
Chapter 4

Induct ion and Algor i thms

God created the na tura l numbers ; all else is the work o f man .

L. KRONECKER

T his chapter presents the well-ordering principle, the division algo-
r i thm with which you are already familiar, and some fundamental

divisibility properties. In addition, through the well-ordering principle we
will establish an additional proof technique, the principle of mathemat-
ical induction. Interesting applications of this principle, as well as the
pigeonhole principle from Chapter 3, will be investigated.

Some of the intriguing problems pursued in this chapter lie below:

�9 Are there integers between 0 and 1?

�9 Ifn is a positive integer >_ 2 and a l , a 2 , . . . , an E Z, are there consecutive
elements a k + l , a k + 2 , . . . , a s such that a k + l + ak+2 + " " + as is divisible
by n, where k < t~?

�9 If a l , a 2 , . . . , an are the first n positive integers in some order, arranged
around a circle, is it true that there must be a set of k consecu-
tive elements in the cyclic ar rangement whose sum is greater than
[[kn (n + 1) - 2]/2nJ?

�9 Can any postage ofn > 2 cents be paid using two- and three-cent stamps?

The division algorithm, with which you are already familiar, is often
employed to verify the correctness of a division problem. Its proof is based
on the following cardinal fact, which is accepted as an axiom. (An a x i o m is
a proposition that is accepted as true. It is usually a self-evident proposition
and is consistent with known facts.)

185

186 Chapter 4 Induction and Algorithms

The Well-Ordering Principle
Every nonempty set of positive integers has a least element. i

For example, the set {13,5 ,8 ,23} has a least element, 5. The well-
order ing principle applies to any nonempty subset S of T = {n ~ Z J n _>_ no },
where no is any integer. To see this, let S* - {n - no + 1 In e S} and
T * - {n - no + 1 In ~ T}. Since S * c_ T * and T * c_ N , by the wel l -order ing
principle, S* contains a least e lement t~*. Then no + g* - 1 is a least e l emen t
of S (why?).

For example, l e t S - {-3, - 1 , 0, 1, 3, 5} and T = {n ~ Z l n > -5}. Then
S* - {3,5,6, 7,9, 11} has a least e lement t~* - 3, son0+ t~* - 1 - - 5 + 3 - 1 =
- 3 is the least e lement of S.

Next we present the division algori thm. Its proof is a bit complicated,
so we omit it here; but a proof, us ing the well-ordering principle, can be
established (see, for instance, the au thor ' s n u m b e r theory book).

The Division Algorithm

When an integer a is divided by a positive integer b, we get a unique (integer)
quot ient q and a unique (integer) remainder r, where 0 < r < b. The
integer a is the dividend and b the divisor. This is formally s ta ted as
follows.

(The Divis ion Algorithm) Let a be integer and b positive any any
integer. Then there exist unique integers q and r such tha t

a - b . q + r

Dividend ~ l l ~ Remainder

Divisor Quot ient

where 0 < r < b. m

Although this theorem does not present an a lgor i thm for finding q and r,
it has been t radi t ional ly called the division algori thm. The values of q and
r can be found using the familiar long division method.

Notice tha t the equat ion a - bq + r can be wr i t ten as

a r =q+g

so q = a div b - [a/bJ and r - a - b q - a mod b.
The next example shows tha t we should be careful in finding the quot ien t

and the remainder when the dividend is negative.

4.1 The Division Algorithm 187

[~ ~ ~ ~ ~ Find the quot ien t q and the r e m a i n d e r r when - 2 3 is divided by 5.

S O L U T I O N :
Since - 2 3 - 5 . (- 4) + (-3) , you migh t be t e m p t e d to say t h a t q = - 4 and
r - - 3 . Recall t ha t the r ema inde r can n e v e r be negative, so we r e w r i t e
- 2 3 as - 2 3 = 5 . (- 5) + 2, where 0 < r (= 2) < 5 (see the n u m b e r l ine
in Figure 4.1). Thus q = - 5 and r - 2; in o ther words, - 2 3 div 5 - - 5
and - 2 3 mod 5 = 2.

F i g u r e 4.1

A

- 2 5 T - 2 5 - 1 5 - 1 0 5 0

-23

We close this section wi th two applicat ions of the division a lgor i thm and
the pigeonhole principle, m

Let b be an in teger > 2. If b + 1 dis t inct in tegers are r andomly selected,
prove tha t the difference of some two of t h e m mus t be divisible by b.

P R O O F
Let q be the quot ient and r the r e m a i n d e r when an in teger a is divisible
by b. Then, by the division a lgor i thm, a = bq + r where 0 < r < b. The
b + 1 dist inct in tegers yield b + 1 r ema inde r s (pigeons); bu t there are only b
possible r ema inde r s (pigeonholes). Therefore, by the pigeonhole principle,
two of the r ema inde r s mus t be equal.

Let x and y be the corresponding integers. Then x = b q l + r and
y - bq2 + r for some quot ients ql and q2. Then

x - y = (bq l + r) - (bq2 + r)

= b (q l - q 2)

Thus, x - y is divisible by b. m

Let n be an integer >_ 2 and let ~ Z. Prove tha t there exist a l, a 2 , . . . , an

in tegers k and g such tha t a k + l + ak+2 + " " + ae is divisible by n, where
1 _< k < t~ < n; t ha t is, there exist consecutive e lements ak+ l , ak+2 , . . . ,ae
whose sum is divisible by n.

P R O O F (by cases) :
Consider the n s u m s S i - a l -+- a2 + . . . + ai , where 1 < i < n.

Case 1 If any of the sums S i is divisible by n, then the s t a t e m e n t is t rue.

188 Chapter 4 Induction and Algorithms

C a s e 2 Suppose none of the s u m s S i is divisible by n. W h e n S i

is divided by n, the r e m a i n d e r m u s t be nonzero . So, by the divis ion
a lgor i thm, the possible r e m a i n d e r s are 1, 2 , . . . , (n - 1). Since t h e r e a re
n sums and n - 1 possible r e m a i n d e r s , by the p igeonhole principle , two
of the sums S k and Se m u s t yield the same r e m a i n d e r r w h e n divided by n,
where k < e.

Therefore , t he r e m u s t exist in tegers qz and q2 such t h a t a l + a2 + . . . -+-
ak = n q l + r and a l + a2 + . . . + ae - nq2 + r, where k < e. Sub t r ac t i ng ,

we get ak+l -+- ak+2 -+- " " + ae = n (q l -- q2). T h u s ak+l + ak+2 + " " + ae is
divisible by n. m

To cite a specific example , consider the seven in tegers 2, 3, 8, 15, 23, 29,
and 57. T h e n $1 = a l - 2 = 0 �9 7 + 2 and $5 = a l + a2 -+- a3 ~- a4 + a5 =
2 + 3 + 8 + 15 + 23 = 51 = 7 �9 7 + 2. T h e n $5 - $1 = a2 + a3 ~- a4 + a5 --
3 + 8 + 15 + 23 - 49 is divisible by 7. Here k = 1 and e = 5. (You m a y not ice
t h a t $4 = a l + a2 + a3 -F a4 = 2 + 3 + 8 + 15 is also divisible by 7.)

Exercises 4.1

1. Is the set of posit ive odd in tegers wel l -ordered?

2. Is the set of posit ive even in tegers wel l -ordered?

In Exerc ises 3-6, find the quo t i en t and the r e m a i n d e r w h e n the first i n t ege r
is divided by the second.

3. 137, 11 4. 15, 23 5. - 4 3 , 16 6. - 3 7 , 73

Find the set of possible r e m a i n d e r s w h e n an in teger is divided by the given
integer .

7. Two 8. Five 9. Seven 10. Twelve

11. Prove t h a t t he re exists no in teger b e t w e e n 0 and 1.

12. Let a ~ Z. Prove t h a t no in teger exists b e t w e e n a and a + 1.

13. Let no E Z , S be a n o n e m p t y subse t of the set T = {n ~ Z ln > no},
and ~* be a least e l e m e n t of the set T* - {n - no + 1 In e T}. Prove
t h a t no + 6" - 1 is a least e l e m e n t of S.

14. Us ing the wel l -order ing principle, prove t h a t i is the smal les t posi t ive
integer .
(H i n t : Prove by contradic t ion.)

"15. Let a ~ Z, S - {a, a + 1, . . .} , T c S, and a ~ T. Let k be any e l e m e n t
of S such t h a t w h e n e v e r k e T, k + 1 e T. Prove t h a t S = T.

"16. Let a e Z and S = { a , a + 1, . . .} . Let P(n) be a p red ica te on S such
t h a t the following condi t ions are satisfied: (1) P (a) i s t rue ; (2) I f P (a) ,

4.2 Divisibility Properties 189

P(a + 1) , . . . ,P(k) are t rue for any k > a, then P(k + 1) is also t rue.
Prove tha t P(n) is t rue for every n > a.

The celebrated euclidean a lgor i thm can be used to find the grea tes t common
divisor of two positive integers, bu t first a very few proper t ies of p r ime and
composite numbers , and some divisibility propert ies .

Let a and b (r 0) be any two integers. If the re is an in teger q such t h a t
a - b q , we say b d i v i d e s a, b is a f a c t o r of a, a is d i v i s i b l e by b, or a is a
multiple of b. We then write b l a ; otherwise, b ya. (Again, the m e a n i n g of
the vertical bar should be clear from the context.) For instance, 316, 8124,
but 6 y14.

A positive factor b of a positive in teger a is a proper factor of a if b ~: a.
For example, the proper factors of 6 are 1, 2, and 3.

There are positive integers with exactly two positive factors. Accordingly,
we make the following definition.

Prime Numbers and Composite Numbers

A positive in teger > 1 is a prime number (or simply a p r i m e) if its only
positive factors are 1 and itself. A positive in teger > 1 is a compos i te
number if it is not a prime.

For example, 2 and 19 are primes, whereas 6 and 21 are composi te
number s (why?).

There is a systemat ic procedure for de te rmin ing whe the r or not a positive
in teger n >_ 2 is a prime. It is based on the next theorem.

Any composite n u m b e r n has a pr ime factor _< L~/-nJ.

PROOF (by contradiction):
Since n is composite, there are positive integers a and b such t ha t n = a b

where 1 < a < n and 1 < b < n. Suppose a > j ~ and b > ~/-n. Then
n - a b > v/n �9 j ~ - n, which is impossible. Therefore, e i ther a < v/n or
b < j ~ . Since both a and b are integers, it follows tha t e i ther a < /vZn/or
b_< [J-~J.

By the fundamenta l t heo rem of a r i thmet ic (see Theo rem 4.13), every
positive integer has a pr ime factor. Any such factor of a or b is also a factor
of a . b - n, so n mus t have a pr ime factor [vZnJ. I

It follows from Theorem 4.2 t h a t if n has n o pr ime factors < L~r~J,]
then n is a prime; otherwise, it is a composite number .

This fact can be used to de te rmine whe the r or not an in teger n > 2 is a
prime, as the next example i l lustrates.

190 Chapter 4 Induction and Algorithms

Dete rmine if 1601 is a p r ime number .

S O L U T I O N :
Firs t list all p r imes < Lx/1601J. They are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, and 37. None of t h e m is a factor of 1601 (verify); so 1601 is a pr ime, m

An a lgor i thm for d e t e r m i n i n g the pr imal i ty of a posit ive in teger n >_ 2 is
given in Algor i thm 4.1.

Algorithm prime number(n)
(* This algorithm determines i f a positive integer n>__2 is

prime or not using Theorem 4.2. *)
Begin (* algorithm *)

l i s t all primes < Lv/n]
i f any of them is a factor of n then

n is not a prime
else

n is a prime
End (* algorithm *)

Algorithm 4.1

In the r ema inde r of this section we discuss some useful divisibility
propert ies . We begin with a simple and s t r a igh t fo rward proper ty .

If a and b are positive in tegers such tha t a i b and b i a, t hen a - b. i

Notice t ha t this t h e o r e m does n o t hold if a and b are any integers . For
example, 3 i (- 3) and (- 3) 13, bu t 3 r - 3 .

Let a, b, and c be integers. Then: any

(1) If a I b and b i c, t hen a I c (t r a n s i t i v e proper ty) .
(2) If a i b and a I c, t hen a I (b + c).
(3) If a i b and a I c, t hen a I (b - c).
(4) I f a I b, t hen a I bc.

P R O O F :
We shall prove proper t ies 1 and 2, and leave the o thers as exercises.

(1) Since a lb, the re exists an in teger q l such t h a t b = aq] . Similarly,
the re exists an in teger q2 such t ha t c = bq2. T h e n c = bq2 = (a q l) q 2 - -

a (q l q 2) . Thus , the re exists an in teger q = q l q 2 such tha t c = aq.

Therefore , a lc.

(2) As above, we have b - a q l and c - aq3. T h e n b + c - a q l + aq3 =

a (q l + q3). Since ql + q3 is an integer, it follows t h a t a l(b + c). i

4.2 Divisibility Properties 191

The Greatest Common Divisor

A positive integer can be a factor of two positive integers a and b. Such
a positive integer is a c o m m o n fac tor of a and b. The largest such com-
mon factor is the grea te s t c o m m o n d iv i sor (gcd) of a and b, denoted by
gcd {a, b }.

For instance, gcd{6, 9} - 3, gcd{12, 24} - 12, and gcd{6, 35} = 1.
This definition of gcd, although simple and clear, is not practical, so we

give an alternate, equivalent definition below.

An Alternate Definition of GCD

A positive integer d is the gcd of two positive integers a and b if:

�9 d [a a n d d [b ; a n d

�9 if d' [a and d' [b, then d' I d, where d' is a positive integer.

Thus, d is gcd{a, b} if (1) d is a common divisor of both a and b; and
(2) any common divisor of a and b is also a divisor of d.

The next theorem, an extremely useful and powerful result, can be
applied to develop an algorithm to compute gcd{a, b}.

Let a and b be positive integers, and r the remainder when a is divided any

by b. Then gcd{a, b} -- gcd{b, r}.

PROOF
Let gcd{a, b} = d and gcd{b, r} = d'. To prove t h a t d = d', it suffices to show
that d i d ' and d ' l d . By the division algorithm, a unique quotient q exists
such that

a = bq + r (4.1)

To show that d i d ' :
Since d = gcd{a, b}, d f a and d I b. Therefore, d f bq, by Theorem 4.4. Then
d l(a - bq), again by Theorem 4.4. In other words, d lr, by Equation (4.1).
Thus, d I b and d I r. Therefore, d I gcd{b, r }; that is, d I d'.

Similarly, it can be shown that d' I d. (See Exercise 33.) Thus, by
Theorem 4.3, d = d'; that is, gcd{a, b} = gcd{b, r}. 1

Illustrate Theorem 4.5, using a = 108 and b - 20.

SOLUTION:
gcd{108, 20} = 4 (verify). When 108 is divided by 20, the remainder is 8.
gcd{20, 8} - 4 (verify). Thus, gcd{108, 20} = gcd{20, 8}. 1

Euclidean Algorithm

Among several procedures for finding the gcd of two positive integers,
one efficient algorithm is the e u c l i d e a n a l g o r i t h m , named after the

192 Chapter 4 Induction and Algorithms

.: \ :.:..

, . . ~ . �9 ~,"~ '/ ~'~
}~!! .. "":=~:

Little is known about Euclid's life. He taught at the University of Alexandria
and founded the Alexandrian School of Mathematics. When the Egyptian ruler
King Ptolemy I asked Euclid if there were an easier way to learn geometry than
by studying The Elements, he replied, "There is no royal road to geometry."
Euclid is called the father of geometry.

No work, except for the Bible, has been more widely read, studied, or edited,"
according to J. E. Lightner of Western Maryland College, Westminister,
Maryland. "More than 2000 editions of the work have appeared since the
first printed one in 1482; however, no extant copy of The Elements dates from
Euclid's own time."

Greek mathemat ic ian Euclid (330?-275 B.c.), who included it in his extra-
ordinary work The Elements . The algor i thm repeatedly applies the division
a lgor i thm and Theorem 4.5. Before formally discussing the algori thm, we
i l lustrate it in the next example.

~ Find gcd{ 1976, 1776}.

S O L U T I O N :
Apply the division a lgor i thm with 1976 (the larger of the two numbers) as
the dividend and 1776 as the divisor:

1976 = 1. 1776 + 200

Apply the division a lgor i thm again with 1776 and 200, us ing 1776 as the
dividend and 200 as the divisor:

1776 = 8. 200 + 176

Cont inue this procedure unti l a zero remainder is obtained:

1976 = 1. 1776 + 200

1 7 7 6 = 8 . 2 0 0 + 1 7 6

2 0 0 = 1 . 1 7 6 + 2 4

1 7 6 = 7 . 2 4 + 8

2 4 = 3 . 8 + 0

last nonzero remainder

The last nonzero remainder in this procedure is the gcd. Thus
gcd{1976, 1776} = 8. II

Will this method work for any two positive integers a and b? If a - b ,
then g c d { a , b } - a . So assume, for convenience, a > b. (If this is not true,

4.2 Divisibility Properties 193

simply switch them.) Let ro - b. Then by successive application of the
division algorithm, we get a sequence of equations:

a - q o r o + r l 0 <_ r l < ro

ro = q l r l -~-r2 0 <_ r2 < r l

r l = q 2 r 2 H- r3 0 <_ r 3 < r2

Continuing like this, we get the following sequence of remainders:

b - ro > r l > r2 > r3 > . . . _> 0

Since the remainders are nonnegative and gett ing smaller and smaller, this
sequence must eventually terminate with remainder rn - O. Thus, the last
two equations in the above procedure are-

r n - 2 -- q n - l r n - l -F rn 0 < rn < r n - 1

and

r n - 1 -- q n r n

It then follows that gcd{a, b } = gcd{a, r0 } - gcd{r0, rl } - gcd{rl, r2 }
g c d { r n - l , r n } - rn , the last nonzero remainder. (This can be established by
using mathematical induction; see Exercise 56 in Section 4.4.)

~ Apply the euclidean algorithm to find gcd{ 2076, 1024}.

