
Chapter 5 

R e c u r s i o n  
It is common sense to take a method and try it. I f  it fails, admit  it frankly 

and try another. But  above all, try something. 

FRANKLIN ROOSEVELT 

R ecursion is an elegant and powerful problem-solving technique, used 
extensively in both discrete mathematics and computer science. Many 

programming languages, such as ALGOL, FORTRAN 90, C + +, and Java, 
support recursion. This chapter investigates this powerful method in detail. 

In addition, we will study three simple methods for solving recurrence 
relations: iteration, characteristic equations, and generating functions. 

We also will establish the validity ofrecursive algorithms using induction 
and analyze their complexities using the big-oh and big-theta notations. 

Some of the interesting problems we pursue in this chapter are: 

�9 There are three pegs X, Y, and Z on a platform and 64 disks of increasing 
sizes at X. We would like to move them from X to Z using Y as an 
auxiliary peg subject to the following conditions: 

Only one disk can be moved at a time. 
No disk can be placed on the top of a smaller disk. 

If it takes one second to transfer a disk from one peg to another, how 
long will it take to solve the puzzle? 

�9 Is there a formula for the number  of n-bit words containing no two 
consecutive l 's? 

�9 Suppose we introduce a mixed pair (male and female) of l-month-old 
rabbits into a large enclosure on January  1. By the end of each month, 
the rabbits become mature, and each pair produces k - 1 mixed pairs 
of offspring at the beginning of the following month. Find the average 
age of the rabbit pairs at the beginning of the nth month. 

�9 Can we estimate the number  of divisions required to compute gcd{a, b} 
by the euclidean algorithm? 

�9 What is a divide-and-conquer algorithm? If f (n) denotes the number  of 
operations required by such an algorithm, what can you say about its 
order of complexity? 
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F i g u r e  5.1 

Recall tha t  in Section 2.5 we employed recursion to define sets; we invoked 
the recursive clause to construct  new elements from known elements.  The 
same idea can be applied to define functions, and hence sequences as well. 

This section il lustrates how powerful a problem-solving technique recur- 
sion is. We begin with a simple problem: 

i There are n guests at a sesquicentennial  ball. Each person shakes hands  
with everybody else exactly once. How many handshakes  are made? 

Suppose you would like to solve a problem such as this. (See Example 5.3.) 
The solution may not be obvious. However, it may tu rn  out tha t  the problem 
could be defined in terms of a simpler version of itself. Such a definition is a 
r e c u r s i v e  def in i t ion .  Consequently, the given problem can be solved pro- 
vided the simpler version can be solved. This idea is pictorially represented 
in Figure 5.1. 

can b e  can b e  can b e  

solved r solved Y solved v 
if if if 

This is 
solvable. 

Recursive Definition of a Function 

Let a ~ W and X - { a , a  + 1,a + 2,. . .}. The r e c u r s i v e  d e f i n i t i o n  of a 
function f with domain X consists of three parts, where k > 1" 

�9 Bas i s  c l a u s e  A few initial values of the function f(a), f ( a  + 1) , . . . ,  
f ( a  + k - 1) are specified. An equation that  specifies such initial values 
is an in i t ia l  c o n d i t i o n .  

�9 R e c u r s i v e  c l a u s e  A formula to compute f ( n )  from the k preced- 
ing functional values f ( n  - 1), f ( n  - 2), . . . ,  f ( n  - k )  is made. Such a 
formula is a r e c u r r e n c e  r e l a t i o n  (or r e c u r s i o n  formula) .  

�9 T e r m i n a l  c l a u s e  Only values thus obtained are valid functional 
values. (For convenience, we drop this clause from our recursive 
definition.) 
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Thus  the recursive definition of f consists of one or more (a finite n u m b e r  
of) initial conditions, and a recurrence relation. 

Is the recursive definition of f a valid definition? In other  words, if the  k 
initial values f(a) ,  f ( a  + 1 ) , . . . ,  f ( a  + k -  1) are known and f (n)  is defined in 
te rms  ofk of its p r e d e c e s s o r s f ( n -  1), f ( n - 2 ) ,  . . . ,  f ( n - k ) ,  where n > a + k, 
i s f (n)  defined for n > a? For tunate ly ,  the next  theorem comes to our  rescue. 
Its proof  uses s t rong  induction and is complicated, so we omit  it. 

~ Let a ~ W, X - {a,a + 1,a + 2, . . .},  and k e N. Let f �9 X --~ ]~ such tha t  
f(a) ,  f ( a  + 1), . . . ,  f ( a  + k - 1) are known. Let n be any positive in teger  
> a + k such tha t  f ( n )  is defined in t e rms  of f ( n  - 1), f ( n  - 2 ) , . . .  and  
f ( n  - k ) .  Then  f ( n )  is defined for every n _> a. m 

By vir tue of this theorem, recursive definitions are also known  as ] 
I i n d u c t i v e  de f in i t i ons .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The following examples i l lustrate the recursive definition of a function. 

Define recursively the factorial function f. 

S O L U T I O N :  
Recall tha t  the factorial function f is defined by f ( n )  = n!,  where f(0) - 1. 
Since n! - n ( n  - 1)!, f c a n  be defined recursively as follows: 

f ( o ) -  1 

f ( n )  - n .  f ( n  - 1), 

~- initial condition 

n > 1 ~ recurrence relat ion m 

Suppose we would like to compute  f(3) us ing this recursive definition. 
We then  cont inue to apply the recurrence relat ion unt i l  the initial condit ion 
is reached, as shown below: 

f(3) = 3 �9 f(2) 

f(2) = 2.  f ( 1 ) ~ . . .  

/ 

f(1) = 1. f(o) 

) 

f(o) = 1 

return value 

return value 

return value 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
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Since f(0)  = 1, 1 is subs t i tu ted  for f(0)  in Equa t ion  (5.3) and f(1)  is 
computed:  f(1) = 1 �9 f(0) = 1 �9 1 = 1. This  value is subs t i tu ted  for f (1)  in 
Equa t ion  (5.2) and f(2) is computed:  f(2)  = 2 .f(1) = 2 .1  = 2. This  value is 
now r e t u r n e d  to Equa t ion  (5.1) to compute  f(3): f(3) = 3 �9 f(2)  = 3 . 2  = 6, 
as expected. 

~ J u d y  deposits $1000 in a local savings bank  at an annua l  in te res t  r a t e  of 
8% compounded annually.  Define recursively the compound a m o u n t  A ( n )  

she will have in her  account  at  the  end of n years.  

SOLUTION: 
Clearly, A(0) = initial deposit  - $1000. Let n >_ 1. Then:  

compound a m o u n t  ) 
A ( n )  - at the end of the 

(n - 1)st year  

+ 

= A ( n  - 1) + (0.08)A(n - 1) 

= 1 . 0 8 A ( n -  1) 

in teres t  ea rned  ) 
dur ing  the 
n th  year  

Thus  A ( n )  can be defined recursively as follows" 

A ( 0 ) -  1000 ~ initial condit ion 

A ( n ) -  1 . 0 8 A ( n -  1), n >__ 1 +-- recurrence  re la t ion I 

For  instance,  the compound amoun t  Judy  will have at  the end of th ree  
years  is 

A(3) = 1.08A(2) 

= 1.08 [ 1.08 A( 1)l - 1.082A(1) 

= 1 .08211.08A(0)1-  1.083(1000) 

$1259.71" 

The next  two examples i l lus t ra te  an ext remely  useful problem-solving 
technique,  used often in discrete ma themat i c s  and computer  science. 

(The h a n d s h a k e  problem)  There  are n guests at  a sesquicentennia l  
ball. Each person shakes  hands  with everybody else exactly once. Define 
recursively the number  of handshakes  h ( n )  tha t  occur. 

SOLUTION: 
Clearly, h(1) - 0, so let n >_ 2. Let x be one of the guests.  By definition, 
the n u m b e r  of handshakes  made by the remain ing  n - 1 guests  among  
themselves  is h ( n  - 1). Now person x shakes  hands  with  each of these 

*The symbol ~ means is approximately  equal to. 
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n - 1 guests ,  y ie ld ing n - 1 addi t iona l  h a n d s h a k e s .  So the  tota l  n u m b e r  of 
h a n d s h a k e s  m a d e  equals  h(n - 1) + (n - 1), w h e r e  n > 2. 

T h u s  h(n) can be defined recurs ive ly  as follows: 

h ( 1 ) -  0 

h(n) = h(n - 1) + (n - 1), n > 2  

~- ini t ial  condi t ion 

~- r e c u r r e n c e  re la t ion  I 

( T o w e r  o f  B r a h m a * )  According  to a legend of India,  a t  the  b e g i n n i n g  of 

creat ion,  God s tacked  64 golden disks on one of t h r ee  d i amond  pegs on a 
b rass  p l a t fo rm in the  t emple  of B r a h m a  at  Bena re s  ~ (see F igure  5.2). T h e  
pr ies t s  on du ty  were  asked  to move the  disks f rom peg X to peg Z u s ing  Y 
as an  auxi l ia ry  peg u n d e r  the  fol lowing conditions" 

�9 Only one disk can be moved at  a t ime.  

�9 No disk can be placed on the  top of a smal le r  disk. 

The  pr ies ts  were  told t h a t  the  world would  end w h e n  the  job was comple ted .  

F i g u r e  5.2 

[ I ) 

I 
X Y Z 

Suppose  the re  are  n disks on peg X. Let  bn denote  the  n u m b e r  of moves  
needed  to move t h e m  f rom peg X to peg Z, us ing  peg Y as an i n t e rmed ia ry .  
Define bn recursively.  

S O L U T I O N :  

Clear ly  bl - 1. A s s u m e  n _> 2. Cons ider  the  top n - 1 disks on peg X. By 
definit ion,  it t akes  b~_l moves to t r a n s f e r  t h e m  from X to Y us ing  Z as 
an  auxil iary.  T h a t  leaves the  la rges t  disk at  peg X; it t akes  one move to 
t r a n s f e r  it f rom X to Z. See F igure  5.3. 

Now the  n - 1 disks at  Y can be moved  f rom Y to Z us ing  X as an  
i n t e r m e d i a r y  in bn-1 moves,  so the  to ta l  n u m b e r  of moves needed  is 
bn-1 + 1 + bn-1 - 2bn_ 1 + 1. T h u s  bn can be defined recurs ive ly  as follows" 

b n =  {1 
2bn-1 + 1 

if n -- 1 <-- init ial  condi t ion 

o the rwise  <--- r ecu r r ence  re la t ion  m 

*A puzzle based on the Tower of Brahma was marketed in 1883 under the name Tower of 
Hanoi. 
t Benares is now known as Varanasi. 
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Figure 5.3 

�9 I ) 
( I ) 

! 
Y 

For example,  

b4 - 2b3 + 1 = 212b2 + 1] + 1 

= 4b2 + 2 + 1 = 412bl + 1] + 2 + 1 

= 8 b 1 + 4 + 2 + 1  = 8 ( 1 ) + 4 + 2 + 1  

= 1 5  

so it takes  15 moves to t rans fe r  4 disks from X to Z, by this  s t ra tegy.  
The next  example also i l lus t ra tes  the same technique.  We will t ake  it a 

step fu r the r  in Chap te r  6. 

Imagine  lines in plane such tha t  two lines and th ree  n a no parallel,  are no 
are concurrent .* Let fn denote the n u m b e r  of dist inct  regions into which 
the plane is divided by them.  Define fn recursively.  

S O L U T I O N :  
If there  is jus t  one line ~1 in the plane, then  fl - 2 (see Figure  5.4). Now 
consider a second line ~2; it is in tersec ted  at  exactly one point  by el. Each 
half  of ~2 divides an original region into two, adding two more  regions (see 
Figure 5.5). Thus  f2 = fl + 2 - 4. Suppose we add a th i rd  line ~3. It is 

Figure 5.4 

Figure 5.5 

*Three or more lines in a plane are concurrent if they intersect at a point. 
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F i g u r e  5.6 

F i g u r e  5.7 

intersected by 61 and 62 in two points; in other words, line 63 is divided by 
61 and 62 into three parts. Each portion divides an existing region into two, 
yielding three new regions (see Figure 5.6). So f3 = f2 + 3 = 7. 

More generally, suppose there are n -  1 lines 61,62, . . . ,  6n-1 in the plane. 
They divide the plane into f n -1  disjoint regions, by definition. Now add one 
more line 6n (see Figure 5.7). Since no three lines are concurrent,  line 6n 

must  intersect lines 61,62, . . . ,  6n-1 at new points and hence is divided by 

ln_l   

them into n segments. Each segment divides an existing region into two 
subregions, contr ibut ing n more regions, so fn = fn -1  + n. Thus fn can be 
defined recursively as follows: 

1 if n = 0  

fn - f n -1  + n otherwise m 

The next example il lustrates how to define recursively the number  of 
times an assignment  is executed by nested fo r  loops. 

Let denote the number  of times the s ta tement  1 is assignment  a,~ X X + 

executed by the following nested fo r  loops. Define an recursively. 

f o r  i = I t o  n do 

f o r  j - I t o  i do 

f o r  k = i t o  j do 

x < - - x +  1 

SOLUTION:  
�9 First, we must  find the initial condition satisfied by an. When n = 1, 

i = j = k = 1, so the assignment  s ta tement  is executed exactly once. 
Thus al  = 1. 
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�9 To  f i n d  the  r e c u r r e n c e  r e l a t i o n  s a t i s f i e d  by an" 

Let n > 2. As i runs from i through n - 1, by definition, the s ta tement  
is executed a n - 1  times. 
When i = n, the inner loops become: 

f o r  j = 1 to  n do 

f o r  k = 1 t o  j do 

x < - - x +  I 

For each value of j ,  where 1 < j < n, the innermost loop executes the 
n n ( n  + 1) 

s ta tement  j times. So these nested loops execute it ~ j = 
j=l 2 

times. Therefore, 

no. of times the s tatement  ) 
an - is executed as i runs from + 

i through n -  1 

- a n - 1  + 
n ( n  + 1) 

no. of times the ) 
s ta tement  is executed 
when i = n 

Thus an can be defined as follows" 

a l - 1  

n ( n +  1) 
an - a n - 1  + ~ ,  n > 2 

2 

(We shall pursue this definition in Example 5.11.) m 

The next example provides a recursive definition with two initial 
conditions. We shall use it often in the following sections and in the next 
chapter. 

( F i b o n a e c i )  Leonardo Fibonacci, the most outstanding Italian math- 
ematician of the Middle Ages, proposed the following problem around 
1202: 

Suppose there are two newborn rabbits, one male and the other female. 
Find the number  of rabbits produced in a year if: 

�9 Each pair takes one month to become mature.  

�9 Each pair produces a mixed pair every month, from the second month. 

�9 No rabbits die. 

Suppose, for convenience, that  the original pair of rabbits was born on 
January  1. They take a month to become mature.  So there is still only 
one pair on February 1. On March 1, they are 2 months old and produce 
a new mixed pair, a total of two pairs. Continuing like this, there will be 
three pairs on April 1, five pairs on May 1, and so on. See the last row of 
Table 5.1. 
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T a b l e  5.1 No. of 
pairs 

Adults 
Babies 
Total 

Jan Feb March April May June  July Aug 

0 1 1 2 3 5 8 13 
1 0 1 1 2 3 5 8 
1 1 2 3 5 8 13 21 

L e o n a r d o  Fibonacc i  (1170?-1250?), also known as Leonardo of Pisa, 
was born in the commercial center of Pisa, Italy, into the Bonacci family. His 
father, a customs manager, expected the son to become a merchant and took 
him to Bougie, Algeria, to receive good training in arithmetic with Indian 
numerals. Leonardo's subsequent business trips to Egypt, Syria, Greece, 
and Sicily brought him closer to Indian mathematics. 

In 1202, shortly after his return, convinced of the elegance of the Indian 
methods of computation, Fibonacci published his famous work, Liber Abaci. 
(The word abaci in the title does not refer to the old abacus, but to computa- 
tion in general.) This book, devoted to arithmetic and elementary algebra, 
introduced the Indian notation and arithmetic algorithms to Europe. 

Fibonacci wrote three additional books: Practica Geometriae, a collec- 
tion of results in geometry and trigonometry; Liber Quadratorum, a major 

work on number theory; and Flos, also on number theory. 
Fibonacci's importance and usefulness to Pisa and its citizenry through his teaching and services were 

honored by Emperor Frederick II of Pisa. 

The numbers  1, 1, 2, 3, 5, 8 , . . .  are F i b o n a c c i  n u m b e r s . *  They have 
a fascinating property:  Any Fibonacci number ,  except the first two, is the 
sum of the two immediate ly  preceding Fibonacci numbers .  (At the given 
rate, there  will be 144 pairs of rabbi ts  on December 1.) 

This yields the following recursive definition of the n th  Fibonacci 
number  Fn : 

F1 - F2 - 1 ~ initial conditions 

Fn -Fn-I + Fn-2, n >_ 3 (-- recurrence relation n 

The next example illustrates recursion and also shows that Fibonacci 
numbers occur in quite unexpected places. 

Let denote the number of n-bit words containing two consecutive 1' an no s.  

Define an recursively. 

*See author's Fibonacci and Lucas Numbers with Applications for a thorough discussion of 
Fibonacci numbers. 
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T a b l e  5 .2  

S O L U T I O N :  
F i r s t ,  le t  us  f ind t h e  n -b i t  w o r d s  c o n t a i n i n g  no  t w o  c o n s e c u t i v e  l ' s  co r r e -  
s p o n d i n g  to n - 1, 2, 3, a n d  4 (see Tab l e  5.2). I t  fol lows f r o m  t h e  t a b l e  t h a t  

a l - 2, a2 - 3, a3 -- 5, a n d  a4 = 8. 

n = l  n = 2  n = 3  n = 4  

0 00 
1 01 

10 

000 
010 
100 
001 
101 

0000 
0100 
1000 
0010 
1010 
0001 
0101 
1001 

Now,  c o n s i d e r  an  a r b i t r a r y  n -b i t  word .  I t  m a y  e n d  in 0 or  1. 

C a s e  1 S u p p o s e  t h e  n -b i t  w o r d  e n d s  in 0. T h e n  t h e  (n - 1)st  b i t  can  be  a 
0 or  a 1, so t h e r e  a r e  no r e s t r i c t i o n s  on t h e  (n - 1)st  bit" 

n b i t s  
r 

0 
1 0 

- - - = - ~ ( n -  1 ) s t b i t  

no r e s t r i c t i o n s  

T h e r e f o r e ,  a,z_ 1 n -b i t  w o r d s  e n d  in 0 a n d  c o n t a i n  no  two  c o n s e c u t i v e  l ' s .  

C a s e  2 S u p p o s e  t h e  n -b i t  w o r d  e n d s  in 1. T h e n  t h e  (n - 1)st  b i t  m u s t  be  
a zero.  F u r t h e r ,  t h e r e  a re  no r e s t r i c t i o n s  on  t h e  (n - 2 )nd  bit" 

n b i t s  
r 

0 
1 

no r e s t r i c t i o n s  

0 1 
- ~  (n - 1)st  b i t  

T h u s  an -2  n -b i t  w o r d s  e n d  in I a n d  c o n t a i n  no  two  c o n s e c u t i v e  l ' s .  
S ince  t h e  two  cases  a re  m u t u a l l y  exclus ive ,  by  t h e  a d d i t i o n  p r inc ip le ,  we  

have:  

a l  - 2 ,  a 2 - 3  

a n  ~ a n -  1 4- a n - 2 ,  n > 3  

in i t i a l  c o n d i t i o n s  

r e c u r r e n c e  r e l a t i o n  
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F i g u r e  5.8 

Notice that the above recurrence relation is exactly the same as the 
Fibonacci recurrence relation, but with different initial conditions! The 
resulting numbers are the Fibonacci numbers 2, 3, 5, 8, 13, .... m 

Notice that this example does n o t  provide a constructive method for sys- 
tematically listing all n-bit words with the required property. It is given in 
Exercise 19. 

Interestingly enough, the delightful Fibonacci numbers occur in numer- 
ous totally unexpected places. For instance, the numbers of spiral arrays 
of seeds in mature sunflowers in the clockwise and counterclockwise direc- 
tions are often consecutive Fibonacci numbers, usually 34 and 55, or 55 
and 89. See Figures 5.8 and 5.9. 

F i g u r e  5.9 
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Before closing th is  section,  we es tab l i sh  an  i m p o r t a n t  r e su l t  f rom the  the-  
ory of formal  languages .  Fi rs t ,  recall  t h a t  Z* denotes  the  set  of words  over  
an a lphabe t  Z. Also Z* can be defined recurs ive ly  as follows (see Exerc ise  35 
in Sect ion 2.6): 

�9 ~ E E * .  

�9 I f w E Z * a n d s E Z ,  t h e n w s E E * .  

F u r t h e r m o r e ,  the  l eng th  Ilwll of a word w over E can be def ined 
recurs ive ly  as follows: 

�9 il~ll = 0 .  

�9 If  w E E* and  s E E, t h e n  Ilws[I = Ilwll + 1. 

Us ing  these  defini t ions and  induct ion,  we prove below t h a t  Ilxyll = Ilxll + 
Ilyll for any  two words  x and  y in E*. 

Let  x and  be two words  over an  a lphabe t  Z. P rove  t h a t  II II = Y any  x y  

Ilxll + Ilyll. 

P R O O F  (by induct ion):  
Let  x be any  e l emen t  in Z*. Let  P(y)  denote  the  p red ica te  t h a t  Ilxyll = 
Ilx][ + [[yl], w h e r e y  E E*. S i n c e y  E E * , y  can be the  nul l  word ~ or a 
n o n e m p t y  word. 

B a s i s  s t e p  T o  s h o w  t h a t  P(~) is t rue ;  t h a t  is, IlxZl[ = Ilxl[ + [[Zl[: 

Since xk - x, IIx~ll - Ilxll = Ilxll + 0 - Ilxll + I1~11. So P(X) is t rue .  

