
Chapter 4 

Induct ion  and Algor i thms  

God created the na tura l  numbers ;  all else is the work  o f  man .  

L. KRONECKER 

T his chapter presents the well-ordering principle, the division algo- 
r i thm with which you are already familiar, and some fundamental  

divisibility properties. In addition, through the well-ordering principle we 
will establish an additional proof technique, the principle of mathemat-  
ical induction. Interesting applications of this principle, as well as the 
pigeonhole principle from Chapter 3, will be investigated. 

Some of the intriguing problems pursued in this chapter lie below: 

�9 Are there integers between 0 and 1? 

�9 Ifn is a positive integer >_ 2 and a l , a 2 , . . .  , an  E Z, are there consecutive 
elements a k + l , a k + 2 , .  . . , a s  such that  a k + l  + ak+2 + " "  + as is divisible 
by n, where k < t~? 

�9 If a l ,  a 2 , . . . ,  an are the first n positive integers in some order, arranged 
around a circle, is it true that  there must  be a set of k consecu- 
tive elements in the cyclic ar rangement  whose sum is greater than 
[ [kn (n  + 1 ) -  2]/2nJ? 

�9 Can any postage ofn > 2 cents be paid using two- and three-cent stamps? 

The division algorithm, with which you are already familiar, is often 
employed to verify the correctness of a division problem. Its proof is based 
on the following cardinal fact, which is accepted as an axiom. (An a x i o m  is 
a proposition that  is accepted as true. It is usually a self-evident proposition 
and is consistent with known facts.) 
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The Well-Ordering Principle  
Every nonempty  set of positive integers  has a least element.  i 

For example, the set {13,5 ,8 ,23} has a least element,  5. The well- 
order ing principle applies to any nonempty  subset  S of T = {n ~ Z J n _>_ no }, 
where no is any integer. To see this, let S* - {n - no + 1 In  e S} and  
T *  - {n - no + 1 In ~ T}. Since S *  c_ T *  and T *  c_ N ,  by the wel l -order ing 
principle, S* contains a least e lement  t~*. Then no + g* - 1 is a least e l emen t  
of S (why?). 

For example, l e t S -  {-3,  - 1 ,  0, 1, 3, 5} and T = {n ~ Z l n > -5}.  Then  
S* - {3,5,6, 7,9, 11} has a least e lement  t~* - 3, son0+ t~* -  1 - - 5 + 3 - 1  = 
- 3  is the least e lement  of S. 

Next we present  the division algori thm. Its proof is a bit complicated,  
so we omit  it here; but  a proof, us ing the well-ordering principle, can be 
established (see, for instance, the au thor ' s  n u m b e r  theory book). 

The Division Algorithm 

When an integer  a is divided by a positive integer  b, we get a unique  (integer) 
quot ient  q and a unique (integer) remainder  r, where 0 < r < b. The 
integer a is the dividend and b the divisor. This is formally s ta ted  as 
follows. 

(The Divis ion Algorithm) Let a be integer and b positive any any 
integer. Then there  exist unique integers q and r such tha t  

a - b . q  + r 

Dividend ~ l l ~ Remainder  

Divisor Quot ient  

where 0 < r < b. m 

Although this theorem does not  present  an a lgor i thm for finding q and r, 
it has been t radi t ional ly called the division algori thm. The values of q and 
r can be found using the familiar long division method. 

Notice tha t  the equat ion a - bq  + r can be wr i t ten  as 

a r =q+g 

so q = a div b - [a/bJ and r - a - b q  - a mod b. 
The next example shows tha t  we should be careful in finding the quot ien t  

and the remainder  when the dividend is negative. 
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[ ~ ~ ~ ~ ~  Find the  quot ien t  q and the  r e m a i n d e r  r when  - 2 3  is divided by 5. 

S O L U T I O N :  
Since - 2 3  - 5 .  ( - 4 )  + ( -3 ) ,  you migh t  be t e m p t e d  to say t h a t  q = - 4  and  
r - - 3 .  Recall t ha t  the  r ema inde r  can n e v e r  be negative,  so we r e w r i t e  
- 2 3  as - 2 3  = 5 .  ( - 5 )  + 2, where  0 < r ( =  2) < 5 (see the  n u m b e r  l ine 
in Figure  4.1). Thus  q = - 5  and r - 2; in o ther  words, - 2 3  div 5 - - 5  
and - 2 3  mod 5 = 2. 

F i g u r e  4.1 

A 

- 2 5 T  - 2 5  - 1 5  - 1 0  5 0 

-23  

We close this  section wi th  two applicat ions of the  division a lgor i thm and  
the pigeonhole principle, m 

Let b be an in teger  > 2. If  b + 1 dis t inct  in tegers  are r andomly  selected, 
prove tha t  the  difference of some two of t h e m  mus t  be divisible by b. 

P R O O F  
Let q be the  quot ient  and r the r e m a i n d e r  when  an in teger  a is divisible 
by b. Then,  by the division a lgor i thm,  a = bq + r where  0 < r < b. The  
b + 1 dist inct  in tegers  yield b + 1 r ema inde r s  (pigeons); bu t  there  are only b 
possible r ema inde r s  (pigeonholes). Therefore,  by the pigeonhole principle,  
two of the  r ema inde r s  mus t  be equal. 

Let  x and y be the corresponding integers.  Then  x = b q l  + r and 
y - bq2 + r for some quot ients  ql and q2. Then  

x - y  = (bq l  + r)  - (bq2 + r)  

= b ( q l  - q 2 )  

Thus,  x - y  is divisible by b. m 

Let n be an integer  >_ 2 and let ~ Z. Prove tha t  there  exist  a l, a 2 , . . . ,  an 

in tegers  k and g such tha t  a k + l  + ak+2 + " "  + ae is divisible by n, where  
1 _< k < t~ < n; t ha t  is, there  exist consecutive e lements  ak+ l , ak+2 , . . .  ,ae 
whose sum is divisible by n. 

P R O O F  (by cases) :  
Consider  the n s u m s  S i - a l -+- a2 + . . .  + ai ,  where  1 < i < n. 

Case  1 If any of the  sums S i  is divisible by n, then  the  s t a t e m e n t  is t rue.  
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C a s e  2 Suppose  none  of the  s u m s  S i  is divisible by n. W h e n  S i  

is divided by n, the  r e m a i n d e r  m u s t  be nonzero .  So, by the  divis ion 
a lgor i thm,  the  possible r e m a i n d e r s  are  1, 2 , . . . ,  (n - 1). Since t h e r e  a re  
n sums  and  n - 1 possible r e m a i n d e r s ,  by the  p igeonhole  principle ,  two 
of the  sums  S k  and  Se m u s t  yield the  same  r e m a i n d e r  r w h e n  divided by n, 
where  k < e. 

Therefore ,  t he r e  m u s t  exist  in tegers  qz and  q2 such t h a t  a l  + a2 + . . .  -+- 
ak = n q l  + r and  a l  + a2 + . . .  + ae - nq2  + r, where  k < e. Sub t r ac t i ng ,  

we get ak+l  -+- ak+2 -+- " "  + ae = n ( q l  -- q2). T h u s  ak+l  + ak+2 + " "  + ae is 
divisible by n. m 

To cite a specific example ,  consider  the  seven in tegers  2, 3, 8, 15, 23, 29, 
and  57. T h e n  $1 = a l  - 2 = 0 �9 7 + 2 and  $5 = a l  + a2 -+- a3 ~- a4 + a5 = 
2 + 3 + 8 + 15 + 23 = 51 = 7 �9 7 + 2. T h e n  $5 - $1 = a2 + a3 ~- a4 + a5 -- 
3 + 8 + 15 + 23 - 49 is divisible by 7. Here  k = 1 and  e = 5. (You m a y  not ice  
t h a t  $4 = a l  + a2 + a3 -F a4 = 2 + 3 + 8 + 15 is also divisible by 7.) 

Exercises 4.1 

1. Is the  set  of posit ive odd in tegers  wel l -ordered? 

2. Is the  set  of posit ive even in tegers  wel l -ordered? 

In Exerc ises  3-6,  find the  quo t i en t  and  the  r e m a i n d e r  w h e n  the  first  i n t ege r  
is divided by the  second. 

3. 137, 11 4. 15, 23 5. - 4 3 ,  16 6. - 3 7 ,  73 

Find the  set of possible r e m a i n d e r s  w h e n  an  in teger  is divided by the  given 
integer .  

