list contains at least two elements *)
2 begin (* if *)

3 for i =1ton-1do

4 if xi > xj4+1 then (* they are out of order *)

5. swap Xj and Xj+1

6 bubble sort(X,n - 1)

7 endif

8. End (* algorithm *)

Algorithm 5.9

M Establish the correctness of Algorithm 5.9.

PROOF (by PMI):
Let P(n): The algorithm works for every list of size n.

318

Chapter 5 Recursion

Basis step When n = 0, the list contains no elements. So the algorithm
works by default. Thus, P(0) is true.

Induction step Assume P(%) is true for an arbitrary integer & > 0; that
is, the algorithm correctly sorts every list of &£ (> 0) elements. To prove that
P(k +1) is true, invoke the algorithm for a list X with % + 1 elements, where
k+1>1

If £ +1 = 1, the for loop is not entered. So P(k+1) is true, by default.

If £+ 1 > 1, the for loop is entered. Consecutive elements x; and x;,{
are compared in line 4 and switched in line 5 if necessary. When we exit
the loop, the largest of the & + 1 elements is placed in the correct position,
in location & + 1.

This leaves a sublist of £ elements, x1,...,x;. By the inductive hypothe-
sis, the algorithm correctly sorts such a list.

Thus if P(k) is true, then P(k+1) is also true.

Therefore, by induction, P(n) is true for every n > 0: the algorithm sorts
every list of every size n > 0. |

The following exercises provide additional opportunities to establish the
correctness of recursive algorithms.

Exercises 5.6

Establish the correctness of each algorithm.
1. The factorial algorithm in Example 5.28.
The handshake algorithm in Example 5.29.
The Tower of Brahma algorithm in Example 5.30.
The Fibonacci algorithm in Example 5.31.
The binary search algorithm in Example 5.33.

S ook ow N

The merge sort algorithm in Algorithm 5.7.
7-17. The algorithms in Exercises 19-29 of Section 5.5.

Algorithm 5.10 computes the nth power of a positive real number x, where
n > 0. Use it to answer Exercises 18-24.

Algorithm exponentiation(x,n)

(* This algorithm computes the nth power of x using recursion
and returns the value in the variable answer. *)

0. Begin (* algorithm *)

1 if n = 0 then

2 answer « 1

3. else if n =1 then

4 answer <« Xx

5 else

5.7 Complexities of Recursive Algorithms (optional) 319

6. begin (* else *)

7. value <« exponentiation(x,[n/2])
8. answer <« value - value

9. if n is odd then

10. answer <« answer - x

11. endelse

12. End (* algorithm *)
Algorithm 5.10

Let a, denote the number of multiplications (lines 7-10) required by the
algorithm to compute x™. Compute each.

18. ap 19. al 20. a4 21. as

22. Find the recurrence relation satisfied by a,.
23. Solve the recurrence relation in Exercise 22, where n = 2%,
24, Establish the correctness of Algorithm 5.10.

25. Prove the correctness of the iterative Fibonacci algorithm in
Exercise 11 of Section 5.5.

*5.7 Complexities of Recursive Algorithms (optional)

Using the big-oh and big-theta notations, we now investigate the com-
plexities of a few standard recursive algorithms: linear search, Fibonacci,
selection sort, binary search, and merge sort. In addition, using Fibonacci
numbers, we estimate the number of divisions needed to compute ged{a, b}
using the euclidean algorithm.

We begin our analysis with the recursive linear search algorithm.

M Use the recursive linear search in Algorithm 5.8 to estimate the worst time
required to search for a key in a list X of n items.

SOLUTION:
Let ¢, denote the maximum number of element comparisons needed in
line 3 of the algorithm. To find a big-oh estimate of c,, first define it
recursively.

Clearly,co = 0. Whenn > 1

maximum number of calls number of
cn, = | from the recursive call in | + | comparisons
line 6 in line 3

=cp1+1

320

Chapter 5 Recursion

Thus
co=0

ancn_1+1, n21

Solving this recurrence relation (try) yields ¢, = n,n > 0;s0¢, = O@n) =
®(n). Thus, in the worst case, the algorithm takes O(n) = ®(n) comparisons
to locate the key, the same as the iterative version. u

Next we analyze the recursive and iterative Fibonacci algorithms.

Using the recursive algorithm in Example 5.31, estimate the number of
additions a, needed to compute the nth Fibonacci number.

SOLUTION:
By Exercises 9 and 10 in Section 5.5, a, = F,, —1,n > 1. But, by Exercise 43
in Section 5.1, F,, < 2", where n > 1. Therefore,

a, <2" -1
< 2"

= 0(2")

Thus, the recursive Fibonacci algorithm takes O(2") additions. |

For comparison, we now study the complexity of the iterative version of
the Fibonacci algorithm.

lm Estimate the number of additions a,, required in line 5 to compute the nth

Fibonacci number F,, by Algorithm 5.11.

Algorithm iterative Fibonacci(n)

(* This iterative algorithm uses the values of the
variables of the last and the current Fibonacci
numbers to compute the next Fibonacci number. *)

0. Begin {* algorithm *)

1 last « 1

2 current « 1

3 for i = 2 to n do

4, begin (* for *)

5. next « last + current

6 last <« current

7 current <« next

8 endfor

9. End (* algorithm *)

Algorithm 5.11
SOLUTION:

The first two Fibonacei numbers need no computations; therefore, a; =
0 = as. Suppose n > 2. It takes one addition to compute the next item

5.7 Complexities of Recursive Algorithms (optional) 321

F, from the current term F,,_1. So a, = a,_1 + 1. Solving this recurrence
relation (try), we get
a,=n—2, n=>2
= 0O(n)
Thus the iterative version takes ®(n) additions to compute F,,. |

The time it takes to compute F), by the recursive algorithm grows expo-
nentially with n, whereas by the iterative algorithm it grows only linearly.
As n gets larger and larger, it takes more time to compute F}, by recursion
than by iteration. Thus, by dividing and conquering the problem, we have
made it complicated.