I n d u c t i o n  s t e p  A s s u m e  P(y) is t rue ,  t ha t  is, Ilxyll - Ilxll + IlYll ( induct ive  
hypothesis) .  We m u s t  show t h a t  P(ys) is t rue ,  t h a t  is, Ilxysil - Ilxll + liysll. 
Notice tha t :  

Then  

x y s  = (xy ) s  

llxys II = li ( xy ) s  II 

= lixyil + 1 

= ([[x[[ + [[y[[) + 1 

= [[x[[ + ([[y[[ + 1) 

= Ilxll + Itysll 

assoc, prop. of conca t ena t i on  

leng th  is a func t ion  

recurs ive  def. of l eng th  

induct ive  hypothes i s  

assoc, prop. of add i t ion  

recurs ive  def. of l eng th  

Therefore ,  P(ys) is t rue .  T h u s  P(y) implies  P(ys). 

Therefore ,  by induct ion,  P(y) is t r ue  for every y E E*; t h a t  is, Ilxyll - 
llxll + IlYll for every x, y E Z*. m 
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Finally, we emphasize that  the immediate predecessor f n - 1  need not 
appear in the recursive definition of a function f at n. For example, 
consider the function f" W ~ W defined by 

fo= , f =o, f2=1 

fn  - f n - 2  + 2 f n - 3 ,  n > 3 

Clearly, fn-1 is not needed to compute fn ,  when n > 3. Try f6 as an 
exercise. 

, J . . . . . . .  

Exercises 5.1 

In Exercises 1-6, an denotes the nth  term of a number  sequence satisfying 
the given initial condition(s) and the recurrence relation. Compute the first 
four terms of the sequence. 

1. a 1 - 1  

an - a n - 1  --t- 3, n >_ 2 

3. a 1 - 1  
n 

an = ~ a n - 1 ,  n >_ 2 
n - 1  

5. a l  - 1, a 2 -  1, a 3 -  2 

an - a n - 1  + a n - 2  + a n - 3 ,  n >_ 4 

2. a 0 - 1  

an - a n - 1  -~- n ,  n >__ 1 

4 .  a l - 1, a2 - 2 

an - a n - 1  + a n - 2 ,  n >__ 3 

6. a l - 1 ,  a 2 - 2 ,  a 3 - 3  

a n -  a n - 1  -'~ a n - 2 - ~ - a n - 3 ,  n >_ 4 

7. The nth L u c a s  n u m b e r  L n ,  named after the French mathematician 
Fran~ois-Edouard-Anatole Lucas, is defined recursively as follows" 

L1 - 1, L 2 - 3  

L n -  L n - 1  + L n - 2 ,  n > 3 

(The Lucas sequence and the Fibonacci sequence satisfy the same recur- 
rence relation, but have different initial conditions.) Compute the first six 
Lucas numbers. 
The gcd of two integers x (> 0) and y (_> 0) can be defined recursively as 
follows: 

I 
g c d l y ,  x l  

gcd{x,y} = x 

g c d { y ,  x m o d  y} 

i f y > x  

i fy  _< x a n d y -  0 

i fy  _< x a n d y  > 0 

Using this definition, compute the gcd of each pair of integers. 

8. 28, 18 9. 24, 75 
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Fran~ 'o i s -Edouard-Ana to le  L u c a s  (1842-1891) was born in Amiens, 
France. After completing his studies at the E, cole Normale in Amiens, he 
worked as an assistant at the Paris Observatory. He served as an artillery 
officer in the Franco-Prussian war and then became professor of  mathe- 
matics at the Lycde Saint-Louis and Lycde Charlemagne, both in Paris. A 
gifted and entertaining teacher, Lucas died of a freak accident at a ban- 
quet: His cheek was gashed by a piece of a plate that was accidentally 
dropped, and he died from infection within a few days. 

Lucas loved computing and developed plans for a computer that never 
materialized. Besides his contributions to number theory, he is known for 
his four-volume classic on recreational mathematics. Best known among 
the problems he developed is the Tower of Brahma. 

A person deposits $1000 in a bank  at  an annua l  in te res t  ra te  of 6%. Let  
A(n)  denote  the compound a m o u n t  she will receive at the  end of n in te res t  
periods. Define A(n)  recursively if in teres t  is compounded:  

10. Semiannua l ly  11. Quar te r ly  12. Month ly  

Ned deposits a cer ta in  a m o u n t  A0 in a bank  at an annua l  in te res t  ra te  of 
12% compounded annual ly .  The compound a m o u n t  he would receive at  the  
end of n years  is given by A,, - 1.12A,,_1, where  n >_ 1. De te rmine  the 
initial deposit  A0 if he would receive" 

13. $1804.64 at the end of 5 years.  14. $3507.00 at  the  end of 6 years.  

Define recursively each sequence of numbers .  (Hint: Look for a p a t t e r n  and 
define the n th  t e rm a,, recursively.) 

15. 1, 4, 7, 10, 13 ... 16. 3, 8, 13, 18, 23 ... 

17. 0, 3, 9, 21, 45 ... 18. 1, 2, 5, 26, 677 ... 

19. An n-bit  word conta in ing  no two consecutive ones can be cons t ruc ted  
recursively as follows" Append a 0 to such (n - 1)-bit words or append 
a 01 to such (n - 2)-bit words. Using this  procedure  cons t ruc t  all 5-bit 
words conta in ing no two consecutive ones. There  are 13 such words. 

Define each recursively, where  n > 0. 

20. The n th  power of a positive real n u m b e r  x. 

21. The union of n sets. 

22. The intersect ion of n sets. 

23. The n u m b e r  Sn of subsets  of a set wi th  n e lements .  

24. The n th  t e rm an of an a r i thmet ic  sequence with  first t e rm  a and 
common difference d. 
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John McCarthy (1927-), one of the fathers of artificial intelligence (AI), was 
born in Boston. He graduated in mathematics from the California Institute 
of Technology, receiving his Ph.D. from Princeton in 1951. After teaching 
at Princeton, Stanford, Dartmouth, and MIT, he returned to Stanford as a 
full professor. While at Princeton, he was named a Proctor Fellow and later 
the Higgins Research Instructor in mathematics. At Stanford, he headed the 
Artificial Intelligence Laboratory. 

During his tenure at Dartmouth, McCarthy coined the term artificial intel- 
ligence (AI). He developed LISP (LISt Programming), one of the most widely 
used programming languages in AI. He also helped develop ALGOL 58 and 
ALGOL 60. In 1971 he received the prestigious Alan M. Turing award for 
his outstanding contributions to data processing. 

F i g u r e  5.10 

25. The n th  t e rm an of a geometric sequence with first t e rm a and common 
ratio r. 

26. Let f �9 X ~ X be bijective. Define fn  recursively, where f2 _ f o f .  

The 9 1 - f u n c t i o n  f, invented by John  McCarthy,  is defined recursively on 
W as follows. 

f (x)  = I x -  10 i f x  > 100 

[ f (f (x + l l ) ) i f 0 _ < x _ < 1 0 0  

Compute  each 

27. f(99) 28. f(98) 29. f(f(99))  30. f(f(91))  

31. Show tha t  f(99) - 91. 

32. Prove tha t  f(x) = 91 for 90 < x < 100. 

33. Prove tha t  f (x)  - 91 for 0 < x < 90. 

( T r i a n g u l a t i o n  of  c o n v e x  p o l y g o n s )  The n th  Catalan n u m b e r  Cn 
denotes the n u m b e r  of ways to divide a convex (n + 2)-gon into t r iangles 
by drawing nonin tersec t ing  diagonals. For  instance,  there  are five ways 
of t r iangula t ing  a convex pentagon,  as shown in Figure  5.10; therefore,  

n 

C 3 - 5. Cn is given recursively by Cn+l - ~ C iCn- i ,  where Co = 1. 
i=O 

Compute  each. 

34. C6 35. C7 
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1 N 
36. The sequence defined by an+l = -~(an -}- ~ )  can be used to approxi- 

an 
mate ~ to any desired degree of accuracy, where al  is an est imate 
of v/N. Use this fact to compute v/ i9 correct to six decimal places. 
U s e a l  - 4. 

Fn+l 
37. Let Fn denote the n th  Fibonacci number.  Compute Fn correct to 

eight decimal places for 1 _< n _< 10. Compare each value to (1 + v~)/2  
correct to eight decimal places. 

38. (For those familiar with the concept of limits) Use Exercise 37 to 

predict lim Fn+l. 
n - - . oc  F n  

Prove each, where Fn is the n th  Fibonacci number,  Ln the  n th  Lucas 
number,  and a - (1 + v~)/2, the g o l d e n  r a t io .  

39. Fn = 2Fn- 2 + Fn-  3 , n > 4 

40. F 2 - F n - l F n + l  = ( -1)  n- l ,  n _> 2 

41. F5n is divisible by 5, n >__ 1. 

4 2 .  F~  < a n -  1, n _> 3 

43. Fn <_ 2 n, n >_ 1 

44" L e t A - [  11 ~] T h e n A n - "  Fn + 1 Fn 1 
Fn Fn-1 

, n >__ 1. Assume F0 = 0. 

45. Using Exercise 44, deduce that  F,~+ 1 g n -  1 - -  F 2  - (-- 1)n. 

(Hint" Let A be a square matrix. Then [An[ -- In[ n, where [A[ denotes 
the de terminant  of A.) 

2 n - 2  

46. Ln = F n + l  + F n - l , n  >_ 2 47. L2n - 3 +  ~ Lk 
k = l  

~ n  _ ~ n  

The nth  term bn of a number  sequence is defined by bn - where 

a - (1 + v/5)/2 and fl - (1 - v/5)/2 are solutions of the equation x 2 = x + 1. 
Verify each. 

48. bl = 1 49. b 2 -  1 50. b n -  bn-1 + bn-2, n >_ 3 

(It follows from Exercises 48-50 tha t  bn = Fn. It is called the B i n e t  f o r m  
of the nth  Fibonacci number,  after the French mathemat ic ian  Jacques- 
Phillipe-Marie Binet.) 
With a and fl as above, let U n  - -  a n -+- fin, n > 1. Verify each. 

5 1 .  Ul = 1 5 2 .  u 2 -  3 53. U n  = U n - 1  + Un-2, n >_ 3 

[These exercises indicate tha t  Un = Ln, the n th  Lucas number.  Accordingly, 
U n  - -  a n -Jr- f i n  i s  the Binet form of L n . ]  
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Jacques Phillippe Marie Binet (1786-1865), a French mathematician 
and astronomer, was born at Rennes, Brittany. In 1804, he entered the 
Ecole Polytechnique in Paris, graduated 2 years later, and took a job in 
the Department of Bridges and Roads of the French government. In 1807, 
Binet became a teacher at the E, cole Polytechnique, and the following 
year became assistant to the professor of applied analysis and descriptive 
geometry. In 1814, he was appointed examiner of descriptive geometry, 
then professor of mechanics (1815), and then inspector general of studies 

. A (1816). In 1821, he was awarded the Chevalier de la Ldgion d'Honneur. 
:: ,~ ~ Two years later, Binet was appointed chair of astronomy at the Coll~ge de 

~" ":~ - . France. 
~ y But the July 1830 revolution was not kind to him. A strong supporter of 

Charles X, Binet became a victim of Charles' abdication; he was dismissed 
from Ecole Polytechnique by King Louis-PhiUipe in November, 1830. 

Binet made many contributions to mathematics, physics, and astronomy. In 1812, he discovered the 
rule for matrix multiplication and, in 1840, discovered the explicit formula for the nth Fibonacci number. 
In 1843, he was elected to the Academy of Sciences and later became its president. A devout Catholic, 
Binet died in Paris. 

54. Let al,  a2, . . . ,  an E 1~, where n > 2. Prove that  
gcd{al, a2, . . . ,  an} - -gcd{gcd{a l ,  a2, . . . ,  an-1},an}.  

Using Exercise 54 compute the gcd of each set of numbers.  

55. 6, 12, 20, 38 56. 12, 28, 48, 104, 252 

Let an denote the number  of times the assignment s tatement  x <- x + 1 is 
executed by each nested fo r  loop. Define an recursively. 

5 7 .  f o r  i = 1 t o  n do 5 8 .  f o r  i = 1 t o  n do 

f o r  j = I t o  i do f o r  j = I t o  i do 

x ~ -  x + I f o r  k = I t o  i do 

x ~ - - x + l  

59. Let an denote the number  of rectangles that  can be formed on a 1 x n 
rectangular board. Find the recurrence relation satisfied by an. 
(Hint: Look for a pattern. Every square is also a rectangle.) 

A subset of the set S = {1, 2, . . . ,  n} is a l t e r n a t i n g  if its elements, when 
arranged in increasing order, follow the pat tern odd, even, odd, even, etc. 
For example, { 3 }, { 1, 2, 5 }, and { 3, 4 } are al ternating subsets of { 1, 2, 3, 4, 5 }, 
whereas { 1, 3, 4} and {2, 3, 4, 5 } are not; 0 is considered alternating.* Let 
an denote the number  of al ternating subsets of S. 

60. Define an recursively. 

61. Prove that  an =- Fn+2, where Fn denotes the nth  Fibonacci number.  

*Proposed by Olry Terquem (1782-1862). 
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S t i r l i n g  n u m b e r s  o f  t h e  s e c o n d  k ind ,  denoted by S(n ,  r) and used in 
combinatorics, are defined recursively as follows, where n, r ~ N: 

1 if r -  l o r r - n  

S ( n , r )  - S ( n -  l ,  r - 1 )  + r S ( n  - l ,  r) i f l < r < n  

0 i f r >  n 

They are named after the English mathemat ic ian  James  St i r l ing (1692- 
1770). Compute each Stirl ing number .  

62. S(2, 2) 63. S(5, 2) 

A function of theoretical importance in the study of a lgor i thms is the 
A c k e r m a n n ' s  f u n c t i o n ,  named after the German  mathemat i c i an  and 
logician Wilhelm Ackermann (1896-1962). It is defined recursively as 
follows, where m , n  ~ W: 

A ( m , n )  - 

n + 1 i f m  - 0  

A ( m  - 1, 1) if n - 0 

A ( m -  1, A ( m , n -  1)) otherwise 

Compute each. 

64. A(0, 7) 65. A(1, 1) 

66. A(4,0) 67. A(2,2) 

Prove each for n > 0. 
m 

68. A(1, n) - n + 2 

"70. Predict a formula for A(3, n). 

"71. Prove the formula in Exercise 70, where n >_ 0. 

69. A(2, n) - 2n + 3 

The recursive definition of a function f does not provide us with an explicit 
formula for f ( n ) ,  but  establishes a systematic procedure for finding it. This 
section i l lustrates the i terative method of finding a formula for f ( n )  for a 
simple class of recurrence relations. 
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S o l v i n g  the  recur rence  re la t ion for a funct ion f means  f inding an  
explicit fo rmula  for f ( n ) .  The i t e r a t i v e  m e t h o d  of solving it involves 
two steps" 

�9 Apply the  recur rence  formula  i tera t ively  and look for a p a t t e r n  to 
predict  an explicit formula.  

~ Use induct ion to prove t ha t  the  fo rmula  does indeed hold for every 
possible value of the  in teger  n. 

The next  example  i l lus t ra tes  this  method.  

(The handshake  problem continued) By Example  5.3, the  n u m b e r  of 
handshakes  made  by n guests  at  a d inner  pa r ty  is given by 

h ( 1 ) - 0  

h ( n ) -  h ( n -  1 ) +  ( n -  1),n >_ 2 

Solve this  recur rence  relation.  

S O L U T I O N :  

S t e p  1 To predict  a formula  for h ( n ) "  

Using i terat ion,  h ( n )  - h ( n  - 1) + (n - 1) 

= h ( n  - 2) + (n - 2) + (n - 1) 

= h ( n  - 3) + (n - 3) + (n - 2) + (n - 1) 

= h(1) + 1 +  2 + 3 + . . .  + (n - 2) + (n - 1) 

= 0 +  1 + 2 + 3 + . . .  + ( n -  1) 

n ( n  - 1) 

2 

n ( n  - 1) 
S t e p  2 To prove, by induction,  t ha t  h ( n )  - ~ ,  where  n > 1: 

2 

1 . 0  
Bas i s  s tep  When n = 1, h(1) - 2 = 0, which agrees with the  ini t ial  

condition. So the formula  holds when  n - 1. 

I n d u c t i o n  s tep  Assume h ( k )  - 

k ( k -  1) 
for any k > 1. Then:  

h ( k  + 1) - h ( k )  + k ,  by the  recur rence  re la t ion 
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k ( k -  1) 

2 

k ( k +  1) 

+ k ,  by the induct ion hypothes i s  

Therefore,  if the formula  holds for n - k, it also holds for n - k + 1. 
Thus,  by PMI, the  resul t  holds for n >_ 1. 

More generally,  us ing i te ra t ion  we can solve the recur rence  re la t ion  

E 

an - a n - 1  + f (n ) (5.5) 

as follows: 

an -- a n -  1 + f (n ) 

= l a n - 2  + f ( n  - 1)] + f ( n )  -- a n - 2  + f ( n  - 1) + f ( n )  

= l a n - 3  + f ( n  - 2)] + f ( n  - 1) + f ( n )  

= a n - 3  + f ( n  - 2) + f ( n  - 1) + f ( n )  

lz 

= ao +  r(i) 
i=1 

(5.6) 

You can verify tha t  this  is the  actual  solution of the recur rence  re la t ion  (5.5). 
For  example,  in the  handshake  problem f ( n )  - n - 1 and h(0) = 0, so 

the solution of the recurrence  re la t ion is 

r /  ?/ 

h ( n )  - h(O) + E f ( i )  - 0 + E ( i  - 1) 
i=1 i=1 

n - 1  
n ( n  1) 

- ~ i = 
m 

2 , n>__l 
i=1 

which is exactly the solution obta ined in the example.  

~ Solve the  recurrence  re la t ion in Example  5.6. 

S O L U T I O N :  
Notice t ha t  an can be redefined as 

n ( n  + 1) 
a n -  a n - 1  + - - ,  n > 1 

2 
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f(n) - 

where  a0 - 0. C o m p a r i n g  th is  w i th  r ecu r r ence  re la t ion  (5.5), we have  

n(n + 1) Therefore ,  by E q u a t i o n  (5.6) 
2 

n 

an -- ao + ~-~f (i) 
i=1 

n i(i + 1) 
= ao + ~--~ 2 

i=1 

= - i 2 + i 
2 i=1 

_ 1 [ n ( n  + 1 ) ( 2 n  + 1) 

L 2 6 

n 

1 E ( i 2  + i) 

i=l 

-4- n(n2 + 1)] 

n ( n + 1 ) ( 2 n + 1 2  --------6----f-i)- n ( n + l )  2 n + 4 2  " 6 

n(n + 1)(n + 2) 
, n > 0  _ m 

The  following i l lus t ra t ion  of the  i t e ra t ive  m e t h o d  br ings  us aga in  to the  
Tower  of B r a h m a  puzzle.  

~ Recall f rom Example  5.4 t h a t  the  n u m b e r  of moves needed  to t r a n s f e r  n 
disks f rom peg X to peg Z is given by 

b l -  1 

b n -  2bn-1 + 1, n >__ 2 

Solve this  r ecu r rence  re la t ion.  

S O L U T I O N :  

S t e p  1 To predict  a fo rmula  for bn" 
Using  i te ra t ion ,  

b n -  2bn-1 + 1 

= 212bn_2 + 1] + 1 - 22bn_2 + 2 + 1 

= 2212bn_3 + 1] + 2 + 1 - 23bn_3 + 22 + 2 + 1 

---- 2 n - l b l  + 2 n-2 -+-'''-+- 2 2 A- 2 + 1 

__ 2 n-1 jr_ 2n-2 + . . .  + 2 + 1 

= 2 n -- 1, by Exercise  8 in Sect ion 4.4. 
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S tep  2 You may  prove by induc t ion  t h a t  bn - 2 n - 1, w h e r e  n > 1. m 

More  general ly ,  you m a y  verify t h a t  the  solut ion of t he  r e c u r r e n c e  
re la t ion  a n  - C a n - 1  + 1, whe re  c is a c o n s t a n t  (r 1), is 

an  - -  c n a O  + 
C n - -  1 

c - 1  

For  ins tance ,  in Example  5.12, b0 - 0 and  c - 2, so 

2 n -- 1 
bn - 2 n " O + ~ = 2  n - 1  

2 - 1  

as expected.  
Let  us  p u r s u e  Example  5.12 a bit  fu r the r .  Suppose  t he r e  are  64 disks  a t  

peg X, as in the  original  puzzle,  and  it t akes  1 second to move a disk f rom 
one peg to ano ther .  T h e n  it t akes  a to ta l  of 264 - 1 seconds to solve the  
puzzle.  

To get an  idea how incredibly  large th is  to ta l  is, notice t h a t  t h e r e  a re  
about  3 6 5 . 2 4 . 6 0 . 6 0  - 31,536,000 seconds in a year .  There fore ,  

Tota l  t ime  t a k e n  - 264 - 1 seconds 

1. 844674407 x 1019 seconds 

5 .84942417  x 1011 yea r s  

600 billion years!  

In t r igu ingly ,  according to some es t ima tes ,  the  un ive r se  is only abou t  
18 billion yea r s  old. 

Exercises 5.2 

Using  the  i te ra t ive  method ,  predic t  a so lu t ion to each r e c u r r e n c e  re la t ion  
sa t i s fy ing the  given ini t ial  condit ion.  

1. s 0 - 1  

Sn - 2 S n - 1 ,  n > 1 

3. a 0 - 1  

a n  - a n - 1  + n ,  n > 1 

5. a o - O  

a n  - a n - 1  + 4 n ,  n > 1 

2. a l = l  

a n  - - a n - 1  + n ,  n > 2 

4. a 1 = 1  

a n  --  a n - 1  + (2n - 1), n >_ 2 

6. s l = l  

Sn - -~Sn -  1 + n3, n _> 2 
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7. s l = l  8. a 1 - - 1  

8n S n - 1  + n 2 = , n > 2 an - 2 a n - 1  + (2 n -  1), n >_ 2 

9-16.  Using induction, verify the solutions to Exercises 1-8. 