7. Two 8. Five 9. Seven 10. Twelve  

11. Prove  t h a t  t he re  exists  no in teger  b e t w e e n  0 and  1. 

12. Let  a ~ Z. Prove  t h a t  no in teger  exists  b e t w e e n  a and  a + 1. 

13. Let  no E Z , S  be a n o n e m p t y  subse t  of the  set  T = {n ~ Z ln > no}, 
and  ~* be a least  e l e m e n t  of the  set  T* - {n - no + 1 In e T}. Prove  
t h a t  no + 6" - 1 is a least  e l e m e n t  of S. 

14. Us ing  the  wel l -order ing  principle,  prove t h a t  i is the  smal les t  posi t ive 
integer .  
( H i n t :  Prove  by contradic t ion. )  

"15.  Let  a ~ Z, S - {a, a + 1, . . .} ,  T c S, and  a ~ T. Let  k be any  e l e m e n t  
of S such t h a t  w h e n e v e r  k e T, k + 1 e T. Prove  t h a t  S = T. 

"16.  Let  a e Z and  S = { a , a  + 1, . . .} .  Let  P(n) be a p red ica te  on S such 
t h a t  the  following condi t ions  are  satisfied: (1) P ( a ) i s  t rue ;  (2) I f P ( a ) ,  
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P(a + 1) , . . .  ,P(k)  are t rue  for any k > a, then  P(k + 1) is also t rue.  
Prove tha t  P(n) is t rue  for every n > a. 

The  celebrated euclidean a lgor i thm can be used to find the grea tes t  common  
divisor of two positive integers,  bu t  first a very few proper t ies  of p r ime  and 
composite numbers ,  and some divisibility propert ies .  

Let  a and b (r 0) be any two integers.  If  the re  is an in teger  q such t h a t  
a - b q ,  we say b d i v i d e s  a, b is a f a c t o r  of a, a is d i v i s i b l e  by b, or a is a 
multiple  of b. We then  write  b l a ;  otherwise,  b ya. (Again, the m e a n i n g  of 
the vertical bar  should be clear from the context.)  For  instance,  316, 8124, 
but  6 y14. 

A positive factor b of a positive in teger  a is a proper factor of a if b ~: a. 
For  example, the  proper  factors of 6 are 1, 2, and 3. 

There  are positive integers  with  exactly two positive factors. Accordingly, 
we make  the following definition. 

Prime Numbers and Composite Numbers 

A positive in teger  > 1 is a prime number  (or simply a p r i m e )  if its only 
positive factors are 1 and itself. A positive in teger  > 1 is a compos i te  
number if it is not a prime. 

For  example,  2 and 19 are primes,  whereas  6 and 21 are composi te  
number s  (why?). 

There  is a systemat ic  procedure  for de te rmin ing  whe the r  or not  a positive 
in teger  n >_ 2 is a prime. It is based on the next  theorem.  

Any composite n u m b e r  n has a pr ime factor _< L~/-nJ. 

PROOF (by contradiction):  
Since n is composite, there  are positive integers  a and b such t ha t  n = a b  

where  1 < a < n and 1 < b < n. Suppose a > j ~  and b > ~/-n. Then  
n - a b  > v/n �9 j ~  - n, which is impossible. Therefore,  e i ther  a < v/n or 
b < j ~ .  Since both a and b are integers,  it follows tha t  e i ther  a < /vZn/or  
b_< [J-~J. 

By the fundamenta l  t heo rem of a r i thmet ic  (see Theo rem 4.13), every 
positive integer  has a pr ime factor. Any such factor of a or b is also a factor 
of a .  b - n, so n mus t  have a pr ime factor [vZnJ. I 

It  follows from Theorem 4.2 t h a t  if n has  n o  pr ime factors < L~r~J, ] 
then  n is a prime; otherwise,  it is a composite number .  

This fact can be used to de te rmine  whe the r  or not  an in teger  n > 2 is a 
prime,  as the  next  example i l lustrates.  
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Dete rmine  if 1601 is a p r ime number .  

S O L U T I O N :  
Firs t  list all p r imes  < Lx/1601J. They  are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 
31, and 37. None  of t h e m  is a factor of 1601 (verify); so 1601 is a pr ime,  m 

An a lgor i thm for d e t e r m i n i n g  the pr imal i ty  of a posit ive in teger  n >_ 2 is 
given in Algor i thm 4.1. 

Algorithm prime number(n) 
(* This algorithm determines i f  a positive integer n>__2 is 

prime or not using Theorem 4.2. *) 
Begin (* algorithm *) 

l i s t  all primes < Lv/n] 
i f  any of them is a factor of n then 

n is not a prime 
else 

n is a prime 
End (* algorithm *) 

Algorithm 4.1 

In the r ema inde r  of this  section we discuss some useful  divisibility 
propert ies .  We begin with a simple and s t r a igh t fo rward  proper ty .  

If a and b are positive in tegers  such tha t  a i b and b i a, t hen  a - b. i 

Notice t ha t  this  t h e o r e m  does n o t  hold if a and  b are any  integers .  For  
example,  3 i ( - 3 )  and  ( - 3 )  13, bu t  3 r - 3 .  

Let  a, b, and c be integers.  Then:  any  

(1) If a I b and b i c, t hen  a I c ( t r a n s i t i v e  proper ty ) .  
(2) If  a i b and a I c, t hen  a I (b + c). 
(3) If  a i b and a I c, t hen  a I (b - c). 
(4) I f a  I b, t hen  a I bc. 

P R O O F :  
We shall prove proper t ies  1 and 2, and leave the o thers  as exercises. 

(1) Since a lb,  the re  exists an in teger  q l such t h a t  b = aq] .  Similarly,  
the re  exists an in teger  q2 such t ha t  c = bq2. T h e n  c = bq2 = ( a q l ) q 2  - -  

a ( q l q 2 ) .  Thus ,  the re  exists an in teger  q = q l q 2  such tha t  c = aq.  

Therefore ,  a lc. 

(2) As above, we have b - a q l  and c - aq3.  T h e n  b + c - a q l  + aq3 = 

a ( q l  + q3). Since ql + q3 is an integer,  it follows t h a t  a l(b + c). i 
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The Greatest Common Divisor 

A positive integer can be a factor of two positive integers a and b. Such 
a positive integer is a c o m m o n  fac tor  of a and b. The largest such com- 
mon factor is the grea te s t  c o m m o n  d iv i sor  (gcd) of a and b, denoted by 
gcd {a, b }. 

For instance, gcd{6, 9} - 3, gcd{12, 24} - 12, and gcd{6, 35} = 1. 
This definition of gcd, although simple and clear, is not practical, so we 

give an alternate, equivalent definition below. 

An Alternate Definition of GCD 

A positive integer d is the gcd  of two positive integers a and b if: 

�9 d [ a a n d d [ b ; a n d  

�9 if d' [a and d' [ b, then d' I d, where d' is a positive integer. 

Thus, d is gcd{a, b} if (1) d is a common divisor of both a and b; and 
(2) any common divisor of a and b is also a divisor of d. 

The next theorem, an extremely useful and powerful result, can be 
applied to develop an algorithm to compute gcd{a, b}. 

Let a and b be positive integers, and r the remainder when a is divided any 

by b. Then gcd{a, b} -- gcd{b, r}. 

PROOF 
Let gcd{a, b} = d and gcd{b, r} = d'. To prove t h a t d  = d', it suffices to show 
that  d i d '  and d ' l d .  By the division algorithm, a unique quotient q exists 
such that  

a = bq + r (4.1) 

To show that  d i d ' :  
Since d = gcd{a, b}, d f a and d I b. Therefore, d f bq, by Theorem 4.4. Then 
d l(a - bq), again by Theorem 4.4. In other words, d lr, by Equation (4.1). 
Thus, d I b and d I r. Therefore, d I gcd{b, r }; that  is, d I d'. 

Similarly, it can be shown that  d' I d. (See Exercise 33.) Thus, by 
Theorem 4.3, d = d'; that  is, gcd{a, b} = gcd{b, r}. 1 

Illustrate Theorem 4.5, using a = 108 and b - 20. 

SOLUTION:  
gcd{108, 20} = 4 (verify). When 108 is divided by 20, the remainder is 8. 
gcd{20, 8} - 4 (verify). Thus, gcd{108, 20} = gcd{20, 8}. 1 

Euclidean Algorithm 

Among several procedures for finding the gcd of two positive integers, 
one efficient algorithm is the e u c l i d e a n  a l g o r i t h m ,  named after the 
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Little is known about Euclid's life. He taught at the University of Alexandria 
and founded the Alexandrian School of Mathematics. When the Egyptian ruler 
King Ptolemy I asked Euclid if  there were an easier way to learn geometry than 
by studying The Elements, he replied, "There is no royal road to geometry." 
Euclid is called the father of geometry. 