S O L U T I O N :
By the successive application of the division algorithm, we get"

2076 = 2. 1024 + 28

1 0 2 4 = 3 6 . 2 8 + 1 6

2 8 = 1. 1 6 + 12

16 = 1. 12 + 4

1 2 = 3 . 4 + 0

< last nonzero remainder

Since the last nonzero remainder is 4, gcd{2076, 1024} = 4.

The euclidean algorithm is formally presented in Algorithm 4.2.

Algorithm Euclid(x,y,divisor)
(* This algorithm returns gcd{x,y} in divisor, where

x > _ _ y > O . *)
O. Begin (* algorithm *)
i . dividend ~-- x
2. d iv isor <-- y

I

194 Chapter 4 Induction and Algorithms

3. remainder <-- dividend mod d iv i so r
4. while remainder > 0 do (* update dividend,

d i v i so r , and remainder *)
5. begin (* while *)
6. dividend ~- d i v i so r
7. d iv isor ~- remainder
8. remainder <-- dividend mod d iv i so r
9. endwhi I e

I0. End (* algori thm *)

Algorithm 4.2

The euclidean algorithm provides a procedure for expressing the
gcd of two positive integers in terms of themselves, as the next example
shows.

• Example 4.7 showed that gcd{2076, 1024} - 4 . the in terms of Express gcd
2076 and 1024.

SOLUTION"
We use the equations in Example 4.7 in the reverse order:

4 - 1 6 - 1 . 1 2 -- 1 6 - 1. (2 8 - 1 .16)

- 2. 1 6 - 1 . 2 8 -- (1 0 2 4 - 36 .28) - 1 . 2 8

= 2. 1 0 2 4 - 7 2 . 2 8 - 1 . 2 8 - 2. 1 0 2 4 - 7 3 . 2 8

- 2. 1 0 2 4 - 7 3 (2 0 7 6 - 2. 1024) - 2- 1 0 2 4 - 73. 2076 + 146. 1024

-- (- 7 3) . 2076 + 148. 1024

(You may verify this by direct computation.) m

Example 4.8 can be generalized as in the following theorem. We omit its
proof.

~ Let and b be and d - b}. Then there exist positive integers, gcd{a, a any
integers s and t such that d = sa + tb. m

Note: (1) The expression sa + tb is called a l i n e a r c o m b i n a t i o n of a and
b. (2) The integers s and t are not unique. For example, gcd{28, 12} -- 4
and 4 - 1 .28 + (- 2) . 12 - (- 2) . 28 + 5 .12. (3) The integers s and t can
be found by using the various equations in the euclidean algorithm, or
by trial and error especially when a and b are fairly small.

Theorem 4.6 can be used to derive other divisibility properties. To this
end, we define two positive integers to be r e l a t i v e l y p r i m e if their gcd is
1. For example, 6 and 35 are relatively prime, whereas 12 and 18 are not
relatively prime.

4.2 Divisibility Properties 195

[~ ~ ~ ~ ~ Let a and b be relatively prime numbers. If a]bc, then a]c.

P R O O F :
Since a and b are relatively prime, Theorem 4.6 indicates integers s and t
exist such that sa + tb = 1. Then sac + tbc = c. By Theorem 4.4, a i (sac)

and a l(tbc). Therefore, by Theorem 4.4, a l (sac + tbc); tha t is, a lc. I

The following exercises offer additional divisibility properties to verify;
again, consult a number theory book.

Exercises 4.2

Determine if each positive integer is a prime.

1. 727 2. 1001 3. 1681 4. 1723

5. Prove or disprove: Every prime is a perfect number.

Using the euclidean algorithm, find the gcd of the given integers.

6. 2024, 1024 7. 2076, 1076 8. 2076, 1776 9. 3076, 1976

In Exercises 10-13, express the gcd of the given integers as a linear
combination of them.

10. 12, 9 11. 18, 28 12. 12, 29 13. 28, 15

14. Two prime numbers that differ by 2 are called t w i n p r i m e s . For
example, 5 and 7 are twin primes. Prove that one more than the prod-
uct of two twin primes is a perfect square. (Twin primes played a key
role in 1994 in establishing a flaw in the Pent ium chip, manufactured
by Intel Corporation.)

Evaluate each sum, where d is a positive integer.

z d z
d16 dl12 dl18

18.
d118

Disprove each statement , where a, b, and c are arbi t rary integers.

19. If a] (b +c) , then a]b a n d a l c . 20. I f a]bc, then a]b and a]c.

(E a s t e r S u n d a y) Here is a second method* for determining Easter Sunday
in a given year N. L e t a - N mod 19, b - N d i v l 0 0 , c - N mod 100,
d = b div 4, e = b mod 4, f = (b+8) div 25 ,g = (b - f + l) div 3, h = (19a+
b - d - g + 1 5) mod30 , i = c d i v 4 , j = c m o d 4 , k = (3 2 + 2 e + 2 i - h - j)
mod 7, ~ = (a + l l h + 22k) div 451, m = (h + k - 7t~ + 114) div 31, and
n = (h + k - 7~ + 114) mod 31. Then Easter Sunday falls on the (n + 1)st

* Based on "To Find Easter," Nature (April 20, 1876). For bringing this method to his attention,
the author would like to thank Thomas Moore of Bridgewater State College.

196 Chapter 4 Induction and Algorithms

day of the mth mon th of the year. Compute the date for Eas te r Sunday in
each year.

21. 2000 22. 2076 23. 3000 24. 3663

E u l e r ' s p h i - f u n c t i o n ~ is ano the r impor t an t number - theore t i c funct ion
on 1~, defined by ~(n) - n u m b e r of positive integers < n and relat ively pr ime
to n. For example, ~(1) - 1 - ~(2), ~(3) - 2 - ~(4), and ~(5) - 4. Eva lua te
~(n) for each value of n.

25. 10 26. 15 27. 17 28. 24

29. Compute ~ ~(d) for n - 5, 6, 10, and 12.
din

30. Using Exercise 29, predict a formula for ~ ~(d).
din

Let a, b, c, and n be any positive integers and p be any prime. Prove each.

31. If a I b and a I c, then a I (b - c).

32. I f a I b, then a i bc.

33. Let r be the remainder when a is divided by b. Let d - gcd{a, b} and
d' = gcd{b,r}. Then d ' i d .

34. Let a > b. Then gcd{a, b } - gcd{a, a - b }.

35. Let a > b. Then gcd{ a, b } - gcd{b, a + b }.

36. The gcd of a and b is unique.
(Hint: Assume two gcd's d and d'; show tha t d - d'.)

37. I fp lab, t h e n p l a o r p lb.
[Hint: Assume p lab and p]/a. Since pya, gcd{p, a } = 1.]

38. Any two consecutive integers are relatively prime.

39. Let d - gcd{a, b }. Then a/d and b/d are relatively prime.

40. gcd { na, nb } - n . gcd {a, b } 41. gcd { gcd {a, b },c } - gcd { a, gcd {b, c } }

42. Let a lc and b lc, where a and b are relatively pr ime numbers . Then
ablc .

43. 2 and 3 are the only two consecutive integers tha t are primes.

44. 3, 5, and 7 are the only three consecutive odd integers tha t are primes.

45. I fp and p2 + 8 are primes, then p3 + 4 is also a prime. (D. L. Si lverman,
1968)

46. I f p and p + 2 are twin primes, then p mus t be odd.

47. Suppose p and q are primes such tha t p - q = 3. Then p - 5.

48. Every odd prime is of the form 4n + 1 or 4n + 3.

4.3 Nondecimal Bases 197

Disprove each statement .

49. If gcd{a, b} - 1 and gcd{b,c} - 1, then gcd{a,c} - 1, where a, b, and c
are positive integers.

50. n! + 1 is a prime for every n > 0.

51. En - PIP2"" "Pn 4- 1 is a prime, where Pi denotes the i th prime and
i > 1 .

52. Let n be a positive integer. Prove tha t (n + 1)! + 2, (n + 1)! + 3 , . . . ,
(n + 1)! + (n + 1) are n consecutive composite numbers.

In everyday life we use the decimal notation, base ten, to represent any
real number. For example, 234 - 2(102) + 3 (101) + 4(10~ which is the
d e c i m a l e x p a n s i o n of 234. Likewise, 23.45 - 2(101) + 3(10 ~ + 4(10 -1) +
5(10-2). Computers use base two (b inary) , and very long binary numbers
are often handled by humans (as opposed to computers) using bases eight
(octal) and sixteen (h e x a d e c i m a l) .

Actually, any positive integer b > 2 is a valid choice for a base. This is
a consequence of the following fundamental result.

~ Let b be a positive integer>_ 2. Then every positive integer a can be
expressed uniquely in the form a - akb k + a k - 1 b k - 1 + . . . + a 1 b + a0, where
ao, a 1 , . . . , ak are nonnegative integers less than b, ak # 0, and k > 0. m

This leads us to the following definition.

Base-b Representation

The expression akb k 4- a k - l b k - 1 + . . . + a l b + ao is the base -b e x p a n s i o n
of the integer a. Accordingly, we write a = (akak -1 " " a lao)b in base b. The
base is omitted when it is 10.

For example, 234 = 234ten and 22 = 10110two (see Example 4.9).
When the base is greater than 10, to avoid confusion we use the letters

A, B, C , . . . to represent the d i g i t s 10, 11, 12, . . . , respectively. It is easy to
find the decimal value of an integer from its base-b representat ion, as the
next example illustrates.

[~ ~ ~ ~ ~ Express 10110two in base 10.

SOLUTION:

10110two - 1(24) + 0(23) + 1(22) + 1(21) + 0(2 ~

= 1 6 + 0 + 4 + 2 + 0

< binary expansion

= 22 m

198

A Brainteaser

F i g u r e 4.2

Chapter 4 Induction and Algorithms

Conversely, suppose we are given a decimal integer. How do we express
it in ano the r base b? By Theo rem 4.8, all we have to do is express it as a
sum of powers of b, then simply collect the coefficients in the r igh t order .
Always r e m e m b e r to account for miss ing coefficients.

Take a look at the tablets A, B, C, D, and E in Figure 4.2. A s s u m i n g
you are unde r 32 years old, identify the table ts on which your age appears ;
we can then easily tell your age. For example, if your age appears on
tablets A, B, C, and E, then you m u s t be 23. Can you explain how this

puzzle works?

A B C D E

1 17

3 19

5 21

7 23

9 25

11 27

13 29

15 31

2 18

3 19

6 22

7 23

10 26

11 27

14 30

15 31

4 20

5 21

6 22

7 23

12 28

13 29

14 30

15 31

8 24

9 25

10 26

11 27

12 28

13 29

14 30

15 31

16 24

17 25

18 26

19 27

20 28

21 29

22 30

23 31

Re tu rn ing to nondecimal represen ta t ions , a s imple a lgor i thm expresses
an in teger a in any nondecimal base b: divide a, and its successive quo-
t ients by b unt i l a zero quot ien t is reached, t hen pick the r e m a i n d e r s
in the reverse order. These steps can be t r ans l a t ed into the e legant
a lgor i thm given in Algor i thm 4.3.

Algorithm nondecimal base(n,b)
(* This algorithm finds the base-b representation (amam_1...alao) b

of a positive integer n. The variables q and r denote the quotient
of the remainder of the division algorithm, and i is a subscript. *)

Begin (* algorithm *)
(* i n i t i a l i z e the variables q, r, and i *)
q <-- n; i <-- 0
while q > 0 do
begin (* while *)

r <- q mod b

ai <-- r
q <-- q div b

4.3 Nondecimal Bases 199

i <-- i + 1
endwh i I e

End (* algor i thm *)

Algorithm 4.3

The next example i l lustrates this algori thm.

Represent 15,036 in the hexadecimal tha t in base 16. system, is,

S O L U T I O N :
Applying Algor i thm 4.3 we have:

1 5 0 3 6 = 9 3 9 . 1 6 + 12
9 3 9 - 5 8 . 1 6 + 11 1"

5 8 = 3 . 1 6 + 10 read up
3 - 0 . 1 6 + 3

Thus 1 5 , 0 3 6 - 3 A B C s i x t e e n . II

Addition in Base b

Before we discuss how to add nondecimal numbers , let us examine the
familiar addit ion a lgor i thm in base 10.

To find the sum of any two decimal digits a and b, we find the r ema inde r
r - (a + b) mod 10 and the quot ient q - (a + b) div 10. Then a + b - (q r) t e n ;

q is the c a r r y resul t ing from the addit ion of a and b. Using this idea we
can add any two decimal integers.

For tunate ly , the addit ion a lgor i thm can be extended to any nondecimal
base b in an obvious way. For example, let x - (X m . . . XO)b and y - (Yn �9 �9 �9 Y0)b
where m >__ n. If m > n, we could assume tha t Yn+l Y m - - O.
We add the corresponding digits in x and y in a right-to-left fashion. Let
si - (xi + Y i + c i) mod b and ci+1 - (xi + Y i + c i) divb, where c0 - 0 . Then
X -'F-y -- (8 m + l S m . . . SO)b where Sm+l may be 0 or 1. (Leading zeros are deleted
from the answer.)

These steps t rans la te into a s t ra igh t forward algori thm, as in
Algori thm 4.4.

Algorithm addition (x,y,s,b)
(* This a lgor i thm computes the sum s----(Sm_FlSm...So) of two

integers X--Xm...x 0 and Y - Y n . . . Y o in base b, where m >__ n. *)
Begin (* a lgor i thm *)

carry <- 0 (* i n i t i a l i z e carry *)
fo r i = O to n do
begin (* fo r *)

si ~-- (xi -1-yi -I- carry) mod b
carry <- (x i + Y i + c a r r y) div b

endfor
fo r i - - - - n+ l to m do

200 Chapter 4 Induction and Algorithms

begin (* for *)
si <-- (xi +carry) mod b
carry +- (xi +carry) div b

endfor
i f carry > 0 then

Sm+ 1 ~- carry
End (* algorithm *)

Algorithm 4.4

This algorithm is i l lustrated in the next two examples.

~ Add the binary integers 10110two and 1011two.

S O L U T I O N :
First write the integers one below the other in such a way that the corre-
sponding bits are vertically aligned. See Figure 4.3. (For convenience, the
base two is not shown.)

F i g u r e 4.3 1 0 1 1 0
1 0 1 1

F i g u r e 4.4 @
1 0 1 1 0

1 0 1 1

F i g u r e 4.5

+
1 0 1 1 0

1 0 1 1

0 1

F i g u r e 4.6

+
1 0 1 1 0

1 0 1 1

1 0 0 0 0 1

Add the corresponding bits from right to left, beginning with the one's
column: 0 + 1 = 1. Since 1 mod 2 = 1, enter 1 as the one's bit in the sum.
Since 1 div 2 = 0, the result ing carry is 0, shown circled in Figure 4.4.
(In practice when the carry is 0, it is simply ignored.) Now add the bits
0, 1, and 1 in the twos column: 0 + 1 + 1 = 2. Since 2 mod 2 = 0 and 2 div
2 = 1, enter 0 in the twos column and the new carry is 1 (see Figure 4.5).
Continuing like this, we get the sum 100001two. See Figure 4.6. n

4.3 Nondecimal Bases 201

The addition of binary numbers can be made easy by observing that
0 + 0 = 0, 0 + 1 = 1 = 1 + 0, and 1 + 1 = 10, all in base two.

Next we illustrate the multiplication algorithm in base b.

Multiplication in Base b

The traditional algorithm for multiplying two integers x and y works for
any base in an obvious way: multiply every digit in x by every digit in y as
in base b and add up the partial products, as in Example 4.12.

~ Multiply 1011two and 101two.

SOLUTION:
The various steps unfold in Figures 4.7-4.9. The product is 110111two.

Figure 4.7 1 0 1 1
1 0 1

1 0 1 1 <--- multiply 1011 by 1

Figure 4.8 1 0 1 1
1 0 1

1 0 1
0 0 0
1 1

multiply 1011 by 0
multiply 1011 by 1

F i g u r e 4.9

0
1 0

1 0
0 0
1 1

1 1

0
add the partial products

1 1 0 1 1 1 1

Shifting and Binary Multiplication

If you found these two examples confusing, don't be discouraged. Fortu-
nately, most computers do binary multiplications using a technique called
shi f t ing , as discussed below.

202 Chapter 4 Induction and Algorithms

m

Consider the binary number x = (XmXm-l.. . XlXO)two -- Y~ Xi2 i. What is
i=0

the effect of mult iplying x by 2J? Since

m

X2] -" E xi2i+J -- X m . . . X l X 0 ~ t w o ,

i=0 j zeros

every bit in x is shifted to the left b y j columns.
More generally, let a be any bit. Then

m

x(a2 /) -- E (a x i) 2 i + J -- (a X m) . . . (a x 0) ~ t w o

i=0 j zeros

The bit axi equals Xi if a = 1 and equals 0 if a = 0. Thus, the effect of
multiplying the number x = (Xm... x0)two by the bit yj in the mult ipl icand
y = (Yn...YN...Yo)two is the same as mult iplying each bit xi by yj and shift ing
the result to the left b y j columns. Then add the part ial products to get the
desired product, as i l lustrated below.

Evaluate 1011two • 101two.

S O L U T I O N :
The various steps are displayed in Figures 4.10-4.13. It follows from
Figure 4.13 tha t the resul t ing product is 110111two.

F i g u r e 4 .10 1 0 1 1
x 1 0 1

1 0 1 1 ~- multiply 1011 by 1; no shifting.

F i g u r e 4.11 1 0 1 1
• 1 0 1

1 0 1 1
0 0 0 0 ~- multiply 1011 by 0; shift by one column.

F i g u r e 4.12 1 0 1 1
• 1 0 1

0
1 0

1 0 1
0 0 0
1 1 ~- multiply 1011 by 1; shift by 2 columns.

4.3 Nondecimal Bases 203

Figure 4.13

0
1 0

1 0 1 1
1 0 1

1 0
0 0
1 1

1 1
0

1 1 0 1 1 1

add the partial products.

B

The shifting method of multiplication leads to Algorithm 4.5 for multi-
plying two binary numbers.