Should we prefer the iterative method to the recursive method? Since
every recursive algorithm has a nonrecursive version, if the algorithm
makes just one recursive call to itself, as in the factorial algorithm, the
iterative approach will, in general, save time. On the other hand, if the
problem has a recursive definition, it will be easy to write a recursive algo-
rithm for the problem. Writing the nonrecursive version of a recursive
algorithm is often a painful task and the resulting algorithm is often much
longer, complicated, and difficult to understand. For instance, the nonre-
cursive version of the Tower of Brahma algorithm is longer and that of
quicksort is rather complicated.

Next we estimate the number of element-comparisons required by
the recursive selection sort algorithm presented in Algorithm 5.12. (See
Algorithm 4.11 in Chapter 4 for an iterative version.)

Algorithm selection sort(X,n)
(* This algorithm invokes a subalgorithm called swap
which switches two elements. Maxindex denotes the
index of the largest of the n elements. *)
Begin (* algorithm *)
maxindex < n (*initialize maxindex at each pass *)
fori=1ton-1do
Tf Xi > Xpaxindex then
maxindex <« i
if maxindex # n then (* swap the corresponding items *)
SWap Xmaxindex and Xn
selection sort(X,n - 1)
End (* algorithm *)

O N OO W= O

Algorithm 5.12

Estimate the number ¢, of comparisons (lines 3 and 5) required by
Algorithm 5.12.

SOLUTION:
To estimate c¢p, first define it recursively.

If the list contains just one element, lines 3 and 5 are not executed;
therefore, ¢; = 0.

322

Chapter 5 Reeursion

Suppose n > 2. Since the for loop is executed n — 1 times, line 3 is
executed n — 1 times. Furthermore, line 5 is executed once. Therefore,

Ch=Ch_1+n-1)+1

=Cp_1+n, n=>2
Solving the recurrence relation by the iterative method, we get

1

= 0(n?)

Thus the algorithm takes ©(n2) comparisons to sort a list of n items, as in
the iterative version. |

Example 5.41 investigates one of the many properties of Fibonacci num-
bers. Example 5.42 uses the property to estimate the number of divisions
in the euclidean algorithm.

1++/5

5 Prove that

Let F, denote the nth Fibonacci number and o =
a" 2 <F,<a" ! n=>3.

PROOF (by strong induction):

(We shall prove that o® 2 < F, and leave the other half as an exercise.)

You may verify that « is a solution of the equationx? =x+1,s0¢? = a + 1.
Let P(n): «"~2 < F,,, where n > 3.

Basis step Since the induction step below uses the recurrence relation
Fj,.1 = F, + F;_1, the basis step involves verifying that both P(3) and P(4)
are true.

¢ To show that P(3) is true: When n = 3,

1 5 1+3
(Xn~2 —u = +2\/— < % _9_ F3

So P(3) is true.
¢ To show that P(4) is true:

Thus P(4) is also true.

5.7 Complexities of Reeursive Algorithms (optional) 323

Induction step Assume P(3), P(4),..., P(k) are true; that is, assume
a'=? < F; for 3 < i < k. We must show that P(k + 1) is true; that is,
ak_l < Fk+1

We have
a?=a+1.
Multiplying both sides by a*~3,
ofF 1= gk 2 4 k3 (Note: £ —3>2.)
<Fp,+Fp_;, by the inductive hypothesis
=Fp1, by the recurrence relation

Thus P(& + 1) is true.

Therefore, by the strong version of induction, P(n) is true for n > 3; that
is, "2 < F), for every n > 3. | |

Now we can estimate the number of divisions required by the euclidean
algorithm to compute ged{a, b}.

M (Lamé’s Theorem) The number of divisions needed to compute g{a, b} by

the euclidean algorithm is no more than five times the number of decimal
digits in b, wherea > b > 2.

PROOF:
Let F,, denote the nth Fibonacci number, @ = rg, andb = r;. By the repeated
application of the division algorithm we have:

rg =riqi+re O<ro<nr
ry =reoqgs +rs O§r3<r2
Tn-2 =Tn-19n-1+7"n 0<r, <rp-1

'n—1="Tngn

Clearly, it takes n divisions to evaluate ged{a,b} = r,,. Since r; < r;_1,
g; > 1for 1 <1 < n. In particular, since r,, < r,_1,qn, > 2;sor, > 1 and
rn—1 = 2 = F3. Consequently, we have:

I'n-2 =Tn-19n-1+7rn
Zrp-1+rn

>Fg+1
=F3+Fy=Fy

324

Chapter 5 Recursion

'n—3 =Tn-2qn-2 +In-1

>Trn-2+rn-1

>F4+Fg=Fp
Continuing like this,
ri=raqz +r3
Zrg+rs
E Fn +Fn—1 :Fn+1
That is,
b> Fn+1
1 5
By Example 5.41, F,,.; > o™, where « = +2f. Therefore,
b > an~1
Then
logh > (n — 1) loga
1 5 1
Since o = +2\/— ~ 1.618033989, log o ~ 0.2089876403 > 5 So
n—1
logh > ——
og 5

Suppose b contains k decimal digits. Then b < 10%. Therefore, logb < &
and hence & > n_—_l Thus n < 5k + 1 or n < 5k. That is, the number of

divisions needed by the algorithm is no more than five times the number
of decimal digits in n. |

. -1
Let us pursue this example a bit further. Since log b > nT’ n <
1+ 5logb. Also, since b > 2,

5logb > 5log 2
>1

Thus
n<1l+5logh

< 5logb+5logh
= 10logd
= O(logbd)

Thus it takes O(log &) divisions to compute ged{a,b} by the euclidean
algorithm.