No work, except for the Bible, has been more widely read, studied, or edited," 
according to J. E. Lightner of Western Maryland College, Westminister, 
Maryland. "More than 2000 editions of the work have appeared since the 
first printed one in 1482; however, no extant copy of The Elements dates from 
Euclid's own time." 

Greek mathemat ic ian  Euclid (330?-275 B.c.), who included it in his extra- 
ordinary work The Elements .  The algor i thm repeatedly applies the division 
a lgor i thm and Theorem 4.5. Before formally discussing the algori thm, we 
i l lustrate it in the next example. 

~ Find gcd{ 1976, 1776}. 

S O L U T I O N :  
Apply the division a lgor i thm with 1976 (the larger of the two numbers)  as 
the dividend and 1776 as the divisor: 

1976 = 1. 1776 + 200 

Apply the division a lgor i thm again with 1776 and 200, us ing 1776 as the 
dividend and 200 as the divisor: 

1776 = 8.  200 + 176 

Cont inue this procedure unti l  a zero remainder  is obtained: 

1976 = 1. 1776 + 200 

1 7 7 6 = 8 .  2 0 0 + 1 7 6  

2 0 0 = 1 .  1 7 6 + 2 4  

1 7 6 = 7 .  2 4 +  8 

2 4 = 3 .  8 + 0  

last nonzero remainder  

The last nonzero remainder  in this procedure is the gcd. Thus  
gcd{1976, 1776} = 8. II 

Will this method work for any two positive integers  a and b? If a - b ,  
then  g c d { a , b } - a .  So assume, for convenience, a > b. (If this  is not true, 
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simply switch them.) Let ro - b. Then by successive application of the 
division algorithm, we get a sequence of equations: 

a - q o r o  + r l  0 <_ r l  < ro 

ro = q l r l  -~-r2 0 <_ r2 < r l  

r l  = q 2 r 2  H- r3 0 <_ r 3 < r2 

Continuing like this, we get the following sequence of remainders:  

b -  ro > r l > r2 > r3 > . . .  _> 0 

Since the remainders  are nonnegative and gett ing smaller and smaller, this 
sequence must  eventually terminate  with remainder  rn - O. Thus, the last 
two equations in the above procedure are- 

r n - 2  --  q n - l r n - l  -F rn 0 < rn < r n - 1  

and 

r n - 1  --  q n r n  

It then follows that  gcd{a, b } = gcd{a, r0 } - gcd{r0, rl } - gcd{rl, r2 } . . . . .  
g c d { r n - l , r n  } -  rn ,  the last nonzero remainder.  (This can be established by 
using mathematical  induction; see Exercise 56 in Section 4.4.) 

~ Apply the euclidean algorithm to find gcd{ 2076, 1024}. 

S O L U T I O N :  
By the successive application of the division algorithm, we get" 

2076 = 2.  1024 + 28 

1 0 2 4 = 3 6 .  2 8 + 1 6  

2 8 =  1. 1 6 +  12 

16 = 1. 12 + 4 

1 2 = 3 .  4 + 0  

< last nonzero remainder  

Since the last nonzero remainder  is 4, gcd{2076, 1024} = 4. 

The euclidean algorithm is formally presented in Algorithm 4.2. 

Algorithm Euclid(x,y,divisor) 
(* This algorithm returns gcd{x,y} in divisor, where 

x > _ _ y > O . * )  
O. Begin (* algorithm *) 
i .  dividend ~-- x 
2. d iv isor  <-- y 

I 
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3. remainder <-- dividend mod d iv i so r  
4. while remainder > 0 do (* update dividend, 

d i v i so r ,  and remainder *) 
5. begin (* while *) 
6. dividend ~- d i v i so r  
7. d iv isor  ~- remainder 
8. remainder <-- dividend mod d iv i so r  
9. endwhi I e 

I0. End (* algori thm *) 

Algorithm 4.2 

The euclidean algorithm provides a procedure for expressing the 
gcd of two positive integers in terms of themselves, as the next example 
shows. 

• Example 4.7 showed that  gcd{2076, 1024} - 4 .  the in terms of Express gcd 
2076 and 1024. 

SOLUTION"  
We use the equations in Example 4.7 in the reverse order: 

4 -  1 6 -  1 . 1 2  -- 1 6 -  1. ( 2 8 -  1 .16)  

- 2. 1 6 -  1 . 2 8  -- ( 1 0 2 4 -  36 .28)  - 1 . 2 8  

= 2. 1 0 2 4 -  7 2 . 2 8 -  1 . 2 8  - 2. 1 0 2 4 -  7 3 . 2 8  

- 2. 1 0 2 4 -  7 3 ( 2 0 7 6 -  2. 1024) - 2- 1 0 2 4 -  73. 2076 + 146. 1024 

-- ( - 7 3 ) .  2076 + 148. 1024 

(You may verify this by direct computation.) m 

Example 4.8 can be generalized as in the following theorem. We omit its 
proof. 

~ Let and b be and d - b}. Then there exist positive integers, gcd{a, a any 
integers s and t such that  d = sa + tb. m 

Note:  (1) The expression sa + tb is called a l i n e a r  c o m b i n a t i o n  of a and 
b. (2) The integers s and t are not  unique. For example, gcd{28, 12} -- 4 
and 4 - 1 .28  + ( - 2 ) .  12 - ( - 2 ) .  28 + 5 .12.  (3) The integers s and t can 
be found by using the various equations in the euclidean algorithm, or 
by trial and error especially when a and b are fairly small. 

Theorem 4.6 can be used to derive other divisibility properties. To this 
end, we define two positive integers to be r e l a t i v e l y  p r i m e  if their  gcd is 
1. For example, 6 and 35 are relatively prime, whereas 12 and 18 are not 
relatively prime. 
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[ ~ ~ ~ ~ ~  Let a and b be relatively prime numbers.  If a ]bc, then a ]c. 

P R O O F :  
Since a and b are relatively prime, Theorem 4.6 indicates integers s and t 
exist such that  sa  + tb = 1. Then sac  + tbc = c. By Theorem 4.4, a i ( sac)  

and a l( tbc).  Therefore, by Theorem 4.4, a l ( sac  + tbc); tha t  is, a lc. I 

The following exercises offer additional divisibility properties to verify; 
again, consult a number  theory book. 

Exercises 4.2 

Determine if each positive integer is a prime. 

1. 727 2. 1001 3. 1681 4. 1723 

5. Prove or disprove: Every prime is a perfect number.  

Using the euclidean algorithm, find the gcd of the given integers. 

6. 2024, 1024 7. 2076, 1076 8. 2076, 1776 9. 3076, 1976 

In Exercises 10-13, express the gcd of the given integers as a linear 
combination of them. 

10. 12, 9 11. 18, 28 12. 12, 29 13. 28, 15 

14. Two prime numbers  that  differ by 2 are called t w i n  p r i m e s .  For 
example, 5 and 7 are twin primes. Prove that  one more than the prod- 
uct of two twin primes is a perfect square. (Twin primes played a key 
role in 1994 in establishing a flaw in the Pent ium chip, manufactured 
by Intel Corporation.) 

Evaluate each sum, where d is a positive integer. 

z d z 
d16 dl12 dl18 

18. 
d118 

Disprove each statement ,  where a, b, and c are arbi t rary  integers. 

19. If a] (b +c) ,  then a ]b a n d a l c .  20. I f a  ]bc, then a ]b and a ]c. 

( E a s t e r  S u n d a y )  Here is a second method* for determining Easter  Sunday 
in a given year N. L e t a  - N mod 19, b - N d i v l 0 0 ,  c - N mod 100, 
d = b  div 4, e = b  mod 4, f = (b+8)  div 25 ,g  = ( b - f + l )  div 3, h = (19a+ 
b - d - g + 1 5 )  mod30 ,  i = c d i v 4 ,  j = c  m o d 4 ,  k = ( 3 2 + 2 e + 2 i - h - j )  
mod 7, ~ = (a + l l h  + 22k) div 451, m = (h + k - 7t~ + 114) div 31, and 
n = (h + k - 7~ + 114) mod 31. Then Easter  Sunday falls on the (n + 1)st 

* Based on "To Find Easter," Nature (April 20, 1876). For bringing this method to his attention, 
the author would like to thank Thomas Moore of Bridgewater State College. 
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day of the mth  mon th  of the year. Compute  the date for Eas te r  Sunday  in 
each year.  