17. Using the data  in Example 5.2, show tha t  the compound a m o u n t  J u d y  
will receive at the end o fn  years  is given byA(n)  = 1000(1.08) n, where  
n > 0 .  

Use the recursive definition of fn in Example  5.5 to answer  Exercises 18 
and 19. 

18. Predict  a formula for fn.  

19. Prove tha t  the formula holds for n > 1. 

20. Using induction, establish the explicit formula  for bn in Example  5.12. 

Using induction, prove tha t  each is a solution to the cor responding  
recurrence relation, where c is a cons tant  and f (n)  a function of n. 

n 

21.  a n  - -  ao + ~ f( i ) ,  a n  - -  a n - 1  + f (n) 
i=1 

c n - 1 
22. a n - c n a o  + ~  a n - C a n _ l  + l ( a s s u m e  c ~: l )  

c - l '  
n 

23. an -- cnao  + ~ c n - i f  (i),  an --  Can-1  -b f (n) 
i=1 

Let an denote the numbe r  of t imes the s t a t emen t  x ~- x + 1 is executed by 
the following loops. 

f o r  i = 1 t o  n do 

f o r  j = 1 to [ i / 2 ]  do 
x ~ - x + l  

24. Define an recursively. 

0 if n - 1  
25. Show tha t  an = an -1  + n /2  if n > 1 and even 

a n - l + ( n - 1 ) / 2  if n >  l a n d o d d  

26. Solve the recurrence relat ion satisfied by an. 

Let an denote the number  of t imes the s t a t ement  x ~ x + 1 is executed by 
the following f o r  loops: 

f o r  i = 1 to n do 

for  j = 1 to [ i /2 ]  do 
x , - - x + 1  

27. Define an recursively. 

1 
28. Show tha t  an -- a n - 1  + n /2  

a n -  1 + (n -+- 1)/2 

if n -  1 
if n > 1 and even 
if n >  l a n d o d d  
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Figure 5.11 

29. Solve the recurrence relation satisfied by an. 

Let an denote the number of times the statement x ~ x + 1 is executed by 
the nested for  loops in Exercise 35 in Section 4.4. 

30. Define an recursively. 

31. Solve the recurrence relation satisfied by an. 

32-33. Redo Exercises 30 and 31 using the loops in Exercise 36 in 
Section 4.4. 

34-35. Redo Exercises 30 and 31 using the loops in Exercise 37 in 
Section 4.4. 

36-37. Redo Exercises 30 and 31 using the loops in Exercise 38 in 
Section 4.4. 

Let tn denote the nth triangular number. 

38. Define tn recursively. 

39. Find an explicit formula for tn. 

40. Prove that 8tn + 1 is a perfect square. 

The nth pentagonal  number  Pn is obtained from its predecessor by 
adding three rows of dots plus one. The first four pentagonal numbers 
are represented pictorially in Figure 5.11. 

�9 �9 

�9 �9 

�9 �9 �9 �9 

�9 �9 �9 �9 

�9 �9 �9 

�9 �9 �9 �9 �9 �9 �9 �9 �9 

�9 �9 �9 �9 �9 �9 �9 �9 �9 

P2 = 5 P3  = 12 P4  = 22  p l - - 1  

41. Represent P5 pictorially. 

42-43. Redo Exercises 38 and 39 usingpn. 

The nth hexagonal  number  hn is obtained from its predecessor by adding 
four rows of dots plus one dot. The first four hexagonal numbers are shown 
pictorially in Figure 5.12. 

44-46. Redo Exercises 41-43 using hn.  

47. Prove that hn - Pn + tn -- n,  using the explicit formulas for Pn and tn. 

48. Prove that hn - Pn + tn - n,  using the recurrence relations for Pn 

and tn. 
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F i g u r e  5 .12 

�9 �9 �9 �9 �9 �9 �9 Q 

h l = 1 h 2 = 6 h 3 = 15 h 4 = 28 

Figure 5.13 

Triangular pyramidal  numbers  Tn (or te trahedral  numbers)  are  
posi t ive i n t ege r s  t h a t  can be r e p r e s e n t e d  by t r i a n g u l a r  p y r a m i d a l  shapes .  
The  first  four  t e t r a h e d r a l  n u m b e r s  a re  1, 4, 10, a n d  20; see F i g u r e  5.13. 

T1-- 1 T 2 = 4 T 3 = 10 T 4 = 20 

49.  Define Tn recurs ively .  

50.  Con jec tu re  an  explicit  f o r m u l a  for Tn. 

51. Es t ab l i sh  the  f o r m u l a  in Exerc i se  50. 

Square pyramidal  numbers  Sn a r e  posi t ive in t ege r s  t h a t  can  be rep- 
r e s e n t e d  by p y r a m i d a l  shapes ,  w h e r e  t he  base  is a square .  T h e  first  four  
squa re  p y r a m i d a l  n u m b e r s  a re  1, 5, 14, a n d  30; see F igu re  5.14. 

5 2 - 5 4 .  Redo Exerc ises  49-51  wi th  Sn. 

Let  an deno te  t he  n u m b e r  of  subse t s  of the  set  S - { 1, 2, . . . ,  n } t h a t  con ta in  
no consecu t ive  in tegers ,  w h e r e  n > 0. W h e n  n - 0, S - O.t  C o m p u t e  each. 

55.  a0 56. a l 57.  a2 58.  a3 

t Proposed by Irving Kaplansky of The University of Chicago. 
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F i g u r e  5.14 

a 

? . . . .  ~ - - -  

e 

�9 . . . .  ~ - - -  

�9 . . . .  

S1 = 1 S 2 = 5 S 3 = 14 S 4 = 30 

59. Define an  recursively. 

60. Solve the recurrence relation satisfied by an. 

Suppose we introduce a mixed pair of l -month-old rabbits into a large enclo- 
sure on the first day of a certain month.  By the end of each month,  the 
rabbits become mature  and each pair produces k -  1 mixed pairs of offspring 
at the beginning of the following month.  ( N o t e :  k >_ 2.) For instance, at the 
beginning of the second month,  there is one pair of 2-month-old rabbits  and 
k - 1 pairs of 0-month-olds; at the beginning of the third month,  there  is 
one pair of 3-month-olds, k - 1 pairs of l-month-olds,  and k ( k  - 1) pairs of 
0-month-olds. Assume the rabbits  are immortal .  Let a,~ denote the average 
age of the rabbit  pairs at the beginning of the nth  month.  (P. Filipponi, 
1990) 

* '61.  Define a ,  recursively. 

**62. Predict  an explicit formula for a,~. 

**63. Prove the formula in Exercise 64. 

64. (For those familiar with the concept of limits) Find lim an .  
n - ~  

Unfortunately,  the i terative method i l lustrated in the preceding section 
can be applied to only a small and simple class of recurrence relations. The 
present  section develops a method for solving two large, impor tant  classes 
of recurrence relations. 
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Linear Homogeneous Recurrence Relations with Constant Coefficients (LHRRWCCs) 

A k t h - o r d e r  l i n e a r  h o m o g e n e o u s  r e c u r r e n c e  r e l a t i o n  w i t h  con-  
s t a n t  c o e f f i c i e n t s  is a r e c u r r e n c e  re la t ion  of the  form 

a n  - -  C l a n - 1  4-  C 2 a n - 2  4- " ' "  4-  C k a n - k  (5.7) 

whe re  Cl ,  C2,.. .  ,Ck E R and  ck r 0. 

Firs t ,  a few words  of explana t ion :  The  t e r m  l i n e a r  m e a n s  t h a t  every  
t e r m  on the  R H S  of E q u a t i o n  (5.7) con ta ins  a t  mos t  the  first  power  
of any  p redecessor  a i .  A r e c u r r e n c e  re la t ion  is h o m o g e n e o u s  if  every  
t e r m  on the  RHS is a mul t ip le  of some a i ;  in o the r  words ,  the  rela- 
t ion is sat isf ied by the  sequence  {0}; t h a t  is, a n  - 0 for every  n. All 
coefficients ci are  cons tan ts .  Since a n  depends  on its k i m m e d i a t e  pre- 
decessors,  the  o r d e r  of the  r e c u r r e n c e  re la t ion  is k. Accordingly,  to 
solve a k t h - o r d e r  LHRRWCC,  we will need  k ini t ial  condi t ions ,  say, 

a0 - Co, a l  - e l ,  . . . ,  a k - 1  - -  C k - 1 .  

The  next  example  i l lus t ra tes  in detai l  the  var ious  t e r m s  in th is  definit ion.  

�9 The  r ecu r r ence  re la t ion  Sn - 2Sn-1 is a LHRRWCC.  Its o rder  is one. 

�9 The  r ecu r r ence  re la t ion  a n  - n a , ~ _ l  is l inear  and  homogeneous .  But  
the  coefficient on the  RHS is not  a cons tan t .  Therefore ,  it is not  a 
LHRRWCC.  

�9 h n  - h n - 1  + ( n  - 1) is a l inear  r e cu r r ence  re la t ion.  But  it is not  
homogeneous  because  of the  t e r m  n - 1. 

2 �9 The  r ecu r r ence  re la t ion  a n  - a n _  1 + 3 a n - 2  is homogeneous .  But  it is 
not  l inear  since the  power  of an-1 is 2. 

�9 a n  - -  a n - 1  4-  2 a n - 2  4- 3 a n - 6  is a L H R R W C C  of order  six. m 

Before we discuss  solving second-order  LHRRWCCs ,  notice t h a t  the  solu- 
t ion of the  r ecu r r ence  re la t ion  Sn - 2 S n - 1 ,  w h e r e  so - 1, is Sn - 2 n,  n >_ 0 

(see Exercise  1 in Sect ion 5.2). More  general ly ,  you may  verify t h a t  the  
solut ion of the  r ecu r r ence  re la t ion  a n  - o t a n _ l ,  w h e r e  a0 - c, is a n  - c a  n,  

n > 0 .  
We now t u r n  our  a t t e n t i o n  to the  second-order  L H R R W C C  

a n  - -  a a n _ l  -~- b a n - 2  (5.8) 

whe re  a and  b are  nonzero  cons tan ts .  If  it has  a nonzero  solut ion of the  form 
c a  n,  t hen  c a  n - acot  n -  1 + b c o t n - 2 .  Since ca r 0, th is  yields c~ 2 - a a  + b; t h a t  

i s ,  ot 2 - - a a  - b  - 0, so a m u s t  be a solut ion of the  c h a r a c t e r i s t i c  e q u a t i o n  

X 2 - -  a x  - b - 0 (5.9) 
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of the recurrence relat ion (5.8). The roots of Equa t ion  (5.9) are the  
c h a r a c t e r i s t i c  r o o t s  of recurrence  relat ion (5.8). 

Theorems  5.2 th rough  5.4 show how character is t ic  roots help solve 
LHRRWCCs. 

~ Let a and fl be the distinct (real or complex) solutions of the equat ion  

x 2 - a x  - b - 0, where a, b e R and b 4: 0. Then  every solution of the  
LHRRWCC an - a a n - 1  + b a n - 2 ,  where a0 - Co and al  - C1, is of the form 
an - A a  n + B fl n for some constants  A and B. 

P R O O F "  
The proof  consists of two parts:  

�9 First ,  we will show tha t  an = A(~ n + B f l  n is a solution of the recurrence  
relation for any cons tants  A and B. 

�9 We will then  find the values of A and B satisfying the given initial 
conditions. 

First,  notice tha t  since c~ and fl are solutions of equat ion (5.9), ~ 2  _ a~ + b 
and ~ 2  __ af t  + b. 

�9 T o  s h o w  t h a t  an - A a  n + B f l  n is  a s o l u t i o n  o f  t h e  r e c u r r e n c e  r e l a t i o n "  

a a n - 1  + b a n - 2  - a ( A ~  '~-1 + B f l  n - l )  + b ( A a  n - 2  + B f l  n - 2 )  

= Ac~'~-2(acv + b) + B f l n - 2 ( a f l  + b) 

= Ac~,~-2 . ol2 + B f l n - 2  f12 

= Aol '~ + B f l  n 

Thus  an - A a  n + B f l  n is a solution of the recurrence relat ion (5.8). 

�9 Secondly, let an - A~x n + B f l  n be a solution of (5.8). To find the values 
of A and B, notice tha t  the conditions a0 - Co and a l - C1 yield the 
following l inear system" 

Co - A + B (5.10) 

C1 - A a  + B f l  (5.11) 

Solving this system, we get (Verify.) 

A - C1 - Coi l  and C0d - C1 (Remember,  a 4= ft.) 
~ - Z  a - t ~  

With these values for A and B, an satisfies the initial conditions and the 
recurrence relation. Since the recurrence relat ion and the initial conditions 
determine a unique sequence, { a n } ,  an -- A a  n + B f l  n is indeed the unique  
solution of the recurrence relation, m 
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A f e w  i n t e r e s t i n g  o b s e r v a t i o n s :  

�9 The  solut ions  a and  ~ are  nonzero ,  since a = 0, for ins tance ,  would  
imply t h a t  b = 0. 

�9 T h e o r e m  5.2 c a n n o t  be appl ied if  a - ft. However ,  it works  even if  
and  fl a re  complex n u m b e r s .  

�9 The  solut ions  ot n and  fin are  the  b a s i c  s o l u t i o n s  of the  r e c u r r e n c e  
relat ion.  In general ,  the  n u m b e r  of basic solut ions  equals  the  order  of 
the  r e c u r r e n c e  relat ion.  The  g e n e r a l  s o l u t i o n  an - Aot n 4- B f l  n is a 
l i n e a r  c o m b i n a t i o n  of the  basic solutions.  The  pa r t i cu l a r  solut ion is 
ob ta ined  by select ing A and  B in such a way t h a t  the  ini t ial  condi t ions  
are  satisfied, as in T h e o r e m  5.2. 

The  next  t h r ee  examples  i l lus t ra te  how to solve second-order  
L H R R W C C s  us ing  the i r  cha rac te r i s t i c  equat ions .  

Solve the  r e c u r r e n c e  re la t ion  an - 5 a n - 1 - 6 a n - 2 ,  w h e r e  a0 - 4 and  a l  - 7. 

S O L U T I O N :  
�9 T o  f i n d  t h e  g e n e r a l  s o l u t i o n  o f  t h e  r e c u r r e n c e  r e l a t i o n :  

The  charac te r i s t i c  equa t ion  of the  r ecu r r ence  re la t ion  is x 2 - 5x + 6 - 0; 
the  charac te r i s t i c  roots  are  2 and  3. Therefore ,  by T h e o r e m  5.2, the  
genera l  solut ion of the  r e c u r r e n c e  re la t ion  is an = A . 2 n + B . 3 n. (This 
solut ion is used  in Example s  5.19 and  5.20.) 

�9 To  f i n d  t h e  v a l u e s  o f  A a n d  B:  
Using  the  init ial  condi t ions  we find: 

a0 = A  + B  = 4 

a l  = 2A + 3B = 7 

Solving this  l inear  sys t em yields A - 5 and  B - - 1  (Verify this.). 

T h u s  the  solut ion of the  r e c u r r e n c e  re la t ion  sa t i s fy ing  the  given condi- 
t ions  is an - 5 . 2  n - 3 n, n >_ O. m 

The  next  example  finds an  explicit  f o rmu la  for the  n t h  Fibonacci  n u m b e r  
Fn,  which we have  been  wa i t ing  for. 

Solve the  Fibonacci  r e c u r r e n c e  re la t ion  Fn - F n - 1  + F n - 2 ,  where  

F1 = 1 - F2. 

S O L U T I O N :  
The  charac te r i s t i c  equa t ion  of the  r ecu r r ence  re la t ion  is x 2 - x -  1 - O, and  

1 + ~ / 5  1 - ~ / 5  
its solut ions are  a = 2 and  fl - ~ .  You m a y  verify a + fl = 1 

and  aft - - 1. 
The  genera l  solut ion is Fn - A a  n + B f l  n. To find A and  B, we have: 

F1 - Aot + B fl - 1 

F2 - A ot 2 --}- B fl 2 - 1 
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Solving these  two equat ions ,  we get (Verify)" 

A -  a _ _ (1 + v/5)/2 _ _ 1 + j 5  

1 + c~ 2 (5 + vf5)/2 5 + ~/5 

(1 + v ~ ) ( 5 -  v~)  5 + 5 ~ / 5 -  v ~ -  5 1 

(5 + v~)(5  - j 5 )  25 - 5 j ~  

fl 1 
and s imilar ly B - 1 + ~2 -- v/~ (Verify this.). 

Thus  the  solution of the  recurrence  re la t ion sat isfying the  given condi- 
t ions is 

o,n _ _  ~n c~n _ _  ~n 
a n  ~ - -  

which is the  Binet  form for the  n th  Fibonacci n u m b e r  Fn. (See Example  5.26 
for a different  method.)  m 

The next  example,  proposed by Irving Kaplansky  of The  Univers i ty  of 
Chicago, also i l lus t ra tes  solving second order  LHRRWCCs  and is closely 
related to Example  5.15. 

~ Let denote  the n u m b e r  of subsets  of the  set S tha t  an { 1, 2 , . . .  n} do not  
contain consecutive integers,  where  n >__ 0. When n - 0, S - 0 .  Find an 
explicit formula  for a,,. 

S O L U T I O N :  
To get an idea about  a,,, let us find its value for n - 0, 1, 2, 3, and 4 by 
cons t ruc t ing  a table, as in Table 5.3. It appears  from the table tha t  an is a 
Fibonacci n u m b e r  and a,, - F,+2.  

T a b l e  5 .3  S u b s e t s  of  S that  do not  
c o n t a i n  c o n s e c u t i v e  i n t e g e r s  

D, 
D,{I} 
D, {I}, {2} 
O, {i}, {2}, {3}, {1,3} 
O, {I}, {2}, {3}, {4}, {1,3}, {1,4}, {2,4} 

a n  

F n  + 2 

We shall, in fact, prove t ha t  an - Fn+2 in two steps" F i r s t  we shall define 
an recursively and then  solve the recur rence  re la t ion to obtain  this  explicit 
formula.  

�9 To define an recursively" 
From Table 5.3, a0 = 1 and a l  - 2. So let n >_ 2. Let  A be a subset  of S 
t ha t  does not contain  two consecutive integers.  Then  e i ther  n e A or 
n C A .  
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C a s e  1 Suppose n ~ A. Then  n -  1 r A. By definition, S* = 
{1, 2 , . . . ,  n - 2} has  a n - 2  subsets  not  conta in ing  two consecutive inte- 
gers. Add n to each of the subsets.  The resu l t ing  sets are subsets  of S 
sat isfying the  desired property,  so S has a n - 2  such subsets.  

C a s e  2 Suppose n r A. By definition, there  are a n - 1  such subsets  of 
S having the requi red  property.  
Since these  two cases are mu tua l ly  exclusive, by the  addit ion principle, 

a n  - -  a n -  1 zr- a n - 2 .  

Thus  a n  can be defined recursively as 

a0 - 1 ,a l  - 2 

a n  - a n -  1 -+- a n - 2 ,  n > 2 .  

�9 T o  s o l v e  t h e  r e c u r r e n c e  r e l a t i o n "  

This recur rence  re la t ion is exactly the same as the  Fibonacci one wi th  
the initial condit ions a0 = 1, a l = 2. So ins tead  of going th rough  a 
complete solution, as in Example  5.15, notice t ha t  this  definition yields 
the Fibonacci n u m b e r s  1, 2, 3, 5, 8, . . . .  It  follows tha t  an = F n + 2 ,  

n >  0. 
m 

Using the values of a and ~ from Example  5.15, 

a n + 2  _ f i n + 2  

a n  - - F n + 2  - -  , n > 0 a - - ~  u 

(Verify this. See Exercise 13.) m 

Theorem 5.2 does not work if the  character is t ic  roots a and fl are equal, 
t ha t  is, if a is a root wi th  degree of mult ipl ic i ty  two. The following theorem,  
however,  comes to our  rescue. It shows that ,  in addi t ion to a n ,  n a  n is a 
basic solution. 

Let  a, b ~ I~ and b r 0. Let a be a real or complex solution of the equat ion 

x 2 - a x  - b = 0 wi th  degree of mult ipl ic i ty  two. Then  a n  - A a  n + B n a n  is 
the  general  solution of the LHRRWCC a n  - a a n _  1 -~ b a n - 2 .  

P R O O F "  
Since a is a root of the  equat ion x 2 - a x  - b - 0 with degree of multipli-  
city two, 

x 2 - a x -  b - ( x -  a ) 2  

= X 2 - -  2ax + a 2 

Therefore,  

a - 2a and b - -  - - a  2 (5.12) 
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�9 T o  s h o w  t h a t  a n  - n a  n s a t i s f i e s  t h e  r e c u r r e n c e  r e l a t i o n :  

Notice t ha t  
a a n - 1  + b a n - 2  - a [ ( n  - 1)a n- l ]  + b [ ( n  - 2)a n-2] 

= 2a[(n - l ) a  n - l ]  -~- (--a2)[(n -- 2)a n-2] 

by (5.12) 

= an[2(n - 1) - (n - 2)] 

- -  n a  n - a n  

Therefore,  n a  n is a solution of the  recur rence  relat ion.  

Then  a n  - A a  n + B n f l  n is the  general  solution of the  given recur rence  
relation,  where  A and B are selected in such a way t ha t  the  ini t ial  condit ions 
are satisfied. (The values of A and B can be found us ing  ini t ial  conditions,  
as in Theo rem 5.2.) n 

The next  example i l lus t ra tes  Theorem 5.3. 

Solve the recur rence  re la t ion a n  - 6 a n - -  9 a n - 2 ,  where  a0 = 2 and a -  3. 1 1 

S O L U T I O N :  
The character is t ic  equat ion  of the recur rence  relat ion is x 2 - 6x + 9 - 0; 
its solution is 3 with degree of mult ipl ic i ty  two. Therefore,  by T h e o r e m  5.3, 
the general  solution of the recurrence  re la t ion is a, ,  = A . 3 '2 + B �9 n 3  n .  (We 
use this in Example  5.21.) 