Algorithm binary multiplication (x, y, p)
(* This algorithm computes the product P - (Pm+nPm+n-l...PO)two

of the binary numbers x----(XmXm_l.. .xlxo)tw o and
Y--(YnYn-Z...YzYO)two, using shi f t ing. *)

Begin (* algorithm *)
for j - -O to n do

begin (* for *)
mult iply each bi t xi by yj
sh i f t the result ing binary word to the le f t
by j columns
wj ~-- result ing binary word

endfor
add the partial products wj
p <-- resulting sum

End (* algorithm *)

A] gorithm 4.5

Binary Subtraction

We can subtract binary numbers without the bother of "borrows," using
one's complement and addition. The one's c o m p l e m e n t x' of a binary
number x is obtained by replacing each 0 in x with a 1 and vice versa. For
example, the one's complement of 1011two is 0100two and that of 1001two
is 0110two. The two's c o m p l e m e n t of x is x' + 1. For instance, the two's
complement of 1011two is 0100two + 1 = 0101two.

The next example illustrates this new technique step-by-step before it is
justified in a formal discussion.

Subtract 1011two from 100001two.

SOLUTION:
For convenience, we shall drop the base two.

S tep 1 Find the one's complement of the subtrahend 1011. Since the
minuend 100001 contains six bits, keep the same number of bits in the sub-
trahend by padding it with two O's at the beginning. The one's complement
of 1011 = 001011 is 110100.

204 Chapter 4 Induction and Algorithms

S t e p 2 Find the two's complement by adding i to the one 's complement :
110100 + 1 = 110101.

S t e p 3 Add the two's complement in step 2 to the minuend 100001"

1 0 0 0 0 1
+ 1 1 0 1 0 1

(~ 0 1 0 1 1 0

delete

S t e p 4 Delete the leading carry 1. The resul t ing n u m b e r 010110 = 10110
is the desired answer.

Thus 100001two - 1011two - 10110two. (To check this, you may verify
tha t 1011two+10110two -100001two.) m

How can this technique work? To just ify the a lgor i thm il lustrated, first
notice tha t x - y = x + (-y) ; tha t is, subt rac t ing y from x is equivalent to
adding the additive inverse - y o fy to x. This is the basic idea behind the
binary subtract ion algorithm.

Now how to find -y? First , assume tha t Ilxll - IlYll - n. (If IlYll < Ilxll,
pad y with enough O's at the beginning so the length of the resul t ing word
is n.) Let y' denote the one's complement ofy. Then y + y' is an n-bit word
w containing all l 's:

n - l n - 2

w - i l [l l l . . . I I] I L 1 I

For example, let y = 10110. Then y' - 01001, so y + y' - 11111.
The value of the n-bit word w is 2 n - 1 (see Section 4.4). Thus y + y' =

w -- 2 n - 1, s o - - y - y' + 1 - 2 n - - y " - 2 n, where y " = y' + 1 denotes the
two's complement of y. Therefore, x + (-y) - x + y" - 2 n - (x + y") - 2 n.
Thus, to subt rac t y from x, it suffices to add y" to x and drop the leading
carry 1. This explains why the above subtract ion a lgor i thm works.

The a lgor i thm for the case Ilxll < Ilyll is complicated, so we omit its
discussion here.*

We close this section with an in t r iguing numer ic puzzle tha t will test
your mas te ry of both nondecimal addition and subtract ion.

*For a discussion of negative binary numbers, see A. S. Tanerbaum, Structured Computer
Organization, Prentice Hall, Englewood, NJ, 1976, pp. 420--423.

4.3 Nondecimal Bases 205

A Nondecimal Puzzle

Write down a three-digit number in base eight. Reverse its digits. Subtract
the smaller number from the other (in base eight); save all leading zeros.
Reverse its digits. Add the last two numbers. Is your answer 1067eight? Now
redo the puzzle in base 12; your answer should be 10ABtwelve.

Exercises 4.3

Express each number in base 10.

1. 1101two 2. 11011two

Express each decimal number as required.

5. 1 0 7 6 = ()two 6. 6 7 6 = (

7. 1776 = ()eight 8. 2076 = (

3. 1776eight

)eight

)sixteen

4. 1976sixteen

The binary representation of an integer can conveniently be used to find its
octal representation. Group the bits in threes from right to left and replace
each group with the corresponding octal digit. For example,

243 = 11110011two = 011 110 011two = 363eight

Using this short cut, rewrite each binary number as an octal integer.

9. ll01two 10. ll011two 11. lll010two 12. 10110101two

The binary representation of an integer can also be used to find its hexa-
decimal representation. Group the bits in fours from right to left and then
replace each group with the equivalent hexadecimal digit. For instance,

243 = 11110011two = 1111 0011two = F3sixteen

Using this method express each binary number in base 16.

13. ll l01two 14. ll0111two 15. lll0101two 16. 10110101two

The techniques explained in Exercises 9-12 are reversible; that is, the octal
and hexadecimal representations of integers can be used to find their binary
representations. For example,

345eight = 0 1 1 100 101two--11100101two

Using this technique, rewrite each number in base two.

17. 36sixteen 18. 237eight 19. 237sixteen 20. 3ADsixtee n

In Exercises 21-28, perform the indicated operations.

206 Chapter 4 Induction and Algorithms

F i g u r e 4.14

The sum in
"Venusian" notation.

21. 1111two 22. 1076eight 23. 3076sixteen 24. 101101two

+ 1011two + 2076eight + 5776sixteen -- 10011two

25. ll000two 26. 10111two 27. 1024eight 28. 3ABCsixteen

- 100two x ll01two x 2776eight x 4CBAsixteen

29. Arrange the binary numbers 1011, 110, 11011, 10110, and 101010 in
order of increasing magnitude.

30. Arrange the hexadecimal numbers 1076, 3056, 3CAB, 5ABC, and
CACB in order of increasing magnitude.

31. What can you say about the ones bit in the binary representation of an
"even integer? An odd integer?

Find the value of the base b in each case.

32. 5 4 b = 6 4 33. 1001b=9 34. 1001b= 126 35. 144b=49

36. Suppose a space investigative team to Venus sends back the picture
of an addition problem scratched on a wall, as shown in Figure 4.14.
The Venusian numeration system is a place value system, just like
ours. The base of the system is the same as the number of fingers
on a Venusian hand. Determine the base of the Venusian numeration
system. (This puzzle is due to H. L. Nelson.**)

\ /

\ /

Define recursively each set S of binary words.

37. Set of binary words that represent even positive integers.

38. Set of binary words that represent odd positive integers.

**M. Gardner, "Mathematical Games," Scientific American, Vol. 219, Sept. 1968, pp. 218-230.

4.4 Mathematical Induction 207

39. Set of binary words tha t represent positive integers with no leading
zeros.

40. Set of palindromic binary words.

Polynomials can be evaluated efficiently using the technique of n e s t e d
m u l t i p l i c a t i o n , called H o r n e r ' s m e t h o d . [This method is named after
the English schoolmaster, William G. Horner (1786-1837), who published
it in 1819.] For instance, the polynomial f (x) - 4x 3 + 5x 2 + 6x + 7 can be
evaluated as f (x) = ((4x + 5)x + 6)x + 7. Using this method, express each
integer as a decimal integer.

41. 245eight 42. 101101two 43. ll00101two 44. 43BCsixteen

*45. Let x be a three-digit hexadecimal number with distinct digits.
Reverse the digits. Subtract the smaller number from the other num-
ber (save all the digits in your answer). Reverse the digits in the
difference. Add this number to x. Find the sum.

The principle of mathemat ica l induction* (PMI) is a frequently used proof
technique in both mathemat ics and computer science, as will be seen
shortly.

Many interes t ing results in mathemat ics hold t rue for all positive inte-
gers. For example, the following s ta tements are t rue for every positive
integer n, where x, y, and xi are any positive real numbers:

" (x . y) n _ x n . y n n

�9 l o g (x i . . . Xn) - ~ logx i
i=1

n n-1
�9 ~ i - n(n+i) r" - i 2 * ~-~r i - (r # l)

- - 7--i-
i=1 i=o

How do we prove tha t these results hold for every positive integer n?
Obviously, it is impossible to subst i tute each positive integer for n and
verify tha t the formula holds. The principle of induction can establish the
validity of such formulas.

To begin with, suppose the orange cans in a collection can be ar ranged
as in Figure 4.15. Row 1 contains one can, row 2 contains two cans , . . . , row
n contains n cans. Can you predict a formula for the total number of cans
in the collection? See Example 4.15 for a formula.

tAlthough the Venetian scientist Francesco Maurocylus (1491-1575) applied it in proofs in
a book he wrote in 1575, the term mathematical induction was coined by De Morgan.

208 Chapter 4 Induction and Algorithms

F i g u r e 4 .15

oooo%

000- �9 �9 000

The next result is the cornerstone of the principle of induction. Its proof,
as we shall see shortly, follows by the well-ordering principle in Section 4.1.

~ [~ ~ ~ Let S be a subset of N satisfying the following properties:

(1) 1 E S .
(2) If k is an arbi t rary positive integer in S, then k + 1 E S. Then S = N.

P R O O F (by c o n t r a d i c t i o n) :
Suppose S r N. Let S ' - n E N O n r S. Since S' ~: 0, by the well-ordering
principle, S' contains a least element 6'. Then 6' > 1 by condition 1. Since t~'
is the least element in S', 6 ' - 1 r S'; so t~'- 1 E S. Consequently, by condition
2, (t~' - 1) + 1 - t~' e S. This contradiction establishes the theorem, i

This theorem can be generalized as in Theorem 4.10. We leave its proof
as an exercise.

Let be a fixed integer. Let S be a subset of Z the no satisfying following
conditions"

�9 n o e S .

�9 If k is an arbi t rary integer >_ no such that k E S, then k + 1 E S.

Then S ~_ {n E Z ln > n0}. i

Weak Version of Induction

Before we formalize the principle of induction, let's look at a trivial example.
Consider an infinite number of dominoes arranged in a row (see Figure
4.16a). Suppose we knock down the first domino.

What happens to the rest of the dominoes? Do they all fall? Not
necessarily; see Figures 4.16b and c.

So let's further assume the following: If the kth domino is knocked down,
then the (k + 1)st domino also falls down. If we topple the first domino, what
would happen to the rest? They all would fall; see Figure 4.16d.

This i l lustration can be expressed in symbols. Let P(n) denote the pred-
icate tha t the n th domino falls. (Note: UD = N.) Assume the following
propositions are true"

�9 P(1).

�9 P(k) ~ P(k + 1) for every positive integer k.

4.4 Mathematical Induction 209

Figure 4.16

a b c d

Then P(n) is t rue for every positive integer n; tha t is, every domino would
fall. This leads us to the w e a k v e r s i o n of the principle.

(The P r i n c i p l e of Mathemat i ca l Induct ion) Let P(n) be predicate a

satisfying the following conditions, where n is an integer:

(1) P(n0) is t rue for some integer no.
(2) If P(k) is t rue for an arbi t rary integer k >__ no, then P(k + 1) is also

true.

Then P(n) is t rue for every integer n >_ no.

PROOF:
Let S denote the set of integers >_ no for which P(n) is true. Since P(n0)
is true, no e S. By condition 2, whenever k e S, k + 1 ~ S. Therefore, by
Theorem 4.10, S consists of all integers >__ no. Consequently, P(n) is t rue for
every integer n >_ no. This establishes the validity of the principle, m

Condition 1 assumes the proposition P(n) is t rue when n = no. Look at
condition 2: If P(n) is t rue for an arbi t rary integer k >__ no, it is also true for
n = k + 1. Then, by the repeated applications of condition 2 and the law of
detachment, it follows that P(n0 + 1), P(n0 + 2), . . . all hold true. In other
words, P(n) holds for every n >_ no.

Proving a result by PMI involves two key steps:

1. Basis s tep Verify tha t P(n0) is true.
2. Induct ion step Assume P(k) is t rue for an arbi t rary integer

k > no (induct ive hypothes is) .
Then verify tha t P(k + 1) is also true.

210 Chapter 4 Induction and Algorithms

A word of caution: A question frequently asked is, "Isn ' t this cyclic
reasoning? Are you not assuming what you are asked to prove?" The
confusion stems from misinterpreting step 2 for the conclusion. The
induction step involves showing that the implication P(k) --* P(k + 1) is
a tautology; that is, if P(k) is true, then so is P(k + 1). The conclusion is
"P(n) is t rue for every n > no." So be careful.

A variety of interesting examples will show how useful this important
proof technique is.

The next example gives a nice formula for computing the total number
of cans in the collection in Figure 4.15.

Using PMI, that, for every positive integer n, prove

1 + 2 + 3 + - - . + n -
n(n + 1)

P R O O F (by i n d u c t i o n) :
n n(n+ 1)

Let P(n)" ~ i - ~ .
i=l 2

B a s i s s t e p To verify that P(1) is true (Note" Here no - 1)"
1

W h e n n - 1 R H S - 1 (1 + 1) _ 1 _ ~ i - L H S ; s o P(1) is true.
' 2 - -

i=l

I n d u c t i o n s t ep Let k be an arbitrary positive integer. We would like to
show that P(k) --, P(k + 1)" Assume P(k) is true; that is,

k k(k + 1)
i - 2 < inductive hypothesis

i=l

To establish that P(k) ~ P(k + 1) is true, that is,

(k + 1)(k + 2) Ei-
2

we start with the LHS of this equation:

k + l k

L H S - E i - ~-~i + (k + I)
i - 1 i = 1

k(k + 1)
+ (k + 1),

(k + 1)(k + 2)

() ote - + E Xi Xi Xk + 1
i = 1 i = 1

by the inductive hypothesis

= R H S

4.4 Mathematical Induction 211

F i g u r e 4 . 1 7

Thus, if P(k) is t rue, then P(k + 1) is also true.
Therefore, by PMI, P(n) is t rue for every n >_ 1; t ha t is, the formula holds

for every positive in teger n. m

Figure 4.17 provides a geometr ic proof of this formula wi thout words.

S + S = n(n+l)

n(n+l)
�9 ", S - - 2

The next example, again an applicat ion of induction, employs a divisi-
bility property, so we follow it in some detail.

Prove tha t 2n 3 + 3n 2 + n is divisible by 6 for every integer n > 1.

P R O O F (by PMI):
Let P(n): 2n 3 § 3n 2 § n is divisible by 6.

B a s i s s t e p W h e n n - 1, 2n 3 + 3n 2 + n - 2(1) + 3(1) + 1 - 6 is clearly
divisible by 6. Therefore, P(1) is t rue.

I n d u c t i o n s t e p Assume P(k) is t rue, t ha t is, 2 k 3 + 3 k 2 + k is divis-
ible by 6 for any k > 1. Then 2 k 3 + 3 k 2 + k - 6 m for some in teger m
(inductive hypothesis) . We mus t show tha t P(k + 1) is t rue; t ha t is,
2(k + 1)3 + 3(k + 1)2 + (k + 1) is divisible by 6. Notice tha t

2(k + 1) 3 + 3(k + 1)2 + (k + 1)

= 2(k 3 + 3k 2 + 3k + 1) + 3(k 2 + 2k + 1) + (k + 1)

= (2k 3 + 3k 2 + k) + 6(k 2 + 2k + 1)

= 6m + 6(k 2 + 2k + 1) by the inductive hypothesis

= 6(m + k 2 + 2k + 1),

which is clearly divisible by 6. Thus P(k + 1) is true.
Thus, by induction, the given s t a t emen t is t rue for every n >_ 1. m

Notice tha t in the above examples, n o - 1, but it need not always be 1,
as the next example shows.

212 Chapter 4 Induction and Algorithms

.. : : ' : : , : . . . , - , ,

. . . . �9 : , :

~" .."" , , ' ; S " " .~ "'~:::'-'7~ : S ' '

Jacob L Bernoul l i (1654-1705), a member of the most dist inguished
family of mathematicans (see the family tree in Section 9.1), was born in
Basel, Switzerland. His grandfather, a pharmacist in Amsterdam, had
become a Swiss through marriage, and his father was a town councilor
and a magistrate.

Bernoulli received his M.A. in philosophy in 1671 and a theological
degree 5years later. During this time, he studied mathematics and astron-
omy against his father's will. He spent the next 2 years tutoring in Geneva.
In 1687 he became professor of mathematics at the University of Basel,
remaining there until his death. His brother Johann succeeded him at
Basel.

In May 1690 he used the term integral in the calculus sense known
today. Bernoulli's most famous work, Ars Conjectandi, was published posthumously in 1713. It contains
significant contributions to probability theory, the theory of series, and gravitational theory.

(Bernoul l i ' s Inequa l i ty) Let x be real n u m b e r g rea te r t h a n - 1 . any
Prove tha t (1 + x) n > 1 + nx for every n > 0.

P R O O F (by PMI)"
Let x be any real n u m b e r > - 1 . Let P(n)" (l § n >__ l + n x . (Note"
The induct ion is on the discrete variable n and not on the "con t inuous"
variable x.)

Bas i s s tep To verify tha t P(0) is t rue: Notice t ha t

(1 + x) ~ - 1

> l + 0 x

So P(0) is true. (Note" Here no - 0.)

I n d u c t i o n s tep Assume P(k) is t rue; t ha t is, (1 + x) k > 1 + kx for an
arbitrary in teger k > 0. We need to show tha t P(k + 1) is t rue; t h a t is,
(1 + x) k+l > 1 + (k + 1)x.

By the inductive hypothesis , we have (1 + x) k > 1 + kx. Then

(1 + x) k+l - (1 + x)(1 + x) k,

>_ (1 + x)(1 + kx),

= 1 + (k + 1)x + kx 2

by IH and since 1 + x > 0

> 1 + (k + 1)x, since kx 2 > 0

Therefore, P(k + 1) is also true.
Thus, by PMI, (1 + X) n >_ 1 + nx for every n >_ 0. m

The next example inductively es tabl ishes Theorem 2.3 from Chap te r 2.

4.4 Mathematical Induction 213

~ A finite set A with elements has 2 n subsets. exactly n

P R O O F (by PMI)"

B a s i s s t e p When n = 0, A = r so A has exactly 1 = 20 subset. Thus the
result is t rue when n - 0.

I n d u c t i o n s t e p Assume any finite set with k elements has 2 k subsets,
where k > 0. Let A be a set with k + 1 elements. We would like to show tha t
A has 2 k+l subsets.