21. 2000 22. 2076 23. 3000 24. 3663 

E u l e r ' s  p h i - f u n c t i o n  ~ is ano the r  impor t an t  number - theore t i c  funct ion 
on 1~, defined by ~(n) - n u m b e r  of positive integers < n and relat ively pr ime 
to n. For  example, ~(1) - 1 - ~(2), ~(3) - 2 - ~(4), and ~(5) - 4. Eva lua te  
~(n) for each value of n. 

25. 10 26.  15 27. 17 28. 24 

29. Compute  ~ ~(d) for n -  5, 6, 10, and 12. 
din 

30. Using Exercise 29, predict a formula  for ~ ~(d). 
din 

Let a, b, c, and n be any positive integers  and p be any prime. Prove each. 

31. If a I b and a I c, then  a I (b - c). 

32. I f a  I b, then  a i bc. 

33. Let r be the remainder  when a is divided by b. Let d - gcd{a, b} and 
d'  = gcd{b,r}. Then d ' i d .  

34. Let a > b. Then gcd{a, b } - gcd{a, a - b }. 

35. Let a > b. Then gcd{ a, b } - gcd{b, a + b }. 

36. The gcd of a and b is unique. 
(Hint: Assume two gcd's d and d'; show tha t  d - d'.) 

37. I fp  lab, t h e n p  l a o r p  lb. 
[Hint: Assume p lab and p]/a. Since pya, gcd{p, a } = 1.] 

38. Any two consecutive integers are relatively prime. 

39. Let d -  gcd{a, b }. Then  a/d and b/d are relatively prime. 

40. gcd { na, nb } - n .  gcd {a, b } 41. gcd { gcd {a, b },c } - gcd { a, gcd {b, c } } 

42. Let a lc and b lc, where a and b are relatively pr ime numbers .  Then  
ablc .  

43. 2 and 3 are the only two consecutive integers tha t  are primes.  

44. 3, 5, and 7 are the only three consecutive odd integers  tha t  are primes. 

45. I fp  and p2 + 8 are primes, then  p3 + 4 is also a prime. (D. L. Si lverman,  
1968) 

46. I f p  and p + 2 are twin primes, then  p mus t  be odd. 

47. Suppose p and q are primes such tha t  p - q = 3. Then  p - 5. 

48. Every odd prime is of the form 4n + 1 or 4n + 3. 
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Disprove each statement .  

49. If gcd{a, b} - 1 and gcd{b,c} - 1, then gcd{a,c} - 1, where a, b, and c 
are positive integers. 

50. n! + 1 is a prime for every n > 0. 

51. En - PIP2""  "Pn 4- 1 is a prime, where Pi denotes the i th prime and 
i > 1 .  

52. Let n be a positive integer. Prove tha t  (n + 1)! + 2, (n + 1)! + 3 , . . .  , 
(n + 1)! + (n + 1) are n consecutive composite numbers.  

In everyday life we use the decimal notation, base ten, to represent  any 
real number.  For example, 234 - 2(102) + 3 (101) + 4(10~ which is the 
d e c i m a l  e x p a n s i o n  of 234. Likewise, 23.45 - 2( 101 ) + 3( 10 ~ + 4( 10 -1 ) + 
5(10-2). Computers  use base two (b inary ) ,  and very long binary numbers  
are often handled by humans  (as opposed to computers) using bases eight 
(octal)  and sixteen ( h e x a d e c i m a l ) .  

Actually, any positive integer b > 2 is a valid choice for a base. This is 
a consequence of the following fundamental  result. 

~ Let b be a positive integer>_ 2. Then every positive integer a can be 
expressed uniquely in the form a - akb k + a k -  1 b k -  1 + . . .  + a 1 b + a0, where 
ao, a 1 , . . . ,  ak are nonnegative integers less than  b, ak # 0, and k > 0. m 

This leads us to the following definition. 

Base-b Representation 

The expression akb k 4- a k -  l b k -  1 + . . .  + a l b  + ao is the base -b  e x p a n s i o n  
of the integer a. Accordingly, we write a = ( akak -1  " "  a lao)b  in base b. The 
base is omitted when it is 10. 

For example, 234 = 234ten and 22 = 10110two (see Example 4.9). 
When the base is greater  than 10, to avoid confusion we use the letters 

A, B, C , . . .  to represent  the d i g i t s  10, 11, 12, . . . ,  respectively. It is easy to 
find the decimal value of an integer from its base-b representat ion,  as the 
next example illustrates. 

[ ~ ~ ~ ~ ~  Express 10110two in base 10. 

SOLUTION:  

10110two - 1(24) + 0(23) + 1(22) + 1(21) + 0(2 ~ 

= 1 6 + 0 + 4 + 2 + 0  

< binary expansion 

= 22 m 
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A Brainteaser 

F i g u r e  4.2 

Chapter 4 Induction and Algorithms 

Conversely,  suppose we are given a decimal  integer.  How do we express  
it in ano the r  base b? By Theo rem 4.8, all we have to do is express  it as a 
sum of powers of b, then  simply collect the  coefficients in the  r igh t  order .  
Always r e m e m b e r  to account  for miss ing  coefficients. 

Take a look at  the  tablets  A, B, C, D, and E in Figure  4.2. A s s u m i n g  
you are unde r  32 years  old, identify the  table ts  on which your  age appears ;  
we can then  easily tell your  age. For  example,  if your  age appears  on 
tablets  A, B, C, and E, then  you m u s t  be 23. Can you explain how this  

puzzle works? 

A B C D E 

1 17 

3 19 

5 21 

7 23 

9 25 

11 27 

13 29 

15 31 

2 18 

3 19 

6 22 

7 23 

10 26 

11 27 

14 30 

15 31 

4 20 

5 21 

6 22 

7 23 

12 28 

13 29 

14 30 

15 31 

8 24 

9 25 

10 26 

11 27 

12 28 

13 29 

14 30 

15 31 

16 24 

17 25 

18 26 

19 27 

20 28 

21 29 

22 30 

23 31 

Re tu rn ing  to nondecimal  represen ta t ions ,  a s imple a lgor i thm expresses  
an in teger  a in any nondecimal  base b: divide a, and its successive quo- 
t ients  by b unt i l  a zero quot ien t  is reached,  t hen  pick the  r e m a i n d e r s  
in the  reverse  order. These  steps can be t r ans l a t ed  into the  e legant  
a lgor i thm given in Algor i thm 4.3. 

Algorithm nondecimal base(n,b) 
(* This algorithm finds the base-b representation (amam_1...alao) b 

of a positive integer n. The variables q and r denote the quotient 
of the remainder of the division algorithm, and i is a subscript. *) 

Begin (* algorithm *) 
(* i n i t i a l i z e  the variables q, r, and i *) 
q <-- n; i <-- 0 
while q > 0 do 
begin (* while *) 

r <- q mod b 

ai <-- r 
q <-- q div b 
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i <-- i + 1  
endwh i I e 

End (* algor i thm *) 

Algorithm 4.3 

The next  example i l lustrates  this algori thm. 

Represent  15,036 in the hexadecimal  tha t  in base 16. system, is, 

S O L U T I O N :  
Applying Algor i thm 4.3 we have: 

1 5 0 3 6 = 9 3 9 . 1 6 +  12 
9 3 9 -  5 8 . 1 6 +  11 1" 

5 8 =  3 . 1 6 +  10 read up 
3 -  0 . 1 6 +  3 

Thus  1 5 , 0 3 6 -  3 A B C s i x t e e n .  II 

Addition in Base  b 

Before we discuss how to add nondecimal  numbers ,  let us examine the  
familiar addit ion a lgor i thm in base 10. 

To find the sum of any two decimal digits a and b, we find the r ema inde r  
r -  (a + b) mod 10 and the quot ient  q - (a + b) div 10. Then a + b - ( q r ) t e n ;  

q is the c a r r y  resul t ing from the addit ion of a and b. Using this idea we 
can add any two decimal integers.  

For tunate ly ,  the addit ion a lgor i thm can be extended to any nondecimal  
base b in an obvious way. For example, let x - ( X m . . .  XO)b and y - (Yn �9 �9 �9 Y0)b 
where  m >__ n. If m > n, we could assume tha t  Yn+l . . . . .  Y m  - -  O. 
We add the corresponding digits in x and y in a right-to-left  fashion. Let 
si - (xi + Y i  + c i )  mod b and ci+1 - (xi + Y i  + c i )  divb,  where  c0 - 0 .  Then  
X -'F-y --  ( 8 m + l S m . . .  SO)b where  Sm+l may be 0 or 1. (Leading zeros are deleted 
from the answer.)  

These steps t rans la te  into a s t ra igh t forward  algori thm, as in 
Algori thm 4.4. 