5.7 Complexities of Reeursive Algorithms (optional) 325

Gabriel Lamé (1795-1870) was born in Tours, France. After graduating from
the Ecole Polytechnique in 1817, he continued his studies at the Ecole des Mines,
from which he graduated in 1820.

The same year Lamé was appointed director of the School of Highways and
Transportation in St. Petersburg, Russia. There he taught mathematics, physics,
and chemistry and planned roads and bridges in and around the city. In 1832, he
returned to Paris to form an engineering firm. Within a few months, however, he
left it to become the chair of physics at the Ecole Polytechnique, where he remained
until 1844. While teaching, he served as a consulting engineer, becoming the chief
; engineer of mines in 1836. He helped build the railroads from Paris to Versailles
< % andtoSt. Germain.

* ,‘:’ ‘3 : In 1844, Lamé became graduate examiner for the University of Paris in math-
w o ematical physics and probability, and professor 7 years later. In 1862, he became
deaf and reszgned his positions. He died in Paris.

Although Lamé did original work in number theory and mathematical physics, his greatest contribu-
tion was the development of the curvilinear coordinates and their applications. His work on the curvilinear
system led him to number theory. In 1840, he proved Fermat’s Last Theorem for n = 7.

Gauss considered Lamé the foremost French mathematician of his time. French mathematicians,
however, considered him too practical, and French scientists, too theoretical.

The next example, due to S. H. Friedberg, explores the number of multi-
plications needed to compute the determinant of an n x n matrix by cofactor
expansion. (It may be omitted by those not familiar with determinants and
calculus.)

M (optional) Let f,, denote the number of multiplications needed to compute
det A, the determinant of an arbitrary n x n matrix A = (a;;) by cofactor

expansion. Estimate f,,.

SOLUTION:
We estimate f,, in three steps:

* Define f,, recursively.
* Solve the recurrence relation.
* Use the solution to estimate f;,.

* To define f;, recursively:
Let C;; denote the (n — 1) x (n — 1) determinant obtained from det A by
deleting its ith row and jth column. By expanding det A with respect to
the first row, we have

n
detA = Z(—l)j*lalelj <« cofactor expansion by row 1
j=1

326 Chapter 5 Recursion

In particular, let A = (Z Z . ThendetA =aCy; — bCi2 =ad — be.

Clearly, two multiplications are needed to evaluate detA and hence
fo=2 Alsof; =0.
Suppose n > 3. Then, by definition, it takes f,_; multiplications to
compute Cy;. Therefore, it takes f,_1 + 1 multiplications to evaluate
a1;Cy; and hence n(f,_1 + 1) multiplications to compute det A.

Thus f;, can be defined recursively as follows:

fi=0
fa=n{fr_1+1), n>2 (5.20)

(This is a linear nonhomogeneous recurrence relation with nonconstant
coefficients.)

* To solve the recurrence relation (5.20):
Let f» = nlg,. Since fi = 0, g1 = 0. Substituting for f, in
Equation (5.20), we get

n'g, =nfn —)'g,_1 + 1]
=nlg,-1+n
So

(gn —&n-1nl=n

8n —8n-1= (Note: g1 = 0.)

1
(n— 1)
Solving this yields (see Exercise 64)

n—1

&n = Z Ak sinceg; =0
k=1
So,

n-1
1
fn =nlgn =n! (Z P)

k=1

k=1

Therefore,

fu <n! (Z %) -1
k=1

=nle—1) — 1, by calculus
<en!

= O

5.7 Complexities of Recursive Algorithms (optional) 327

Thus the evaluation of detA by cofactor expansion takes O(n!)
multiplications. |

Divide-and-Conquer Algorithms

IiXAMl’LE 5.44

We can now analyze the complexities of a special class of recursive
algorithms called divide-and-conquer algorithms.

The binary search algorithm presented in Algorithm 5.6 is based on the
divide-and-conquer approach. To search an ordered list of n items for a
given key, we divide the list into two smaller and similar sublists of about
the same size. If the middle value # key, then we search either the lower
half or the upper half, and continue this procedure until we are done. This
exemplifies a divide-and-conquer algorithm.

More generally, consider a problem of size n. Suppose the problem can
be solved for a small initial value of n, and it can be broken up into @ smaller
and similar subproblems of approximately the same size, usually [n/b] or
[n/b], wherea,b ¢ N, 1 <a <n,and 1 < b < n. Assume that we can solve
each of the subproblems and employ their solutions to solve the original
problem. Such an algorithm is a divide-and-conquer algorithm.

Let f(n) denote the number of operations required to solve the original
problem and g(n) the number of operations resulting from the splitting.
Then, assuming b is a factor of n,

f(n) =af (n/b) + g(n)

This is the divide-and-conquer recurrence relation resulting from the
algorithm.

The binary search algorithm manifests the complexities of the divide-
and-conquer technique.

(binary search) Using the recursive binary search in Algorithm 5.6, let
¢, denote the maximum number of element comparisons needed to search
for a given item (key) in an ordered list X of n items. If n = 1, then low =
high = mid = 1 and the condition in line 5 is tested exactly once; soc; = 1.