To this end, let x e A. Let B - A - {x}. Since I B] - k, B has 2 k subsets
by the inductive hypothesis. Each of the subsets of B is a subset of A. Now
add x to each of them. The resul t ing 2 k sets are also subsets of A. Since
every subset of A ei ther contains x or does not contain x, by the addition
principle, A has 2 k + 2 k - 2 k+l subsets.

Thus, by the principle of induction, the result holds for every finite set.
i

Both the basis and the induction steps are essential in the principle of
induction, as the next two examples il lustrate.

Let g(n) denote the maximum number of formed nonoverlapping regions
inside a circle by joining n distinct points on it. Figures 4.18-4.22 show the
cases n - 1, 2, 3, 4, and 5, where the various regions are numbered 1, 2, 3,
etc. The results are summarized in Table 4.1.

F i g u r e 4.18

F i g u r e 4 .19

l

Figure 4.20

Figure 4.21

Chapter 4 Induction and Algorithms

Figure 4.22

214

Figure 4.23

1

/
It appears from the table that g (n) - 2 n-1. Then g(1) = 20 - 1, which is

t rue (basis step). Nonetheless, this does not guarantee that g (n) - 2 n-1 for
every n >_ 1. If the formula were true, there would be g(6) - 25 - 32 nonover-
lapping regions with six points. Unfortunately, there are only 31 such
regions (see Figure 4.23) We shall derive the correct formula in Chapter 6.

4.4 Mathematical Induction 215

T a b l e 4 .1 N u m b e r o f p o i n t s n 1 2 3 4 5 6

Maximum number
of nonoverlapping
regions g(n)

1 2 4 8 16 ?

We can conclude t ha t the t ru th fu lnes s of the basis step and an appa ren t
pa t t e rn do n o t ensure t ha t P(n) is t rue for every n. m

The following example shows t ha t the validity of the induct ion step is
necessary, bu t not sufficient, to gua ran t ee t ha t P(n) is t rue for all in tegers
in the UD.

Consider the " formula" P(n) �9 1 + 3 + 5 + . . . + (2n - 1) - n 2 + 1. Suppose
k

P(k) is t rue: ~ (2i - 1) - k 2 + 1. Then:
i=l

k+l k
~ - ~ (2 i - 1) - ~--~(2i- 1) + (2k + 1)

i=l i=l

= (k 2 + 1) + (2k + 1)

-- (k + 1) 2 + 1

So if P(k) is t rue, P(k + 1) is t rue. Never theless , the formula does not hold
for any positive integer n. Try P(1) (see Exercise 5). m

Using induction, the next example "proves" tha t every person is of the
same sex.

"Prove" t ha t in a set of n people is of the same sex. every person

" P R O O F " "
Let P(n): Everyone in a set of n people is of the same sex. Clearly, P(1)
is t rue. Let k be a positive in teger such t ha t P(k) is t rue; t ha t is, every-
one in a set of k people is of the same sex. To show tha t P(k + 1) is t rue,
consider a set A - { a l , a 2 , . . . , a k + l } of k + 1 people. Pa r t i t ion A into two
overlapping sets, B - { a l , a 2 , . . . , a k } and C - {a2 , . . . , ak+ l} , as in Figure
4.24. Since I B I - k - I CI, by the induct ive hypothesis , everyone in B is of
the same sex and everyone in C is of the same sex. Since B and C overlap,
everyone in B U C mus t be of the same sex; t ha t is, everyone in A is of the
same sex.

Thus, by PMI, P(n) is t rue for every n > 1. This concludes the "proof."
m

Note : The asser t ion t ha t everyone is of the same sex is clearly false.
Can you find the flaw in the "proof"? See Exercise 46.

216 Chapter 4 Induction and Algorithms

Figure 4.24

Before discussing the second version of the principle of induction,
we will look at a few applications of the formula in Example 4.15. First
a definition.

Polygonal Number

A polygonal n u m b e r is a positive integer n that can be represented by n
dots in a polygonal array in a systematic fashion. For example, the integers
1, 3, 6, 10, ... are t r i a n g u l a r n u m b e r s since they can be represented by
triangular arrays, as shown in Figure 4.25; the number of pins in a bowling
alley and that of balls in the game of pool are tr iangular numbers. Let t,z
denote the nth tr iangular number. Then

t~ = 1 + 2 + 3 + . . . + n =
n (n + 1)

Figure 4.25

Figure 4.26

t l= l t2=3 t3=6 t4=lO

Triangular numbers manifest delightful properties. For example,
tn + tn-1 -- n2; Figures 4.26 and 4.27 provide a nonverbal, geometric proof
of this result. See Exercises 47-50.

\
\

\
\

\

4.4 Mathematical Induction 217

F i g u r e 4 .27

The next example is another application of the formula in Example 4.15
and the generalized pigeonhole principle.

Let be the first n positive integers in some order. Suppose a l , a 2 , . . ~
they are ar ranged around a circle (see Figure 4.28). Let k be any positive
integer < n. Prove tha t there exists a set of k consecutive elements in the
a r rangement with a sum [[k n (n + 1) - 2]/2nJ, where [xJ denotes the floor
ofx.

F i g u r e 4.28

a.~

a2

an

P R O O F :
Consider the following sums:

S1 - a l + a 2 + . . . + a k

$ 2 - a2 + a3 + . . . + a k + l

Sn - an + a l + "'" + a k - 1

Each of the first n positive integers appears k t imes in this set of sums.
Then

n

E S i - k ai - k i -

i=1 i=1
, by Example 4.15

218 Chapter 4 Induction and Algorithms

Consider kn(n + 1)/2 pigeons. We would like to dis tr ibute them
among n pigeonholes, called $1 ,$2 , . . . ,Sn. By the generalized pigeon-
hole principle, at least one of the pigeonholes Si must contain more
than Lkn(n § 1)/2n - 1/nJ = L[kn(n § 1 - 2)]/2nJ pigeons. In other words,
si > Lkn(n § 1) - 2/2n J, as desired, m

In particular, if numbers 1 through 10 are randomly placed around a
circle, at least three consecutive integers in the a r rangement must have a
sum exceeding L[3 .10 .11 - 2]/(2.10)J = 16.

We now discuss the s t rong version of the principle of induction.

Strong Version of Induction

Sometimes the t ru th of P(k) might not be enough to establish that of
P(k § 1). In other words, the t ruthfulness of P(k + 1) may require more
than that of P(k). In such cases, we have to assume a s t ronger inductive
hypothesis that P(n0), P(no + 1), . . . , P(k) are all true; then verify that
P(k § 1) is also true. This strong version, which can be proved using the
weak version (see Exercise 57), is stated as follows.

(The Second Principle of Mathemat ica l Induct ion) Let P(n) be a
predicate satisfying the following conditions, where n is any integer:

�9 P(n0) is true for some integer no.

�9 If k is an arbi t rary integer > no such that P(n0) A P(n0 + 1) A. . . A P(k)
is true, then P(k + 1) is also true. Then P(n) is t rue for every n > no.

The next theorem illustrates this proof technique, m

(The Fundamenta l Theorem of A r i t h m e t i c) Every positive integer
n >_ 2 either is a prime or can be writ ten as a product of primes.

P R O O F (by strong induction):
Let P(n) denote the given predicate.

Basis s t e p Choose n o - 2. Since 2 is itself a prime, P(2) is true.

Inductive step Let k be a positive integer > 2 such that P(2), P(3), . . . ,
P(k) are true; that is, assume that integers 2 through k are primes or can
be wri t ten as products of primes. We would like to show that P(k + 1) is
also true; tha t is, integer k + 1 is a prime or can be expressed as a product
of primes.

If k + 1 is itself a prime, then we are done. If k + 1 is not a prime, it must
be the product of two positive integers x and y, where 1 < x,y < k + 1. By
the inductive hypothesis, both x and y are primes or products of primes.
Therefore, k + 1 - x • is also a product of two or more prime numbers.
In other words, P(k + 1) also holds:

Thus, by the strong version of induction, P(n) is t rue for every n > 2. m

4.4 Mathematical Induction 219

We now present an interest ing application of the fundamental theorem
of arithmetic, which is the cornerstone of number theory, and the floor
function.

Find the number of trail ing zeros in 123!

S O L U T I O N :
By the fundamental theorem of arithmetic, 123! can be factored as 2a5bc,
where c denotes the product of primes other than 2 and 5. Clearly a > b.
Each trail ing zero in 123! corresponds to a factor of 10 and vice versa.

_ f N u m b e r of products of the form~
.'. Number of trail ing zeros \ 2 . 5 in the prime factorization]

- min imum of a and b

- b , s i n c e a > b

We proceed to find b"

Number of positive integers < 123 and divisible by 5 - [123/5J - 24

Each of them contributes a 5 to the prime factorization of 123!

Number of positive integers < 123 and divisible by 25 - [123/25J - 4

F i g u r e 4 .29

(See Figure 4.29.) Each of them contributes an additional 5 to the prime
factorization. Since no higher power of 5 contributes a 5 in the prime fac-
torization of 123!, the total number of 5's in the prime factorization equals
24 + 4 = 28. Thus the total number of trail ing zeros in 123! is 28.

each contributes a 5

123!= 1 2 3 . . . 1 2 0 . . . 1 1 5 . . . 1 0 0 . . . 9 5 . . . 7 5 . . . 5 0 . . . 2 5 . . . 1 0 . . . 5 . . . 1

each contributes an additional 5

m

The next example is another interest ing application of the floor function.
It employs the following facts from number theory:

�9 Every posit ive integer that is not a square has an even number ofposi t ive
factors. For example, 18 has six positive factors: 1, 2, 3, 6, 9, 18; 21 has
four: 1, 3, 7, 21; 19 has two: 1, 19.

�9 Every perfect square has an odd number o f positive factors. For exam-
ple, 25 has three positive factors, namely, 1, 5, and 25; 64 has seven:
1, 2, 4, 8, 16, 32, and 64.

2 2 0 C h a p t e r 4 I n d u c t i o n a n d A l g o r i t h m s

�9 T h e r e a re [~/-nJ p e r f e c t s q u a r e s <_ n.

�9 For example, there are [J ~ J = 5 perfect squares not exceeding
27 �9 1, 4, 9, 16, 25; there are [j ~ J = 8 perfect squares < 68 �9 1, 4, 9, 16,
25, 36, 49, 64.

There are 1000 rooms in a hotel and is occupied by The every room a guest .
first guest opens the door to every room. The n th guest closes every n th
door if it is open and opens it otherwise, where 2 < n < 1000. How m a n y
doors will be open at the end?*

S O L U T I O N :
Before applying these resul ts to solve the puzzle, let us s tudy a mini -vers ion
with 10 t e n a n t s and 10 apa r tmen t s . The first t e n a n t opens all 10 doors; the
second t e n a n t closes the 2nd, 4th, 6th, 8th, and 10th doors; the th i rd closes
the 3rd door, opens the 6th door, and closes the 9th door; the four th t e n a n t
opens the 4th and 8th doors. Cont inu ing like this, the 10th t e n a n t closes
the 10th door. These da ta are s u m m a r i z e d in Table 4.2, where O indicates
the door is open and C indicates the door is closed.

T a b l e 4 . 2
D o o r

T e n a n t 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

O O O O O O O O O O
�9 C C . C C . C

�9 . C . O . . C .

�9 . O . . . O . .

. . . . C O

. C

. C o o ~

. C o ~

. O o

. C

It follows from the table t ha t doors 1, 4, and 9 r ema in open at the end,
so the n u m b e r of such doors is three. (Notice t ha t 3 - [x/~-6J ; so can you
predict the answer to the given problem? Cons t ruc t tables like Table 4.2
for 13 t e n a n t s and 13 apa r tmen t s , 18 t e n a n t s and 18 a p a r t m e n t s , and 25
t enan t s and 25 apa r tmen t s , and look for a pat tern .)

Let us now r e tu rn to the original problem. The first t e n a n t opens all
doors. Consider the k th t enan t , where 2 < k _< 1000.

C a s e 1 Let n be a perfect square, where n 2 < 1000. Since n has an odd
n u m b e r of positive factors, the last person to touch the door will open it.
Thus every n th door will r ema in open if n is a perfect square. The n u m b e r

* Based on M. vos Savant, Ask Marilyn, St. Martin Press, New York, 1992, p. 228.

4.4 Mathematical Induction 221

of such doors equals the n u m b e r of perfect squares < 1000, namely,
L~/IOOOJ - 31.

C a s e 2 Suppose n is not a perfect square, where n 2 _< 1000. Since n has an
even n u m b e r of positive factors, the last person to touch the door will close
it. In o ther words, every n th door will r ema in closed if n is not a perfect
square.

Thus, by the addi t ion principle, 31 + 0 - 31 doors will r ema in open. They
are doors n u m b e r e d 1, 4, 9, 16, 25 , . . . , 900, and 961. I1

More generally, suppose there are m t enan t s and m apa r tmen t s , and the
first t e n a n t opens all doors. T h e j t h t e n a n t closes e v e r y j t h door if it is open,
and opens it otherwise, where 2 < j < m. How m a n y doors will r ema in open
at the end?

Exercises 4.4

1. Compute the 36th t r i angu la r number . (It is the so-called beas t ly
n u m b e r .)

2. Prove tha t the sum of two consecutive t r i angu la r number s is a perfect
square.

(T w e l v e D a y s o f C h r i s t m a s) Suppose you sent your love 1 gift on the
first day of Chr is tmas , 1 + 2 gifts on the second day, 1 + 2 + 3 gifts on the
th i rd day and so on.

3. How m a n y gifts did you send on the 12th day of Chr is tmas?

4. How m a n y gifts did your love receive in the 12 days of Chr is tmas?
Using PMI, prove each for every in teger n > 1.

n n (n + 1)(2n + 1)
5. ~ (2 i - 1) = n 2 6. ~-~i2=

i=1 i=1 6

n [(n + l) ~ 2 n a (r n _ l)
7. ~_~i3 - ~ 8. ~-~ a r i - l =

i=1 2 i=1 r - 1

9. n 2 + n is divisible by 2.

(r # 1)

10. n 4 + 2n 3 + n 2 is divisible by 4.

11. The n u m b e r of lines formed by joining n (> 2) dis t inct points in a plane,
no three of which being collinear, is n(n - 1)/2.

12. The n u m b e r of diagonals of a convex n-gon* is n (n - 1)/2 > 3.

13. Let a be a positive integer a n d p a pr ime n u m b e r such t h a t p [a n. Then
p [a , where n > 1.
(Hint : Use Exercise 37 in Section 4.2.)

*An n-gon is a polygon with n sides. An n-gon such that the line segment joining any two
points inside it lies within it is a convex polygon.

222 Chapter 4 Induction and Algorithms

F igure 4.30

14. P r o v e t h a t 1 + 2 + . . . + n - n (n + 1)/2 by c o n s i d e r i n g t h e s u m in t h e

r e v e r s e order .* (Do no t use i nduc t ion .)

E v a l u a t e each sum.
30 50 n n

15. ~ (3k 2 - 1) 16. ~ (k 3 + 2) 17. ~ Li/2] 18. ~ [i/21
k=l k=l i=l i=l

F i n d t h e va lue of x r e s u l t i n g f rom e x e c u t i n g each a l g o r i t h m f r a g m e n t .

19. x ~ - 0 20. x ~ - 0
f o r i = l t o n do f o r i = l t o n do

x +- x + (2 i - 1) x <-- x + i (i + 1)

21. x ~ O

f o r i = l t o n do

f o r j = l t o i do

x ~ - x + l

E v a l u a t e each s u m a n d p roduc t .

n i n i n i n i
22. ~ ~ i 23. ~ ~ j 24. ~ ~ j 2 25. ~ }-]~(2j--1)

i=1 j= l i=1 j= l i=1 j= l i=1 .j=l
?l t l rl t l l l rl

26. I-[22i 27. ~ i 2 28. I1]7 iJ 29. [-I 1-I 2i+J
i=l i=l i=l j=l i=l j = l

30. A m a g i c s q u a r e of o r d e r n is a s q u a r e a r r a n g e m e n t of t h e pos i t ive
i n t e g e r s 1 t h r o u g h n 2 such t h a t t h e s u m of t he i n t e g e r s a l o n g each

row, co lumn, a n d d iagona l is a c o n s t a n t k, cal led t he m a g i c c o n s t a n t .
F i g u r e 4.30 shows two magic squa re s , one of o r d e r 3 a n d t h e o t h e r of
o r d e r 4. P r o v e t h a t t he magic c o n s t a n t of a magic s q u a r e of o r d e r n is
n (n 2 § 1)/2.

8 1 6 1 14 15 4
3 5 7 1 2 7 6 9
4 9 2 8+1110 5

k - 1 5 13 2 3 16

k - 3 4

*An interesting anecdote is told about Karl Frederich Gauss (1777-1855), one of the great
mathematicians. When he was a child, his teacher asked his pupils to compute the sum of the
first 100 positive integers. According to the story, the teacher did so to get some time to grade
his papers. To the teacher's dismay, Gauss found the answer in a few moments by pairing the
numbers from both ends:

1 + 2 + 3+ . . .+ 50+ 51 + . . . + 98+ 99+ 100

h L ' - - ' I

The sum of each pair is 101 and there are 50 pairs. So the total sum is 50 �9 101 = 5050.

4.4 Mathematical Induction 223

Let p, q, and r be pr ime numbers , and i , j , and k whole numbers . F ind the
sum of the positive divisors of each.

3 1. pi 32. piqj 33. piqJr k

34. Let p be a p r ime and n e N. Prove t ha t pn is not a perfect number .
(Hint: Prove by contradict ion.)

Find the n u m b e r of t imes the s t a t e m e n t x <-- x + 1 is executed by each
loop.