Algorithm addition (x,y,s,b) 
(* This a lgor i thm computes the sum s----(Sm_FlSm...So) of two 

integers X--Xm...x 0 and Y - Y n . . . Y o  in base b, where m >__ n. *) 
Begin (* a lgor i thm *) 

carry  <- 0 (* i n i t i a l i z e  carry *) 
fo r  i = O  to n do 
begin (* fo r  *) 

si ~-- (xi -1-yi -I- carry)  mod b 
carry  <- ( x i + Y i  + c a r r y )  div b 

endfor 
fo r  i - - - - n+ l  to m do 
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begin (* for *) 
si <-- (xi +carry) mod b 
carry +- (xi +carry) div b 

endfor 
i f  carry > 0 then 

Sm+ 1 ~- carry 
End (* algorithm *) 

Algorithm 4.4 

This algorithm is i l lustrated in the next two examples. 

~ Add the binary integers 10110two and 1011two. 

S O L U T I O N :  
First  write the integers one below the other in such a way that  the corre- 
sponding bits are vertically aligned. See Figure 4.3. (For convenience, the 
base two is not shown.) 

F i g u r e  4.3 1 0 1 1 0 
1 0 1 1 

F i g u r e  4.4 @ 
1 0 1 1 0 

1 0 1 1 

F i g u r e  4.5 

+ 
1 0 1 1 0 

1 0 1 1 

0 1 

F i g u r e  4.6 

+ 
1 0 1 1 0 

1 0 1 1 

1 0 0 0 0 1 

Add the corresponding bits from right to left, beginning with the one's 
column: 0 + 1 = 1. Since 1 mod 2 = 1, enter  1 as the one's bit in the sum. 
Since 1 div 2 = 0, the result ing carry is 0, shown circled in Figure 4.4. 
(In practice when the carry is 0, it is simply ignored.) Now add the bits 
0, 1, and 1 in the twos column: 0 + 1 + 1 = 2. Since 2 mod 2 = 0 and 2 div 
2 = 1, enter 0 in the twos column and the new carry is 1 (see Figure 4.5). 
Continuing like this, we get the sum 100001two. See Figure 4.6. n 
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The addition of binary numbers can be made easy by observing that  
0 + 0 = 0, 0 + 1 = 1 = 1 + 0, and 1 + 1 = 10, all in base two. 

Next we illustrate the multiplication algorithm in base b. 

Multiplication in Base b 

The traditional algorithm for multiplying two integers x and y works for 
any base in an obvious way: multiply every digit in x by every digit in y as 
in base b and add up the partial products, as in Example 4.12. 

~ Multiply 1011two and 101two. 

SOLUTION: 
The various steps unfold in Figures 4.7-4.9. The product is 110111two. 

Figure 4.7 1 0 1 1 
1 0 1 

1 0 1 1 <--- multiply 1011 by 1 

Figure 4.8 1 0 1 1 
1 0 1 

1 0 1 
0 0 0 
1 1 

multiply 1011 by 0 
multiply 1011 by 1 

F i g u r e  4.9 

0 
1 0 

1 0 
0 0 
1 1 

1 1 

0 
add the partial products 

1 1 0 1 1 1 1 

Shifting and Binary Multiplication 

If you found these two examples confusing, don't be discouraged. Fortu- 
nately, most computers do binary multiplications using a technique called 
shi f t ing ,  as discussed below. 
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m 

Consider the binary number  x = (XmXm-l.. .  XlXO)two -- Y~ Xi2 i. What  is 
i=0 

the effect of mult iplying x by 2J? Since 

m 

X2] -" E xi2i+J -- X m . . .  X l X 0 ~ t w o ,  

i=0 j zeros 

every bit in x is shifted to the left b y j  columns. 
More generally, let a be any bit. Then 

m 

x(a2 / )  -- E ( a x i ) 2 i + J  -- ( a X m ) . . .  ( a x 0 ) ~ t w o  

i=0 j zeros 

The bit axi equals Xi if a = 1 and equals 0 if a = 0. Thus,  the effect of 
multiplying the number  x = (Xm... x0)two by the bit yj in the mult ipl icand 
y = (Yn...YN...Yo)two is the same as mult iplying each bit xi by yj and shift ing 
the result  to the left b y j  columns. Then add the part ial  products to get the 
desired product, as i l lustrated below. 

Evaluate 1011two • 101two. 

S O L U T I O N :  
The various steps are displayed in Figures 4.10-4.13. It follows from 
Figure 4.13 tha t  the resul t ing product is 110111two. 

F i g u r e  4 .10 1 0 1 1 
x 1 0 1 

1 0 1 1 ~- multiply 1011 by 1; no shifting. 

F i g u r e  4.11 1 0 1 1 
• 1 0 1 

1 0 1 1 
0 0 0 0 ~- multiply 1011 by 0; shift by one column. 

F i g u r e  4.12 1 0 1 1 
• 1 0 1 

0 
1 0 

1 0 1 
0 0 0 
1 1 ~- multiply 1011 by 1; shift by 2 columns. 
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Figure  4.13 

0 
1 0 

1 0 1 1 
1 0 1 

1 0 
0 0 
1 1 

1 1 
0 

1 1 0 1 1 1 

add the partial products. 

B 

The shifting method of multiplication leads to Algorithm 4.5 for multi- 
plying two binary numbers. 

Algorithm binary multiplication (x, y, p) 
(* This algorithm computes the product P -  (Pm+nPm+n-l...PO)two 

of the binary numbers x----(XmXm_l.. .xlxo)tw o and 
Y--(YnYn-Z...YzYO)two, using shi f t ing.  *) 

Begin (* algorithm *) 
for j - -O to n do 

begin (* for *) 
mult iply each bi t  xi by yj 
sh i f t  the result ing binary word to the le f t  
by j columns 
wj ~-- result ing binary word 

endfor 
add the partial products wj 
p <-- resulting sum 

End (* algorithm *) 

A] gorithm 4.5 

Binary Subtraction 

We can subtract binary numbers without the bother of "borrows," using 
one's complement and addition. The one's  c o m p l e m e n t  x' of a binary 
number x is obtained by replacing each 0 in x with a 1 and vice versa. For 
example, the one's complement of 1011two is 0100two and that of 1001two 
is 0110two. The two's  c o m p l e m e n t  of x is x' + 1. For instance, the two's 
complement of 1011two is 0100two + 1 = 0101two. 

The next example illustrates this new technique step-by-step before it is 
justified in a formal discussion. 

Subtract 1011two from 100001two. 

SOLUTION: 
For convenience, we shall drop the base two. 

S tep  1 Find the one's complement of the subtrahend 1011. Since the 
minuend 100001 contains six bits, keep the same number of bits in the sub- 
trahend by padding it with two O's at the beginning. The one's complement 
of 1011 = 001011 is 110100. 
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S t e p  2 Find the two's  complement  by adding i to the one 's  complement :  
110100 + 1 = 110101. 

S t e p  3 Add the two's  complement  in step 2 to the minuend  100001" 

1 0 0 0 0 1 
+ 1 1 0 1 0 1 

( ~  0 1 0 1 1 0 

delete 

S t e p  4 Delete the leading carry 1. The resul t ing n u m b e r  010110 = 10110 
is the desired answer.  

Thus  100001two - 1011two - 10110two. (To check this, you may verify 
tha t  1011two+10110two -100001two.) m 

How can this technique work? To just ify the a lgor i thm il lustrated,  first 
notice tha t  x - y  = x + ( -y) ;  tha t  is, subt rac t ing  y from x is equivalent  to 
adding the additive inverse - y  o fy  to x. This is the basic idea behind the 
binary subtract ion algorithm. 

Now how to find -y?  First ,  assume tha t  Ilxll - IlYll - n. (If IlYll < Ilxll, 
pad y with enough O's at the beginning so the length of the resul t ing word 
is n.) Let y' denote the one's  complement  ofy.  Then  y + y' is an n-bit word 
w containing all l 's:  

n - l n - 2  

w - i l [ l l l  . . . I I ] I L 1  I 

For example, let y = 10110. Then  y' - 01001, so y + y' - 11111. 
The value of the n-bit word w is 2 n - 1 (see Section 4.4). Thus  y + y' = 

w -- 2 n -  1, s o - - y -  y' + 1 -  2 n - - y " - 2  n, where y " =  y'  + 1 denotes the 
two's  complement  of y. Therefore,  x + ( -y )  - x + y" - 2 n - (x + y") - 2 n. 
Thus,  to subt rac t  y from x, it suffices to add y" to x and drop the leading 
carry 1. This explains why the above subtract ion a lgor i thm works. 