Suppose n > 1. Then the middle term is x|(,11)2;. Compare key to
Xi(n+1y2)- If they are not equal, search the lower sublist or the upper sub-

1

list, but not both. If n is even, L%J = LI—ZLJ, so the upper half contains
n_ LgJ elements and the lower half contains g -1 (< LgJ) elements.

2
1 1
On the other hand, if n is odd, then Ln + J = i—; 80 both sublists con-

2
-1 . .
tain n = LEJ elements each. Thus, in any case, the maximum number

of comparisons needed is ¢|,/2; + 1. So
ci1=1
Cn = C|p/2] =+ 1, n>2 (5.21)

328

LE(AMI’LI*I 545

Chapter 5 Reeursion

To solve this recurrence relation, assume, for convenience, that n is
a power of 2, say n = 2k, where £ > 0. Let ¢, = a;. Then the recurrence
relation (5.21) becomes a;, = a;_1+1, whereay = 1. Solving this recurrence
relation yields @, = £+ 1, & > 0 (Verify.). Since n = ok k= Ign, so
cn = 1+1Ign,n > 1. Thus, if n is a power of 2, then ¢, = &(lgn).

Suppose n is not a power of 2. Then, by induction, it can be shown that
cn =1+ |lgn], where n > 1 (see Exercise 44), so ¢, = @(lgn).

Thus, in both cases, the algorithm takes @(ig n) element comparisons in
the worst case. []

The preceding example is a special case of the following theorem. Since
the proof is somewhat complicated, we skip it (see Exercises 65 and 66).

Let a,b € Nand ¢,d € RT with b > 2. Let f be a nondecreasing function*
such that f(n) = af (n/b) + ¢ and f(1) = d. Then

Odgn) ifa=1
O(nlogse) otherwise "

fn) =

For example, let f be a nondecreasing function such that f(n) =
3f(n/2) + 5 and f(1) = 8. Then, by Theorem 5.7, f(n) = O(n'¢3).

The next theorem is a generalization of Theorem 5.7. We state it without
proof (see Exercises 67-69 for special cases of the theorem) and apply it in
Example 5.45.

Let a,b € Nand ¢,d € R" with b > 2. Let f be a nondecreasing function
such that f(n) = af (n/b) + cn. Then

O(nd) if @ < bY
fin)={0mlgn) ifa=>5!
Onlogsa) if @ > bd n

(optional) Let A = (a;;) and B = (b;;) be two n x n matrices. Let C =

n
(c;j) be their product where c¢;; = }_ a;;by;. Since C has n? entries and
k=1
each takes n multiplications, the product C can be computed using n® =
O(n3) multiplications; in fact, it can be computed using O(n3) computations
(additions and multiplications), as Exercises 40 and 41 indicate. | |

We close this section with an analysis of the merge sort algorithm, a
divide-and-conquer strategy.

(merge sort) The merge sort method in Algorithm 5.7 sorts a list of n
elements. Assume, for convenience, that n isa power of 2, say, n = 2% k > 0.

*Let § € R. A function f : S — R” is said to be nondecreasing if x < y implies f(x) < f(y).

5.7 Complexities of Recursive Algorithms (optional) 329

Let ¢, denote the maximum number of element comparisons needed in line
6. Show that ¢, = O(nlgn).

SOLUTION:

When n = 2, one comparison is needed in line 6; therefore, c; = 1. So, let
n > 2. The list is split into two, with each sublist containing n/2 elements.
In the worst case, the number of comparisons resulting from line 4 is ¢,s,
as it is from line 5. When the merge algorithm is invoked in line 6, each
sublist contains n/2 elements; so the maximum number of comparisons
from line 6 is n — 1. Thus

Cz:l

cn=2pp+mn-1), n=>3
Let a;, = ¢, where n = 2% k > 0. Then

(21:1

ar=2ap_1+ (2" ~1), k=2
This recurrence relation (see Exercise 8 in Section 5.2) yields

ap=Gk-128+1, k>1
—k-2t 2k 41
Thus
en=(gnin—-n+1
<nlgn+1
<2nlgn, n=>2
=0nlgn)]
More generally, it can be shown that in the worst case the merge sort

requires O(n lg n) element comparisons for a list of n elements. This time
estimate is the best among all sorting algorithms.

Exercises 5.7

Find a big-oh estimate for each.

1. The number 2(r) of handshakes made by n guests at a party, using
Example 5.3.

2. The number b,, of moves needed to transfer n disks in the Tower of
Brahma puzzle in Example 5.4.

3. The number f,, of regions formed by n lines, using Example 5.5.

330

Chapter 5 Recursion

Estimate the solution f,, of each recurrence relation (see Exercises 5.2).

4. f1=1 5. fo=0
h=fh1+2n-1),n=>2 fo=foo1+4n,n>1

6. f1=2 7. fi=1
fo=fo-1+n,n=>2 fao=2f1+@"—1),n>2

Find the number of comparisons needed to search for key = 13 in each
ordered list using the recursive binary search algorithm in Example 5.33.

8. 1,2,3,5,8,13 9. 5,8,13,21, 34
10. 3,7,8,13,21 11. 15,16, 19, 21

Compute the maximum number of comparisons needed to search for a par-
ticular item in an ordered list containing the following number of items,
using the recursive binary search algorithm.

12. 8 13. 20 14. 25 15. 31

Let b,, denote the number of multiplications needed to compute n! using
the recursive factorial algorithm in Example 5.1.