The initial  condit ions a0 = 2 and a l  = 3 yield the equa t ions  

A . 3  ~ + B .  0 . 3  ~ - 2 

and A . 3 + B . 1 . 3 - 3 .  

Solving these  equat ions,  we get A - 2 and B - - 1 .  (Verify). 
Thus  the solution of the  recurrence  relat ion sat isfying the  given condi- 

t ions is a n  - 2 . 3  n - n . 3 n ,  n >_ O. m 

Theorems  5.2 and 5.3 can be combined to yield the  following general  
result .  

~ Let a be a character is t ic  root of the  LHRRWCC (5.7). 

�9 If the  degree of mult ipl ic i ty  of c~ is 1, then  a n is a basic solution of the 
LHRRWCC. 

�9 If the  degree of mult ipl ic i ty  of a is m, then  a n, n a n , . . . ,  n m -  l a  n are basic 
solutions of the  LHRRWCC. ( N o t e :  A kth-order  LHRRWCC has k basic 
solutions.) 

�9 The general  solution of the LHRRWCC is a l inear  combina t ion  of all 
basic solutions, m 

The following example  i l lus t ra tes  this  general  theorem.  
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Solve t h e  r e c u r r e n c e  r e l a t i o n  - 7an-1 - 13an-2  - 3an-3  + 18an-4 ,  w h e r e  an 

a0 - 5 , a l  - 3 ,a2  - 6, a n d  a3 - - 2 1 .  

S O L U T I O N :  
T h e  c h a r a c t e r i s t i c  e q u a t i o n  of  t h e  L H R R W C C  i sx  4 -  7X 3 + 13X 2 +3X-- 18 -- 0. 
Since x 4 - 7 x  3 + 13x 2 + 3x - 18 -- (x + 1)(x - 2)(x - 3) 2, t h e  c h a r a c t e r i s t i c  

roo t s  are:  

a n d  

- 1  a n d  2 w i th  d e g r e e  of  m u l t i p l i c i t y  one  each  

3 w i th  d e g r e e  of  m u l t i p l i c i t y  two  

Since 3 is a roo t  w i th  d e g r e e  of  m u l t i p l i c i t y  two,  it  y ie lds  two  bas ic  
so lu t ions ,  3 n a n d  n3  n. T h u s  t h e  g e n e r a l  so lu t i on  of  t h e  L H R R W C C  is a 
l i nea r  c o m b i n a t i o n  of t h e  basic  so lu t ions  ( - 1 ) n , 2 n , 3  n, a n d  n3n; t h a t  is, 
an -= A ( - 1 )  n -+- B 2  n + C3 n -~- D n 3  n. 

To f i n d  the va lues  o f  A,  B, C, a n d  D: 

Since a0 - 5, a l  - 3, a2 - 6, a n d  a3 - - 2 1 ,  we h a v e  

and  

A + B + C  = 5  

- A  + 2B + 3C + 3D = 3 

A + 4B + 9C + 18D = 6 

- A  + 8B + 27C + 81D = - 2 1  

Solv ing  th i s  l i n e a r  sys t em,  we ge t  A - 2 - C, B - 1, a n d  D - - 1  (Verify 
this .) .  T h u s  t h e  so lu t ion  of t h e  L H R R W C C  sa t i s fy ing  t h e  in i t ia l  c o n d i t i o n s  
is an - 2 ( - 1 ) n  _+_ 2 n _+_ 2 . 3  n -- n3 n, n >_ O. m 

T h e  t e c h n i q u e  of  so lv ing  L H R R W C C s  c a n n o t  be  app l ied  to t h e  s e e m i n g l y  

s imple  r e c u r r e n c e  r e l a t i o n s  fn - fn -1  + n ( E x a m p l e  5.5) a n d  bn -- 2bn-1  + 1 

( E x a m p l e  5.4), wh ich  a r e  l inear ,  b u t  n o n h o m o g e n e o u s .  So we now t u r n  to  
so lv ing  l i n e a r  n o n h o m o g e n e o u s  r e c u r r e n c e  r e l a t i o n s  w i t h  c o n s t a n t  
c o e f f i c i e n t s  ( L N H R R W C C s ) .  

LNHRRWCCs 

T h e  genera l  f o r m  of a L N H R R W C C  is 

an - Clan-1 + C2an-2 + "'" + Ckan-k + f (n) (5.13) 

w h e r e  cl ,  C 2 , . . . ,  Ck E R, Ck 7 s O, a n d  f ( n )  is not  iden t i ca l ly  zero.  I t s  so lu t i on  
d e p e n d s  on t h a t  of t h e  a s s o c i a t e d  l i n e a r  h o m o g e n e o u s  r e c u r r e n c e  
r e l a t i o n  w i t h  c o n s t a n t  c o e f f i c i e n t s  ( A L H R R W C C s )  

an - Clan-1 + C2an-2 + "'" + Ckan-k (5.14) 

we s t u d i e d  ear l ie r .  
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Solving LNHRRWCCs 

To solve the LNHRRWCCs (5.13), let a(n h) denote the general  solution of the 

ALHRRWCCs (5.14). Suppose we know some solution a(n p) of the  recurrence  

relat ion (5.13); a(n p) is a p a r t i c u l a r  s o l u t i o n  of the LNHRRWCCs (5.13). 
Then the g e n e r a l  s o l u t i o n  of (5.13) is given by 

a n -  a (nh ) + a (n p) 

This fact is confirmed by the following theorem; we leave its proof as an 
exercise (see Exercise 44). 

Let a(n h) denote the general solution of the ALHRRWCCs (5.14) and a(n p) a 
par t icular  solution of the LNHRRWCC (5.13). Then an -- a(n h) + a(n p) is the 
general solution of the LNHRRWCCs (5.13). I 

It follows from this theorem tha t  solving the LNHRRWCCs (5.13) 
depends on finding a par t icular  solution a~n p . Although no general  algo- 
r i thm exists for solving an a rb i t ra ry  LNHRRWCCs, two special cases can 
be handled fairly easily. When f ( n )  is a polynomial in n or is of the form 
Cot n, a part icular  solution can be extracted with ease, as the next  two exam- 
ples demonstrate ,  where C and a are constants.  The techniques we employ 
are similar to those used to solve linear nonhomogeneous differential 
equations. 

Solve the LNHRRWCCs an - 5 a n - 1  - 6a~_2 + 8n 2, where  a0 - 4 and 

a l - 7 .  

SOLUTION: 
It follows from Example 5.14 tha t  the general solution of the ALHRRWCCs 
an - 5 a n - 1  - 6 a n - 2  is given by a(n h/ = A .  2 n + B .  3 n. Since f ( n )  - 8n 2 is 
a quadrat ic  polynomial in n, it seems reasonable to look for a par t icular  
solution of the same form, say, an - a n  2 + b n  + c .  Then the given recurrence 
relation yields 

a n  2 + b n  + c  - 51a (n -  1) 2 + b ( n -  1 ) + c ] - 6 1 a ( n - 2 )  2 + b ( n - 2 ) + c ] + 8 n  2 

= ( 8 - a ) n  2 + ( 1 4 a - b ) n -  19a+  7 b - c  

Equat ing  the coefficients of like terms, we get the l inear system- 

a - 8 - a  

b = 1 4 a - b  

c = - 1 9 a  + 7 b - c  

Solving the system, we get a - 4, b - 28, and c - 60 (Verify). We now claim 

tha t  -(P) 4n 2 + 28n + 60 is a par t icular  solution (Verify). t t n  - -  
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Thus ,  by T h e o r e m  5.5, the  genera l  solut ion of the  given r e c u r r e n c e  
re la t ion  is 

a n -  a (nh ) + a (n p)  

= A .  2 n + B .  3 n + 4n 2 + 28n + 60 

Us ing  the  two given ini t ial  condit ions,  th is  yields the  l inear  sys tem:  

A + B  - - 5 6  

2A + 3B -- - 8 5  

This  yields A - - 8 3  and  B - 27 (Verify th is  also.). 
T h u s  the  des i red solut ion is 

a n  - ( - 8 3 ) .  2 n + 2 7 . 3  n ~- 4n 2 A- 28n + 60, n > 0 m 

The  next  example  i l lus t ra tes  how to solve the  L N H R R W C C s  (5.13) w h e n  
f ( n )  is of the  form C a  n,  where  C and  a a re  cons tan ts .  

Solve the  L N H R R W C C s  - 5 a n - 1  6 a n - 2  3 .  whe re  - 4 a n d  a n  + 5 n , a0 
a l = 7 .  

S O L U T I O N :  
As in Example  5.19, the  genera l  solut ion of the  A L H R R W C C s  a n  - 5 a n - 1  - 

6 a n - 2  is given by a(n h) - A . 2 n -4- B . 3 n .  Since f ( n )  - 3 . 5  n, we sea rch  for a 
pa r t i cu l a r  solut ion of the  form a n  = c �9 5 n .  T h e n  we m u s t  have  

c .  5 n - 5(c.  5 n - l )  - 6(c.  5 n-2) -4- 3 . 5  n 

Canceling 5 n-2 f rom both  sides, the  r e su l t i ng  equa t ion  yields c - 25/2. 
We now claim t h a t  a n  - (25/2)5 n is a pa r t i cu l a r  solut ion of the  r e c u r r e n c e  
re la t ion  (Verify this.). 

T h u s  the  genera l  solut ion of the  L N H R R W C C s  is 

a n  - A . 2 n -+- B . 3 n -+- (25/2)5 n 

Us ing  the  init ial  condit ions,  we get the  l inear  sys tem:  

A + B - - 1 7 / 2  

2A + 3B - - 1 1 1 / 2  

Solving this  sys tem,  we get A - 30 and  B - - 7 7 / 2  (Verify this.).  
T h u s  the  solut ions  of the  given r e c u r r e n c e  re la t ion  are  given by 

a n  - (30).  2 n - (77/2).  3 n -+- (25/2).  5 n, n > 0 

(Verify this  also.) m 
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A n  impor tan t  observation: In th is  example,  notice t h a t  t he  5 in f ( n )  is 
not a charac ter i s t ic  root  of the  ALHRRWCCs.  If  it were,  we wou ld  have  
needed to make  a d j u s t m e n t s  in our  search for a pa r t i cu l a r  solut ion,  as 
in T h e o r e m  5.3. We shall  p u r s u e  th is  case short ly.  

The  following t h e o r e m  justif ies the  t echn iques  d e m o n s t r a t e d  in these  
two examples;  we omit  its p roof  in the  in te res t  of brevity.  

In the  LNHRRWCCs  (5.13), suppose  f (n) = (bk nk + bk_ ln  k-1 + . . .  + b in  + 

bo)(~ n. If a is not a charac ter i s t ic  root  of the  ALHRRWCCs  (5.14), t h e n  a 
pa r t i cu la r  solut ion is of the  form (dk nk + d k _ l n  k-1 + . . .  + d i n  4- do)or n. 
If  a is a charac ter i s t ic  root  wi th  mul t ip l ic i ty  m, t hen  a pa r t i cu l a r  so lu t ion  
is of the  f o r m  nm(ekn  k + ek_l  nk-1  + . . .  + e l n  + eo)ot n. m 

We conclude this  section wi th  the  following example,  which  i l lus t ra tes  
this  t heo rem when  a is a charac te r i s t ic  root  of the  ALHRRWCCs.  

Solve the  LNHRRWCCs  - 6an-1 - 9an-2 + 4(n + 1)3 n, whe re  a0 = 2 an 
a n d a l  - 3. 

S O L U T I O N :  
F r o m  Example  5.17, the  general  solut ion of the  ALHRRWCCs  is a ~  ) = 
A. 3 ~ + B. n3 n, where  n >_ 0. Since 3 is a charac ter i s t ic  root  wi th  mul t ip l ic i ty  
2, we search for a pa r t i cu la r  solut ion of the  form n2(cn + d)3 n, where  the  
cons tan t s  c and d are to be de te rmined .  Then  we m u s t  have 

n2(cn + d ) 3  n - 6{(n - 1)21c(n - 1) + d l 3  n-l} 

- 9{(n - 2)2[c(n - 2) + dl3 n-2 } + 4(n + 1)3 'z 

E q u a t i n g  the  coefficients of like t e rms ,  this  yields c - 2/3 and  d - 4 (Verify); 
- ( p ) _  2n2(n + 6)3 n-1 SO ~n 

Thus the general so|ution of the recurrence relation is 

an - A .  3 n + B .  n3 n + 2n2(n + 6)3 n - l ,  n _> 0 

Using  the initial  condit ions,  this  yields 

an - (6 - 19n) .  3 n-1 + 2n2(n + 6)3 n-1 , n > _ 0  i 

(You can confirm this.) 

Exerc i ses  5.3 

Dete rmine  if each recur rence  re la t ion  is a LHRRWCC. 

1. Ln - Ln-1 + Ln-2  

3. an -- 1 .08an_l  

2. Dn - nDn-1 + ( - 1 )  n 

4. bn = 2bn-1 + 1 
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5.  an --  a n -  1 + n 

7. an  --  a n - 1  + 2 a n - 2  + 3 a n - 5  

S o l v e  e a c h  L H R R W C C .  

9.  an --  a n - 1  + 2 a n - 2 , a o  --  3 , a l  = 0 

10.  an - 5 a n - 1  - 6 a n - 2 ,  ao = 4,  a l  - 7 

11.  an = a n - 1  + 6 a n _ 2 , a o  = 5 , a l  = 0 

12 .  an  = 4 a n - 2 , a o  = 2 , a l  = - 8  

13.  an  - - a n - 1  + a n - 2 , a o  = 1 , a l  -- 2 

14 .  an = a n - 1  + a n - 2 ,  ao --  2,  a l  = 3 

15 .  Ln = L n - 1  + L n - 2 ,  L1 = 1, L2 = 3 

16.  an = 4 a n - 1  - 4 a n _ 2 , a o  = 3 , a l  = 10 

17 .  an  = 6 a n -  1 - -  9 a n - 2 ,  ao = 2, a l  - ~  3 

6.  an -- 2 a n - 1  + (2 n -- 1) 

8 .  an  --  a n - 1  + 2 a n - 3  + n 2 

18.  an = 3 a n - 1  + 4 a n - 2  - 1 2 a n _ 3 , a o  -- 3 , a l  = - 7 , a 2  = 7 

19 .  an --  8 a n - 1  - 2 1 a n - 2  + 1 8 a n _ 3 , a o  --  0 , a l  ---- 2 , a 2  = 13 

20. an -- 7 a n - 1  -- 1 6 a n - 2  + 1 2 a n _ 3 , a o  -- 0 , a l  ---- 5 , a 2  -- 19 

2 1 .  an = - - a n - 1  + 1 6 a n - 2  + 4 a n - 3 -  4 8 a n _ 4 , a o  = 0 , a l  = 1 6 , a 2  -- --2,  

a3 = 142  

22.  an = 1 3 a n - 2  - 3 6 a n - 4 ,  a0 = 7, a l  = --6,  a2 = 38,  a3 -- - -84  

23.  an = 9 a n - 1  - 3 0 a n - 2  + 4 4 a n _ 3  -- 2 4 a n - 4 , a o  = 5 , a l  = 1 2 , a 2  = 38,  

a3 = 126  

2 4 .  an = 8 a n - 1  - 2 4 a n - 2  + 3 2 a n - 3  -- 1 6 a n - 4 , a o  = 1 , a l  = 4 , a 2  = 44,  

a3 = 2 7 2  

F i n d  t h e  g e n e r a l  f o r m  of  a p a r t i c u l a r  s o l u t i o n  o f  t h e  L N H R R W C C s  (5 .13)  

c o r r e s p o n d i n g  to  e a c h  f u n c t i o n  f ( n ) .  

25.  f ( n ) =  n 2 6 .  f ( n ) =  1 2 7 .  f ( n ) =  3 n  2 

28. f ( n ) =  3 n 2 9 .  f ( n ) -  n 2  n 3 0 .  f ( n ) -  4 3 n 2 5  n 

F i n d  t h e  g e n e r a l  f o r m  of  a p a r t i c u l a r  s o l u t i o n  o f  t h e  L N H R R W C C s  

an --  4 a n - 1  - 4 a n - 2  + f (n )  c o r r e s p o n d i n g  to  e a c h  f u n c t i o n  f (n ) .  

3 1 .  f (n )  = 3 - 2  n 32. f (n )  = n 2  n 

33. f ( n )  - 2 3 n 2 2  n 3 4 .  ( 1 7 n  3 -  1)2 n 

S o l v e  e a c h  L N H R R W C C s .  

35. an - 2 a n - 1  -+ 1, a 0 -  1 

36.  an -- 7 a n - 1  - 10an_2  + n 2, ao  = 0, a l  = 1 
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37. an  - 7 a n - 1  - 12an-2 + 3n,a0 - 0 , a l  = 2 

38. an  - 7 a n - 1  - 12an-2 + 3 n 4 n , a o  = 0 , a l  - 2 

*39. a n  - a n - 1  ~- n ,  ao  - 1 

*40. a n  - a n - 1  -+- n - 1 ,a l  - 0 

41. Let rn and Sn be two solutions of the recurrence relat ion (5.8). Prove  
tha t  a n  - -  r n  + S n  is also a solution. 

42. Let a be a solution of the equat ion x k - C l  x k - 1  . . . . .  Ck -- 0. S h o w  

tha t  c~ n is a solution of LHRRWCC (5.7). 

43. Let a be a characterist ic  root of the LHRRWCC an  = a a n _  1 -+- b a n - 2  -+- 

C a n - 3  with degree of multiplicity three.  Show tha t  a n, n(~ n, n 2 a  n are 
solutions of LHRRWCC. 

44. Let a(n h) denote the general  solution of the ALHRRWCCs (5.14) and 

a(n p) a par t icular  solution of the LNHRRWCCs (5.13). Prove  t ha t  

an  - a(n h) + a(n p) is the general  solution of the LNHRRWCCs  (5.13). 

Genera t ing  functions provide a powerful tool for solving LHRRWCCs,  as 
will be seen shortly. They were invented in 1718 by the F rench  mathe-  
matician Abraham De Moivre, when he used them to solve the Fibonacci 
recurrence relat ion (see Example 5.26). Genera t ing  functions can also solve 
combinatorial  problems, as the next chapter  shows. 

To begin with, notice tha t  the polynomial 1 + x + x ~ + x a + X 4 ~ -X  5 can 
x 6 -  1 

be wri t ten  as ~ .  You may verify this by ei ther  cross-mult ipl icat ion 
x - - 1  

the familiar long division method,  or Exercise 8 in Section 4.4. Accord- 
X 6 -  1 

ingly, f ( x )  - ~ i s  called the g e n e r a t i n g  f u n c t i o n  of the sequence of 
x - - 1  

coefficients 1, 1, 1, 1, 1, 1 in the polynomial.  
More generally, we make the following definition. 

Generating Function 

Let a0, a l ,  a2 , . . ,  be a sequence of real numbers .  Then  the funct ion 

g ( x )  - ao  + a I x  + a2 x2  + . . .  + a n x  n + . . .  (5.15) 

is the g e n e r a t i n g  f u n c t i o n  for the sequence {an  }. Genera t ing  funct ions 
for the finite sequence a0, a l , . . . ,  an  can also be defined by le t t ing ai  = 0 for 
i > n; thus  g ( x )  - ao  + a l x  + a2 x2  + . . .  + a n x  n is the genera t ing  funct ion 
for the finite sequence a0, a l , . . . ,  a n .  



5.4 Generating Functions 299 

.' - . . ' . , -  ~ . '  

: , . ,  ,,' ..$ 

A b r a h a m  De Moivre  (1667-1754), son of  a surgeon, was born in Vitry-le- 
Francois, France. His formal education began at the Catholic village school, 
and then continued at the Protestant Academy at Sedan and later at Saumur .  
He did not receive good training in mathematics until he moved to Paris in 
1684, where he studied Euclid's  later books and other texts. 

Around  1686, De Moivre emigrated to England,  where he began his life- 
long profession, tutoring in mathematics,  and mastered Newton's  Principia 
Mathematica. In 1695 he presented a paper, his first, on Newton's  theory 
of  fluxions to the Royal Society of  London and 2 years later he was elected a 
member of  the Society. Unfortunately, despite his influential friends, he could 
not f ind an academic position. He had to earn a living as a tutor, author, and  
expert on applications of  probability to gambl ing and annuities. 

He dedicated his first book, a masterpiece, The Doctrine of Chances, to 
Newton. His most notable discovery concerns probability theory: The binomial probability distribution can 
be approximated by the normal distribution. 

De Moivre died in London. 

For  example, 

g(x)  - 1 + 2x + 3x 2 + . . .  + (n + 1)x n + . . .  

is the genera t ing  function for the sequence of positive integers and 

f ( x )  - 1 + 3x + 6x 2 + . . .  + n(n  + 1)x2 + . . .  
2 

is the genera t ing  function for the sequence of t r i angula r  numbers .  Since 

x n - 1 

x - 1  
= 1 + x  -+-x 2 -~-... + x  n-1 

g(x)  - 
x n -- 1 

x - 1  
is the genera t ing  function for the sequence of n ones. 

A w o r d  o f  caut ion" The RHS of Equa t ion  (5.15) is a f o r m a l  p o w e r  
ser ies  in x. The le t ter  x does not  represen t  anything.  The various powers 
x n of x are simply used to keep t rack  of the corresponding t e rms  an of 
the sequence. In o ther  words, t h ink  of the powers x n as placeholders.  
Consequently,  unl ike in calculus, the  convergence of the series is of no 
in teres t  to us. 

,, ,, , . . . . .  