The a lgor i thm for the case Ilxll < Ilyll is complicated, so we omit  its 
discussion here.* 

We close this section with an in t r iguing numer ic  puzzle tha t  will test  
your  mas te ry  of both  nondecimal  addition and subtract ion.  

*For a discussion of negative binary numbers, see A. S. Tanerbaum, Structured Computer 
Organization, Prentice Hall, Englewood, NJ, 1976, pp. 420--423. 
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A Nondecimal  Puzzle  

Write down a three-digit number  in base eight. Reverse its digits. Subtract 
the smaller number  from the other (in base eight); save all leading zeros. 
Reverse its digits. Add the last two numbers. Is your answer 1067eight? Now 
redo the puzzle in base 12; your answer should be 10ABtwelve. 

Exercises 4.3 

Express each number  in base 10. 

1. 1101two 2. 11011two 

Express each decimal number  as required. 

5. 1 0 7 6 = (  )two 6. 6 7 6 = (  

7. 1776 = ( )eight 8. 2076 = ( 

3. 1776eight 

)eight 

)sixteen 

4. 1976sixteen 

The binary representation of an integer can conveniently be used to find its 
octal representation. Group the bits in threes from right to left and replace 
each group with the corresponding octal digit. For example, 

243 = 11110011two = 011 110 011two = 363eight 

Using this short cut, rewrite each binary number  as an octal integer. 

9. ll01two 10. ll011two 11. lll010two 12. 10110101two 

The binary representation of an integer can also be used to find its hexa- 
decimal representation. Group the bits in fours from right to left and then 
replace each group with the equivalent hexadecimal digit. For instance, 

243 = 11110011two = 1111 0011two = F3sixteen 

Using this method express each binary number  in base 16. 

13. ll l01two 14. ll0111two 15. lll0101two 16. 10110101two 

The techniques explained in Exercises 9-12 are reversible; that  is, the octal 
and hexadecimal representations of integers can be used to find their binary 
representations. For example, 

345eight = 0 1 1  100 101two--11100101two 

Using this technique, rewrite each number in base two. 

17. 36sixteen 18. 237eight 19. 237sixteen 20. 3ADsixtee n 

In Exercises 21-28, perform the indicated operations. 



206 Chapter 4 Induction and Algorithms 

F i g u r e  4.14 

The sum in 
"Venusian" notation. 

21. 1111two 22. 1076eight 23. 3076sixteen 24. 101101two 

+ 1011two + 2076eight + 5776sixteen -- 10011two 

25. ll000two 26. 10111two 27. 1024eight 28. 3ABCsixteen 

- 100two x ll01two x 2776eight x 4CBAsixteen 

29. Arrange the binary numbers 1011, 110, 11011, 10110, and 101010 in 
order of increasing magnitude. 

30. Arrange the hexadecimal numbers 1076, 3056, 3CAB, 5ABC, and 
CACB in order of increasing magnitude. 

31. What can you say about the ones bit in the binary representation of an 
"even integer? An odd integer? 

Find the value of the base b in each case. 

32. 5 4 b = 6 4  33. 1001b=9  34. 1001b= 126 35. 144b=49  

36. Suppose a space investigative team to Venus sends back the picture 
of an addition problem scratched on a wall, as shown in Figure 4.14. 
The Venusian numeration system is a place value system, just like 
ours. The base of the system is the same as the number of fingers 
on a Venusian hand. Determine the base of the Venusian numeration 
system. (This puzzle is due to H. L. Nelson.**) 

\ /  

\ /  

Define recursively each set S of binary words. 

37. Set of binary words that represent even positive integers. 

38. Set of binary words that represent odd positive integers. 

**M. Gardner, "Mathematical Games," Scientific American, Vol. 219, Sept. 1968, pp. 218-230. 
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39. Set of binary words tha t  represent  positive integers with no leading 
zeros. 

40. Set of palindromic binary words. 

Polynomials can be evaluated efficiently using the technique of n e s t e d  
m u l t i p l i c a t i o n ,  called H o r n e r ' s  m e t h o d .  [This method is named after 
the English schoolmaster,  William G. Horner  (1786-1837), who published 
it in 1819.] For  instance, the polynomial f ( x )  - 4x  3 + 5x 2 + 6x + 7 can be 
evaluated as f ( x )  = ((4x + 5)x + 6)x + 7. Using this method, express each 
integer as a decimal integer. 

41. 245eight 42. 101101two 43. ll00101two 44. 43BCsixteen 

*45. Let x be a three-digit  hexadecimal number  with distinct digits. 
Reverse the digits. Subtract  the smaller number  from the other num- 
ber (save all the digits in your  answer). Reverse the digits in the 
difference. Add this number  to x. Find the sum. 

The principle of mathemat ica l  induction* (PMI) is a frequently used proof 
technique in both mathemat ics  and computer  science, as will be seen 
shortly. 

Many interes t ing results  in mathemat ics  hold t rue  for all positive inte- 
gers. For example, the following s ta tements  are t rue  for every positive 
integer n, where x, y, and xi are any positive real numbers:  

" (x . y ) n  _ x n . y n  n 

�9 l o g ( x i . . .  Xn)  - ~ logx i 
i=1 

n n-1 
�9 ~ i -  n(n+i) r" - i  2 * ~-~r  i -  ( r # l )  

- -  7--i- 
i=1 i=o 

How do we prove tha t  these results hold for every positive integer n? 
Obviously, it is impossible to subst i tute  each positive integer for n and 
verify tha t  the formula holds. The principle of induction can establish the 
validity of such formulas. 

To begin with, suppose the orange cans in a collection can be ar ranged 
as in Figure 4.15. Row 1 contains one can, row 2 contains two cans , . . . ,  row 
n contains n cans. Can you predict a formula for the total number  of cans 
in the collection? See Example 4.15 for a formula. 

tAlthough the Venetian scientist Francesco Maurocylus (1491-1575) applied it in proofs in 
a book he wrote in 1575, the term mathematical induction was coined by De Morgan. 
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F i g u r e  4 .15  

oooo% 

000- �9 �9 000 

The next result  is the cornerstone of the principle of induction. Its proof, 
as we shall see shortly, follows by the well-ordering principle in Section 4.1. 

~ [ ~ ~ ~  Let S be a subset of N satisfying the following properties: 

(1) 1 E S .  
(2) If k is an arbi t rary positive integer in S,  then k + 1 E S. Then S = N. 

P R O O F  (by c o n t r a d i c t i o n ) :  
Suppose S r N. Let S '  - n E N O n  r S.  Since S' ~: 0, by the well-ordering 
principle, S' contains a least element 6'. Then 6' > 1 by condition 1. Since t~' 
is the least element in S', 6 ' -  1 r S'; so t~'- 1 E S. Consequently,  by condition 
2, (t~' - 1) + 1 - t~' e S. This contradiction establishes the theorem, i 

This theorem can be generalized as in Theorem 4.10. We leave its proof 
as an exercise. 

Let be a fixed integer. Let S be a subset of Z the no satisfying following 
conditions" 

�9 n o e S .  

�9 If k is an arbi t rary integer >_ no such that  k E S, then k + 1 E S. 

Then S ~_ {n E Z ln > n0}. i 

Weak Version of Induction 

Before we formalize the principle of induction, let's look at a trivial example. 
Consider an infinite number  of dominoes arranged in a row (see Figure 
4.16a). Suppose we knock down the first domino. 

What  happens to the rest of the dominoes? Do they all fall? Not 
necessarily; see Figures 4.16b and c. 

So let's further  assume the following: If the kth domino is knocked down, 
then the (k + 1)st domino also falls down. If we topple the first domino, what  
would happen to the rest? They all would fall; see Figure 4.16d. 

This i l lustration can be expressed in symbols. Let P(n) denote the pred- 
icate tha t  the n th  domino falls. (Note: UD = N.) Assume the following 
propositions are true" 

�9 P(1). 

�9 P(k) ~ P(k + 1) for every positive integer k. 



4.4 Mathematical Induction 209 

Figure  4.16 

a b c d 

Then P(n) is t rue for every positive integer n; tha t  is, every domino would 
fall. This leads us to the w e a k  v e r s i o n  of the principle. 

(The  P r i n c i p l e  of  Mathemat i ca l  Induct ion)  Let P(n) be predicate a 

satisfying the following conditions, where n is an integer: 

(1) P(n0) is t rue for some integer no. 
(2) If P(k) is t rue for an arbi t rary integer k >__ no, then P(k + 1) is also 

true. 

Then P(n) is t rue for every integer n >_ no. 