16. Define b,, recursively.
17. Solve the recurrence relation satisfied by b,,.
18. Show that b, = O(n).

19-22. Estimate the number of times @, the assignment statement, x «
x + 1, is executed by the nested for loops in Exercises 35-38 of
Section 4.4.

Estimate the number a,, of times the statement, x < x + 1, is executed by
each nested for loop.

23. for i = 1 to n do 24. for i = 1 ton do
for j = 1 to {i/2] do for j =1 to [i/2] do
X «— x + 1 X « x + 1
*25. for i =1tondo *26. for i =1 ton do
for j =1 to i do for j =1 to i do
for k =1 to j do for k =1 to j do
for 1 =11to j do for 1 =1 to k do
X « x +1 X < x +1

Let b, denote the number of element-comparisons needed by the bubble
sort algorithm in Algorithm 5.9.

27. Define b, recursively.
28. Solve the recurrence relation.

29. Find a big-oh estimate of b,,.

5.7 Complexities of Recursive Algorithms (optional) 331

30. Let a, denote the number of additions needed to compute the nth
n—2
Fibonacci number F,, using Algorithm 5.4. Prove that a, = }_ F;,
i=1
n>3.

Solve each recurrence relation.

3l. ¢cp=1 32. ag =0
thn=C1+b, n>1 Gpn=ap_1+b,n>3
33. ¢c1=0 34. ¢c1=a
Cn=Cn_1+bn, n>2 Cn=Cp.1+bn n=>2

The number of operations f(n) required by an algorithm is given by
fr)=fn-1)+ (- 1)+ (n — 2), where f(1) = 1.

35. Find an explicit formula for f(n).
36. Show that f(n) = O(n?).

Let f(n) denote the number of bits in the binary representation of a positive
integer n.

37. Find a formula for f(n). 38. Show that f(n) = O(lgn).

39. Letx € R and n € N. The technique of successive squaring can be
applied to compute x" faster than multiplying x by itself n — 1 times.
For example, to find x*3, first evaluate x%,x%,x8,x16, and x%2; then
multiply x32,x8,x2, and x!: x*3 = %32 . x8 . x2 . x1. This process takes
only 5 + 3 = 8 multiplications instead of the conventional method’s
42. The powers of x used in computing x" are the place values of the
bits in the binary representation of n; in fact, the number of powers of
x used equals the number of nonzero bits in the binary representation
of n. Let f(n) denote the number of multiplications needed to compute
x" by successive squaring. Show that f(n) = O(lgn).

Let A = (a;;) and B = (b;;) be two n x n matrices. Let f,, denote the number
of computations (additions and multiplications) to compute their product

n
C = (¢;j), wherec;; = Y a;by,.
k=1

40. Evaluate f,. 41. Estimate f;,.
42. Solve the recurrence relation C, = 2C,;2 + 1, where C; =aandnisa
power of 2.

43. Show that C,, = O(n).

44. Let ¢, denote the maximum number of comparisons needed to search
for a key in an ordered list X of n elements, using the recursive binary
search algorithm. Prove that ¢, = 1+ [lgn], for every n > 1.

332

Chapter 5 Recursion

45. Leta,b,k € N, b > 2, and n = b*. Consider the function f defined by

k-1 . .
f(n) = af (n/b) + g(n). Show that f(n) = a*f(1) + Y a'g(n/b}).
i=0

46. Solve the recurrence relation a, = 2a,/2 +n, wherea; = 0andn = ok

47. Use Exercise 46 to show that a, = O(nlgn).

Let f be a function defined by f(rn) = af (n/b) + cn, where a,b € N, b > 2,
c e R, and f(1) = d. Assume n is a power of b.

48. Solve the recurrence relation.

49. Let a = b and d = 0. Show that f(n) = O(nlgn).

Consider the recurrence relation ¢, = ¢|p/2) + ¢|(r+1)2) + 2, wherec; = 0.
50. Compute c3 and c4.

51. Solve the recurrence relation when » is a power of 2.

52. Find the order of magnitude of ¢, when n is a power of 2.

Let ¢ be a function defined by

) ifn=1
"= Hn/2]) + t([n/2]) + bn otherwise

where a,b € R*. (Such a function occurs in the analysis of merge sort.)
53. Evaluate ¢(5) and ¢(6).

54. Prove that #(n) is a nondecreasing function; that is, #(n) < #(n + 1),
wheren > 1.

55. Show that t(n) = O(nlgn), where n is a power of 2.
Let f(n) = 2f(n/2) + cn?, where f(1) = d and n is a power of 2.
56. Solve the recurrence relation. 57. Show that f(n) = O(n?).

n o1

The number h, = > (—,), called the harmonic number, occurs fre-
i=1

quently in the analysis of algorithms.

58. Compute b4 and hs. 59. Define h, recursively.
n
60. Provethat > h,=(n+1h, —n,n>1.
i=1
m
61. Prove that hom > 1+ 5 m > 0.

1
62. Prove that h, < n—; .

Chapter Summary 333

*63. (For those familiar with calculus) Let A, denote the nth harmonic
no.1
number A, = > (;) Show that &, = O(gn).
=1
(Hint: Use intlegration.)

64. Solve the recurrence relation g, — g,_1 = 1/(n — 1)!, where g; = 0.

‘Let a,b € N and ¢,d € RT with & > 2. Let f be a nondecreasing function

such that f(n) = af (n/b) + ¢ and f(1) = d. Prove each.
**65. Ifa =1, thenf(n) = O(gn).
*%66. If a # 1, then f(n) = O(n'08 %),

Leta,b,n e N,b > 2 ¢,d € R*, f(1) =d, and n is a power of b. Let fbe a
nondecreasing function such that f(n) = af (n/b) + cn?. Prove each.