3 5 . f o r i = 1 to n do 3 6 .

f o r j = l to i do
x ~ x + l

3 7 . f o r i = 1 to n do 3 8 .

f o r j = 1 to i do

f o r k = 1 to j do
x ~ - x + l

f o r i = 1 to n do

f o r j = 1 to i do

f o r k = 1 to i do
x ~ - x + l

f o r i = 1 to n do

f o r j = 1 to i do

f o r k - 1 to i do
f o r 1 = 1 to i do

x ~ - - x + 1

According to legend, King Sh i rham of India was so pleased wi th the inven-
tion of chess tha t he offered to reward its inventor Sissa Ben Dahi r wi th
any th ing he wished. His reques t was a seemingly modes t one: one gra in
of whea t on the first square of a chessboard, two on the second, four on
the third, and so on. The king was del ighted with this simple request ,
but soon realized he could not fulfill it. The last square alone would take
263 - 9,223,372,036,854,775,808 grains of wheat . Find each for an n x n
chessboard.

39. The n u m b e r of grains on the last square.

40. The total n u m b e r of grains on the chessboard.

41. Let an denote the n u m b e r of t imes the s t a t e m e n t x ~ x + 1 is executed
in the following loop:

f o r i = 1 to n do

f o r j = i to L i / 2] do
x+-x+l

Show tha t

n 2
~ - if n is even

an -- n 2 - 1 if n is odd
4

Find the n u m b e r of t ra i l ing zeros in the decimal value of each.

42. 100! 43. 378! 44. 500! 45. 1000!

224 Chapter 4 Induction and Algorithms

46. Find the flaw in the "proof" in Example 4.21.

Prove each, where tn denotes the nth tr iangular number and n > 2.

47. 8tn + 1 - - (2n + 1) 2 48. St n_ 1 ~- 4n = (2n)2

2 t2 tn 2 n n(n + 1)(n + 2) 49. tn_ 1 -+- -- 50. ~-~ti--
i=1 6

Let A, A1, A2 , . . . , An, B1, B2 , . . . , Bn be any sets, and pl , p2 , . . . , Pn, q, ql ,
q2 , . . . , qn be any propositions. Using induction prove each.

(5) n n n
"51. A U Bi - ~ (A U Bi) *52. A ~ (tABi) - ~ (A N Bi)

i=1 i=1 i=1 i=1

*53, ~ (p l A p 2 A . . . A p n) - - (~ p l) v (~p2) v . . . v (~pn)

"54, ~ (/91 v p 2 v . . . Vpn)=--('~191) A (~ P 2) A . . . A (~pn)

*55. Prove that any postage of n (>_ 2) cents can be made using two- and
three-cent stamps. (Hint: Use the division algorithm and induction.)

*56. Let a and b be any two positive integers with a>__b. Using
the sequence of equations in the euclidean algorithm prove tha t
god {a, b } - god { r~_ 1, rn }, n >_ 1.

*57. Prove the strong version of mathematical induction, using the weak
version.

*58. Prove the weak version of induction, using the well-ordering
principle.

**59. Let Sn denote the sum of the elements in the nth set of the sequence
of sets of squares { 1 }, { 4, 9 }, { 16, 25, 36 }, Find a formula for Sn.
(J. M. Howell, 1989)

**60. Redo Exercise 59 using the sequence of tr iangular numbers {1},
{3,6}, {10,15,21}, (J .M. Howell, 1988)

Suppose we wrote an algorithm to solve a problem and translated the algo-
r i thm into a computer program. Since it is impossible to test the program
for all sets of input values, we rely on a mathematical proof to ensure that
the program will always yield the correct output. The principle of induction
can certify the correctness of algorithms.

Correct P r o g r a m

A c o r r e c t program yields the correct result for all legal input values,
assuming the program contains no compilation and execution errors.

4.5 Algorithm Correctness 225

Proving the correctness of a program, especially a complex one, is not at all
an easy task. It consists of two steps:

(1) Proving tha t the program will always terminate; and
(2) proving tha t it will always produce the correct result. The second step

consti tutes the part ial correc tnes s of the program.

Loop Invariant

First, we will establish the partial correctness of simple w h i l e loops. Let
n denote the number of i terations of a w h i l e loop. Assume a predicate
P(n). A relationship among the variables holds t rue before the loop is exe-
cuted and after each iteration of the loop, no mat te r how large n is. As
the algori thm execution progresses, the values of the variables in the loop
may vary, but the relationship remains unaffected. Such a predicate is a
l oop invariant .

To prove tha t P(n) is a loop invariant, we apply PMI, as the next two
examples demonstrate.

• Algorithm 4.6 computes the product of two positive integers x and Notice y.
tha t the values of the variables x and y are not affected by the loop in lines
3-7. But the values of i and a n s w e r do get changed during each i terat ion of
the loop.

Algorithm mult ip l icat ion(x,y)
(* This a lgor i thm computes the product of the pos i t i ve integers x and y,

and p r i n t s the answer. *)
O. Begin (* a lgor i thm *)
i . answer <-- 0 (* i n i t i a l i z e answer *)
2. i <-- 0 (* counter *)
3. whi le i < x do
4. begin (* whi le *)
5. answer <-- answer -I- y
6. i ~ - i + l
7. endwhi I e
8. End (* a lgor i thm *)

Algorithm 4.6

Let an and in denote the values of a n s w e r and i at the end of n itera-
tions. Let P(n)" an = in" y . We shall prove tha t the predicate P(n) is a loop
invariant.

P R O O F (by PMI)-
Let P(n)" an = in" y , n > O.

Bas i s s t ep The value n - 0 means zero iterations; it corresponds to the
situation before the loop is entered. When n - 0,a0 = 0 and i0 - 0.
Therefore, a0 - i0 .y; so, P(0) is true.

226 Chapter 4 Induction and Algorithms

I n d u c t i o n s t e p Assume P(k) is true; tha t is, ak -- ik "y after k i terat ions .
Then ak+l - - a k + y and ik+l - - i k + 1, by lines 5 and 6. Thus:

ak+l -- ik "Y + Y, by the inductive hypothesis

= (ik + 1)y

= ik+ 1 . y

So P(k + 1) is true.
Thus, by PMI, P(n) is t rue for every n >__ O; tha t is, P(n) is a loop invar iant .

m

How is the proper ty tha t P(n) is a loop invar ian t useful? Since an - in "y

after n i terat ions, it mus t be t rue even when we exit the loop. The loop is
t e rmina ted when in - x. Then a n s w e r - a n - x . y , as expected. Since P(n)
is a loop invariant , the a lgor i thm does indeed work correctly.

What exactly is the i terat ion method? Suppose we would like to com-
pute the value f (n) of a function f at an integer n > no. In the i t e r a t i o n
m e t h o d , we use f (no) to compute f (no + 1), then use the successive val-
ues f (no + 2), f (no + 3) , . . . to evaluate f (n) . For instance, to evaluate
n? by i teration, we successively evaluate 0!, 1!, 2! , . . . , (n - 1)! and then
evaluate n!.

• Algori thm an a lgor i thm comput ing n!, n >_ 0. Let 4.7 is i terative for where
- fact(n) be the value of f a c t o r i a l at the end of n i terat ions of the loop. Prove

tha t P(n): f a c t (n) - n! is a loop invariant .

Algorithm factorial (n)
(* This algorithm computes and prints the value of

n! for every n >__ O. *)
O. Begin (* algorithm *)
I. factor ial <- 1 (* i n i t i a l i z e *)
2. i ~- 1 (* counter *)
3. while i < n do
4. begin (* while *)
5. i < - - i + I
6. factor ial ,-- factor ial * i
7. endwhi I e
9. End (* algorithm *)

Algorithm 4.7

P R O O F (by PMI)"
Let P(n): f a c t (n) - n!, n > O.

B a s i s s t e p When n - 0, f a c t (0) - 1 - 1! by line 1; so P(0) is true.

4.5 Algorithm Correctness 227

Induction step Assume P(k) is true: f a c t (k) - k!. Then:

fact(k + 1) = fact(k) �9 (k + 1), by line 6

= k!. (k + 1), by the inductive hypothesis

= (k + 1)~

Therefore, P(k + 1) is true.
Thus, by induction, P(n) holds t rue for every n _>_ O; tha t is, P(n) is a loop

invar iant and hence the algori thm correctly computes the value of n!, for
every n >__ O. I

Searching and Sorting Algorithms

The remainder of this section establishes the part ial correctness of a few
s tandard searching and sorting algorithms. We begin with two searching
algorithms, l inear and binary.

Linear Search Algorithm

L e t X = [X l , X 2 , . . . , X n] be an unordered list (also known as a one-dimensional
ar ray or simply an array) of n distinct items. We would like to search the
list for a specific item, called key. If key exists in the list, the a lgori thm
should re tu rn the location of key.

We search the list from right to left for convenience. Compare Xn and
key. If Xn - key, key occurs and location = n. Otherwise, compare Xn-1 and
key. If they are equal, we are done. Otherwise, continue the search unti l
it is successful or the list is empty. This algori thm is the l inear search
algorithm.

For example, let X = [Dallas, Boston, Nashville, Albany, Port land] and
key = Albany. Then key occurs in the list at location 4.

In general, we cannot assume key occurs in the list. To make the search
process always successful, we store key in location 0: xo ~ key. So if the
search routine re turns the value zero for location, it implies key does not
occur in the list.

An iterative version of the l inear search algori thm is given in
Algorithm 4.8.

Algorithm linear search (X,n,key,location)
(* This algori thm searches a l i s t by the l inear search method for

a key and returns i t s locat ion in the l i s t . To make the search
always successful, we store key in xo. I f the algori thm returns
the value 0 for locat ion, key does not occur in the l i s t . *)

O. Begin (* algorithm *)
i . x 0 <- key
2. i ~ - n
3. while xi # key do
4. i ~ - i - i

228 Chapter 4 Induction and Algorithms

5. location K-- i
6. End (* algorithm *)

Algorithm 4.8

Prove tha t the linear search algori thm in Algorithm 4.8 works correctly for
every n > 0.

PROOF (by PMI)"
Let P(n)" The algori thm re turns the correct location for every list of size
n > 0 .

D

Basis s tep When n = 0, the whi le loop is skipped. The algori thm re turns
the value 0 in location by line 5, which is correct. So P(0) is true.

Induct ion step Assume P(k) is t rue for an arbi t rary integer k > 0; tha t
is, the algori thm works when the list contains k items.

To show that P(k + 1) is true, consider a list X with k + 1 elements.

Case 1 Ifxk+l = key in line 3, the whi l e loop will not be entered and the
algori thm re turns the correct value k + 1 for location in line 5.

Case 2 Ifxk+l r key, i - k at the end of the first iteration. This restricts
us to a sublist with k elements. By the inductive hypothesis, the algori thm
works correctly for such a list.

In both cases, P(k + 1) holds. Thus, by induction, P(n) is t rue for n >_ 0.
In other words, the algorithm re turns the correct location for every list
with n > 0 elements.

Binary Search Algorithm
The binary search a lgor i thm searches for a given key if the list X is
ordered. The technique employed is divide and conquer . First compute
the middle (mid) of the list, where m i d = [(1 + n)/2J. The middle item is
Xmid.

Now part i t ion the list into three disjoint sublists: [x 1 , . . . , Xmid-1],
[Xmid], and [Xmid+l,-.-, Xn]. If Xmid--key, the search is successful and
location = mid. If they are not equal, we search only the lower half or the
upper half of the list. If key < Xmid, search the sublist [xl, . . . , Xmid-1];
otherwise, search the sublist [Xmid+l,.. . , Xn]. Continue like this until the
search is successful or the sublist is empty.

~ se the binary search algorithm to search the list

X = {3, 5, 8, 13, 21, 34, 55, 89] for key = 5.

SOLUTION"
Let xi denote the i th element of the list X, where 1 < i < n and n - 8.

4.5 Algorithm Correctness 229

S t e p 1 Compute mid for the list X:

mid - L(1 + n)/2] - L(1 + 8)/2] - 4.

Therefore, the middle t e r m is Xmi d - 13.

S t e p 2 Compare Xmid and key:
Since x4 r 5, key, if it occurs, m u s t exist in the lower sublis t

[Xl,X2,X3] -- [3, 5, 8] or in the upper sublist [x5,x6,x7,x8] = [21, 34, 55, 89].
Since key < x4, search the first sublist and cont inue steps 1 and 2 unt i l
e i ther key is located or the sublis t becomes empty.

S t e p 3 Compute mid for the list [Xl,X2,X3]"

m i d - [(1 + 3)/2] - 2

So Xmid -- x2 -- 5.

S t e p 4 Compare Xmi d and key:
Since Xmid = key, the search is successful. Key occurs at location 2 and

we are done. (As an exercise, use the a lgor i thm to search the list X with
key = 23.) m

The steps in this example can be t r ans la t ed into an a lgor i thm. See
Algor i thm 4.9.

Algorithm binary search(X,l,n,key,mid)
(* This algori thm searches an ordered l i s t X of n elements for a special

O.
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

item (key). I t returns the locat ion of key i f the search is
successful and zero otherwise. The var iable mid returns such a value.
The variables low and high denote the lower and upper indices of the
l i s t being searched. *)

Begin (* algori thm *)
low <- I
high K-- n
while low _< high do (* l i s t is nonempty *)
begin (* while *)

mid ~-- [(low + high)/2]
i f key=xmi d then (* key exists in the l i s t *)

ex i t the loop
else i f key < Xmi d then (* search lower ha l f *)

high <- mid - i
else (* search the upper ha l f *)

low +- mid + I
endwh i 1 e

i f low > high then (* search is unsuccessful *)
mid , - 0

End (* algorithm *)

Algorithm 4.9

230 Chapter 4 Induction and Algorithms

The next example establishes the partial correctness of this a lgori thm
using strong induction.

Prove that the binary search algori thm (Algorithm 4.9) works correctly for
every ordered list of size n > 0.

PROOF (by s trong induction):
Let P(n)" The algori thm works for every ordered list of size n.

Basis step When n - 0, low - 1 and h i g h - O. Since low < h i g h is false in
line 3, the whi le loop is not executed. So the algori thm re turns the correct
value 0 from line 14, as expected, and P(0) is true.

Induct ion step Assume P(i) holds for every i < k, where k > 0; tha t is,
the algori thm re turns the correct value for any list of size i < k.

To show that P(k + 1) is true, consider an ordered list X of size k + 1.
Since h i g h = k + 1 > 1 = low, the loop is entered and the middle index is
computed in line 5.

Case 1 If key- -Xmid , we exit the loop (line 7) and the value of m i d is
returned, so the algori thm works.

Case 2 If key < Xmid, search the sublist x l, . . . , Xmid-1; otherwise, search
the sublist Xmid+l, . . . , X,z. In both cases, the sublists contain fewer than
k + 1 elements, so the algori thm works in either case by the inductive
hypothesis.

Thus P(k + 1) is true. So, by PMI, P(n) is t rue for n >_ 0; tha t is, the
algorithm works correctly for every ordered list of zero or more items, i

Next we present two s tandard sorting algori thms and prove their
correctness.

Sorting Algorithms

Suppose we are given a list ofn items and would like to sort them in "ascend-
ing order." Several methods are available. Two algori thms that can do the
job are bubble sort and selection sort.

Bubble Sor t

Bubble sort is a simple, elegant algorithm for sorting a list of n items. It
"bubbles up" smaller items to the top and pushes larger items to the bottom:
Compare consecutive elements, beginning with the first pair. Swap them if
they are out of order. Compare the next pair and swap them if necessary.
Continue like this to the end of the list. This ends the first pass. Now place
the largest element at the end of the list. Repeat these steps with all but
the largest element until the result ing sublist consists of one element. The
list is now ordered.

4.5 Algorithm Correctness 231

The following example demonstrates this method.

sort, = [34, 13, 21, 3, 89]. Using bubble sort the list X

SOLUTION:
Let xi denote the ith element in the list, where 1 < i < 5. The given list is

1 2 3 4 5

Step 1 Compare Xl and X2. Since Xl > X2, swap them. This yields the list

1 2 3 4 5

Now comparex2 andx3. Sincex2 > x3, interchangex2 andx3. This produces
the list

1 2 3 4 5

Since X 3 > X4, switch them, yielding the list

1 2 3 4 5

Compare X4 and x5. Since X4 < X5, they are in the correct order
and no interchanging is needed. This completes the first pass. At the
end of the first pass, the largest element in the list is placed in proper
position:

1 2 3 4 5

X 1 1 3 1 2 1 1 3 1 3 4 1 8 9]

to besor ted
in correct position

Step 2 In the second pass, compare the elements xl through X4 and swap
them if necessary. This results in the two largest elements being placed
correctly:

1 2 3 4 5

to be sorted correctly sorted

232 Chapter 4 Induction and Algorithms

S t e p 3 The th i rd pass involves the e lements x l t h r o u g h X 3. At the end of
this pass, the th ree largest e lements are correctly placed:

1 2 3 4 5

~ �9 y ,J

to be sorted in correct order

S t e p 4 At the end of the four th pass the list is complete ly sorted:

1 2 3 4 5

all in correct order

T w o i m p o r t a n t observat ions"

�9 At the end of the i th pass, the i largest e lements are correct ly placed
at the end of the list, where 1 < i < n. So the (i + 1)st pass involves
the e lements Xl t h rough Xn_ i .

�9 Bubble sort takes n - 1 passes to sort a list of n i tems, even if the
list becomes ordered at the end of the i th pass, where i < n - 1.
Once the list is sorted, it makes no sense to go t h r o u g h the remain-
ing passes, so the addi t ional passes can be avoided wi th a boolean
variable.

The various steps in Example 4.30 can be developed into an a lgor i thm
for bubble sort, as p resen ted in Algor i thm 4.10.

Algorithm bubble sort(X,n)
(* This algorithm sorts a l i s t X of n elements

using the bubble algorithm. *)
O. Begin (* algorithm *)
1. for i - -1 to n - 1 do
2. for j = l to n - i do
3. i f Xj > Xj+ 1 then
4. swap xj and Xj+ 1
5. End (* algorithm *)

Algorithm 4.10

4.5 Algorithm Correctness 233

Establish the correctness of the bubble sort algorithm.

P R O O F (by PMI)"
Let P(n)" The algori thm sorts every list of size n > 1.

Bas i s s t ep When n - 1, the list contains just one element and hence is
clearly sorted, so P(1) is true.

I n d u c t i o n s t e p Assume P(k) is true; tha t is, the algori thm sorts correctly
every list of k (> 1) items.