Equality of Generating Functions 

Two genera t ing  functions f (x) - ~ anx n and g(x)  = ~ bnx n are equal  if 
n =0 n =0 

an -- bn for every n >__ 0. 
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For  example,  let f ( x )  = 1 + 3x + 6X 2 q- 10x 3 + - . .  and 

2 . 3  3 . 4 x 2  4 . 5  x3 g(x)  - 1 + - - ~  x + - ~ -  + -~ + . . . .  Then  f (x) = g(x) .  

A genera t ing  funct ion we will use f requent ly  is 

= 1 + a x  + a 2 x  2 -n t- . . .  --[-- a n x  n -Jr- " "  (5.16) 
X - a x  

1 
= 1 + x  + x  2 + . . . - f - X  n -Jr-''' (5.17) Then  1 - x 

Can we add and mul t ip ly  genera t ing  functions? Yes! Such opera t ions  are  
per formed exactly the  same way as polynomials  are combined.  

Addition and Multiplication of Generating Functions 
CO CO 

Let f (x) = ~ anX  n and g(x)  - ~ b n x  n be two genera t ing  functions.  T h e n  
n=0  n=0  

) f (x) + g(x)  - ~ (an + b n ) x  n and f (x)g(x) - ~ ~ a i b n _  i X n 
n=0  n=0  i=0 

For example,  

(1 - x )  2 

1 1 

1 - x  1 - x  

) ) - -  X i X i -- 1 . 1  x n 

n=O 

CX~ 

= E ( n  + 1)x n 

n=O 

= 1 + 2 x +  3x 2 + . . .  + (n + 1)x n + . . .  (5.18) 

and 

1 1 1 

( l - x )  3 1 - x  ( l - x )  2 

- -  X n (n + 1 ) X  n 

Ln =0 

1 . ( n  + 1 - i )  x n 

n=0 

(X) 

= ~ [ ( n  + 1) + n + . . .  + 1 ] x  n 

n--0 
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(x) 

= E (n + 1)(n + 2)xn 
2 

n - - 0  

= 1 + 3x + 6x 2 + 10x 3 + . . .  (5.19) 

Before exploring how valuable genera t ing  functions are in solving 
LHRRWCCs, we i l lustrate  how the technique of p a r t i a l  f r a c t i o n  d e e o m -  
p o s i t i o n ,  used in integral  calculus, enables us to express the  quot ien t  

p(x) of two polynomials  p(x) and q(x) as a sum of proper  fractions, where  
q(x) 
degp(x) < deg q(x). t 

For  example, 

6 X + 1  1 2 

(2X-  1)(2X + 3) 2 X -  1 2X + 3 

Par t ia l  Frac t ion  Decomposit ion Rule for p ( x )  where  d e g p ( x )  < deg q(x)  
q (x ) '  

If q(x) has a factor of the form (ax + b) m, then  the decomposit ion contains 
a sum of the form 

A1 A2 Am 
t + ' " +  

ax + b (ax + b) 2 (ax + b) m 

where  Ai is a ra t ional  number .  
Examples  5.22-5.24 i l lustrate  the part ia l  fraction decomposit ion tech- 

nique. We use thei r  results  to solve the recurrence  relat ions in Examples  
5.25-5.27. 

x 
~ Express  (1 - x)(1 - 2x) of part ial  fractions. as a sum 

S O L U T I O N :  
Since the denomina to r  contains two linear factors, we let 

x A B 
= + 

(1 - x)(1 - 2x) 1 - x 1 - 2x 

To find the constants  A and B, mult iply both  sides by (1 - x)(1 - 2x)" 

x - A ( 1 -  2x) + B ( 1 -  x) 

Now give convenient  values to x. Set t ing x - i yields A - - 1  and set t ing 
x - 1/2 yields B - 1. (The values of A and B can also be found by equat ing  

tdeg f(x) denotes the degree of the polynomial f(x). 
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coe f f i c i en t s  o f  l ike  t e r m s  f r o m  e i t h e r  s ide  o f  t h e  e q u a t i o n  a n d  s o l v i n g  t h e  

r e s u l t i n g  l i n e a r  s y s t e m . )  

x - 1  1 
- - - -  . . J_  

(1 - x) (1  - 2x) 1 - x 1 - 2x 

(You m a y  v e r i f y  t h i s  b y  c o m b i n i n g  t h e  s u m  o n  t h e  R H S  i n t o  a s i n g l e  

f r a c t i o n . )  W e  u s e  t h i s  r e s u l t  in  E x a m p l e  5 .25.  II  

x 
E x p r e s s  1 - x - X 2 as  a s u m  of  p a r t i a l  f r a c t i o n s .  

S O L U T I O N :  
F i r s t ,  f a c t o r  1 - x - x 2" 

1-F w/5 
w h e r e  c~ = 
a - fl - v ~ . )  2 

L e t  

1 - x - x 2 = (1 - a x ) ( 1  - f i x )  

a n d  fl - 
1 - J 5  
~ .  ( N o t i c e  t h a t  a + fl - 1, aft - - 1 ,  a n d  

T h e n  

x A B 
= t 

1 - x - x  2 1 - a x  1 - f i x  

x - A ( 1  - f i x )  + B (  1 - o tx )  

E q u a t i n g  coe f f i c i en t s  o f  l ike  t e r m s ,  w e  get" 

A + B - O  

- f l A  - o t B  - 1 

S o l v i n g  t h i s  l i n e a r  s y s t e m  y i e l d s  A - 

T h u s  

1 

,/g = - B  (Ver i fy  th i s . ) .  

(1 - x  - x  2 )  
111 

v/5  1 - c ~ x  

1 ] 
1 - fix 

W e  u s e  t h i s  r e s u l t  in  E x a m p l e  5 .26.  

2 - 9x 

1 - 6x + 9x 2 
E x p r e s s  

S O L U T I O N :  

as  a s u m  of  p a r t i a l  f r a c t i o n s .  

A g a i n ,  f a c t o r  t h e  d e n o m i n a t o r :  

m 

l - -  6 X  + 9 X  2 - -  ( l  - -  3 X )  2 
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By t h e  d e c o m p o s i t i o n  rule ,  let  

T h e n  

2 - 9x A B 
= t 

1 - 6x + 9x 2 1 - 3x (1 - 3x) 2 

2 - 9x - A(1 - 3x) + B 

Th i s  y ie lds  A - 3 a n d  B - - 1  (Verify this .) .  

T h u s  

2 - 9 x  3 1 

1 - 6 x  + 9x 2 1 - 3x (1 - 3x) 2 

We use  th i s  r e s u l t  in E x a m p l e  5.27. I 

N o w  we a re  r e a d y  to use  pa r t i a l  f r ac t ion  d e c o m p o s i t i o n s  a n d  g e n e r a t i n g  

f u n c t i o n s  to solve r e c u r r e n c e  r e l a t i o n s  in t h e  n e x t  t h r e e  examples .  

Use  g e n e r a t i n g  f u n c t i o n s  to solve t h e  r e c u r r e n c e  r e l a t i o n  bn - 2bn-1  + 1, 

w h e r e  bl  - 1. 

S O L U T I O N :  
Fi rs t ,  no t ice  t h a t  t h e  cond i t i on  bl - i y ie lds  b0 = 0. To find t h e  s e q u e n c e  
{bn}  t h a t  sat isf ies  t h e  r e c u r r e n c e  re la t ion ,  cons ide r  t h e  c o r r e s p o n d i n g  

g e n e r a t i n g  f u n c t i o n  

T h e n  

Also, 

g ( x )  -- bo + b l x +  

2 x g ( x )  = 

1 - x  
= l + x +  

b2 x2 + b3 x 3 + . . . +  bnx  n q - . . .  

2blx  2 + 2b2x 3 + .  �9 �9 + 2bn_ 1 x n - J r - "  �9 �9 

X 2 + X 3-Jr-"  �9 �9 -~- X n -J r - "  �9 �9 

T h e n  

g ( x )  - 2 x g ( x )  
1 - x  

= - 1 +  (bl - 1)x + (b2 - 2bl - 1)x 2 + . . .  

+ (bn - 2bn-1  - 1)x n -Jr- ' ' '  

= - 1  

s ince bl - I a n d  bn - 2bn-1  + 1 for n >_ 2. T h a t  is, 

T h e n  

1 x 
(1 - 2x )g (x )  - 1 - 

1 - x  1 - x  

g ( x )  = 
(1 - x ) ( 1  - ~ c )  
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1 1 
= § by E x a m p l e  5.22 

1 - x  1 - 2 x '  

= - x n + 2nx  n , by (5.16) 

: E ( 2  n -  1)X n 

n=O 

OG 

But  g ( x )  - ~ bnx  n, so bn - 2 n - 1, n > 1. (Notice t h a t  th is  is the  s a m e  
n : 0  

solut ion ob ta ined  in E x a m p l e  5.12.) II 

Us ing  g e n e r a t i n g  funct ions ,  solve the  Fibonacci  r e c u r r e n c e  re la t ion  Fn - 

F n - 1  + F n - 2 ,  w h e r e  F1 - 1 - F2. 

S O L U T I O N :  
Notice t h a t  the  two init ial  condi t ions  yield F0 - 0. Let  

g ( x )  - Fo + F i x  + F 2 x  2 4 - . . .  4- F n x  n 4 - ' "  

be the  g e n e r a t i n g  funct ion  of the  Fibonacci  sequence.  Since the  o rders  of 
F n - 1  and F n - 2  are  1 and  2 less t h a n  the  order  of Fn,  respect ively,  we find 
x g ( x )  and  x2g(x)"  

x g ( x )  - F i x  2 4- F 2x  3 4- F3 x4 4 - . . .  4- F n - 1  xn 4 - ' "  

x2 g ( x )  - F i x  3 4- F 2 x  4 4- F3 x5 4 - . . .  4- Fn_2  xn 4 - . . .  

T h e n  

g ( x )  - x g ( x )  - x 2 g ( x )  - F i x  4- (F2 - F1)x 2 4- (F3 - F2 - F1)x 3 + . . .  

+ (Fn - F , _  1 - F n -  2) xn 4- "'" 

= X  

since F2 - F1 and  Fn = F n - 1  + F n - 2 .  

T h a t  is, 

(1 - x - x 2 ) g ( x )  -- x 

g ( x )  = 
1 - - X - - X  2 

111 
1 - a x  

1] 
1 - f ix  ' by Example  5.23 

whe re  a = 
1 + V / 5  

and  fl = 
1-4  

2 2 
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Then  

So 

~ / 5 g ( x )  -- 1 1 
1 -- otX 1 -- fiX 

oo oo (DO 

o4) 
g ( x )  - ~ (Oln -- ~ n  ) x  n 

n=0 x/~ 

--  E o l n x n - - E ~ n x n - -  E ( o l n  

n-0 n-0 n=0 

Therefore,  by the equal i ty  of genera t ing  functions,  

oln _ fin otn _ fin 
F n -  , / - g  ~ - ~ 

-- ~ n ) x n  

(Recall t ha t  this  is the  B i n e t  f o r m  of F n . )  m 

We close this  section with  the following example.  

~ Using genera t ing  functions,  solve the recur rence  re la t ion - 6 a n - 1  - an 

9 a n - 2 ,  where  ao - 2 and a l  - 3. 

g ( x )  - ao + a l x  + a2 x2 + . . .  + anX n + . . .  

S O L U T I O N :  
Let 

Then  

Then  

6 x g ( x )  = 6 a o x  + 6 a l x  2 + 6a2x 3 + . . .  + 6 a n _ i X  n + . . .  

9 x 2 g ( x )  - 9a0x 2 + 9alx  3 + 9a2x 4 + . . .  + 9 a n _ 2  xn  + . . .  

g ( x )  - 6 x g ( x )  + 9 x 2 g ( x )  - ao + (a l  - 6a0)x + (a2 - 6al  + 9a0)x 2 + . . .  

+ (an -- 6 a n - 1  + 9 a n - 2 ) x  n + ' "  

= 2 - - 9 x  

us ing the given conditions. Thus  

Therefore,  

(1 - 6x + 9 x 2 ) g ( x )  = 2 - 9x  

g ( x )  = 
2 - - 9 x  

1 - 6 x  + 9x 2 



306 Chapter 5 Recursion 

T h u s  

3 1 
= 1 - 3X - (1 - 3x) 2' by E x a m p l e  5.24 

"- 3 3 n x  n -- (n  + 1 ) 3 n x  n 

n--O 

(x:) 

-- E [ 3  n+l - - ( n  + 1 ) 3 n ] x  n 

n---0 

(x )  

-- E 3n(2 - n ) x n  

n- -0  

an  - (2 - n ) 3  n n > 0 m 

The  fol lowing exerc ises  provide amp le  prac t ice  in th is  p rob lem-so lv ing  
t echn ique .  

Exercises 5.4 

Express  each quo t i en t  as a sum of pa r t i a l  f ract ions .  

x + 7 4X 2 - -  3 x -  25 
1. 2. 

( x -  1)(x + 3) (x + 1 ) ( x -  2)(x + 3) 

5 2 + 4 x  

3. l _ x _ 6 x  2 4. l + 8 x + 1 5 x  2 

x ( x  + 2) - - 2 X  2 - -  2x + 2 5. 
(2 + 3x)(x 2 + 1) 6. ( x -  1)(x 2 + 2x) 

X 3 ~ - X  2 + X ~- 3 - -X 3 + 2X 2 ~ - X  
7. 

x 4 + 5x 2 + 6 8. x 4 + x  3 + x  + 1 

3x 3 - x 2 + 4x x 3 + x 2 + 5x - 2 
9. 

X 4 - -  X 3 -~- 2X 2 - -  X -~- 1 *10. 
X 4 - - X  2 + X - -  1 

Using  g e n e r a t i n g  funct ions ,  solve each LHRRWCC.  

1 1 .  an  = 2 a n _ l ,  ao  = 1 

12. a n  = a n - 1  + 1 , a l  = 1 

13. an  = a n - l  + 2 , a l  = 1 

14. an  = a n - 1  + 2 a n - 2 ,  ao  = 3, a l  = 0 

15. an  = 4 a n - 2 ,  ao  = 2, a l  = - 8  

16. a n  = a n - 1  + 6 a n - 2 ,  ao  = 5, a l  = 0 
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17. a n  = 5 a n - z  - 6 a n - 2 , a o  = 4 ,a1  = 7 

18. a n  - a n - 1  + a n - 2 , a o  = 1 , a l  = 2 

19. a n  = a n - 1  + a n - 2 , a o  = 2 , a l  -- 3 

20.  L n  - L n - 1  + L n - 2 , L 1  = 1, L2 = 3 

21. a n  = 4 a n - 1  - 4 a n - 2 ,  a0 = 3, a l  = 10 

22. a n  - 6 a n - 1  - 9 a n - 2 , a o  - 2 ,a1  - 3 

23.  a n  - 3 a n - z  + 4 a n - 2  - 12an-3 ,  a0 = 3, a l  = - 7 ,  a2 = 7 

24.  a n  - 8 a n - 1  - 2 1 a n - 2  + 1 8 a n _ 3 , a o  = 0, a l  = 2, a2 = 13 

25 .  a n  = 7 a n - 1  - 16an-2  + 12an-3 ,  a0 = 0, a l  = 5, a2 = 19 

26.  a n  = 3 a n - 1  + 4 a n - 2  - 12an_3, a0 = 3, a l  = - 7 ,  a2 = 7 

27.  a n  = 6 a n - 1  - 12an-2  + 8 a n _ 3 , a o  = 0 , a l  = 2 ,a2  = - 2  

28. a n  -- 13an-2  - 3 6a n -4 ,  a0 = 7, a l  - -  - - 6 ,  a2 = 38, a3 = - 8 4  

29.  a n  = - a n - z + 3 a n - 2 + 5 a n - 3 + 2 a n - 4 , a o  = 0, a l  = - 8 , a 2  = 4 , a3  = - 4 2  

Recal l  t h a t  t h e  r e c u r s i v e  de f in i t ion  of  t h e  fac to r i a l  f u n c t i o n  f e x p r e s s e s  
f ( n )  in t e r m s  of  i t se l f  w i t h  a s m a l l e r  a r g u m e n t  n - 1. Accord ing ly ,  it can  be  
e m p l o y e d  to w r i t e  a s imp le  a l g o r i t h m  to c o m p u t e  n! T h i s  a l g o r i t h m  ha s  t h e  
i n t e r e s t i n g  p r o p e r t y  t h a t  it i nvoke s  i t se l f  w i t h  a s m a l l e r  a r g u m e n t .  S u c h  
an  a l g o r i t h m  is a r e c u r s i v e  a l g o r i t h m .  

Recursive Algorithm 

An a l g o r i t h m  is r e c u r s i v e  if it i nvoke s  i t se l f  w i t h  a s m a l l e r  a r g u m e n t ;  t h a t  
is, if  it i n v o k e s  a r e d u c e d  v e r s i o n  of  i tself.  (See F i g u r e  5.1.) 

R e c u r s i v e  de f in i t i ons  i n v a r i a b l y  lead  to r e c u r s i v e  a l g o r i t h m s .  T h i s  sec- 
t ion  t r a n s l a t e s  s o m e  of  t h e  e x a m p l e s  d i s c u s s e d  in Sec t i on  5.1 in to  r e c u r s i v e  
a l g o r i t h m s  a n d  p r e s e n t s  a few n e w  o n e s - - g c d ,  b i n a r y  sea rch ,  a n d  m e r g e  
sor t .  

~ W r i t e  a r e c u r s i v e  a l g o r i t h m  to c o m p u t e  n!, w h e r e  n >__ 0. 

S O L U T I O N :  
W h e n  n = 0, t h e  a l g o r i t h m  m u s t  t e r m i n a t e  a n d  y ie ld  t h e  va lue  1. W h e n  
n > 0, t h e  r e c u r r e n c e  r e l a t i o n  f ( n )  = n .  f ( n  - 1) m u s t  be  appl ied:  t h e  
a l g o r i t h m  m u s t  i n v o k e  i t s e l f  w i th  n -  1 as t h e  n e w  a r g u m e n t .  T h e  r e c u r s i v e  
a l g o r i t h m  is g iven  in A l g o r i t h m  5.1. 
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Algorithm factorial (n) 
(* This algorithm computes n! using recursion *) 
O. Begin (* algorithm *) 
i .  i f  n = 0 then (* base case *) 
2. factorial ~-- I 
3. else (* invoke the algorithm *) 
4. factorial +-n  �9 f ac to r i a l (n -  1) 
5. End (* algorithm *) 

Algorithm 5.1 l 

Figure  5.15 shows the  resul t  of invoking the factorial  a lgor i thm with  
n - 3, where  f means  f a c t o r i a l .  

F i g u r e  5 .15  

�9 / f  recursive I ' �9 
<____'3./ [ call [ " / 

gets the value 3-2=6 

call 

returns 
value 

---~f(l) 

/ 
J '  <--. I f(~O 

call 

returns 
value 

----~f(0) 

/ f e - I  

Every recursive a lgor i thm has two impor t an t  character is t ics ,  or cases: 

�9 The b a s e  c a s e  ensures  the sequence of recursive calls will t e r m i n a t e  
af ter  a finite n u m b e r  of steps. This  case corresponds to the  initial  
condition(s) of a recursive definition. 

�9 The g e n e r a l  c a s e  cont inues  to call i tself  so long as the base case is not 
satisfied. 

The next  example presents  an a lgor i thm for comput ing  the  n u m b e r  of 
handshakes  made  by n guests,  discussed in Example  5.3. 

~ Using Example  5.3 wri te  a recursive a lgor i thm to the  n u m b e r  of compute  
handshakes  made  by n guests.  

S O L U T I O N :  

B a s e  c a s e  The a lgor i thm t e r m i n a t e s  when  n -- 1, in which case the  
n u m b e r  of handshakes  made  is zero. 

G e n e r a l  c a s e  When n > 2, the  a lgor i thm invokes i tself  us ing the 
recurrence  relat ion h ( n )  - h ( n  - 1) + (n - 1). 

These two cases lead to Algor i thm 5.2. 

Algorithm handshake(n) 
(* This algorithm computes the number of handshakes made 

by n guests at a party by recursion. *) 
0. Begin (* algorithm *) 
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I .  i f  n = 1 then (* basis case *) 
2. handshake <-- 0 
3. else (* general case *) 
4. handshake < -handshake(n -  I) + ( n -  I) 
5. End (* algorithm *) 

Algorithm 5.2 B 

~ Write a recursive algori thm to pr int  the moves and the total number  of 
moves needed to t ransfer  the n disks from peg X to peg Z in the Tower of 
Brahma puzzle in Example 5.4. 

S O L U T I O N :  
Recall tha t  solving the puzzle involves three  steps: 

�9 Move the top n - 1  disks from X to Y using Z as an auxiliary peg; 

�9 Move disk n from X to Z; and 

�9 Move the n - 1  disks from Y to Z using X as an auxiliary. 

We also must  count the moves made. The resul t ing Algori thm 5.3 follows. 

Algorithm tower (X,Z,Y,n,count) 
(* This algori thm, using recursion, p r in ts  the various moves 

O. 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 

needed to solve the Tower of Brahma puzzle and returns 
the to ta l  number of moves needed in the global var iable count. 
Count must be i n i t i a l i z e d  to 0 in the ca l l i ng  module. *) 

Begin (* algori thm *) 
i f  n = i then (* base case *) 

begin (* i f  *) 
move disk 1 from X to Z 
count <-- count + i 

endif 
else (* general case *) 

begin (* else *) 
t ower (X ,Y ,Z ,n -  1,count) (* move the top n -  i disks *) 
move disk n from X to Z 
count <-- count + I 
t ower (Y ,Z ,X ,n -  1,count) 

endel se 
End (* algori thm *) 

Algorithm 5.3 B 

Suppose we invoke this algori thm by tower (X,Y,Z,3,count). The tree 
diagram in Figure 5.16 i l lustrates the various recursive calls, where t s tands 
for tower  and c for count .  Seven moves are needed: 

move 1 from X to Z; move 2 from X to Y; move 1 from Z to Y; move 3 
from X to Z; move 1 from Y to X; move 2 from Y to Z; move 1 from X 
to Z. 