*%67. If a = b2, then f(n) = n?d + cn?logy n.

2
**68. If @ # b2, then f(n) = An? + Bnl°8% where A = be ¢ and
—a
b2
B=d+ ——.
+ a — b2
#*GQ, O(n?) ifa < b?

f(n)=30n2lgn) ifa=b?

O(nlogre) ifg > b2

Recursion

This chapter presented a new class of functions and hence sequences: recur-
sively defined functions. The definitions of such functions can be translated
intorecursive algorithms. Just as the big-oh and big-theta notations worked
well in analyzing the time complexities of algorithms, so does induction in
proving the correctness of recursive algorithms.

* The recursive definition of a function consists of one or more initial
conditions and a recurrence relation (page 262).

Solving Recurrence Relations

* A simple class of recurrence relations can be solved using the iterative
method (page 279).

* Every solution of the recurrence relation a, = a,_1+f(n) is of the form

an =ao+ 3 FG) (page 280).
i=1

334 Chapter 5 Reeursion

Every solution of the recurrence relation a¢, = ca,_1 + 1 is of the form

" -1
P wherec # 1 (page 282).

a, =c"ag +

.

k
A kth-order LHRRWCC is of the form a, = Y_ c;ja, ;, wherec, # 0
i=1

(page 287).

» The characteristic equation of this recurrence relation is x* —
k .

3 cixti =0 (page 287).

=1

The characteristic roots of a LHRRWCCs can be used to solve the
LHRRWCCs (page 288).

The general solution of a LNHRRWCCs is given by a, = aﬁlh) + aizp)
(page 294).

Generating Funetions

x

* glx) = Y a,x" is the generating function of the real number seque-
n=0

nce ap,ai, ds,. .. (page 298).

¢ Generating functions and the partial fraction decomposition rule can
be used to solve LHRRWCCs (page 301).

Recursive Algorithms

* A recursive algorithm consists of two cases: base case(s) and a
general case (page 307).

* Lamé’s Theorem The euclidean algorithm for computing gedia, b}
takes no more than five times the number of decimal digits in b, where
a>b>2 (page 323).

Divide-and-Conquer Algorithms

¢ Therecurrence relation of a divide-and-conquer algorithm is of the form
f(n) =af(n/b) +g(n) (page 327).

Review Exereises

In Exercises 1 and 2, the nth term a, of a number sequence is defined
recursively. Compute as.

1. a1 =ag=1,a3 =2

an =ap-1+ap-2+ap_3,n =>4

Chapter Summary 335

2. ai =0,a2 =asg= 1
ap =ap-1+2a,-2+3a,_3n >4

3. The number of additions a,, needed to compute the nth Fibonacei num-
ber F,, by recursion is given by a,, = F, — 1, n > 1. Find the recurrence
relation satisfied by a,.

(A modified handshake problem) Mr. and Mrs. Matrix hosted a party
for n married couples. At the party, each person shook hands with everyone
else, except the spouse. Let A(n) denote the total number of handshakes
made.

4. Define h(n) recursively.
5. Predict an explicit formula for A(n).
6. Prove the formula obtained in Exercise 5, where n > 1.

Using the iterative method, predict an explicit formula satisfied by each
recurrence relation.

7. a1=1-2 8. a1=2-3
an=ap1+nn+1),n>2 an =3a,_1,n>2

9. a:=1 10. ¢y =0
an=a,-1+2""n>2 apn =ap1+@Bn-1,n>1

11-14. Using induction, prove the formulas obtained in Exercises 7-10.

Solve each recurrence relation.

15. ¢, =a,_1+a,_9,a1 =2,a0 =3

16. ¢, =a,-1+a, 9,01 =a2=a

17. a, =2a,_1+7a,-92—8a, 3—12a,_ 4,00 = 4,a; = 10,22 = 18,a3 = 58
18. a, =4a,_1+2a,_9—12a, 3—9a, 4,00 = 4,01 =0,a9 =4,a3 = —32
19. a, =10a,_1 —21a,_2 + 5n,a9 = 0,01 =3

20. a, =8a,_1 — 1ba,,_o +4nb"% a9p = 1,a1 =3

21. Let a, denote the number of multiplications (lines 7-10) in Algo-
rithm 5.10. Show that a, = O(n).

Let ¢, denote the number of element comparisons made (line 4) by the
recursive bubble sort algorithm in Algorithm 5.9.

22. Define ¢, recursively.
23. Solve the recurrence relation.

24. Show that ¢, = O(n?).

336 Chapter5 Recursion

n .
Algorithm 5.13 evaluates the polynomial f(x) = }_ a;x* at x = «. Use it for
Exercises 25-29. i=0

Algorithm evaluate poly(f,n,o,answer)

(* This algorithm returns the value of a polynomial f
of degree n at o in the variable answer. *)

0. Begin (* algorithm *)

1. answer <« ag

2 power <« 1

3 for i =1 ton do

4, begin (* for *)

5. power <« power * (

6. answer < answer + aj * power

7. endfor

8. End (* algorithm *)

Algorithm 5.13
Evaluate each polynomial at x = —1.
25. f(x) =x3+2x% — 3x + 4 26. f(x) =23 +5x—6

Let ¢,, denote the number of operations (lines 5-6) required to evaluate a
polynomial at x = «.