To show that P(k + 1) is true, consider a list X - [X l , X 2 , . . . , Xk+l].
Since k + 1 > 2, the fo r loop in line 1 is entered. When i - 1, j runs from 1
through n - 1. Lines 3 and 4 are executed: the consecutive elements xj and
Xj+l are compared and swapped if out of order. The inner fo r loop places
the largest of the elements Xl, x2, . . . , Xk+l in position k + 1. This leaves
a sublist of k elements, [xl, x2, . . . , Xk]. By the inductive hypothesis, the
algorithm correctly sorts it. It follows that the algori thm correctly sorts
the entire list X; tha t is, P(k + 1) is true.

Thus, by the principle of induction, P(n) is t rue for n > 1; that is, the
bubble sort algori thm always works, m

S e l e c t i o n S o r t

Unlike bubble sort, s e l e c t i o n s o r t finds the largest element and swaps it
with xn if xn is not the largest element. Find the largest of the remaining
elements Xl, x2, . . . , Xn-1, and switch it with Xn-1 if it isn ' t xn-1. Continue
like this until the list is completely sorted.

In each pass, unlike in bubble sort, if two elements are out of order, we
do not swap them right away but wait to find the largest element of the
sublist. At the end of the ith pass, the largest of the elements xl, x2 , . . . ,
X n - i + l is swapped with Xn_ i+l , where 1 < i < n.

This outline of the selection sort algori thm can be a bit refined. In the
ith pass, initially assume Xn-i+l is the largest element. Find the largest of
the elements x l, x2 , . . . , Xn-i. Swap it with Xn-i+l if necessary. Algorithm
4.11 results.

Algorithm selection sort(X,n)
(* This algorithm sorts a l i s t X of n items using the i terat ive version

of selection sort. Maxindex denotes the index of the largest element
in a given pass. *)

O. Begin (* algorithm *)
1. i f n > i then(* l i s t contains at least two elements *)
2. for i = 1 to n - 1 do

234 Chapter 4 Induction and Algorithms

g.

I0.
11.

3. begin (* for *)
4. maxindex ~- n - i + i (* assume Xn_i+ 1 is the

largest element; save i ts index. *)
5. for j----1 to n - i do
6. i f Xj > Xmaxindex, then (* update maxindex *)
7. maxindex ~- j
8. i f maxindex r i + i , then (* found a larger

element; swap the corresponding elements *)
swap Xmaxindex and Xn_i+ 1

endfor
End (* algorithm *)

A1 gori thm 4. i i

~ Establish the correctness of Algorithm 4.11.

P R O O F (by PMI):
Let P(n)" The algori thm works correctly for every list of size n _> 1.

Bas i s s tep When n = 1, the list contains one element and is clearly sorted,
so P(1) is true.

I n d u c t i o n s tep Assume P(k) is true; tha t is, the algori thm sorts correctly
every list of size k >__ 1.

To show that P(k + 1) is true, consider a list X = |x x, x2, . . . , Xk+l] with
k + 1 elements, where k + 1 _> 2. Since k + I >_ 2, the condition in line 1 is
satisfied, and we enter the loop in line 2. When i = 1, max index = (k + 1) -
1 + 1 = k + 1. The fo r loop in lines 5-7 compares each of the elements Xl,
x2 , . . . , xh with Xmaxindex and updates it as needed. Line 8 updates max index
if we have found an element larger than Xh+l. If maxindex ~: k + 1, then
the elements xk+ 1 and Xmaxindex are swapped. This stores the largest of the
k + 1 elements in position k + 1, leaving a sublist of k elements, namely,
x 1, x2,.. �9 xh to be sorted.

Therefore, by the inductive hypothesis, the algori thm sorts correctly the
list X containing k + 1 elements.

Thus, by induction, P(n) is t rue for every n >_ 1; tha t is, the algori thm
correctly sorts every list of size n. B

These searching and sorting algori thms are pursued again in Section 4.7.
Additional sorting algori thms appear in the exercises.

Exercises 4.5

Prove that the given predicate P(n) in each algori thm is a loop invariant.

1. Algorithm exponential (x,n) 2.
(* This algorithm computes
x n, where xEIR + and
n ~W. *)

Algorithm divi sion(x,y)
(* This algorithm computes
the quotient and the
remainder when a positive

4.5 Algorithm Correctness 235

0. Begin (* algorithm *)
i . answer +- I
2. while n > 0 do
3. begin (* while *)
4. answer +- answer, x
5. n < - n - 1
6. endwhile
7. End (* algorithm *)
P(n): an = x n, where an
denotes the value of answer
after n iterations of the
while loop.

3. Algorithm Euclid(x,y,clivi sor)
(* See Algorithm 4.2 *)
P(n): gcd{xn,Yn}--gcd{x,y}
where Xn and Yn denote
the values of x=dividend
and y- -d iv isor after n
i terat ions.

4. Algorithm gcd (x,y)
(* This algorithm computes
the gcd of two positive
integers x and y. *)
0. Begin (* algorithm *)
i . while x # y do
2. i f x > y then
3. x ~ - x - y
4. else
5. y , - y - x
6. gcd +- x
7. End (* a lgor i thm *)
P(n): gcd {xn ,Yn } - - - gcd {x , y } ,
where Xn and Yn denote the
values of x and y at the end
of n i t e r a t i o n s of the loop.

integer x is
divided by a positive
integer y using addition and
subtraction. *)
0. Begin (* algorithm *)
1. dividend ~- x
2. divisor <- y
3. quotient ~-- 0
4. remainder ,-- dividend
5. while dividend >

di vi sor do
6. begin (* while *)
7. di vi dend <-- di vi dend

- di vi sor
8. quotient K-quotient + i
9. remainder <-dividend

10. endwhile
11. End (* algorithm *)

5. Algorithm sum (x,y) (* This
algorithm prints the sum of
two nonnegative integers x
and y. *)
0. Begin (* algorithm *)
I . sum , - x
2. count , - 0 (* counter *)
3. whi le count < y do
4. begin (* whi le *)
5. sum , - sum-I- i
6. count , - count + I
7. endwhile
8. End (* algorithm *)
P(n): x--qny + rn, where qn
and rn denote the quotient
and the remainder after n
i terat ions.

6. Algorithm square (x) (* This algorithm prints the square of x EW. *)
0. Begin (* algorithm *)
1. answer , - 0
2. i <-- 0 (* counter *)
3. While i < x do
4. begin (* while *)
5. answer <-answer + (2i + 1):
6. i < - i + i
7. endwhi I e
8. End (* algorithm *)
P(n): an --n 2, where an denotes the value of answer at the end of n
i terat ions.

236 Chapter 4 Induction and Algorithms

Using the algori thm in Exercise 4, compute the gcd of each pair of
integers.

7. 18,3 8. 28,12 9. 28,48 10. 24,112

Sort the following lists using the bubble sort algorithm.

11. 23, 7, 18, 19, 53 12. 19, 17, 13, 8, 5

13-14. Sort each list in Exercises 11 and 12 using the selection sort
algorithm.

Write an iterative algori thm to do the tasks in Exercises 15-17.

15. Compute n V., n _> 0.

16. Determine if two n x n matrices A and B are equal.

17. Compute the product of two n x n matrices A and B.

18. Let A=(aij)nxn and B-(b i j)nxn . A is l e s s than or equal to B,
denoted by A < B, if aij <_ bij for every i and j . Write an a lgor i thm
to determine ifA < B.

Consider a list X of n numbers xl, x2 , . . . , Xn. Write iterative a lgor i thms to
do the tasks in Exercises 19-25.

19. Find the sum of the numbers.

20. Find the product of the numbers.

21. Find the maximum of the numbers.

22. Find the min imum of the numbers.

23. Pr in t the numbers in the given order x l, x2 , . . . , xn.

24. Pr in t the numbers in the reverse order Xl, x2 , . . . , Xn.

25. Write an algori thm to determine if a str ing S of n characters is a
palindrome.

26-36. Establish the correctness of each algori thm in Exercises 15-25.

Use the i n s e r t i o n s o r t algori thm in Algorithm 4.12 to answer Exercises
37-39.

Algorithm insertion sort(X,n)
(* This algorithm sorts a l i s t X of n elements into

ascending order by inser t ing a new element in the
proper place at the end of each pass. *)

O. Begin (* algorithm *)
i . for i - - 2 to n do
2. begin (* for *)
3. temp ~-- xi (* temp is a temporary var iable *)
4. j < - - i - 1
5. while j >__ 1 do

4.6 The Growth of Functions 237

6. begin (* while *)
7. i f Xj > temp then
8. xjH_ 1 <-- xj
9. j + - j - - 1

10. endwh i I e
11. x j+ 1 <-- temp
12. endfor
13. End (* algorithm *)

Algorithm 4.12

Sort each list.

37. 3, 13, 8, 6, 5, 2 38. 11, 7, 4, 15, 6, 2, 9

39. Establish the correctness of the algorithm.

The growth of functions can be investigated using three impor tant nota-
tions: the big-oh (O), the big-omega (gz), and the big-theta ((~)) notations.*
We will employ it in Sections 4.7 and 5.7 to analyze some s tandard
algorithms.

Suppose we have developed two algori thms to solve a problem. To deter-
mine if one is bet ter than the other, we need some type of yardst ick to
measure their efficiency. Since the complexity of an algori thm is a function
of the input size n, we measure efficiency in terms ofn. To this end, we begin
with the big-oh notation, introduced in 1892 by the German mathemat ic ian
Paul Gustav Heinrich Bachmann. The big-oh symbol is also known as the
L a n d a u s y m b o l after the German mathemat ic ian Edmund Landau who
popularized it.

The Big-0h Notation

Let f, g: N ~ E. Then f(n) is of o r d e r at m o s t g(n), if a positive constant
C and a positive integer no exist such tha t I f(n)l _< CIg(n)l for every n > no.
In symbols, we write f(n)= O(g(n)). (Read this as f(n) is big-oh ofg(n).)

In this definition, if we can find one value for C, any value greater than
tha t also will work, so the value of C is not unique.

When we say the time needed to execute an algorithm is O(g(n)), it
simply means the time needed is not more than some constant t imes Jg(n)l
when n is sufficiently large. For instance, let Cn denote the max imum
number of element comparisons required in line 3 of the linear search
algori thm (Algorithm 4.8), where n denotes the input size. Using Cn as an

*g2 and (~) are the uppercase Greek letters omega and theta, respectively.

238 Chapter 4 Induction and Algorithms

. - . . ; , , , . - , , , .

. . ,

"'~"~

P a u l Gus tav Heinr ich B a c h m a n n (1837-1920), the son of a
Lutheran minister, was born in Berlin. He inherited a pious attitude and
a great love for music. During his early years, he had difficulties in math-
ematical studies, but his talent was discovered by one of his teachers.

After recovering from tuberculosis in Switzerland, Bachmann studied
mathematics, first at the University of Berlin and then at the University of
GSttingen, where he attended Dirichlet's lectures. In 1862 he received his
doctorate from Berlin under the guidance of the famous German math-
ematician Ernst Kummer, for a thesis on group theory. He became a
professor at Breslau and later at Munster.

Around 1890, he resigned his position and moved to Weimar, Germany,
where he continued his mathematical writing, composed music, played
the piano, and wrote music criticism for newspapers. His writings include
several volumes on number theory and a book on Fermat's Last Theorem.
Bachmann died in Weimar.

:i:,,); :..

E d m u n d L a n d a u (1877-1938), the son of a gynecologist, was born in
Berlin. After attending high school, he studied mathematics at the University
of Berlin, receiving his doctorate under the German mathematician Georg
Frobenius in 1899. He taught at Berlin until 1909 and then moved to the
University of GSttingen, where both David Hilbert and Felix Klien were col-
leagues. After the Nazis forced him to quit teaching, he never gave another
lecture in Germany.

Landau's principal contributions were to analytic number theory, espe-
cially to the distribution of primes. He wrote several books and more than 250
papers, and exercised tremendous influence on the development of number
theory. Landau died suddenly in Berlin.

e s t i m a t e of the execut ion of the a lgor i thm, it can be shown t h a t c,~ - O (n)
(see E x a m p l e 4.44). This m e a n s c,~ grows no fas ter t h a n n, w h e n n is
sufficiently large.

Before we ana lyze the execut ion t imes of a lgor i thms , we will s t udy a few
s imple examples to show how to use the big-oh nota t ion .

Let f (n) - 50n 3 - 6n + 23. Show t h a t f (n) - O(n3).

S O L U T I O N :
f(n) = 50n 3 - 6 n + 23

Therefore ,

i f (n)] -] 50n 3 - 6n + 23 I

<] 50n 3] + i - 6 n I + I 23 I, by the t r i ang le inequa l i ty

4.6 The Growth of Functions 239

= 50n 3 + 6 n + 2 3

< 5 0 n 3 + 6 n 3 + 2 3 n 3 w h e n n > l

= 79n 3

(Note" no = 1)

Thus, by taking C - 79, it follows that f (n) - O (n 3) . II

More generally, we have the following result.

m
~ Let f(n) = E ai ni be a polynomial in n of degree m. Then f(n) - O(nm).

i=0

P R O O F :
f (n) - amn m + am_ in m-1 + . . . + a l n + ao. By the triangle inequality,
we have"

[f(n)l _< [am[n m + [am-l ln m-1 -F . . . -F [alln + la0[

<_ [amln m + [am_ll nm + . . . + [alln m + [ao[n m, n >_ 1

- - Ja i l n m - - C n m , where C - l a i [

i=1

= O (n m)

Thus, when n is sufficiently large, the leading term dominates the
value of the polynomial. II

In Example 4.33, although f (n) - O(n3), it is also true that f (n) <_ 79n 5
and f (n) < 79n 6. So we could say correctly, but meaninglessly, that
f (n) - O (n 5) and also f (n) - O (n 6) . To make comparisons meaningful,
however, we shall always choose the smallest possible order of magnitude.

Commonly Used Order Functions

The most common order functions and their names are listed below,
arranged in increasing order of magnitude:

�9 Constant O(1)

�9 Logarithmic O(lg n)

�9 Linear O(n)

�9 (no name exists) O(n lg n)

�9 Quadratic O(n 2)

�9 Cubic O(n 3)

�9 Polynomial O(n m)

240 Chapter 4 Induction and Algorithms

T a b l e 4 . 3

�9 Exponential O(2 n)

�9 Factorial O(n!)

When we say tha t the order of magni tude of an algori thm is a constant ,
we mean tha t the execution time is bounded by a constant; tha t is, it is
independent of the input size n. If the order is linear, the execution t ime
grows linearly; it is directly proportional to the input size.

Approximate values of some of the order functions are given in Table 4.3
for comparison; the graphs of a few of them are given in Figure 4.31.

lg n n n lg n n 2

3 10 30 100
6 100 600 10,000
9 1,000 9,000 100,000

13 10,000 130,000 100,000,000
16 100,000 1,600,000 10,000,000,000
19 1,000,000 19,000,000 one trillion

F i g u r e 4 . 3 1

y = n !

y = 2 n

128

64

32

16

8

4

2

1

1 2 3 4 5 6 7 8 9

, = n 2

- y = n lgn

. y = n

- - - y = n lg n

y = l

-+---~ n
10

The order functions satisfy the following relationships among the fre-
quently used execution times, when n is sufficiently large: O(1) < O(lg n)
< O(n) < O(n lg n) < O(n 2) < O(n 3) < O(2 n) < O(n!). They give us an
idea of how long algori thms of varying orders will take to execute jobs.

4.6 The Growth of Functions 241

For instance, if two algor i thms solve a problem, one with O(n) and the
other with O(lg n), then (other th ings being equal) the second a lgor i thm
will work faster.

The next two examples also i l lustrate how to es t imate the growth of
functions.

Show tha t n! = O(n n) and lgn! ~ - O (n lgn) .

S O L U T I O N :

�9 n! = n (n - 1) . . . 3 �9 2 �9 1

< n . n . . . n . n , n, where n >_ 1
= n n

-- O(n n) (Note" Use C - 1.)

�9 Since n! _< n n from above,
lg n! < n lg n (Note: If 0 < x < y, then lg x < lg y.)

= O(n lg n)

m

The following example shows how to es t imate in a nested f o r loop the
growth of the n u m b e r of t imes an ass ignment s t a t ement is executed.

Es t imate f(n), the num be r of t imes the s t a t ement x <- x + 1, is executed in
the following f o r loop.

f o r i - - i to n do
f o r j = l to i do

x < - - x + 1

S O L U T I O N :
Since the s t a t ement x ~ x + 1 is executed i t imes for each value of i, where
1 < i < n ,

n

f (n) - E i = n(n + 1) _ O(n2)
n

i=1

As n increases, f(n) grows as n 2. II

The Growth of a S u m of Two F u n c t i o n s

Imagine an a lgor i thm consist ing of two subalgori thms. Suppose the orders
of execution t imes of the subalgor i thms are given by fl (n) - O(gl(n)) and
f2(n) - O(g2(n)). The next theorem shows how to compute the order of the
algorithm.

Let fl(n) - O(gl(n)) and f2(n) - O(g2(n)). Then (fl + f2)(n)
O(max{Igz (n)l, Ig2(n)l}).

242 Chapter 4 Induction and Algorithms

P R O O F
By definition, there exist positive constants C1, C2, nl , and n2 such t ha t
]fl(n)i < C1]gl(n)] for n > nl , and if2(n)] < C2ig2(n)] for n > n2. Let
C - max{C1, C2}, no - max{n1, n2}, andg(n) - max{ [gl(n)i, ig2(n)] }. Then"

Ifl(n) + f2(n)l < Cllgl (n) i + C2]g2(n)l

<_ Clg(n)i + Clg(n)], where n >_ no

- 2Cig(n)i

Thus f l(n) + f2(n) = O(g(n)); tha t is, (fl + f2)(n) - O(max{igl (n)i, Ig2(n)l}).
I

It follows by this theorem tha t i f f l (n) - O(g(n)) and f2(n) - O(g(n)), t hen
(['1 + f2) (n)=O(g(n)) . Why?

The Growth of a Product of Two Functions

The next theorem helps us to es t imate the growth of (f] .f2)(n), the product
of the functions fl and f2.

Le t f l (n) - O(gl(n)) andf2(n) - O(g2(n)). Then (f l . f2)(n) - O(gl(n) .g2(n)) .