You may verify this. 
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Figure  5.16 t ( X,Z,Y, 3,c) 

t ( X, Y,Z,2,c ) t (Y,Z,X,2,c) 

t (X,Z,Y,i ,c)  t (Z,Y,X,I,c) t (Y,X,Z,I ,c)  t (X,Z,Y,I,c)  

The next example displays a Fibonacci algorithm. 

~ Write a recursive algori thm to the nth  Fibonacci n u m b e r  compute Fn. 

S O L U T I O N :  
Recall from Example 5.7 tha t  the recursive definition of Fn involves two 
initial conditions F1 - 1 - F2, and the recurrence relat ion Fn = Fn-1 + 
Fn-2, where n >_ 3. These two cases can be combined into s t ra ight forward  
Algorithm 5.4. 

Algorithm Fibonacci (n) 
(* This a l go r i t hm computes the nth Fibonacci  number 

using recu rs ion .  *) 
O. Begin (* a l go r i t hm  *) 
I .  i f  n = I or n - 2 then (* base cases *) 
2. Fibonacci . -  I 
3. e lse (* general case *) 
4. Fibonacci <-- F ibonacc i (n  - I )  + F ibonacc i (n  - 2) 
5. End (* algorithm *) 

AI gori thm 5.4 I I  

The tree diagram in Figure 5.17 i l lustrates the recursive comput ing of 
F5, where each dot represents  an addition. 

Figure 5.17 F5 

F4 

" F2 

F2 F! 

F3 

/ Q  
F 2 k'~ 
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The next  example shows how we can use recursion to compute the gcd 
of two positive integers x and y. 

~ Write a recursive algori thm to compute the gcd of two positive integers  x 
and y. 

S O L U T I O N :  
If x > y, gcd{x,y} -- gcd{x - y , y } .  (See Exercise 34 in Section 4.2.) We use 
this fact to write Algorithm 5.5. 

AI gorithm gcd (x,y) 
(* This algori thm computes the gcd of two pos i t ive  

integers x and y using recursion. *) 
O. Begin (* algori thm *) 
I .  i f  x > y then 
2. gcd ~- gcd{x - y , y }  
3. else i f  x < y then 
4. gcd <- gcd{y,x}  
5. else 
6. gcd <-- x 
7. End (* algori thm *) 

Algorithm 5.5 

(As an exercise, use this algori thm to compute gcd{x,y} with x - 28 and 
y = 12, x = 13 a n d y  = 20, a n d x  = 17 a n d y - y . )  m 

We now tu rn  our a t tent ion to the recursive version of the binary search 
algorithm, presented in Example 4.28 in Section 4.5. Recall tha t  b inary  
search, a divide-and-conquer technique, is an efficient method for searching 
an ordered list for a key (say, for example, a certain name in your  local 
telephone directory). 

~ ( B i n a r y  S e a r c h  A l g o r i t h m )  Write recursive to search algori thm a an 
ordered list X of n items and determine if a certain item (key) occurs in the 
list. Re turn  the location of key if the search is successful. 

S O L U T I O N :  
Because the algori thm is extremely useful, we first outline it: 

compute the middle index. 
i f  key = middle value then 

we are done and ex i t  
else i f  key < middle value then 

search the lower ha l f  
else 

search the upper ha l f .  

The algori thm is given in Algorithm 5.6. 

Algorithm binary search(X, low,high,key, found,mid) 
(* The algori thm returns the locat ion of key in the 

var iable mid in the l i s t  X i f  the search is successful. 
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Low, mid, and high denote the lowest, middle, and highest 
indices of the l i s t .  Found is a boolean variable; 
i t  is true i f  key is found and false otherwise. *) 

O. Begin (* algorithm *) 
I. i f  low _< high then (* l i s t  is nonempty *) 
2. begin (* i f  *) 
3. found +-- false (* boolean flag *) 
4. mid ~ L(low + high)/2] 
5. i f  key = Xmi d then 
6. found <-- true (* we are done. *) 
7. else 
8. i f  key < Xmi d then (* search the lower half *) 
9. binary search(X, low,mid - 1,key,found,mid) 

10. else (* search the upper half *) 
11. binary search(X,mid + 1,high,key,found,mid) 
12. endif 
13. End (* algorithm *) 

Algorithm 5.6 

(As an exercise, use this algori thm to search the list [3,5,8, 13,21,34, 
55, 89] with key - 5 and key - 23.) m 

The Merge Algorithm 

Before presenting the merge sort algori thm that  sorts a list into ascending 
order, we show how the m e r g e  a l g o r i t h m  works. It combines two ordered 
lists A and B into an ordered list C, el iminating all duplicate elements. 

Consider the two lists A and B: 

1 2 3 1 2 3 4 5 

Clearly, the combined sorted list contains at most 8 elements. 
Let ai denote the ith element of A, b i t h e j t h  element of B, and ch the kth 

element of C, where 1 _< i _< 3, 1 _<j _< 5, and 1 _< k _< 8. 

Step 1 Initially, compare al  and bl. Since bl < al ,  store bl in Cl. This 
yields the following 

1 2 3 4 5 6 7 8 

Step 2 Compare al  and b2. al  < b2. So store al  in C2" 

1 2 3 4 5 6 7 8 
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Step 3 Compare a2 and b2. Since they are equal, store a2 in c3: 

C 

1 2 3 4 5 6 7 8 

Step 4 Since a3 = b3, store a3 in c4: 

1 2 3 4 

C [ 1 1 2 1 3 1 5  I 

5 6 7 8 

Step 5 There are no more elements left in A, so copy the remaining 
elements of B into C. This yields the following sorted list: 

1 2 3 4 5 6 7 8 

We now explore the merge sort algorithm, which uses both recursion 
and the merge algorithm. 

The Merge Sort Algorithm 

The merge  sort a lgor i thm sorts a list X of n elements into increasing 
order. First, partition the list into one-element sublists by successively 
dividing lists in two. Then invoke the merge algorithm successively to 
merge the sublists, a pair at a time, into increasing order until the entire 
list is sorted. 

For instance, suppose the one-element sublists after successive division 
are X l , X 2 , . . . ,  and Xn; then merge the sublists Xl and x2, x3 and x4, etc., to 
form new sublists x12,x34, etc.; now merge the sublists x12,x34,.., pair by 
pair; continue like this until there is a single ordered list. 

The following example illustrates this method. 

Using the sort algorithm, sort the list 13, 8, 3, 5, 2 into ascending merge 

order. 

SOLUTION:  
Divide the given list into two sublists of equal or about the same size: 
[13, 8, 3] and [5, 2]. Split each sublist into two sublists, resulting in four 
sublists: [13, 8], [3], [5], [2]. Now divide the first sublist into two sublists, 
resulting in five one-element sublists: [13], [8], [3], [5], [2]. 

The tree diagram in Figure 5.18 illustrates this splitting process. 
Now the merge algorithm combines them successively in pairs into sorted 

sublists until the original list is sorted, as shown by the upside-down tree 
in Figure 5.19. 

The recursive merge sort algorithm is given in Algorithm 5.7. Use it to 
sort the list [13, 55, 3, 8, 34, 5, 2, 31, 29, 6]. 
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Using Algorithm 5.4, find the number  of computat ions needed to com- 
pute the n th  Fibonacci number  Fn for each value of n. (Hint: Draw a tree 
diagram.) 

5 . 4  6 . 5  7 . 6  8 . 7  

9. Let an denote the number  of additions needed to compute Fn using 
recursion. Use Exercises 5-8 to predict a formula for an. 

10. Using induction, prove the formula in Exercise 9 for every n > 1. 

11. Write an iterative algori thm to compute the n th  Fibonacci number .  

12. Mrs. Zee deposits A dollars at a bank at an annual  interest  rate  of r% 
compounded semiannually.  Write a recursive algori thm to compute 
the compound amount  she will receive at the end of n years. 

Using the recursive binary search algori thm in Example 5.33, determine if 
the given key occurs in the corresponding list. Show the successive values 
of low, high,  and mid.  

13. 2, 3, 5, 8, 13, 21; key - 13 14. 3, 5, 7, 8, 10; key - 9 

Using the merge sort algorithm, arrange each list into ascending order. 

15. 9, 5, 2, 7, 19, 17, 3, 11 16. 9, 11, 6, 2, 12, 3, 8, 5, 31, 13 

17. Write an algori thm to compute the nth  Lucas number  Ln using 
recursion. 

18. Let x be a positive real number  and n a nonnegative integer. Write a 
recursive algori thm to compute x n. 

Let X - [Xl,X2,... ,Xn] and Y - [Yl,y2,...,Yn] be two lists of numbers .  
Write a recursive algori thm to accomplish the tasks in Exercises 19-31. 

19. Find the sum of the numbers  from left to right. 

20. Find the sum of the numbers  from right to left. 

21. Compute the product of the numbers  from left to right. 

22. Compute the product of the numbers  from right to left. 

23. Find the maximum of the numbers  in the list. 

24. Find the min imum of the numbers  in the list. 

25. Pr int  the numbers  in the given order xl, x2 , . . . ,  Xn. 

26. Pr int  the numbers  in the reverse order Xn, Xn- 1,- . . ,  X2, Xl. 

27. ( L i n e a r  s e a r c h )  Search the list for a specific i tem (key). Return  the 
location of key if the search is successful. 

28. Determine if two lists X and Y of n items of the same type are identical. 
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29. Determine if a word of n a lphanumeric  characters is a pal indrome.  

30. Evaluate Ackermann 's  functionA(x,y) ,  wherex andy are nonnegat ive  
integers. See Exercises 5.1 for a definition of A(x,y). 

31. Sort the list X using bubble sort. 

32. Use the recursive bubble sort algori thm to sort the list 13, 5, 2, 8, 3. 

Q u i c k s o r t ,  invented in 1962 by C. Anthony R. Hoare of Oxford Universi ty,  
is an extremely efficient technique for sort ing a large list X of n i tems 
X l ,X2,. . .  ,Xn. It is based on the fact tha t  it is easier to sort two small lists 
than  one large list. Choose the first element x l as the pivot. To place the 
pivot in its final resting place, compare it to each element in the list. Move 
the elements less than  x 1 to the front of the list and those greater  t han  Xl to 
the rear. Now place pivot in its final position. Par t i t ion the list X into two 
sublists such tha t  the elements in the first sublist are less than  X l and the 
elements in the second sublist are greater  than  xl. Continue this procedure 
recursively with the two sublists. 

*33. Use quicksort to sort the list 7, 8, 13, 11, 5, 6, 4. 

*34. Use quicksort to write a recursive algori thm to sort a list X of n 
elements. 

We now use induction to establish the correctness of two well-known recur- 
sive algorithms, linear search and bubble sort. We begin with the l inear 
search algorithm. 

Recall tha t  the linear search algori thm searches a list X of n e lements  for 
a given key. If the search is successful, the algori thm re turns  the location of 
key; otherwise, it re turns  zero. A recursive version is given in Algori thm 5.8. 
Again, as an exercise, use it to search the list X = [13, 5, 47, 7, 11, 8, 3] for 
key - 11. 

Algorithm linear search (X,n,key,location) 
(* This a lgor i thm returns the pos i t ion  of key in the 

var iab le  loca t ion .  I f  loca t ion  = O, then key does 
not ex is t  in the l i s t .  *) 

O. Begin (* a lgor i thm *) 
i .  i f  n = 0 then (* unsuccessful search *) 
2. locat ion  +- 0 
3. else i f  Xn = key then 
4. locat ion ,-- n 
5. else 
6. l i nea r  search(X,n - l , k e y , l o c a t i o n )  
7. End (* a lgor i thm *) 

Algorithm 5.8 
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~ Establish the correctness of Algorithm 5.8. 

P R O O F  (by PMI): 
To prove the correctness of the algorithm, we must  show tha t  it works 
correctly for n > 0. Let P(n)" The algori thm re turns  the correct value of 
location for every list of size n. 

B a s i s  s t e p  When n - 0, lines 3 through 6 in the algori thm are skipped 
and the algori thm re turns  the value 0 from line 2. So the algori thm works 
correctly when n - 0. 

I n d u c t i o n  s t e p  Let k be an arbi t rary integer k > 0 such tha t  P(k) is 
true; that  is, assume the algori thm works correctly for a list of arbi t rary  
size k > 0. To prove tha t  P(k + 1) is true, invoke the algori thm for a list X 
of size k + 1. Note that  k + 1 > 1. 

C a s e  1 
line 4. 

If Xk+ 1 - -  k e y ,  the algori thm re turns  the value k + 1 from 

C a s e  2 IfXk+l r key, line 6 is executed; so the algori thm is invoked for a 
list with k elements. By our inductive hypothesis, the algori thm works for 
such a list. 

Thus in both cases, the algori thm re turns  the correct value of location. 
Therefore, P(k + 1) is true. 

Consequently, P(n) holds for n > 0 by induction; tha t  is, the algori thm 
works correctly for every list. m 

Next we verify the correctness of the recursive version of the bubble sort 
algorithm, given in Algorithm 5.9. To get used to it, you may use it to sort 
the list X - [13, 5, 47, 7, 11, 8, 3]. 

Algorithm Bubble Sort(X,n) 
(* This algorithm sorts a l i s t  X of n items using recursion. *) 
O. Begin (* algorithm *) 
i .  i f  n > 1 then (* l i s t  contains at least two elements *) 
2. begin (* i f  *) 
3. for  i = 1 to n - 1 do 
4. i f  x i > Xi+ I then (* they are out of order *) 
5. swap xi and xi + i 
6. bubble sort(X,n - I) 
7. endi f 
8. End (* algorithm *) 

Algorithm 5.9 

~ Establish the correctness of Algorithm 5.9. 

P R O O F  (by PMI)" 
Let P(n)" The algori thm works for every list of size n. 
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B a s i s  s t ep  When n - 0, the list contains no elements. So the a lgor i thm 
works by default. Thus, P(0) is true. 

I n d u c t i o n  s tep  Assume P(k) is t rue for an arbi t rary integer k >_ 0; t ha t  
is, the algori thm correctly sorts every list ofk (>_ 0) elements. To prove t ha t  
P(k + 1) is true, invoke the algori thm for a list X with k + 1 elements,  where  
k + 1 > 1 .  

If k + 1 - 1, the fo r  loop is not entered. So P(k + 1) is true, by default.  
If k + 1 > 1, the fo r  loop is entered. Consecutive elements xi and Xi+l 

are compared in line 4 and switched in line 5 if necessary. When we exit 
the loop, the largest of the k + 1 elements is placed in the correct position, 
in location k + 1. 

This leaves a sublist of k elements, x l , . . . ,  xk. By the inductive hypothe-  
sis, the algori thm correctly sorts such a list. 

Thus if P(k) is true, then P(k + 1) is also true. 
Therefore, by induction, P(n) is t rue for every n >__ 0: the algori thm sorts 

every list of every size n >_ 0. m 

The following exercises provide additional opportunit ies to establish the 
correctness of recursive algorithms. 

Exercises 5.6 

Establish the correctness of each algorithm. 

1. The factorial algorithm in Example 5.28. 

2. The handshake algori thm in Example 5.29. 

3. The Tower of Brahma algori thm in Example 5.30. 

4. The Fibonacci algori thm in Example 5.31. 

5. The binary search algori thm in Example 5.33. 

6. The merge sort algori thm in Algorithm 5.7. 

7-17. The algorithms in Exercises 19-29 of Section 5.5. 

Algorithm 5.10 computes the n th  power of a positive real number  x, where 
n > 0. Use it to answer Exercises 18-24. 

Algorithm exponentiation (x,n) 
(* This algorithm computes the nth power of x using recursion 

and returns the value in the variable answer. *) 
O. Begin (* algorithm *) 
1. i f  n = 0 then 
2. answer <- I 
3. else i f  n -  i then 
4. answer ~- x 
5. else 
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6. begin (* else *) 

7. value ~-- exponent iat ion(x,Ln/2])  

8. answer <-- value �9 value 
9. i f  n is odd then 

10. answer <-- answer �9 x 
11. ende] se 
12. End (* algori thm *) 

A] gori thm 5. I0 

Let an denote the number  of multiplications (lines 7-10) required by the 
algorithm to compute x n. Compute each. 

18. a0 19. a l  20.  a4 21.  a5 

22. Find the recurrence relation satisfied by an. 

23. Solve the recurrence relation in Exercise 22, where n - 2 k. 

24. Establish the correctness of Algorithm 5.10. 

25. Prove the correctness of the iterative Fibonacci algorithm in 
Exercise 11 of Section 5.5. 

Using the big-oh and big-theta notations, we now investigate the com- 
plexities of a few standard recursive algorithms: linear search, Fibonacci, 
selection sort, binary search, and merge sort. In addition, using Fibonacci 
numbers, we estimate the number  of divisions needed to compute gcd{a, b } 
using the euclidean algorithm. 

We begin our analysis with the recursive linear search algorithm. 

Use the recursive linear search in Algorithm 5.8 to estimate the worst time 
required to search for a key in a list X of n items. 

SOLUTION:  
Let Cn denote the maximum number  of element comparisons needed in 
line 3 of the algorithm. To find a big-oh estimate of Cn, first define it 
recursively. 

Clearly, co - O. When n >_ 1 

/ m a x i m u m  number  of calls~ 
Cn - -  [ f rom the recursive call in | + 

\ l ine  6 ] 
= C n - l +  1 

number  of ) 
comparisons 
in line 3 
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Thus 

CO -- 0 

Cn - - C n - 1  ~ 1, n > l  
D 

Solving this recurrence relation (try) yields C n  : n ,  n > 0; so C n  - -  O ( n )  = 

(~)(n). Thus, in the worst case, the algori thm takes O(n) - | comparisons 
to locate the key, the same as the iterative version, m 

Next we analyze the recursive and iterative Fibonacci algorithms. 

~ Using the recursive algori thm in Example 5.31, est imate the number  of 
additions an needed to compute the n th  Fibonacci number.  

SOLUTION: 
By Exercises 9 and 10 in Section 5.5, a n  - F n  - 1, n >_ 1. But, by Exercise 43 
in Section 5.1, F n  <_ 2 n, where n >_ 1. Therefore, 

an _< 2 n -  1 

< 2 n 

-- O ( 2  n) 

Thus, the recursive Fibonacci algori thm takes 0(2 n) additions, m 

For comparison, we now study the complexity of the iterative version of 
the Fibonacci algorithm. 

Est imate the number  of additions a,~ required in line 5 to compute the n th  
Fibonacci number  F ,  by Algorithm 5.11. 

Algorithm iterative Fibonacci(n) 
(* This i t e r a t i v e  a lgor i thm uses the values of the 

var iab les  of the las t  and the cur rent  Fibonacci 
numbers to compute the next Fibonacci number. *) 

O. Begin (* a lgor i thm *) 
I .  l as t  ~- i 
2. cur rent  ~-- I 
3. f o r  i = 2 to n do 
4. begin (* fo r  *) 
5. next , -  l as t  + cur rent  
6. l as t  ~- cur rent  
7. cur rent  ,-- next 
8. endfor 
9. End (* a lgor i thm *) 

A]gorithm 5.11 

SOLUTION: 
The first two Fibonacci numbers  need no computations;  therefore, a l - 
0 = a2. Suppose n > 2. It takes one addition to compute the next i tem 
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Fn from the current  term Fn-1. So an -- an-1 -~- 1. Solving this recurrence 
relation (try), we get 

a n - n - 2 ,  n>_2 

= | 

Thus the iterative version takes | additions to compute Fn. B 

The time it takes to compute Fn by the recursive algorithm grows expo- 
nentially with n, whereas by the iterative algorithm it grows only linearly. 
As n gets larger and larger, it takes more time to compute Fn by recursion 
than by iteration. Thus, by dividing and conquering the problem, we have 
made it complicated. 

Should we prefer the iterative method to the recursive method? Since 
every recursive algorithm has a nonrecursive version, if the algorithm 
makes just one recursive call to itself, as in the factorial algorithm, the 
iterative approach will, in general, save time. On the other hand, if the 
problem has a recursive definition, it will be easy to write a recursive algo- 
r i thm for the problem. Writing the nonrecursive version of a recursive 
algorithm is often a painful task and the resulting algorithm is often much 
longer, complicated, and difficult to understand. For instance, the nonre- 
cursive version of the Tower of Brahma algorithm is longer and that  of 
quicksort is ra ther  complicated. 

Next we estimate the number of element-comparisons required by 
the recursive selection sort algorithm presented in Algorithm 5.12. (See 
Algorithm 4.11 in Chapter 4 for an iterative version.) 

Algorithm selection sort(X,n) 
(* This algorithm invokes a subalgorithm called swap 

which switches two elements. MoxZndex denotes the 
index of the largest of the n elements. *) 

O. Begin (* algorithm *) 
I. maxindex ~- n ( * i n i t i a l i z e  maxindex at each pass *) 
2. for i = 1 to n -  1 do 
3. i f xi > Xmaxindex then 
4. maxindex ~- i 
5. i f  maxindex # n then (* swap the corresponding items *) 
6. swap Xmaxindex and Xn 
7. selection sort(X,n - 1) 
8. End (* algorithm *) 

Algorithm 5.12 

Estimate the number  of comparisons (lines 3 and 5) required Cn by 
Algorithm 5.12. 

SOLUTION:  
To estimate Cn, first define it recursively. 

If the list contains just one element, lines 3 and 5 are not executed; 
therefore, c1 - 0. 
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Suppose n > 2. Since the  f o r  loop is executed n - 1 t imes,  line 3 is 
executed n - I times. Fu r the rmore ,  line 5 is executed once. Therefore,  

C n  - - C n - 1  n t- ( n -  1 ) +  1 

=Cn-1 -~-n, n > 2 

Solving the recurrence  relat ion by the i terat ive method,  we get 

n ( n  + 1) 
Cn - -  

2 

-- (~)(n 2) 

- 1 ,  n>__l 

Thus  the a lgor i thm takes (-)(n 2) comparisons to sort  a list of n items, as in 
the i terative version, m 

Example  5.41 investigates one of the many  propert ies  of Fibonacci num-  
bers. Example  5.42 uses the proper ty  to es t imate  the n u m b e r  of divisions 
in the euclidean algori thm. 