PROOF: 
Let S denote the set of integers >_ no for which P(n) is true. Since P(n0) 
is true, no e S. By condition 2, whenever k e S, k + 1 ~ S. Therefore, by 
Theorem 4.10, S consists of all integers >__ no. Consequently, P(n) is t rue for 
every integer n >_ no. This establishes the validity of the principle, m 

Condition 1 assumes the proposition P(n) is t rue when n = no. Look at 
condition 2: If P(n) is t rue for an arbi t rary integer k >__ no, it is also true for 
n = k + 1. Then, by the repeated applications of condition 2 and the law of 
detachment,  it follows that  P(n0 + 1), P(n0 + 2), . . .  all hold true. In other 
words, P(n) holds for every n >_ no. 

Proving a result  by PMI involves two key steps: 

1. Basis  s tep Verify tha t  P(n0) is true. 
2. Induct ion  step Assume P(k) is t rue for an arbi t rary  integer 

k > no ( induct ive  hypothes is ) .  
Then verify tha t  P(k + 1) is also true. 
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A word of caution: A question frequently asked is, "Isn ' t  this cyclic 
reasoning? Are you not assuming what you are asked to prove?" The 
confusion stems from misinterpreting step 2 for the conclusion. The 
induction step involves showing that  the implication P(k) --* P(k + 1) is 
a tautology; that  is, if P(k) is true, then so is P(k + 1). The conclusion is 
"P(n) is t rue for every n > no." So be careful. 

A variety of interesting examples will show how useful this important  
proof technique is. 

The next example gives a nice formula for computing the total number  
of cans in the collection in Figure 4.15. 

Using PMI, that, for every positive integer n, prove 

1 + 2 + 3 + - - . + n -  
n(n + 1) 

P R O O F  (by i n d u c t i o n ) :  
n n(n+ 1) 

Let P(n)" ~ i - ~ .  
i=l 2 

B a s i s  s t e p  To verify that  P(1) is true (Note" Here no - 1)" 
1 

W h e n n - 1  R H S -  1 ( 1 + 1 ) _ 1 _  ~ i - L H S ; s o  P(1) is true. 
' 2 - -  

i=l 

I n d u c t i o n  s t ep  Let k be an arbitrary positive integer. We would like to 
show that  P(k) --, P(k + 1)" Assume P(k) is true; that  is, 

k k(k + 1) 
i - 2 < inductive hypothesis 

i=l 

To establish that  P(k) ~ P(k + 1) is true, that  is, 

(k + 1)(k + 2) Ei-  
2 

we start  with the LHS of this equation: 

k + l  k 

L H S -  E i  - ~-~i + (k + I) 
i - 1  i = 1  

k(k + 1) 
+ (k + 1), 

(k + 1)(k + 2) 

( ) ote - + E Xi Xi Xk + 1 
i = 1  i = 1  

by the inductive hypothesis 

= R H S  
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F i g u r e  4 . 1 7  

Thus,  if P(k) is t rue,  then  P(k + 1) is also true.  
Therefore,  by PMI, P(n) is t rue  for every n >_ 1; t ha t  is, the formula  holds 

for every positive in teger  n. m 

Figure  4.17 provides a geometr ic  proof  of this formula  wi thout  words. 

S + S = n(n+l) 

n(n+l) 
�9 ", S - -  2 

The next  example,  again an applicat ion of induction,  employs a divisi- 
bility property,  so we follow it in some detail. 

Prove tha t  2n 3 + 3n 2 + n is divisible by 6 for every integer  n > 1. 

P R O O F  (by PMI): 
Let P(n): 2n 3 § 3n 2 § n is divisible by 6. 

B a s i s  s t e p  W h e n  n - 1, 2n 3 + 3n 2 + n - 2(1)  + 3(1)  + 1 - 6  is clearly 
divisible by 6. Therefore,  P(1) is t rue.  

I n d u c t i o n  s t e p  Assume P(k) is t rue,  t ha t  is, 2 k 3 + 3 k 2 + k  is divis- 
ible by 6 for any k > 1. Then  2 k 3 + 3 k  2 + k - 6 m  for some in teger  m 
(inductive hypothesis) .  We mus t  show tha t  P(k + 1) is t rue;  t ha t  is, 
2(k + 1)3 + 3(k + 1)2 + (k + 1) is divisible by 6. Notice tha t  

2(k + 1) 3 + 3(k + 1)2 + (k + 1) 

= 2(k 3 + 3k 2 + 3k + 1) + 3(k 2 + 2k + 1) + (k + 1) 

= (2k 3 + 3k 2 + k) + 6(k 2 + 2k + 1) 

= 6m + 6(k 2 + 2k + 1) by the inductive hypothesis  

= 6(m + k 2 + 2k + 1), 

which is clearly divisible by 6. Thus  P(k + 1) is true.  
Thus,  by induction,  the given s t a t emen t  is t rue  for every n >_ 1. m 

Notice tha t  in the  above examples,  n o -  1, but  it need not always be 1, 
as the next  example shows. 
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Jacob  L Bernoul l i  (1654-1705), a member of the most dist inguished 
family of mathematicans (see the family tree in Section 9.1), was born in 
Basel, Switzerland. His grandfather, a pharmacist  in Amsterdam, had 
become a Swiss through marriage, and his father was a town councilor 
and a magistrate. 

Bernoulli received his M.A. in philosophy in 1671 and a theological 
degree 5years later. During this time, he studied mathematics and astron- 
omy against his father's will. He spent the next 2 years tutoring in Geneva. 
In 1687 he became professor of mathematics at the University of  Basel, 
remaining there until his death. His brother Johann succeeded him at 
Basel. 

In May 1690 he used the term integral in the calculus sense known 
today. Bernoulli's most famous work, Ars Conjectandi, was published posthumously in 1713. It contains 
significant contributions to probability theory, the theory of series, and gravitational theory. 

(Bernoul l i ' s  Inequa l i ty )  Let x be real n u m b e r  g rea te r  t h a n  - 1 .  any 
Prove tha t  (1 + x) n > 1 + nx for every n > 0. 

P R O O F  (by PMI)" 
Let x be any real n u m b e r  > - 1 .  Let  P(n)" ( l §  n >__ l + n x .  (Note" 
The induct ion is on the discrete variable  n and not on the "con t inuous"  
variable x.) 

Bas i s  s tep  To verify tha t  P(0) is t rue:  Notice t ha t  

(1 + x) ~ - 1 

> l + 0 x  

So P(0) is true.  (Note" Here no - 0.) 

I n d u c t i o n  s tep  Assume P(k) is t rue;  t ha t  is, (1 + x )  k > 1 + kx for an 
arbitrary in teger  k > 0. We need to show tha t  P(k + 1) is t rue;  t h a t  is, 
(1 + x )  k+l > 1 + (k + 1)x. 

By the inductive hypothesis ,  we have (1 + x) k > 1 + kx. Then  

(1 + x) k+l - (1 + x)(1 + x) k, 

>_ (1 + x)(1 + kx),  

= 1 + (k + 1)x + kx  2 

by IH and since 1 + x > 0 

> 1 + (k + 1)x, since kx 2 > 0 

Therefore,  P(k + 1) is also true.  
Thus,  by PMI, (1 + X)  n >_ 1 + nx for every n >_ 0. m 

The next  example  inductively es tabl ishes  Theorem 2.3 from Chap te r  2. 
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~ A finite set A with elements has 2 n subsets. exactly n 

P R O O F  (by PMI)" 

B a s i s  s t e p  When n = 0, A = r so A has exactly 1 = 20 subset. Thus  the 
result  is t rue  when n -  0. 

I n d u c t i o n  s t e p  Assume any finite set with k elements has 2 k subsets,  
where k > 0. Let A be a set with k + 1 elements.  We would like to show tha t  
A has 2 k+l subsets. 

To this end, let x e A. Let B - A - {x}. Since I B ] -  k, B has 2 k subsets  
by the inductive hypothesis. Each of the subsets of B is a subset of A. Now 
add x to each of them. The resul t ing 2 k sets are also subsets of A. Since 
every subset of A ei ther contains x or does not contain x, by the addition 
principle, A has 2 k + 2 k - 2 k+l subsets. 

Thus, by the principle of induction, the result  holds for every finite set. 
i 

Both the basis and the induction steps are essential in the principle of 
induction, as the next two examples il lustrate.  

Let g(n) denote the maximum number  of formed nonoverlapping regions 
inside a circle by joining n distinct points on it. Figures 4.18-4.22 show the 
cases n -  1, 2, 3, 4, and 5, where the various regions are numbered  1, 2, 3, 
etc. The results are summarized  in Table 4.1. 