P R O O F
Again, by definition, there are constants C1, C2, nl , and n2 such tha t
]fl(n)] _< Cligl(n)[for n >_ n], and]f2(n)l _< C2[g2(n)] for n >_ n2. Let
C - C1C2 and no - max{n],n2}. Then"

](f]. f 2) (n) i -]f](n). f2(n)i

= [fl(n)].]f2(n)]

<_ Cligl(n)[. C2]g2(n)i

= Clgl(n)g2(n)i , where n >_ no

Thus (fl" f2)(n) - O(gl(n)g2(n)) . I

The next two examples employ this handy theorem along with the earlier
theorems.

Let f (n) = 6n 2 + 5n + 7 lg n!. Es t imate the growth off(n).

S O L U T I O N :
Since 6n 2 - O(n 2) and 5n - O(n), 6n 2 + 5n - O(n 2) by Theorem 4.15.
Fur the rmore , 7 - O(1), and lg n! - O(n lg n) by Example 4.34. So

7 lg n! = O(1). O(n lg n)

= O(1. n lg n), by Theorem 4.16

= O(n lg n)

4.6 The Growth of Functions 243

Since lg n < n, n lg n < n 2 for n > 1 (see Figure 4.31), it follows by
Theorem 4.15 tha t f (n) - O(n 2) + O(n lg n) - O(n2). i

Let f (n) - (3n 2 + 4n - 5) lg n. Es t imate the growth off(n).

SOLUTION:
3n 2 + 4n - 5 - O(n2), by Theorem 4.14
Clearly,

lg n - O(lg n)

So

f (n) - (3n 2 + 4n - 5) lg n

= O(n2) �9 O(lg n)

= O (n 2 lg n), by Theorem 4.16 II

We now tu rn to the big-omega and the big-theta nota t ions for investi-
gat ing the growth of functions.

The Big-Omega and Big-Theta Notations

The big-oh notat ion has been widely used in the s tudy of the growth of func-
tions; however, it does not give us an exact order of growth. For instance,
f (n) - O (g (n)) jus t implies tha t the function f does not grow any faster
t han g. In other words, it simply provides an upper bound for the size of
f (n) for large values of n, but no lower bound.

When we need the lower bound, we employ the big-omega notat ion.
When we need both bounds to es t imate the growth of f, we use the big-
the ta notation. Both nota t ions were introduced in the 1970s by Donald
Knu th of Stanford Universi ty.

We now pursue the big-omega notat ion. As you could imagine by now, its
definition closely resembles tha t of the big-oh notat ion; it can be obtained
by simply changing _< to >_.

The Big-Omega Notation

Let f , g " • ~ R. Suppose there is a positive cons tant C and a positive
integer no such tha t If(n)] >__ Cig(n) i for every n >_ no. Then f (n) is g2(g(n));
tha t is, f (n) - ~ (g (n)) . [As above, read this as f (n) is big-omega of g(n).]

The following example i l lustrates this definition.

Let f (n) - 50n 3 - 6n + 23. When n >_ 0, 50n 3 - 6n + 23 > 50n 3. So, with

C - 5 0 and g (n) - n 3, it follows tha t f (n) >__ C . g (n) for every n >_ 0. Thus
f (n) - g2(n3). (Notice tha t here no - 0.) i

244 Chapter 4 Induction and Algorithms

D o n a l d Erv in K n u t h (1938-), a pioneer in the development of the theory of
compilers, programming languages, and the analysis of algorithms, is also
a prolific writer in computer science. He was born in Milwaukee, Wisconsin,
where his father, the first college graduate in the Knuth family, taught
bookkeeping at a Lutheran high school; his talent for mathematics and music
played a significant role in the intellectual development and pursuit of the
young Knuth.

As a youngster, Knuth had a marvelous gift for solving complex problems.
As an eighth grader, he entered the Ziegler's Candies Contest to find the
number of words that can be formed from the letters in Ziegler's Giant Bar.
Knuth listed 4500 such words, 2000 more than in Ziegler's master list. This
won a television set for the school and enough Ziegler candy for the entire
student body.

In high school, Knuth entered the prestigious Westinghouse Science Talent Search (now Intel Science
Talent Search) with his project, The Prtrzebie System of Weights and Measures, that would replace the
cumbersome British system. His project won an honorable mention, and $25 from MAD Magazine for
publishing it. When he graduated from high school, he was already an accomplished mathematician,
musician, and writer.

He majored in physics at the Case Institute of Technology (now Case Western Reserve University) and
was introduced to an IBM 650 computer, one of the earliest mainframes. After studying the manual from
cover to cover, he decided that he could do better and wrote assembler and compiler code for the school's
IBM 650.

In 1958, Knuth developed a system for analyzing the value of a basketball player, which the coach then
used to help the team win a league championship. Newsweek wrote an article about Knuth's system and
Walter Cronkite carried it on the CBS Evening News.

In his sophomore year, Knuth switched his major to mathematics. His work at Case was so distin-
guished that when he was awarded his B.S. in 1960, the faculty made an unprecedented decision to grant
him an M.S. concurrently.

Knuth then entered the California Institute of Technology for graduate work and received his
Ph.D. in mathematics 3 years later. He joined the faculty there, also consulting for the Burroughs
Corporation writing compilers for various programming languages, including ALGOL 58 and
FORTRAN H.

From 1968-1969, he worked at the Institute for Defense Analyses, Princeton, New Jersey. In 1969,
Knuth joined the faculty at Stanford University.

Knuth's landmark project, The Art of Computer Programming, was initiated by Addison-Wesley
Publishing Co. in early 1962, while he was still in graduate school. Dedicated to the study of algorithms,
it would be a seven-volume series when completed. A revered work, it was the pioneer textbook in the
1970s and continues to be an invaluable resource. Knuth developed two computer languages to deal with
mathematics typography, TEX, a typesetting program, and Metafont, a program to develop the shapes of
letters.

He has received numerous honorary degrees from universities around the world: the Grace Murray
Hopper Award (1971), the Alan M. Turing Award (1974), the Lester R. Ford Award (1975), the National
Medal of Science (1979), the McDowell Award (1980), the Computer Pioneer Award (1982), and the Steele
Prize (1987).

An accomplished church organist and composer of music for the organ, Knuth retired from Stanford
in 1992.

4.6 The Growth of Functions 245

We now make an in te res t ing observation. To this end, let f (n) = f~(g(n));
so If(n)[>_ Clg(n)[for n >_ no. Then Ig(n)l _< C'[f(n)[for some positive
constant C t = 1/C; so g(n) = O(f (n)) . Conversely, let g(n) = O(f(n)).
By re t rac ing these steps, it follows tha t f(n) = ~ (g (n)) . T h u s f(n) =
f~(g(n)) if and only i fg(n) - O(f(n)).

We now define the big-theta notat ion, us ing the big-oh and big-omega
notations.

The Big-Theta Notation

Let f , g �9 N --+ R such tha t f (n) - O(g(n)) and f (n) = gz(g(n)). Then f (n) is
said to be of o r d e r g(n) . We then write f (n) = | read this as f (n) is
big-theta of g(n) .

The next two examples i l lustrate this definition.

Let f (n) - (3n 2 -+- 4n - 5) lg n. By Example 4.37, f (n) - O(n 2 lg n). When

n > 1, we also have:

(3n 2 + 4n - 5)lg n > 3n 2 lg n

Tha t is,

f (n) > 3(n 2 lg n)

So

f (n) - f2(n 2 lg n)

Thus f (n) -- O(n 2 lg n) - f2(n 2 lg n), so f (n) - | 2 lg n). II

Let f (n) show the n u m b e r of t imes the ass ignment s t a t ement x ~ x + 1
is executed by the nested for loops in Example 4.35. Recall tha t f (n) -
n (n + 1)/2 -- O(n2).

Since n + 1 >_ n for every n >_ 1, it follows tha t n(n + 1)/2 >_ n2/2;
so f (n) - f2(n2). Thus f (n) - | II

We now make two in teres t ing observat ions from Examples 4.39 and
4.40:

�9 I ff(n) is a polynomial in n of degree m, then f (n) =O(nm) .

�9 f (n) = | if and only if Alg(n)] <_ If(n)] <_ B [g (n)] for some
constants A and B.

See Exercises 50 and 51.

246 Chapter 4 Induction and Algorithms

Before closing this section, we add that the definitions of the big-oh, big-
omega, and big-theta notations remain valid even if the domain of f consists
of real numbers.

Exercises 4.6

Using the big-oh notation, estimate the growth of each function.

1. f (n) - 2 n + 3

4. f (n) - 3 + l g n

7. f (n) - lg (5n)!

2. f (n) - 4n 2 + 2 n - 3

5. f (n) = 31g n + 2

8. f (n) - 23

n n

10. f (n) - ~ k 3 11. f (n) = ~ Li/2J
k = l i=1

3. f (n) = 2n 3 - 3n 2 + 4n

6. f (n) = (3n)!

n
9. f (n) = ~ k 2

k = l

n

12. f (n) - ~ [i/2]
i - 1

Verify each.

n- 1 n
13. 2 ' 2 - O (n !) 14. ~ 2 i - O (2 n) 15. ~ i k - O (n k+l)

i=0 i=0

?l H

n 1 - 0 (1) 17. ~ i (i + l) = O (n a) 18. ~ (2 i 1) 2 - 0 (n a) 16. - - i (i + 1) -
i=1 i=1 i=1

19-22. Let an denote the number of times the s tatement x ~-- x + 1 is
executed by each loop in Exercises 35-38 in Section 4.4. Using the
big-oh notation, estimate the growth of a,2 in each case.

23-32. Using the big-omega notation, estimate the growth of each function
in Exercises 1-5 and 8-12.

Verify each.

33. (3n)! - g~(6 n)

n

35. ~ (2i - 1) - g~(n 2)
i=1

37. 2n + 3 - S2(n)

39. 2n 3 - 3 n 2 + 4 n - ~ (n 3)

41. 3 1 g n + 2 - S 2 (l g n)

n

43. ~ [i/2J -- f2(n 2)
i--1

Jl

34. ~ i(i + 1) - g2(n 3)
i=1

n

36. ~ (2i - 1) 2 - i2(n 3)
i=1

38. 4n 2 + 2 n - 3 = ~ (n 2)

40. 3 + l g n - ~ (l g n)

42. 2 3 - ~(1)
n

44. ~ [i/27 = g2(n 2)
i=1

4.7 Complexities of Algorithms (optional) 247

45. Let f l(n) = O(g(n)) and f2 (n) = k f 1 (n), where k is a positive constant.
Show tha t f2 (n) = O(g(n)).

46. Consider the constant function f (n) = k. Show tha t f (n) = O(1).

Let f (n) = O(h (n)) and g (n) = O(h(n)) . Verify each.

47. (f + g) (n) = O(h (n)) 48. (f . g) (n) = O((h(n)) 2)

49. Let f, g, and h be three functions such tha t f (n) = O(g(n)) and g (n) -
O(h(n)) . Show tha t f (n) = O(h(n)) .

m

50. Let f (n) = ~ ai ni, where each ai is a real number and am ~ O. Prove
i=O

tha t f (n) = |

51. Let f , g : N ~ IR. Prove tha t f (n) - | if and only i fA]g(n)] <
If(n)[< B]g(n) I for some constants A and B.

The time complexities of s tandard algori thms can be used to est imate theo-
retically using the big-oh and big-theta notations. Before beginning to code
an algori thm we should make sure it will do its job. Why is analyzing the
algori thm important? Several routines can perform the same task, but not
necessarily with the same efficiency, so we should employ the one tha t is
most efficient.

Two norms are used to measure the efficiency of an algorithm: space
complexity and t ime complexity.

Space Complexity

S p a c e c o m p l e x i t y refers to how much storage space the algori thm needs.
Since this depends on factors such as the computer used and methods of
data storage, we restr ict our discussion to t ime complexity.

Time Complexity
The t ime complex i ty of an algori thm refers to the t ime it takes to run the
algorithm. It is often measured by the number of fundamenta l operations
performed by the algorithm. In the case of a sorting or searching algorithm,
we shall use element-comparison as the basic operation. Since the t ime
required by an algori thm depends on the input size n, we measure t ime
complexity in te rms of n.

Often we are interested in three cases:

�9 The best-case t ime is the min imum time needed to execute an
algori thm for an input of size n.

248 Chapter 4 Induction and Algorithms

�9 The w o r s t - c a s e - t i m e is the m a x i m u m time needed to execute the
a lgor i thm for an input of size n.

�9 The a v e r a g e - c a s e - t i m e is the average t ime needed to execute the
a lgor i thm for an input of size n. Es t imat ing the average t ime is often a
difficult task, involving probability.

We begin our analysis with the a lgor i thm for matr ix mult ipl icat ion.

~ Es t imate the n u m b e r of operat ions (additions and mult ipl icat ions) a n

needed to compute the product C of two matrices A and B of order n.

S O L U T I O N :
n

L e t A - (a i j)nxn , B - (b i j)nxn , and C~- (cij)nx n. S i n c e cij - ~ a i kbk j , it takes
k = l

n mult ipl icat ions and n - 1 addit ions to compute each cij. There are n 2
e lements in C and each takes a total of n + (n - 1) - 2n - 1 operat ions.
Therefore, an - n 2 (2 n - 1) - O(n 3) - e)(n3). Thus the produc t takes
O(n 3) -- (~)(n 3) operations, m

Next we es t imate the n u m b e r of operat ions required to compute the
product of two binary integers.

Use Algori thm 4.5 to est imate the max imum numbe r a,~ of operat ions
(shifting and additions) required to compute the product of two binary
integers x - (x~.. . x0)two and y - (Yn �9 �9 �9 y0)two.

S O L U T I O N :
The worst case occurs when yj - i for everyj . Each yj cont r ibutes a shift of j

tl

places to the left. Therefore, the total number of s h i f t s - E J - n (n + 1)/2,
j=0

by Example 4.15.
There are n + 1 partial products. Adding them involves an (n + 1)-bit

integer, an (n + 2)-bit i n t e g e r , . . . , a (2n + 1)-bit integer. Therefore, the
total numbe r of bit addit ions required is 2n + 1. Thus:

an - (maximum no. of shifts) + (maximum no. of addit ions)

n (n + 1)
= + 2 n + 1

2

= O(n 3) -- (-)(n 3) m

Next, we es t imate the n u m b e r of comparisons required by the bubble
sort algorithm, so review it before proceeding any further .

Let denote the number of comparisons required in line 3 of the bubble Cn

sort a lgor i thm (see Algori thm 4.10). Es t imate the order of magn i tude of Cn.

S O L U T I O N :
In line 3 of the algori thm, the consecutive elements xj and x j + l are
compared for every value o f j . Since j varies from 1 to n - i, the

4.7 Complexities of Algorithms (optional) 249

n u m b e r of compar isons is n - i, by v i r tue of the inner loop, where 1 <
i < n - 1. So

m

n - 1 n - 1 n - 1

C n - - E (n - i) - - E n - E i
i=1 i=1 i - 1

= n (n - 1) -

n (n - 1)

(n - 1)n
~ , by Example 4.15

-- O(n 2) - | 2)

Thus the bubble sort a lgor i thm takes O(n 2) - - | 2) comparisons, m

We tu rn our analysis to the search a lgor i thms presen ted in Section 5.
Review them before proceeding any fur ther .

Use the l inear search a lgor i thm (Algori thm 4.8) to e s t ima te the best t ime,
the worst t ime, and the average t ime requi red to search for a key in a list
X of n elements .

S O L U T I O N :
Let an, bn, and Cn denote the n u m b e r of e lement compar isons needed in
line 3 in the average case, the best case, and the worst case, respectively.

�9 The best case is realized ifxn - key. Since this takes only one compar ison
for all inputs of size n, bn = 1. So bn = O(1) and the execution t ime is a
constant .

�9 To compute Cn, notice tha t the wors t case occurs when key does not
exist in the list, in which case the w h i l e loop is executed n + 1 t imes.
Therefore,

C n - n + l

< n + n , w h e n n > _ 1

= 2n - O(n)

Thus, in the worst case, the l inear search a lgor i thm takes O(n)
comparisons. The run t ime varies l inearly with input size.

�9 To compute the average t ime an, we need to consider two cases: key
occurs or does not occur in the list. If key occurs in position i, n - i + 1
e lement compar isons will be required, where 1 < i < n. If key does not
occur in the list, n + 1 comparisons will be needed. So the average t ime

250 Chapter 4 Induction and Algorithms

t aken is given by

(l + 2 + . . . + n) + (n + 1)
an =

n + l

(n + 1)(n + 2)

- 2(n + 1)
n

= - + 1 - O(n)
2

Again, it takes O(n) e lement comparisons. Thus, the average case, f rom the
complexity point, is no be t t e r t h a n the worst case in l inear search. II

Note : In the average case analysis, we assumed key could occur in any of
the n posit ions with an equal chance. We also assumed tha t it had the same
chance of not occurr ing in the list. If t ha t were not the case, we would need
to apply the concept of expected value in probabi l i ty theory to compu te an.

Next we examine the complexi ty of the b inary search a lgor i thm.

Let Cn denote the m a x i m u m n u m b e r of compar isons in lines 6 t h r o u g h 8 of
the b inary search a lgor i thm (Algori thm 4.9). Show tha t Cn = O(lg n).

S O L U T I O N :

C a s e I Let n be a power of 2, say, n - 2 h where k >_ 0. Initially, m i d - [(low

+ h igh) /2J - / (1 + 2k)/2J - 2 k - l , so the lower sublist contains 2 h-1 - i ele-
men t s and the upper sublist 2 k- 1 e lements . By now two compar isons have
t aken place, one in line 6 and the o ther in line 8. Since the upper subl is t
contains more e lements , par t i t ion it into three sublists. This t ime the max-
i m u m n u m b e r of e lements in a sublis t is 2 h-2 and two more compar i sons
are needed. At the next stage, two more comparisons are needed. Cont inue
like this unt i l the list contains one e lement , when k = 0. Again, two more
comparisons ensue.