27. Define ¢, recursively. 28. Solve the recurrence relation.
29. Show that ¢, = O(n?).
Use Horner’s algorithm (Algorithm 5.14) to evaluate the polynomial

n
fx) =Y ax' at x = o for Exercises 30-35.
=0
Algorithm Horner(f,n,i,o)
(* This algorithm evaluates a polynomial f of degree n at
X = o by recursion and is invoked by Horner(f,n,0,a). *)
0. Begin (* algorithm *)
1 if i = n then
2 Horner « ap
3. else
4. Horner « Horner(f,n,i + 1,a) - o + aj
5. End (* algorithm *)

Algorithm 5.14
Evaluate each polynomial at x = 2.
30. flx)=3x2+4x—5 31. flx) =2x>-5x+3

Let b, denote the number of operations (addition and multiplication)
needed in line 4.

32. Define b, recursively.

33. Solve the recurrence relation.

Chapter Summary 337

34. Show that b, = On).

35. Leta, denote the number of n-bit words that do not contain the pattern
111. Define a, recursively.

Let a, denote the number of ways a 2 x n rectangular board can be covered
with 2 x 1 dominoes.

36. Define a, recursively. 37. Find an explicit formula for a,,.
(Hint: Consider 2 x (n — 1) and 2 x (n — 2) boards.)

Write a recursive algorithm to compute each sum.

38. The sum of the first n even positive integers.

39. The sum of the first n odd positive integers.

40-41. Establish the correctness of the algorithms in Exercises 38 and 39.

42. Write an iterative algorithm to find the minimum and the maximum
of a list X of n elements.

Let ¢, denote the number of element comparisons made by the minmax
algorithm in Exercise 42.

43. Define ¢, recursively. 44. Solve the recurrence relation.

45. Show that b, = O(n).

Prove each, where « and g are the solutions of the equation x? = x + 1,
F, the nth Fibonacci number, and L, the nth Lucas number. Identities in
Exercises 46-53 were discovered in 1876 by Lucas.

n n
46. ZFi:Fn+2*1 47, ZF2i~1=F2n
i=1 =1
n n
48. 3 Foj = Fonpy — 1 49. S Li=Lp,2-3
i=1 =1
n n
50. Z L2i—1 = L2n -2 51. Z L2i = L2n+1 -1
=1 =1
52. F} +F} =Fan 53. F2_ —F2 =F,,
54’ ng{Fn?FTH*l}:l’nZl 55. xn:an+Fn~l’n>2
n_ gn -
56. F, =X P n>1

Let C(n) denote the number of comparisons needed by quicksort to sort
a list of n items. In the worst case, C(n) = C(n — 1) + (n — 1), where
C(0) =0=C().

57. Solve the recurrence relation. 58. Show that C(n) = O(n?).

(Note: This shows that, in the worst case, quicksort is as bad as selection
sort.)

338

Chapter 5 Recursion

Let A(n) denote the average number of comparisons needed by quicksort.
1 n
Then A(n) =(n+ 1) + ~ S [AG — 1) + A(n — §)], where A(0) = 0 = A(1).
=1
Use this fact to answer E)éercises 59 and 60.

A n+l /1
*59. Show that () _ 23 (—)
n+1 i=3 \ 1

*60. Show that A(n) = O(nlgn).
(Hint: Use integration.)

Supplementary Exercises

Figure 5.20

Asside of the equilateral triangle in Figure 5.20 is n units long. Let a,, denote
the number of triangles pointing north.

1. Define a, recursively. 2. Solve the recurrence relation.

The nth Fermat number f,, is defined by f,, = 22" + 1,n > 0.
3. Prove that f,41 = f? — 2f, + 2. (J. M. Schram, 1983)
4. Using Exercise 3, compute f1, fo, f3, and f3.

5. Let a, be an infinite sequence with a1 = 1, a5 = 5, ajs = 144, and
an + anys = 2a,49. Prove that a, = F,,. (H. Larson, 1977)

1 5
6. Let 0 = +2\/_ and F, the nth Fibonacci number. Prove that
. F n+1
il

n

*7. Let S, denote the sum of the numbers in the nth term of the
sequence of sets of pentagonal numbers {1}, {5,12}, {22,35,51},
{70,92,117,145},.... Find a formula for S,,.

*8. Let S, denote the sum of the numbers in the nth term of the sequence
of sets of Fibonacci numbers {1}, {1,2}, {3, 5, 8}, {13,21,34,55},....
Find a formula for S,,.

Chapter Summary 339

Describe the behavior of each number sequence {a,}, whereag = a,a; = b,
and ag = ¢ are positive numbers. (R. L. Graham, 1991)
9. api2 = +apg1)ay 10. a3 =1 +ans1 +ans2)an

Let n € N and ¢ Euler’s phi-function. Define ¢* = ¢*~1 0 ¢, where ¢! = ¢
and o denotes composition. Let f(n) = ¢(n) + o*(n) + @3 () + -+ + (D).
(D. L. Silverman, 1981)

11. Compute f(5) and f(8).

12. Prove that if n = 2%, then f(n) = n.

13. Prove that f(n) is even. [Hint: ¢(n) is even for n > 2.]

14. Consider the sequence of right triangles T, n > 1, with legs A, and
B, and hypotenuse C,, such that A, .1 = B, and B,,.1 = C,,. Compute

lim By and lim & (M. Flavio, 1980)

n—oco A, n—oo B,

A set of integers A is fat if each of its elements is > |A[. For example,
{5,7,91} is a fat set, but {3,7,36,41} is not. @ is considered a fat set. Let
f» denote the number of fat subsets of the set {1,2,...,n}. (G. F. Andrews)

*15. Define f;, recursively. *16. Find an explicit formula for f;,.