1 + , / 5  
Let F,~ denote the n th  Fibonacci n u m b e r  and c~ = Prove tha t  

c~ n - 2  < g n  < c~ n -  1 n > 3. 

P R O O F  (by s t rong induction): 
(We shall prove tha t  c~ '~-2 < Fn and leave the o ther  half  as an exercise.) 
You may verify tha t  a is a solution of the equat ion x 2 - x + 1, so a2 _ a + 1. 
Let P(n)" O~ n - 2  < F , ,  where  n > 3. 

B a s i s  s t e p  Since the induct ion step below uses the recurrence  relat ion 
Fk+i - Fk + Fh-1, the basis step involves verifying tha t  both P(3) and P(4) 
are true. 

�9 To s h o w  t h a t  P(3)  is true:  W h e n  n - 3, 

1 + ~ / ~  1 + 3  
ot n - 2  - -  o~ - -  < = 2 - F 3  

2 2 

So P(3) is true.  

�9 To  s h o w  t h a t  P(4)  is true:  

3 + ~ / 5  

3 + 3  
< - 3 - F 4  

2 

Thus P(4) is also true.  
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I n d u c t i o n  s t e p  Assume P(3), P ( 4 ) , . . . ,  P(k) are t rue;  t ha t  is, a s sume  
~ i - 2  < Fi f o r 3  < i _< k. We mus t  show t h a t P ( k + l )  is t rue;  t h a t  is, 
(~k-1 < Fk+l" 

We have 

Mul t ip ly ing both sides by c~ k - 3 ,  

c~ k - 1  - -  of k - 2  -+- o~ k - 3  (Note: k - 3 > 2. ) 

< Fk + F k - 1 ,  

= Fk+ I , 

by the  induct ive hypothesis  

by the  recur rence  re la t ion 

Thus  P(k + 1) is t rue.  

Therefore,  by the s t rong version of induction,  P(n) is t rue  for n > 3; t h a t  
i s ,  Of n-2 < Fn for every n > 3. m 

Now we can es t imate  the n u m b e r  of divisions requi red  by the eucl idean 
a lgor i thm to compute  gcd{a, b }. 

( L a m ~ ' s  T h e o r e m )  The n u m b e r  of divisions needed to compute  g{a, b} by 
the euclidean a lgor i thm is no more t han  five t imes  the n u m b e r  of decimal  
digits in b, where  a > b > 2. 

P R O O F :  
Let Fn denote  the n th  Fibonacci number ,  a - r0, and b - r l .  By the repea ted  
application of the division a lgor i thm we have" 

ro -- r lq l  + r2 0 <_ r2 < rl 

rl -- r2q2 + r3 0 <_ r3 < r2 

rn -2  -- r n - l q n - 1  + rn 0 <_ rn < rn -1  

rn -1  - rnqn 

Clearly, it takes  n divisions to evaluate  gcd{a,b} - rn. Since ri < r i -1 ,  

qi >_ 1 for 1 _< i _< n. In par t icular ,  since rn < rn -1 ,  qn >_ 2; SO rn >_ 1 and 
rn-1 > 2 -- F3. Consequent ly ,  we have: 

rn -2  ---- r n - l q n - 1  -t- rn 

>__ rn-1  + rn 

> F 3 + l  

= F3 + F2 - F4 
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r n - 3  -- r n - 2 q n - 2  + r n - 1  

>__ r n - 2  + r n - 1  

>_ F4 + F 3  - F 5  

Cont inu ing  like this, 

Tha t  is, 

r l  --  r2q2 + r3 

> r2 + r3 

>_ Fn + Fn-1 - Fn+l 

b >_Fn+l  

B y  Example  5.41, Fn+ 1 > c~ n - l ,  w h e r e  a = 

b >C~ n - 1  

Then  

1 + ~/5. Therefore ,  
2 

log b > (n - 1) log 

Since a - 
1 + v / 5  1 

1.618033989, log c~ ~ 0.2089876403 > ~. So 

n - 1  
log b > 

5 

Suppose b contains k decimal digits. Then  b < 10 h. Therefore,  log b < k 
n - 1  

and hence k > ~ .  Thus  n < 5k + 1 or n < 5k. Tha t  is, the  n u m b e r  of 
5 

divisions needed by the a lgor i thm is no more than  five t imes the  n u m b e r  
of decimal digits in n. n 

Let us pursue  this example a bit fur ther .  Since log b > 

1 + 5 log b. Also, since b > 2, 

n - 1  
~ , n  < 

Thus  

5 log b >_ 5 log 2 

> 1  

n < 1 + 51ogb 

< 51ogb + 51ogb 

= 10 logb 

= O(log b) 

Thus  it takes  O(log b) divisions to compute  gcd{a,b} by the euclidean 
algori thm. 
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Gabriel  Lamd (1795-1870) was born in Tours, France. After graduating from 
the Ecole Polytechnique in 1817, he continued his studies at the E, cole des Mines, 
from which he graduated in 1820. 

The same year Lamd was appointed director of the School of Highways and 
Transportation in St. Petersburg, Russia. There he taught mathematics, physics, 
and chemistry and planned roads and bridges in and around the city. In 1832, he 
returned to Paris to form an engineering firm. Within a few months, however, he 
left it to become the chair of physics at the Ecole Polytechnique, where he remained 
until 1844. While teaching, he served as a consulting engineer, becoming the chief 
engineer of mines in 1836. He helped build the railroads from Paris to Versailles 
and to St. Germain. 

In 1844, Lamd became graduate examiner for the University of Paris in math- 
ematical physics and probability, and professor 7 years later. In 1862, he became 

deaf and resigned his positions. He died in Paris. 
Although Lam4 did original work in number theory and mathematical physics, his greatest contribu- 

tion was the development of the curvilinear coordinates and their applications. His work on the curvilinear 
system led him to number theory. In 1840, he proved Fermat's Last Theorem for n = 7. 

Gauss considered Lamd the foremost French mathematician of his time. French mathematicians, 
however, considered him too practical, and French scientists, too theoretical. 

The next example, due to S. H. Friedberg, explores the number  of multi-  
plications needed to compute the de te rminan t  of an n x n matr ix  by cofactor 
expansion. (It may be omitted by those not familiar with de te rminan ts  and 
calculus.) 

(optional) Let fn denote the number  of multiplications needed to compute  
detA, the de te rminan t  of an a rb i t ra ry  n x n matr ix  A = (aij) by cofactor 
expansion. Es t imate  fn. 

S O L U T I O N :  
We est imate fn in three steps: 

�9 Define fn recursively. 

�9 Solve the recurrence relation. 

�9 Use the solution to est imate fn. 

�9 To define fn recursively: 
Let Cij denote the (n - 1) x (n - 1) de te rminan t  obtained from de tA by 
deleting its i th row a n d j t h  column. By expanding detA with respect to 
the first row, we have 

n 

d e t A -  E ( - 1 ) J + Z a l j C l j  
j=l 

cofactor expansion by row 1 
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In particular let  : [a 
Clearly, two mult ipl icat ions are needed to evaluate  d e tA  and hence 
f2 - 2. Also fl = 0. 
Suppose n _> 3. Then,  by definition, it takes fn -1  mult ip l ica t ions  to 
compute  Clj.  Therefore,  it takes  fn-1  + 1 mul t ip l icat ions  to evaluate  
a l jC l j  and hence n ( f n - i  + 1) mult ipl icat ions to compute  detA.  

Thus  fn can be defined recursively as follows: 

f l - 0  

fn - n ( f n - 1  + 1), n >_ 2 (5.20) 

(This is a l inear nonhomogeneous  recurrence relat ion with  noncons tan t  
coefficients.) 

�9 To solve the recurrence  re la t ion  (5.20)" 
Let fn = n!gn. Since fl - 0, g l - 0. Subs t i t u t ing  for fn in 
Equat ion  (5.20), we get 

n!gn = n [ ( n -  1)!gn-1 + 1] 

= n!gn-1 + n 

So 

( g n  - -  gn-1)n!  = n 

1 
gn - g n -  1 - 

( n -  1)! 
(Note: g l  - 0. ) 

Solving this yields (see Exercise 64) 

So, 

Therefore,  

'•• 1 1  
gn - -~, since gl  = 0 

I I , .  

k=l 

n - l l )  

fn = n ' g n - - n ' ( k ~ _ _ l ~ .  

1) 
=n!  ~. - 1  

1) 
fn <n! ~ - i  

= n!(e - 1) - 1, by calculus 

< en! 
m 

= O(n!) 
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Thus the evaluation of detA by cofactor expansion takes O(n!) 
multiplications. II 

Divide-and-Conquer Algorithms 

We can now analyze the complexities of a special class of recursive 
algorithms called divide-and-conquer algorithms. 

The binary search algori thm presented in Algorithm 5.6 is based on the 
divide-and-conquer approach. To search an ordered list of n items for a 
given key, we divide the list into two smaller and similar sublists of about 
the same size. If the middle value ~= key, then we search either the lower 
half  or the upper half, and continue this procedure until  we are done. This 
exemplifies a divide-and-conquer algorithm. 

More generally, consider a problem of size n. Suppose the problem can 
be solved for a small initial value of n, and it can be broken up into a smaller 
and similar subproblems of approximately the same size, usually Ln/bJ or 
In~b], where a, b E N, 1 _< a < n, and 1 < b < n. Assume that  we can solve 
each of the subproblems and employ their  solutions to solve the original 
problem. Such an algori thm is a divide-and-conquer algorithm. 

Let f (n)  denote the number  of operations required to solve the original 
problem and g(n) the number  of operations result ing from the splitting. 
Then, assuming b is a factor of n, 

f (n) - a f  (n/b) + g(n) 

This is the divide-and-conquer recurrence relation result ing from the 
algorithm. 

The binary search algorithm manifests the complexities of the divide- 
and-conquer technique. 

( b i n a r y  s e a r c h )  Using the recursive binary search in Algorithm 5.6, let 
Cn denote the maximum number  of element comparisons needed to search 
for a given item (key) in an ordered list X of n items. If n = 1, then low = 
high = mid  = i and the condition in line 5 is tested exactly once; so Cl = 1. 

Suppose n > 1. Then the middle te rm is XL(n+l)/2 j. Compare key to 
X [ ( n + l ) / 2  j . If they are not equal, search the lower sublist or the upper sub- 

L n + l j  L2J list, but  not both. If n is even, 2 - ; so the upper half contains 
n �9 �9 n n / n / / \  

- [ ~ J  elements and the lower half contains ~ - 1 .  ( <  L2A)elements .  

n + 1 n + 1 
On the other hand, if n is odd, then / / 2 ~ - T ;  so both sublists con- 

tain n - 1  LnJ 2 = ~ elements each. Thus, in any case, the maximum number  

of comparisons needed is Ckn/2] + 1. So 

C 1 - - 1  

C n -  C[n/2J q- 1, n >_ 2 (5.21) 
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To solve this  r ecur rence  relat ion,  assume,  for convenience,  t h a t  n is 
a power  of 2, say n - 2 k, whe re  k >_ 0. Let  Cn - a k .  T h e n  the  r ecu r r ence  
re la t ion  (5.21) becomes ak - ak-1 + 1, where  a0 = 1. Solving th is  r ecu r r ence  
re la t ion  yields ak - k + 1, k >_ 0 (Verify.). Since n = 2 k, k - l gn ,  so 
cn = 1 + lg n, n >_ 1. Thus ,  if n is a power  of 2, t hen  Cn - (O(lg n). 

Suppose  n is n o t  a power  of 2. Then,  by induct ion,  it can be shown  t h a t  
cn - 1 + llg n J, where  n >_ 1 (see Exercise 44), so Cn - (')(lg n). 

Thus,  in bo th  cases, the  a lgo r i thm takes  (-)(lg n) e l emen t  compar i sons  in 
the  wors t  case. m 

The preceding example  is a special case of the  following t heo rem.  Since 
the  proof  is s o m e w h a t  complicated,  we skip it (see Exercises  65 and  66). 

Let  b E 1~ and d ~ IR + wi th  b > 2. Let  f be a nondec rea s ing  funct ion* a, c, 

such t h a t  f ( n )  - a f ( n / b )  + c and  f(1)  - d. Then  

O( lgn)  if a - 1 

f ( n )  - O(nlogba) o therwise  m 

For  example,  let f be a nondec reas ing  funct ion such t h a t  f ( n )  = 

3 f ( n / 2 )  + 5 and f(1)  - 8. Then ,  by T h e o r e m  5.7, f ( n )  - O(nlgS). 
The next  t h e o r e m  is a genera l iza t ion  of T h e o r e m  5.7. We s ta te  it w i t hou t  

proof  (see Exercises  67-69  for special cases of the  theorem)  and  apply it in 
Example  5.45. 

Let a, b ~ N and c, d e IR + wi th  b >_ 2. Let  f be a nondec reas ing  funct ion 

such t ha t  f ( n )  - a f ( n / b )  + c n  d .  Then  

f ( n )  - 

O(n d) if a < b d 

O ( n d l g n )  i f a - b  d 

O(nlogba) if a > b d m 

(optional) Let A - (a i j )  and B - (bij) be two n x n matr ices .  Let  C = 
n 

(ci j )  be the i r  p roduc t  where  cij = ~ a i h b k j .  Since C has  n 2 en t r ies  and 
k=l 

each takes  n mul t ip l icat ions ,  the  p roduc t  C can be compu ted  us ing  n 3 = 
O(n 3) mul t ip l icat ions;  in fact, it can be computed  us ing  O(n 3) c o m p u t a t i o n s  
(addit ions and  mult ipl icat ions) ,  as Exercises  40 and 41 indicate,  m 

We close this  section wi th  an analysis  of the  merge  sor t  a lgor i thm,  a 
d iv ide-and-conquer  s t ra tegy.  

( m e r g e  s o r t )  The merge  sort  me thod  in Algor i thm 5.7 sor ts  a list of n 
e lements .  Assume,  for convenience,  t h a t  n is a power  of 2, say, n - 2 k, k >_ 0. 

*Let S c_ IR. A function f �9 S -~ •+ is said to be nondecreasing ifx < y implies f (x )  <_ f(y) .  
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Let Cn denote the max imum n u m b e r  of e lement  comparisons needed in line 
6. Show tha t  Cn - O(n lg n). 

S O L U T I O N :  
When n = 2, one comparison is needed in line 6; therefore,  c2 = 1. So, let 
n > 2. The list is split into two, with each sublist  containing n/2 elements.  
In the worst  case, the n u m b e r  of comparisons resul t ing from line 4 is Cn/2, 
as it is from line 5. When the merge a lgor i thm is invoked in line 6, each 
sublist  contains n/2 elements;  so the m a x i m u m  n u m b e r  of compar isons  
from line 6 is n - 1. Thus  

c 2 -  1 

Cn --  2Cn/2 + (n  -- 1), n > 3  

Let ak - Cn  where n - 2 k, k _> 0. Then  

a 1 - 1  

ak - - 2 a k _ l  + (2 k -  1), k > 2  

This recurrence relation (see Exercise 8 in Section 5.2) yields 

Thus  

ak - ( k -  1)2 k + 1, 

= k .  2 k - 2 k + 1 

k > l  

c,~ - (lg n)n - n + 1 

_ < n l g n + l  

< 2 n l g n ,  n>__2 

= O(n lg n) m 

More generally, it can be shown tha t  in the worst  case the merge sort  
requires  O(n lg n) e lement  comparisons for a list of n elements.  This t ime 
est imate is the best among  all sor t ing algori thms. 

Exercises 5.7 

Find a big-oh est imate for each. 

1. The number  h(n) of handshakes  made by n guests at a party,  us ing 
Example 5.3. 

2. The n u m b e r  bn of moves needed to t ransfer  n disks in the Tower  of 
B rahma  puzzle in Example 5.4. 

3. The n u m b e r  fn of regions formed by n lines, using Example  5.5. 
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Estimate the solution fn of each recurrence relation (see Exercises 5.2). 

4. f l - - 1  

f n - - f n - l  + ( 2 n - 1 ) ,  n > 2  

6. f -2 

fn = f n - l  +n ,  n > 2 

5. f 0 = 0  

fn = fn -1  +4n ,  n > 1 

7. f -1 

fn - -2fn-1 + (2 n -  1), n >_ 2 

Find the number of comparisons needed to search for key - 13 in each 
ordered list using the recursive binary search algorithm in Example 5.33. 

8. 1 , 2 , 3 , 5 , 8 ,  13 9. 5,8, 13,21,34 

10. 3, 7, 8, 13, 21 11. 15, 16, 19, 21 

Compute the maximum number of comparisons needed to search for a par- 
ticular item in an ordered list containing the following number of items, 
using the recursive binary search algorithm. 

12. 8 13. 20 14. 25 15. 31 

Let bn denote the number of multiplications needed to compute n! using 
the recursive factorial algorithm in Example 5.1. 

16. Define bn recursively. 

17. Solve the recurrence relation satisfied by b,~. 

18. Show that bn = O(n). 

19-22. Estimate the number of times a,~ the assignment statement, x 
x + 1, is executed by the nested for  loops in Exercises 35-38 of 
Section 4.4. 

Estimate the number a,~ of times the statement, x ~ x + 1, is executed by 
each nested for  loop. 

2 3 .  f o r  i = 1 to  n do 2 4 .  

f o r  j = 1 to  L i / 2 ]  do 

x < - - x + l  

" 2 5 ,  f o r  i : 1 to  n do * 2 6 .  

f o r  j = 1 to  i do 

f o r  k = 1 to  j do 

f o r  1 = I t o  j do 

x + - x + l  

f o r  i = I t o  n do 

f o r  j = I t o  F i / 2 ]  do 

x ~ - x + l  

f o r  i = 1 to  n do 

f o r  j = 1 to  i do 

f o r  k = 1 to  j do 

f o r  1 = 1 t o  k do 

x ~ - x + l  

Let bn denote the number of element-comparisons needed by the bubble 
sort algorithm in Algorithm 5.9. 

27. Define bn recursively. 

28. Solve the recurrence relation. 

29. Find a big-oh estimate of bn. 
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30.  Let an denote the n u m b e r  of addit ions needed to compute  the n th  
n - 2  

Fibonacci n u m b e r  Fn ,  using Algori thm 5.4. Prove tha t  an - ~ E l ,  
i=l 

n > 3 .  m 

Solve each recurrence relation. 

31. c 0 - 1  

Cn - Cn_l  + b, n >  1 

33.  C l - 0  

Cn - -Cn-1  ~ bn ,  n > 2 

The number  of operat ions f ( n )  required by an a lgor i thm is given by 
f ( n )  - f ( n  - 1) + (n - 1) + (n - 2), where f(1) - 1. 

35. Find an explicit formula for f ( n ) .  

36. Show tha t  f ( n )  - O(n2). 

Let f ( n )  denote the n u m b e r  of bits in the binary represen ta t ion  of a positive 
integer  n. 

3 2 .  a 2  - 0 

an - a n - 1  -+ b, n >_ 3 

34. c l - a  

Cn -- Cn-1 + b n  3 n > 2 

37. Find a formula for f ( n ) .  38. Show tha t  f ( n )  - O(lg n). 

39. Let x ~ R + and n ~ N. The technique of s u c c e s s i v e  s q u a r i n g  can be 
applied to compute  x n faster  than  mult iplying x by itself n - 1 times. 
For  example, to find X 43 ,  first evaluate X2,X4,X8,X 16, and X 3 2 ;  then  
multiply X32,X8,X 2, and x 1" X 43 - -  X 32 �9 X 8 �9 X 2 �9 X 1. This process takes 
only 5 + 3 - 8 mult ipl icat ions instead of the conventional  method ' s  
42. The powers of x used in comput ing  x n are the place values of the 
bits in the b inary  representa t ion  of n; in fact, the numbe r  of powers of 
x used equals the numbe r  of nonzero bits in the b inary  represen ta t ion  
of n. Let f ( n )  denote the n u m b e r  of mult ipl icat ions needed to compute  
x n by successive squaring.  Show tha t  f ( n )  - O(lg n). 

Let A - (aij)  and B - (bij) be two n • n matrices. Let fn denote the n u m b e r  
of computa t ions  (additions and multiplications) to compute  their  product  

n 

C -  (cij) , w h e r e  cij - ~ aikbkj.  
k = l  

40. Evaluate  fn .  41. Es t imate  fn .  

42. Solve the recurrence relat ion Cn - 2Cn/2 + 1, where C1 - a and n is a 
power of 2. 

43. Show tha t  Cn - O ( n ) .  

44. Let Cn denote the max imum numbe r  of comparisons needed to search 
for a k e y  in an ordered list X of n elements,  us ing the recursive binary  
search algori thm. Prove tha t  Cn - 1 + [lg nJ, for every n >__ 1. 
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45. Let  a, b, k e N, b > 2, and  n = b k. Consider  the  func t ion  f def ined by 
k - 1  

f ( n )  = a f ( n / b )  + g ( n ) .  Show t h a t  f ( n )  - a k f ( 1 )  + Y]~ a i g ( n / b i ) .  
i=O 

46. Solve the  r ecur rence  re la t ion  an - 2an~2 -+- n,  where  a l  - 0 and  n = 2 k. 

47. Use Exercise 46 to show t h a t  an - O ( n  lg n). 

Let  f be a funct ion defined by f ( n )  - a f ( n / b )  + cn,  where  a, b e N, b > 2, 
c e R +, and  f(1)  - d. Assume  n is a power  ofb.  

48. Solve the  recur rence  re la t ion.  

49. Let  a - b and  d - 0. Show t h a t  f ( n )  - O ( n  lg n). 

Consider  the  recur rence  re la t ion  Cn = C[n/2j -t- C[(n+l)/2j Jr- 2, w h e r e  Cl = 0. 