Thus, in the worst case, two compar isons are needed for each power i
of 2, where 0 _< i _< k. Therefore,

Cn - - 2(k + 1) - 2k + 2

- 2 1 g n + 2 , s i n c e n - 2 k

= O(lg n)

C a s e 2 Suppose n is not a power of 2. Let n be an in teger such t ha t
2 j < n < 2 j+l . T h e n j < lg n. Let N - 2 j+l . Clearly, Cn < CN. By the above
analysis, CN = 2 (j + 2). Thus:

Cn < C N

= 2 (j + 2)

4.7 Complexities of Algorithms (optional) 251

< 2(lg n + 2)

< 2 (l g n § w h e n n > 4

= 4 1 g n

= O(lg n)

Thus, whe ther or not n is a power of 2, C n - O(lg n), so the a lgor i thm
takes O(lg n) comparisons in the worst case. I

Additional examples of analyzing the complexities of algori thms appear
in the exercises and the next chapter.

Exercises 4.7

1. Show tha t it takes O(n 2) additions to compute the sum of two square
matrices of order n.

2. Let A and B be two square matr ices of order n. Let Cn denote the
number of comparisons needed to determine whether or not A < B.
Show tha t Cn - O(n2).

Let A be a square matr ix of order n. Let Sn denote the number of swappings
of elements needed to find the t ranspose A T of A.

3. Find a formula for Sn. 4. Show that Sn = O(n2).

5. Show tha t the number of additions of two n-bit integers is O(n).

Let an denote the number of additions (lines 5 and 6) required to compute
the square of an integer using the algori thm in Exercise 6 of Section 5.

6. Find a formula for a n . 7. Show that an = O (n) .

Algorithm 4.13 finds the maximum value in a list X of n items. Use it to
answer Exercises 8 and 9.

Algorithm fi ndmax (X, n,max)
(* This a lgor i thm re turns the la rges t i tem in a l i s t X of n

items in a va r iab le ca l led max. *)
O. Begin (* a lgor i thm *)
1. max +- Xl (* i n i t i a l i z e max *)
2. i ~ - 2
3. wh i le i < n do
4. begin (* wh i le *)
5. i f x i > max then
6. max K- xi
7. i ~- i + l
8. endwhi le
9. End (* a lgor i thm *)

(* update max *)

Algorithm 4.13

252 Chapter 4 Induction and Algorithms

8. Establish the correctness of the algorithm.

9. Let Cn denote the number of comparisons needed in line 5. Show that
Cn = O(n) .

10. Let Cn denote the number of element-comparisons in line 6 of the
insertion sort algorithm in Algorithm 4.12. Show that Cn - O(n2).

Use the m i n m a x a l g o r i t h m in A l g o r i t h m 4 .14 to a n s w e r Exerc i se s 11 -13 .

Algorithm iterative minmax(X,n,min,max)
(* This algorithm returns the minimum and the maximum

of a l i s t X of n elements. *)
0. Begin (* algorithm *)
1. i f n > 1 then
2. begin (* if *)
3. rain <-- Xl
4. max <-- Xl
5. for i = 2 to n do
6. begin (* for *)
7. i f xi < mi n then
8. min K-- xi
9. i f x i > max then

10. max K- xi
1 I . endfor
12. endif
13. End (* algorithm *)

Algorithm 4.14

11. Find the maximum and the minimum of the list 12, 23, 6, 2, 19, 15,
37.

12. Establish the correctness of the algorithm.

13. Using the big-oh notation, estimate the number Cn of comparisons in
lines 7 and 9 of the algorithm.

14. Letcn denote the maximum number of comparisons in lines 6 through 8
of the binary search algorithm (Algorithm 4.9). Show that Cn - (~)(lg n).

This chapter provided a quick introduction to number theory, one of the
oldest branches of mathematics. By accepting the well-ordering principle as
an axiom, we established the principle of induction. We saw many examples
of how pivotal induction is in proving loop invariants.

We also illustrated how to add and multiply any two nondecimal
numbers, and how to subtract binary integers using complements.

Chapter Summary 253

Finally, we established the part ial correctness of algori thms and dis-
cussed the time complexities of some s tandard algori thms using the big-oh
and big-theta notations.

The Well-Ordering Principle

�9 Every nonempty subset of N has a least element (page 186).

The Division Algorithm

�9 The d i v i s i o n a l g o r i t h m When an integer a is divided by a positive
integer b, there exist a unique quotient q and a unique remainder r
such tha t a - bq + r, where 0 < x < b (page 186).

�9 An integer p >_ 2 is a p r i m e if its only positive factors are 1 and p
(page 189).

The Greatest Common Divisor (gcd)

�9 A positive integer d is the gcd of two positive integers a and b if:

�9 d l a a n d d J b ; a n d

�9 i f d ' i a and d ' l b , then d ' i d . (page 191).

�9 The e u c l i d e a n a l g o r i t h m , which uses successive applications of
the division algorithm, provides a procedure to compute gcd{a,b}
(page 193).

�9 Two positive integers a and b are relatively prime if gcd{a,b} = 1
(page 194).

�9 Every decimal integer has a unique nondecimal representat ion in a
given base and every nondecimal integer has a unique decimal value
(page 197).

�9 Binary subtraction can be performed using two's complement
(page 203).

Mathematical Induction
�9 W e a k v e r s i o n Let P(n) be a predicate such that

�9 P(n0) is true; and

�9 for every k > no, if P(k) is true, P(k + 1) is also true.

Then P(n) is t rue for every n >_ no (page 209).

�9 Strong version Let P(n) be a predicate such that

~ P(no) is true; and

254 Chapter 4 Induction and Algorithms

�9 for every k >_ no, if P(n0), P(n0 + 1) , . . . , P(k) are true, P(k + 1) is
also true. Then P(n) is true for n >_ no (page 218).

�9 The F u n d a m e n t a l T h e o r e m of A r i t h m e t i c Every positive
integer >_ 2 is either a prime or can be expressed as a product of primes
(page 218).

Algorithm Correctness

�9 Using induction, we verified the partial correctness of several standard
algorithms: linear search (page 228), binary search (page 230), bubble
sort (page 233), and selection sort (page 234).

The Big-0h Notation

�9 f (n) = O (g (n)) , if there are positive constants C and no such that
If(n)] > C]g(n)] for every n > no (page 237).

�9 f (n) = ~ (g (n)) , if If(n)] > C]g(n)] for every n >_ no (page 243).

�9 f (n) = (-)g(n) , i f f (n)= O(g(n)) and f (n) = ~ (g (n)) (page 245).

�9 The time complexity of an algorithm is the execution time of the
algorithm (page 245).

Review Exercises

Using the euclidean algorithm, find the gcd of each pair of integers.

1. 18,28 2. 36, 12 3. 15,24 4. 1024, 3076

Express each number in base 10.

5. 2000eight 6. 2345sixteen 7. BADsixtee n *8. BAD.CAsixteen

Rewrite each number in the indicated base b.

9. 245, b = 2 10. 348, b = 8 11. 1221, b = 8 12. 1976, b = 1 6

In Exercises 13-16, perform the indicated operation.

13. ll010two 14. 5768sixtee n 15. 5AB8sixtee n 16. ll0110two

+l l l two +78CBsixteen • BiDsixteen - l l011two

Rewrite each binary integer in base eight.

17. 10110101 18. 1101101101 19. 100110011 20. 10011011001

21-24. Rewrite the binary integers in Exercises 17-20 in base 16.

Find the value of x resulting from the execution of each algorithm
fragment.

Chapter Summary 255

2 5 . x ~- 0 2 6 . x ~-- 0
f o r i = 1 to n do f o r i = 1 to n do

f o r j = 1 to n do f o r j = 1 to i do
x <-- x + i f o r k = i to j do

x + - x + l

27. Find a fo rmula for the n u m b e r an of t imes the s t a t e m e n t x ~ x + I is
executed by the following loop:

for i = 1 to n do
for j = 1 to [i/2] do

x , - x + l

28. Let a,b,c,d ~ N. Let d lab, d lac, and b and c be re la t ively p r ime
number s . Prove t h a t d la.

29. Let a,b E N and gcd{a,b} = 1. Prove t h a t gcd{a - b,a + b} - 1 or 2.

Us ing induct ion prove each, where n is a posit ive integer .

30. n 2 - n is divisible by 2. 31. n 3 - n is divisible by 3.

n n(4n 2 - 1) n 1 n
32. >--]~ (2i - 1) 2 - 33. F1 -- i=l -- 3 (2 i - 1)(2i + 1) 2n + 1

34. The produc t of any two consecut ive positive in tegers is even.

35. Suppose you have an un l imi ted supply of identical black and whi te
socks. Us ing induct ion and the pigeonhole principle, show t h a t you
m u s t select at least 2n + 1 socks in order to ensure n m a t c h i n g pairs.
(C. T. Long)

Eva lua te each sum and product .
n n n

36. ~ i (i + l) 37. ~ ~ (2 i + 3 j)
i = l i = l j = l

n n n n
38. ~ ~ 2 i3 j 39. ~ ~ 2 j

i - l j = l i = l j - - i
n n n n

40. 1-] 1-] 2i3J 41. 1-[1-] 32j
i = l j = l i = l j = l

n n n i

42.]-] ~ 2 i *43. ~ i] - Ij
i - l j = l i = l j = l

44. Let S n denote the value of sum af ter n i te ra t ions of the while loop in
Algor i thm 4.15. Prove t h a t P(n): Sn = n(n + 1) is a loop invar ian t .

Algor i thm evensum (n)
(* This a l g o r i t h m computes the sum of the f i r s t x

p o s i t i v e even i n t e g e r s . *)
O. Begin (* a l g o r i t h m *)
I . sum <-- 0

256 Chapter 4 Induction and Algorithms

2. i ,-- 0 (* coun te r *)
3. wh i l e i < n do
4. begin (* wh i l e *)
5. i < - - i §
6. sum <- sum + 2 * i
7. endwhi 1 e
8. End (* a l g o r i t h m *)

Algorithm 4.15

45. Using Example 4.23 predict a formula for the n u m b e r of t ra i l ing zeros
in n V where n > 1.

46. Let a n denote the n u m b e r of operat ions (additions and mult ipl icat ions)
in line 6 of the a lgor i thm in Exercise 44. Find the order of magn i tude
o f a n .

47. Add two lines to the following n u m b e r pa t tern , where tn denotes the
n th t r i angula r number .

t l + t 2 + t 3 = t 4

t5 + t6 + t7 + t8 = t9 + tl0

tl l + t12 + t13 + t14 + t15 = t16 + t17 + t18

Prove each, where tn denotes the n th t r i angula r number .

2 3 50. 2 t n t n - tn2 48. t 2 - t n _ 1 - n 49. t 2 - tn + t n - l t n + l - 1 - 1

Supplementary Exercises

1. Prove tha t (m 2 - n 2, 2 m n , m 2 + n 2) is a solution of the equat ion
x 2 + y2 _ z 2.

2. Prove tha t the product of the sums of two squares of two integers
can be wr i t ten as a sum of two squares.

3. Let tk denote the kth t r i angula r numbe r and n any t r i angula r num-
ber. Prove tha t (2k + 1)2n + tk is also a t r i angula r number . (R. F.
Jordan, 1991)

4. In 1950, P. A. Piza discovered the following formula about sums of
n n n

powers of t r iangular number s ti " [3 ~ ti] 3 -- ~ t 3 + 2 ~ t 4. Verify
it for n - 3 and n - 4. i=1 i-1 i - 1

5. Show tha t 111 cannot be a square in any base.

*6. Prove tha t one more than the product of four consecutive integers
is a perfect square, and the square root of the resul t ing n u m b e r is
the average of the product of the smaller and larger number s and
the product of the two middle integers. (W. M. Waters, 1990)

Chapter Summary 257

A composite number n is D u f f i n i a n if none of its positive factors, except
1, is a factor of the sum s of its proper factors. For example, let n = 21.
The sum of its proper factors - 1 + 3 + 7 = 11. Since both 3 and 7 are not
factors of 11, 21 is Duffinian. (You may verify tha t 10 is not Duffinian.)

7. Determine if 18, 25, 36, and 43 are Duffinian.

8. Let p be a prime and k a positive integer > 2. Prove tha t pk is
Duffinian.

9. Prove tha t n is Duffinian if and only if none of the factors of n, except
1, is a factor of n.

10. Prove or disprove: The product of two Duffinian numbers is
Duffinian.

Prove each, where n is a positive integer.

"11. n(3n4+ 7n2+ 2) is divisible by 12.

"12. n(3n4+ 13n2+ 8) is divisible by 24.

* '13 . Let Sn denote the sum of the elements in the n th set in the sequence
of sets of positive integers {1}, {3, 5}, {7, 9, 11}, {13, 15, 17, 19},
Find a formula for Sn. (R. Euler, 1988)

* '14 . Let Sn denote the sum of the elements in the n th set in the sequence
ofpositive integers {1}, {2, 3 , . . . , 8}, {9, 10 , . . . , 21}, {22, 2 3 , . . . , 40},
Find a formula for Sn. (C. W. Trigg, 1980)

* '15 . Three schools in each state, Alabama, Georgia, and Florida, enter
one person in each of the events in a track meet. The number of
events and the scoring system are unknown, but the number of
points for the third place is less than tha t for the second place,
which in tu rn is less than the number of points for the first place.
Georgia scored 22 points, and Alabama and Florida tied with 9 each.
Florida won the high jump. Who won the mile run? (M. vos Savant,
1993)

Computer Exercises

Write a program to perform each task.

1. Read in an integer b >_ 2 and select b + i integers at random. Find two
integers in the list such that their difference is divisible by b.

2. Read in an integer n >_ 2 and select n positive integers at random. Find
a sequence of integers from the list whose sum is divisible by n.

3. Read in a positive integer > 2 and determine if it is a prime.

258 Chapter 4 Induction and Algorithms

4. Determine if each value of f (n) = n 2 - n + 41 is a prime, where 0 <
n < 4 1 .

5. Redo Program 4 with f (n) - n 2 - 79n + 1601, where 0 < n < 80.

6. Determine if the n th F e r m a t n u m b e r f (n) - 2 2n + 1 is a prime, where
0 < n < 4 .

7. Find all perfect numbers < 1000. (There are three such numbers.)

8. Find the gcd{x,y} using the euclidean algorithm.

9. Read in a sequence of pairs of integers n and b. For each integer
n, determine its base-b representat ion and use this representa t ion
to compute the corresponding decimal value. Pr in t each integer n,
base b, base-b representat ion, and its decimal value in a tabular
form.

10. Read in a positive integer n and find the number of trail ing zeros
in n!.

11. A p a l i n d r o m e is a positive integer that reads the same backward and
forward. Find the eight palindromic t r iangular numbers < 1000.

12. Compute the total number of grains of wheat needed for each of the
squares on an 8 x 8 chessboard, as in Exercises 39 and 40 in Section 4.4.
(H i n t " The answer is 18,446,744,073,709,551,615 grains, which may be
too large for an integer variable to hold, so th ink of a suitable data
structure.)

13. Read in a positive integer N _< 1000. Using Example 4.24, determine
how many doors will remain open at the end. Do n o t use the fact tha t
there are [~/-nJ perfect squares < n.

14. Pr int the ages 1-31 on five tablets A, B, C, D, and E, as in Figure 4.2.
Read in some tablets at random and compute the corresponding age.
Extend the puzzle to six tablets to include ages through 63.

15. Read in a positive integer n and determine if it is a prime.

16. Construct a table of values of the function E (n) - n 2 - n + 41, where
0 < n _< 41, and identify each value as prime or composite.

17. Redo program 16 with L (n) - n 2 + n + 41, where 0 < n < 41, and
identify each value as prime or composite.

18. Redo program 16 with H (n) - 9n 2 - 471n + 6203, where 0 < n < 39,
and identify each value as prime or composite.

19. Redo program 16 with G (n) - n 2 - 2999n + 2248541, where 1460 <
n < 1539, and identify each value as prime or composite.

20. Read in a positive integer n, and list all primes < n and are of the form
k 2 + l .

Chapter Summary 259

21. Read in a positive integer n and find a prime between:

(a) n and 2n. (b) n 2 and n 2 + 1.

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Describe how twin primes were used in 1994 by Thomas Nicely of
Lynchburg College, Virginia, to detect defects in the Pentium chip.

2. Explain how to construct Tables A-E in Figure 4.2 and how the puzzle
works. Extend the puzzle to cover ages through 63.

3. Describe the origin of mathematical induction. Include biographies of
those who developed this proof technique. Comment on its importance
in computer science.

4. Describe the origin of figurate numbers. Explain the various types
and their properties. Include the relationships between the 12 days of
Christmas puzzle, and polygonal numbers and tetrahedral numbers.

5. Explore the history of magic squares. Do they have any practical
applications?

6. Describe the origin of the big-oh, big-omega, and big-theta notations.
Include biographies of mathematicians who developed them.

7. Investigate the various classes of prime numbers.

8. Describe the history of finding larger and larger primes, and their
practical applications. Comment on the Greatest Internet Mersenne
Prime Search (GIMPS), founded in 1996 by George Woltman.

9. Discuss the game of Nim and its relationship to binary numbers.

10. Discuss Eleusis, a card game devised by R. Abbott of New York.

Enrichment Readings

1. R. G. Archibald, An Introduction to the Theory of Numbers, Merrill,
Columbus, OH, 1970, pp. 1-95.

2. G. Brassard and P. Bratley, Algorithmics: Theory & Practice, Prentice
Hall, Englewood Cliffs, NJ, 1988.

3. J. Dugle, "The Twelve Days of Christmas and Pascal's Triangle,"
Mathematics Teacher, Vol. 75 (Dec. 1982), pp. 755-757.

4. G. H. Hardy, A Mathematician's Apology, Cambridge University Press,
Cambridge, 1941.

260 Chapter 4 Induction and Algorithms

5. T. Koshy, Elementary Number Theory with Applications, Harcourt/
Academic Press, Boston, 2002, pp. 1-189.

6. C. Oliver, "The Twelve Days of Christmas," Mathematics Teacher,
Vol. 70 (Dec. 1977), pp. 752-754.

7. H.S. Wilf, Algorithms and Complexity, Prentice-Hall, Englewood Cliffs,
NJ, 1986, pp. 8-22, 137-175.

	sdarticle6