Let f(n,k) denote the number of k-element subsets of the set S =
{1,2,...,n} that do not contain consecutive integers. Let f, denote the
total number of subsets of S that do not contain consecutive integers.
(I. Kaplansky)

*17. Define f(n, k) recursively. *18. Find an explicit formula for f;,.

Computer Exereises

Write a program to perform each task.

1. Read in a positive integer n < 20, and print the various moves and the
number of moves needed to transfer n disks from peg X to peg Z, using
the rules in Example 5.4.

2. Read in a positive integer n, and print the first n triangular and
tetrahedral numbers.

Print the triangular numbers < 1000 that are perfect squares.
Print the triangular numbers < 1000 that are primes.

There are eight palindromic triangular numbers < 1000. Find them.

A

Search for two triangular numbers #, such that ¢, and n are palin-
dromic, where 9 < n < 100.

7. Read in a positive integer n and print the first n Fibonacci numbers,
using recursion and iteration.

340 Chapter 5 Reecursion

8. Read in a positive integer n < 20 and print the first n Lucas numbers.

9.

Fn+1

Read in a positive integer n < 25 and print the values of and
n

L . . .
-—L’E—l correct to 10 decimal places, where F,, denotes the nth Fibonacci

nu?nber and L,, the nth Lucas number.

Read in a list of n positive integers. Use recursion to print each.

10.
11.
12,
13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

Their sum, product, maximum, and minimum.
The list in the given order.
The list in the reverse order.

Read in a key and search the list for key. Print the location if the search
is successful; otherwise, print a suitable message.

Read in a key and a sorted list of n items; determine if key occurs in
the list using recursion and iteration. Print the location of key if the
search is successful.

Read in a list of n words and determine if each is a palindrome, using
recursion.

Read in two lists of n integers. Determine if they are identical, using
recursion.

Read in a nonnegative real number x and a nonnegative integer n;
compute the nth power of x.

Read in a positive integer n < 100 and a positive real number x < 2.
Use the binary representation of n and the technique of successive
squaring to compute x”. Print the number of multiplications needed
to compute it.

n .
Read in a number «, and a polynomial 3 a;x* (that is, coefficients and

=0
the corresponding exponents); print the value of the polynomial at «,
using Horner’s method.

Read in n positive integers and print their minimum and maximum,
using both iteration and recursion.

Read in a positive integer n < 10 and arrange the Stirling numbers of
the second kind S(n,r) in a triangular form, where 1 < r < n.

Read in n positive integers and sort them using bubble sort, selection
sort, and insertion sort. Print the number of element-comparisons
needed by each algorithm.

Read in n four-letter words. Sort them, using merge sort and quick-
sort. Print the number of element comparisons needed by each
sort.

Chapter Summary 341

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1.

10.
11.
12.

13.

Describe the properties of Fibonacci numbers, their occurrences in
nature, applications to various disciplines, and relationships to Lucas
numbers.

Explain how the golden ratio is related to Fibonacci and Lucas
numbers. Describe its various occurrences in nature.

Describe the various forms of Ackermann’s function. Investigate its
importance in the study of recursive functions and the analysis of
algorithms.

Investigate the Josephus problem, named for the first century Jewish
historian Flavius Josephus (377-1007).

Describe how, using Fibonacci numbers F,, (n > 2) as bases, non-

negative integers can be represented as binary numbers with no two
adjacent 1’s. Express the integers 1-25 as such binary numbers.

Define continued fractions and describe their relationship to Fibonacci
numbers.

Describe the Game of Life, invented in 1970 by British mathematician
John H. Conway, now at Princeton University.

Describe the Game of Halma, invented in 1883 by George H. Monks,
a Harvard Medical School graduate.

Examine the history of Catalan numbers and their properties and
applications. Include a biography of E. C. Catalan.

Write an essay on the Tower of Brahma (Hanoi).
Write an essay on Quicksort.

Discuss the fifteen puzzle, invented by American puzzlist Samuel Loyd
(1841-1911).

Discuss Markov chains, named after Russian mathematician Andrei A.
Markov (1856-1922), who developed the theory of stochastic processes,
and their applications to business.

Enrichment Readings

G. Brassard and P. Bratley, Algorithmics: Theory & Practice, Prentice-
Hall, Englewood Cliffs, NJ, 1986, pp. 26-34, 48-61.

342

Chapter 5 Recursion

2.

10.

11.

R. P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied
Introduction, 4th edition, Addison-Wesley, Boston, MA, 1999, pp. 351-
403.

B. W. Jackson and D. Thro, Applied Combinatorics with Problem
Solving, Addison-Wesley, Reading, MA, 1990, pp. 226-252.

T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley,
New York, 2001.

C. Oliver, “The Twelve days of Christmas,” Mathematics Teacher,
Vol. 70 (Dec. 1977), pp. 752-754.

S. Sahni, Concepts in Discrete Mathematics, 2nd ed., Camelot, Fridley,
MN, 1985, pp. 205-335.

R. Sedgewick, Algorithms, 2nd ed., Addison-Wesley, Reading, MA,
1988, pp. 3-189.

K. B. Strangeman, “The Sum of n Polygonal Numbers,” Mathematics
Teacher, Vol. 67 (Nov. 1974), pp. 655-658.

C. W. Trigg, “Palindromic Triangular Numbers,” J. Recreational
Mathematics, Vol. 6 (Spring 1973), pp. 146-147.

A. Tucker, Applied Combinatorics, Wiley, New York, 1984, pp.
222-298.

H. S. Wilf, Algorithms and Complexity, Prentice-Hall, Englewood
Cliffs, NJ, 1986, pp. 26-34, 48-61.

	sdarticle7