50. Compu te  c3 and c4. 

51. Solve the  recur rence  re la t ion  when  n is a power  of 2. 

52. F ind  the  order  of m a g n i t u d e  of Cn w h e n  n is a power  of 2. 

Let  t be a funct ion defined by 

a i f n -  1 

t (n  ) - t( Ln/2] ) + t( [n/2] ) + bn otherwise  

where  a, b e IR +. (Such a funct ion  occurs in the  analysis  of merge  sort .)  

53. Eva lua te  t(5) and  t(6). 

54. Prove  t ha t  t (n )  is a nondec reas ing  funct ion;  t h a t  is, t ( n )  < t (n  + 1), 
where  n > 1. 

55. Show t h a t  t (n )  - O ( n  lg n), where  n is a power  of 2. 

Let  f ( n )  = 2 f ( n / 2 )  + cn 2, where  f(1)  - d and  n is a power  of 2. 

56. Solve the  recur rence  relat ion.  57. Show tha t  f ( n )  - O(n2). 

n(1) 
The n u m b e r  hn = ~ - called the  h m ' m o n i e  n u m b e r ,  occurs fre- 

i=1  i ' 
quen t ly  in the  analysis  of a lgor i thms.  

58. Compu te  h4 and hs. 59. Define hn recursively.  

n 

60. Prove  t h a t  E hi - (n + 1)hn - n,  n >_ 1. 
i=1  

m 
61. Prove  t h a t  h 2 m  >__ 1 + -~ ,  m >__ O. 

n + l  
62. Prove  t ha t  hn <_ ~ .  

2 
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*63. (For those  famil iar  wi th  calculus) Let  hn denote  the  n t h  h a r m o n i c  
n 

n u m b e r h n - i ~ l ( 1 ) . S h o w t h a t h n - O ( l g n ) .  

(Hint:  Use in tegra t ion . )  

64. Solve the  r ecur rence  re la t ion  gn - g n - 1  -- 1/(n -- 1)!, where  g l  - 0. 

L e t  a, b e N and  c, d e ]~+ wi th  b >_ 2. Let  f be a nondec reas ing  funct ion  
such t h a t  f ( n )  - a f ( n / b )  + c and f(1)  - d. Prove  each. 

**65. If  a - 1, t hen  f ( n )  - O(lg n). 

**66. I f a  # 1, t hen  f ( n )  - O ( n l ~  

Let a, b, n e N, b >__ 2, c, d e R +, f (1)  - d, and  n is a power  of b. Let  f be a 
nondec reas ing  funct ion  such t h a t  f (n) - a f  (n/b) + cn 2. Prove  each. 

**67. If a - b 2, t hen  f ( n )  - n2d  + cn 2 log b n. 

**68. If  a # b 2, t hen  f ( n )  - A n 2 +  B n  l~ where  A - 

B - d +  
b2c 

a - b  2" 

**69. O(n 2) if a < b 2 

f ( n )  - O(n 2 lgn)  i f a  - b 2 

O(nlog~a) i f a  > b 2 

b2c 

52 - a 
and  

This  chap te r  p resen ted  a new class of funct ions  and  hence  sequences:  recur-  
sively defined functions.  The defini t ions of such funct ions  can be t r ans l a t ed  
into recurs ive  a lgor i thms.  J u s t  as the  big-oh and b ig- the ta  no ta t ions  worked  
well in ana lyz ing  the  t ime complexi t ies  of a lgor i thms,  so does induct ion  in 
proving  the  correc tness  of recurs ive a lgor i thms.  

Recursion 

�9 The recurs ive  def ini t ion of a funct ion consists  of one or more  init ial  
condi t ions  and a r ecur rence  re la t ion (page 262). 

Solving Recurrence Relations 

�9 A simple class of r ecur rence  re la t ions  can be solved us ing  the  i tera t ive  
me thod  (page 279). 

�9 Every  solut ion of the  r ecur rence  re la t ion  an - an-1  + f ( n )  is of the  form 
n 

an -- ao + ~ f (i) ( page 280). 
i=l 
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�9 Every solution of the recurrence  relat ion an  : C a n - 1  -~- 1 is of the  form 
c n - 1 

an  - c n a o  + ~ where  c ~: 1 (page 282) 
c - - l '  

k 

�9 A kth-order LHRRWCC is of the form an  = ~ C i a n - i ,  where  ck r 0 
i=l 

( page 287). 

�9 The characteristic equation of this recurrence  re la t ion is x k - 
k 

Ci xk- i  : 0 (page 287). 
i = 1  

�9 The character is t ic  roots of a LHRRWCCs can be used to solve the  
LHRRWCCs (page 288). 

�9 The general  solution of a LNHRRWCCs is given by an  - aCn h) + a ~  ~) 

(page 294). 

Generating Functions 

�9 g ( x )  - ~ a n X  n is the generating function of the real n u m b e r  seque- 
n--0 

nce a0, a 1, a2 , . . .  ( page 298). 

�9 Genera t ing  functions and the part ial  fraction decomposit ion rule  can 
be used to solve LHRRWCCs (page 301). 

Recursive Algorithms 
�9 A recursive algorithm consists of two cases" base case(s) and  a 

general  case (page 307). 

�9 L a m ~ ' s  T h e o r e m  The euclidean a lgor i thm for comput ing  gcd{a,b} 
takes no more than  five t imes the n u m b e r  of decimal digits in b, where  
a >_ b > 2 (page 323). 

Divide-and-Conquer Algorithms 
�9 The recurrence  relat ion of a divide-and-conquer a lgor i thm is of the  form 

f (n )  - a f  ( n / b )  + g ( n )  (page 327). 

Revlew Exercises 

In Exercises 1 and 2, the n th  t e rm an  of a n u m b e r  sequence is defined 
recursively. Compute  a5. 

1. a l - a 2 =  1 , a 3 - 2  

an  - a n - 1  ~ a n - 2  �9 a n - 3 ,  n > 4 



Chapter Summary 335 

2. al  - O ,  a2 - a 3 -  1 

an -- a n - 1  + 2 a n - 2  + 3an_3 ,n  >__ 4 

3. The n u m b e r  of addit ions an needed to compute  the  n th  Fibonacci  num-  
ber Fn by recurs ion is given by an - Fn - 1, n __ 1. F ind the  recur rence  
re la t ion satisfied by an. 

(A m o d i f i e d  h a n d s h a k e  p r o b l e m )  Mr. and Mrs. Mat r ix  hosted a pa r ty  
for n mar r i ed  couples. At the  par ty ,  each person shook hands  wi th  everyone 
else, except the  spouse. Let  h ( n )  denote  the  total  n u m b e r  of handshakes  
made.  

4. Define h ( n )  recursively.  

5. Predict  an explicit formula  for h(n ) .  

6. Prove the  formula  obta ined in Exercise 5, where  n _>_ 1. 

Using the i tera t ive  method,  predict  an explicit fo rmula  satisfied by each 
recurrence  relat ion.  

7. a 1 - 1 . 2  

an - a n - 1  + n ( n  + 1),n >_ 2 

9. a 1 - - 1  

an - - a n - 1  + 2 n - l , n  >_ 2 

8. a l - 2 . 3  

an - 3 a n _ l , n  >__ 2 

10. a 0 - 0  

an - a n - 1  + ( 3 n -  1), n >_ 1 

11-14.  Using induction,  prove the formulas  obta ined in Exercises 7-10. 

Solve each recurrence  relat ion.  

15. an = an -1  + a n - 2 , a l  -- 2,a2 - 3 

16. an -= an -1  + a n - 2 , a l  = a2 - a 

17. an = 2an -1  + 7 a n - 2 - 8 a n - 3 -  1 2 a n _ 4 ,a o  = 4 , a l  = 10,a2 = 18,a3 = 58 

18. an = 4an -1  + 2 a n - 2 -  1 2 a n - 3 -  9 a n _ 4 , a o  -- 4 , a l  = 0,a2 = 4,a3 - - 3 2  

19. an = 10an-1 - 21an-2 + 5n,  ao = O, a l  = 3 

20. a n  = 8an-1  - 15an-2 + 4 n 5 n , a o  = 1 ,a l  = 3 

21. Let an denote  the n u m b e r  of mul t ip l icat ions  (lines 7-10) in Algo- 
r i t hm 5.10. Show tha t  an = O(n) .  

Let Cn denote the  n u m b e r  of e lement  compar isons  made  (line 4) by the  
recursive bubble sort  a lgor i thm in Algor i thm 5.9. 

22. Define Cn recursively.  

23. Solve the  recurrence  relation.  

24. Show tha t  Cn = O(n2). 
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n 

A l g o r i t h m  5.13 e v a l u a t e s  t h e  p o l y n o m i a l  f ( x )  - ~ a ix  ~ at  x - a .  U s e  it  for  

Exe rc i s e s  25-29 .  i=o 

Algorithm evaluate poly(f,n,~,answer) 
(* This a lgo r i thm re turns  the value of  a polynomial f 

of degree n at c~ in the va r i ab le  onswer. *) 
O. Begin (* a lgo r i thm *) 
I .  answer , -  ao 
2. power ~- i 
3. f o r  i = i to n do 
4. begin (* f o r  *) 
5. power <- power * 
6. answer ,-- answer + ai * power 
7. endfor 
8. End (* a lgo r i thm *) 

Algorithm 5.13 

E v a l u a t e  each  p o l y n o m i a l  a t  x - - 1 .  

25.  f (x) - x 3 + 2 x  2 - 3 x + 4  26.  f (x)  - 2x 3 -+- 5x - 6 

Let  c,~ d e n o t e  t h e  n u m b e r  of o p e r a t i o n s  ( l ines 5-6)  r e q u i r e d  to e v a l u a t e  a 
po lynomia l  a t  x - a .  

27.  Def ine  cn recurs ive ly .  

29.  Show t h a t  c ,  - O(n2). 

28.  Solve t h e  r e c u r r e n c e  r e l a t i on .  

Use  H o r n e r ' s  a l g o r i t h m  (A lgo r i t hm 5.14) to e v a l u a t e  t h e  p o l y n o m i a l  
t l  

f ( x )  - ~ a ix  ~ at  x - a for Exerc i ses  30-35 .  
i=0 

Algorithm Horner(f,n, i ,~) 
(* This a lgo r i thm evaluates a polynomial f of  degree n at 

x - ~ by recurs ion  and is invoked by Horner( f ,n ,O,c~) .  *) 
O. Begin (* a lgo r i thm *) 
i .  i f  i = n then 
2. Horner ~-- an 
3. else 
4. Horner K-- H o r n e r ( f , n , i  + 1,e() �9 (x + ai 
5. End (* a lgo r i thm *) 

Algorithm 5.14 

E v a l u a t e  each  p o l y n o m i a l  a t  x - 2. 

30.  f (x)  - 3x 2 + 4x - 5 31.  f (x) - 2x 3 - 5x + 3 

Let  bn d e n o t e  t h e  n u m b e r  of  o p e r a t i o n s  (add i t ion  and  m u l t i p l i c a t i o n )  
n e e d e d  in l ine 4. 

32.  Def ine  bn recurs ive ly .  

33.  Solve t he  r e c u r r e n c e  re la t ion .  
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34. Show tha t  bn - -  O(n  ). 

35. Le tan  denote  the  n u m b e r  of n-bit  words t ha t  do not  contain the  p a t t e r n  
111. Define a n  recursively.  

Let  a n  denote the  n u m b e r  of ways a 2 • n r ec t angu la r  board can be covered 
with  2 • i dominoes.  

36. Define a n  recursively.  37. Find an explicit formula  for a n .  

(Hint:  Consider  2 • (n - 1) and 2 • (n - 2) boards.) 

Wri te  a recursive a lgor i thm to compute  each sum. 

38. The sum of the  first n even positive integers.  

39. The sum of the  first n odd positive integers.  

40-41 .  Es tabl ish  the  correctness  of the  a lgor i thms in Exercises 38 and 39. 

42. Wri te  an i tera t ive  a lgor i thm to find the m i n i m u m  and the m a x i m u m  
of a list X of n e lements .  

Let Cn denote the n u m b e r  of e lement  comparisons  made  by the m i n m a x  
a lgor i thm in Exercise 42. 

43. Define Cn recursively.  44. Solve the recur rence  relation.  

45. Show tha t  bn - O(n) .  

Prove each, where  a and fl are the solutions of the  equat ion  x 2 = x + 1, 
Fn the  n th  Fibonacci number ,  and L n  the  n th  Lucas number .  Ident i t ies  in 
Exercises 46-53 were discovered in 1876 by Lucas. 

n ~ 
46. ~ Fi = Fn + 2 -- 1 47.  F 2 i -  1 - -  F 2 n  

i= l  i= l  

n n 

48. ~ F2i  = F2n+l  - 1 49.  ~ L i = L n + 2  - 3 
i=l  i= l  

n n 

50.  ~ L 2 i - 1  =- L 2 n  - 2 5 1 .  ~ L 2 i  = L 2 n  + l - 1 
i=1 i=1 

52. F 2 n+l ~- F2 -- g2n+l  53.  F2+1 - F2_1 - g 2 n  

54. gcd{Fn,Fn+l}  - 1, n >_ 1 55. x n - Fnx  + Fn-1 ,  n >_ 2 
(~n _ f in  

56. F n =  , n > l  

Let C(n)  denote the  n u m b e r  of comparisons  needed by quicksort  to sort  
a list of n i tems. In the  worst  case, C(n)  = C(n  - 1) + (n - 1), where  
C(0) = 0 = C(1). 

57. Solve the  recur rence  relation. 58. Show tha t  C(n)  = O(n2). 

(Note: This shows tha t ,  in the worst  case, quicksor t  is as bad as selection 
sort.) 
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Let A ( n )  denote the average n u m b e r  of comparisons  needed by quicksort .  
1 n 

Then  A ( n )  = (n + 1) + - ~ [ A ( i  - 1) + A ( n  - i)], where A(0) = 0 - A(1). 
n i-1 

Use this fact to answer  Exercises 59 and 60. 

n+l( 1 ) 
*59. S h o w t h a t  A ( n )  = 2  ~ - . 

n + l  i -3  i 

*60. Show tha t  A ( n )  - O(n  lg n). 
(Hin t :  Use integration.)  

Supplementary Exercises 

A side of the equilateral  t r iangle in Figure 5.20 is n uni ts  long. Let an denote  
the number  of t r iangles point ing north.  

F i g u r e  5 .20  

1. Define an recursively. 2. Solve the recurrence relation. 

The n th  F e r m a t  n u m b e r  fn is defined by fn 2 2" - + l , n > _ 0 .  

3. Prove tha t  fn+ 1 - f 2  _ 2fn + 2. (J. M. Schram, 1983) 

4. Using Exercise 3, compute  fl,  f2, f3, and f4. 

5. Let an be an infinite sequence with al  - 1, a5 - 5, a12 -- 144, and 
an + an+3 - 2an+2. Prove tha t  an - Fn.  (H. Larson,  1977) 

1+4~ 
6. Let a = and Fn the n th  Fibonacci number .  Prove tha t  

2 
lim F~+I = ~. 

n--,~ gn  

*7. Let Sn  denote the sum of the number s  in the n th  t e rm of the 
sequence of sets of pentagonal  numbers  { 1}, {5, 12}, {22, 35, 51}, 
{70, 92,117, 145}, . . . .  Find a formula for Sn .  

*8. Let Sn  denote the sum of the numbers  in the n th  t e rm of the sequence 
of sets of Fibonacci number s  {1}, {1,2}, {3,5,8},  {13,21,34,55}, . . . .  
Find a formula  for Sn .  
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Describe the behavior of each number  sequence {an }, where a0 - a, a l  - b, 
and a2 - c are positive numbers .  (R. L. Graham,  1991) 

9. an+2 - (1 + an+l)/an 10. an+3 - (1 + an+l + an+2)/an 

Let n E N and ~ Euler ' s  phi-function. Define ~k _ ~gk-1 o q), where ~1 _ 
and o denotes composition. Let f (n )  - ~(n) + ~2(n) + ~3(n) + . . .  + q~(1). 
(D. L. Silverman, 1981) 

11. Compute f(5) and f(8). 

12. Prove tha t  if n - 2 k, then  f (n)  - n. 

13. Prove tha t  f (n )  is even. [Hint: ~(n) is even for n > 2.] 

14. Consider the sequence of r ight t r iangles Tn, n > 1, with legs An and 
Bn, and hypotenuse Cn such tha t  An+l - Bn and Bn+l - Cn. Compute 

lim Bn Cn 
n - - * ~  An and n--.eclim ~ .  (M. Flavio, 1980) 

A set of integers A is f a t  if each of its e lements  is >__ IAI. For  example, 
{5, 7, 91} is a fat set, but  {3, 7, 36, 41} is not. ~ is considered a fat set. Let 
fn denote the number  of fat subsets of the set {1, 2 , . . . ,  n}. (G. F. Andrews) 

"15. Define fn recursively. * 16. Find an explicit formula for fn. 

Let f ( n , k )  denote the number  of k-element subsets of the set S - 
{1, 2 , . . .  ,n} tha t  do not contain consecutive integers. Let fn denote the 
total number  of subsets of S that  do not contain consecutive integers. 
(I. Kaplansky) 

"17. Define f(n,  k) recursively. "18. Find an explicit formula for fn. 

Computer Exercises 

Write a program to perform each task. 

1. Read in a positive integer n < 20, and pr int  the various moves and the 
number  of moves needed to t ransfer  n disks from peg X to peg Z, using 
the rules in Example 5.4. 

2. Read in a positive integer n, and pr int  the first n t r iangular  and 
te t rahedra l  numbers.  

3. Pr in t  the t r iangular  numbers  _< 1000 tha t  are perfect squares. 

4. Pr in t  the t r iangular  numbers  < 1000 tha t  are primes. 

5. There are eight palindromic t r iangular  numbers  < 1000. Find them. 

6. Search for two t r iangular  numbers  tn such tha t  tn and n are palin- 
dromic, where 9 < n < 100. 

7. Read in a positive integer n and pr int  the first n Fibonacci numbers ,  
using recursion and iteration. 
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8. Read in a positive integer  n _< 20 and pr int  the first n Lucas numbers .  

9. Read in a positive integer n < 25 and pr int  the values of Fn+l and 
- F n  

Ln+l correct to 10 decimal places, where Fn denotes the n th  Fibonacci 
Ln 

number  and Ln the n th  Lucas number.  

Read in a list of n positive integers. Use recursion to pr int  each. 

10. Their  sum, product, maximum, and minimum. 

11. The list in the given order. 

12. The list in the reverse order. 

13. Read in a key and search the list for key. Pr in t  the location if the search 
is successful; otherwise, pr int  a suitable message. 

14. Read in a key and a sorted list of n items; determine if key occurs in 
the list using recursion and iteration. Pr in t  the location of key if the 
search is successful. 

15. Read in a list of n words and determine if each is a palindrome, using 
recursion. 

16. Read in two lists of n integers. Determine if they are identical, using 
recursion. 

17. Read in a nonnegative real number  x and a nonnegat ive integer n; 
compute the nth  power ofx. 

18. Read in a positive integer n < 100 and a positive real number  x < 2. 
Use the binary representa t ion of n and the technique of successive 
squaring to compute x n. Pr in t  the number  of multiplications needed 
to compute it. 

n 

19. Read in a number  a, and a polynomial ~ aix ~ ( that  is, coefficients and 

the corresponding exponents); print  t t~e~ of the polynomial at a, 
using Horner ' s  method. 

20. Read in n positive integers and print  their  min imum and maximum, 
using both i terat ion and recursion. 

21. Read in a positive integer n < 10 and ar range  the Stirl ing numbers  of 
the second kind S(n, r) in a t r iangular  form, where 1 < r < n. 

22. Read in n positive integers and sort them using bubble sort, selection 
sort, and insertion sort. Pr in t  the number  of element-comparisons 
needed by each algorithm. 

23. Read in n four-letter words. Sort them, using merge sort and quick- 
sort. Pr in t  the number  of element  comparisons needed by each 
sort. 
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Exploratory Writing Projects 

Using library and Internet  resources, write a team report on each of the 
following in your own words. Provide a well-documented bibliography. 

1. Describe the properties of Fibonacci numbers, their occurrences in 
nature, applications to various disciplines, and relationships to Lucas 
numbers. 

2. Explain how the golden ratio is related to Fibonacci and Lucas 
numbers. Describe its various occurrences in nature. 

3. Describe the various forms of Ackermann's  function. Investigate its 
importance in the study of recursive functions and the analysis of 
algorithms. 

4. Investigate the Josephus problem, named for the first century Jewish 
historian Flavius Josephus (37?-100?). 

5. Describe how, using Fibonacci numbers Fn (n >_ 2) as bases, non- 
negative integers can be represented as binary numbers with no two 
adjacent l 's. Express the integers 1-25 as such binary numbers. 

6. Define continued fractions and describe their relationship to Fibonacci 
numbers. 

7. Describe the Game of Life, invented in 1970 by British mathematician 
John H. Conway, now at Princeton University. 

8. Describe the Game of Halma, invented in 1883 by George H. Monks, 
a Harvard Medical School graduate. 

9. Examine the history of Catalan numbers and their properties and 
applications. Include a biography of E. C. Catalan. 

10. Write an essay on the Tower of Brahma (Hanoi). 

11. Write an essay on Quicksort. 

12. Discuss the fifteen puzzle, invented by American puzzlist Samuel Loyd 
(1841-1911). 

13. Discuss Markov chains, named after Russian mathematician Andrei A. 
Markov (1856-1922), who developed the theory of stochastic processes, 
and their applications to business. 
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New York, 2001. 

5. C. Oliver, "The Twelve days of Christmas," Mathematics Teacher, 
Vol. 70 (Dec. 1977), pp. 752-754. 

6. S. Sahni, Concepts in Discrete Mathematics, 2nd ed., Camelot, Fridley, 
MN, 1985, pp. 205-335. 
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11. H. S. Wilf, Algorithms and Complexity, Prentice-Hall, Englewood 
Cliffs, NJ, 1986, pp. 26-34, 48-61. 


	sdarticle7