F i g u r e  4.18 

F i g u r e  4 .19  
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Figure  4.20 

Figure  4.21 
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Figure  4.22 
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Figure  4.23 

1 

/ 
It appears from the table that  g ( n )  - 2 n-1. Then g(1) = 20 - 1, which is 

t rue (basis step). Nonetheless, this does not guarantee  that  g ( n )  - 2 n-1 for 
every n >_ 1. If the formula were true, there would be g(6) - 25 - 32 nonover- 
lapping regions with six points. Unfortunately,  there are only 31 such 
regions (see Figure 4.23) We shall derive the correct formula in Chapter  6. 
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T a b l e  4 .1  N u m b e r  o f  p o i n t s  n 1 2 3 4 5 6 

Maximum number 
of nonoverlapping 
regions g(n)  

1 2 4 8 16 ? 

We can conclude t ha t  the  t ru th fu lnes s  of the  basis step and an appa ren t  
pa t t e rn  do n o t  ensure  t ha t  P(n) is t rue  for every n. m 

The following example shows t ha t  the  validity of the  induct ion step is 
necessary,  bu t  not  sufficient, to gua ran t ee  t ha t  P(n) is t rue  for all in tegers  
in the UD. 

Consider the " formula"  P(n) �9 1 + 3 + 5 + . . .  + (2n - 1) - n 2 + 1. Suppose 
k 

P(k) is t rue:  ~ (2i - 1) - k 2 + 1. Then:  
i=l 

k+l k 
~ - ~ ( 2 i -  1 ) -  ~--~(2i- 1 ) +  (2k + 1) 

i=l i=l 

= (k 2 + 1) + (2k + 1) 

-- (k + 1) 2 + 1 

So if P(k) is t rue,  P(k + 1) is t rue.  Never theless ,  the  formula  does not  hold 
for any positive integer  n. Try P(1) (see Exercise 5). m 

Using induction,  the  next  example  "proves" tha t  every person is of the  
same sex. 

"Prove"  t ha t  in a set of n people is of the  same sex. every person 

" P R O O F " "  
Let P(n): Everyone in a set of n people is of the  same sex. Clearly, P(1) 
is t rue.  Let  k be a positive in teger  such t ha t  P(k) is t rue;  t ha t  is, every- 
one in a set of k people is of the  same sex. To show tha t  P(k + 1) is t rue,  
consider a set A -  { a l , a 2 , . . . , a k + l  } of k +  1 people. Pa r t i t ion  A into two 
overlapping sets, B -  { a l , a 2 , . . . , a k }  and C -  {a2 , . . . , ak+ l} ,  as in Figure  
4.24. Since I B I - k - I CI, by the induct ive hypothesis ,  everyone in B is of 
the  same sex and everyone in C is of the  same sex. Since B and C overlap, 
everyone in B U C mus t  be of the  same sex; t ha t  is, everyone in A is of the  
same sex. 

Thus,  by PMI, P(n) is t rue  for every n > 1. This concludes the "proof." 
m 

Note :  The asser t ion t ha t  everyone is of the  same sex is clearly false. 
Can you find the  flaw in the  "proof"? See Exercise 46. 
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Figure 4.24 

Before discussing the second version of the principle of induction, 
we will look at a few applications of the formula in Example 4.15. First 
a definition. 

Polygonal Number 

A polygonal  n u m b e r  is a positive integer n that  can be represented by n 
dots in a polygonal array in a systematic fashion. For example, the integers 
1, 3, 6, 10, ... are t r i a n g u l a r  n u m b e r s  since they can be represented by 
triangular arrays, as shown in Figure 4.25; the number  of pins in a bowling 
alley and that  of balls in the game of pool are tr iangular  numbers. Let t,z 
denote the nth tr iangular  number. Then 

t~ = 1 + 2 + 3 + . . . + n =  
n ( n  + 1) 

Figure 4.25 

Figure 4.26 

t l= l  t2=3 t3=6 t4=lO 

Triangular numbers manifest delightful properties. For example, 
tn + tn-1  -- n2; Figures 4.26 and 4.27 provide a nonverbal, geometric proof 
of this result. See Exercises 47-50. 

\ 
\ 

\ 
\ 

\ 
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F i g u r e  4 .27  

The next example is another  application of the formula in Example 4.15 
and the generalized pigeonhole principle. 

Let be the first n positive integers in some order. Suppose a l , a 2 , .  . ~ 
they are ar ranged around a circle (see Figure 4.28). Let k be any positive 
integer < n. Prove tha t  there  exists a set of k consecutive elements  in the 
a r rangement  with a sum [ [ k n ( n  + 1) - 2]/2nJ, where [xJ denotes the floor 
ofx. 

F i g u r e  4.28 

a.~ 

a2 

an 

P R O O F :  
Consider the following sums: 

S1 - a l  + a 2  + . . .  + a k  

$ 2  - a2 + a3 + . . .  + a k + l  

Sn  - an  + a l + "'" + a k - 1  

Each of the first n positive integers appears k t imes in this set of sums. 
Then 

n 

E S i  - k  ai  - k  i - 

i=1 i=1 
, by Example 4.15 
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Consider kn(n + 1)/2 pigeons. We would like to dis tr ibute them 
among n pigeonholes, called $1 ,$2 , . . .  ,Sn. By the generalized pigeon- 
hole principle, at least one of the pigeonholes Si must  contain more 
than Lkn(n § 1)/2n - 1/nJ = L[kn(n § 1 - 2)]/2nJ pigeons. In other words, 
si > Lkn(n § 1) - 2/2n J, as desired, m 

In particular, if numbers  1 through 10 are randomly placed around a 
circle, at least three consecutive integers in the a r rangement  must  have a 
sum exceeding L[3 .10 .11  - 2]/(2.10)J = 16. 

We now discuss the s t rong version of the principle of induction. 

Strong Version of Induction 

Sometimes the t ru th  of P(k) might not be enough to establish that  of 
P(k § 1). In other words, the t ruthfulness  of P(k + 1) may require more 
than that  of P(k). In such cases, we have to assume a s t ronger  inductive 
hypothesis that  P(n0), P(no + 1), . . .  , P(k) are all true; then verify that  
P(k § 1) is also true. This strong version,  which can be proved using the 
weak version (see Exercise 57), is stated as follows. 

(The  Second Principle  of  Mathemat ica l  Induct ion)  Let P(n) be a 
predicate satisfying the following conditions, where n is any integer: 

�9 P(n0) is true for some integer no. 

�9 If k is an arbi t rary integer > no such that  P(n0) A P(n0 + 1) A. . .  A P(k) 
is true, then P(k + 1) is also true. Then P(n) is t rue for every n > no. 

The next theorem illustrates this proof technique, m 

(The  Fundamenta l  Theorem of  A r i t h m e t i c )  Every positive integer 
n >_ 2 either is a prime or can be writ ten as a product of primes. 

P R O O F  (by strong induction):  
Let P(n) denote the given predicate. 

Basis s t e p  Choose n o -  2. Since 2 is itself a prime, P(2) is true. 

Inductive step Let k be a positive integer > 2 such that  P(2), P(3), . . . ,  
P(k) are true; that  is, assume that  integers 2 through k are primes or can 
be wri t ten as products of primes. We would like to show that  P(k + 1) is 
also true; tha t  is, integer k + 1 is a prime or can be expressed as a product 
of primes. 

If k + 1 is itself a prime, then we are done. If k + 1 is not a prime, it must  
be the product of two positive integers x and y, where 1 < x,y  < k + 1. By 
the inductive hypothesis, both x and y are primes or products of primes. 
Therefore, k + 1 - x •  is also a product of two or more prime numbers.  
In other words, P(k + 1) also holds: 

Thus, by the strong version of induction, P(n) is t rue for every n > 2. m 
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We now present  an interest ing application of the fundamental  theorem 
of arithmetic,  which is the cornerstone of number  theory, and the floor 
function. 

Find the number  of trail ing zeros in 123! 

S O L U T I O N :  
By the fundamental  theorem of arithmetic,  123! can be factored as 2a5bc, 
where c denotes the product of primes other than  2 and 5. Clearly a > b. 
Each trail ing zero in 123! corresponds to a factor of 10 and vice versa. 

_ f N u m b e r  of products of the form~ 
.'. Number  of trail ing zeros \ 2 . 5  in the prime factorization ] 

- min imum of a and b 

- b ,  s i n c e a > b  

We proceed to find b" 

Number  of positive integers < 123 and divisible by 5 - [123/5J - 24 

Each of them contributes a 5 to the prime factorization of 123! 

Number  of positive integers < 123 and divisible by 25 - [123/25J - 4 

F i g u r e  4 .29  

(See Figure 4.29.) Each of them contributes an additional 5 to the prime 
factorization. Since no higher power of 5 contributes a 5 in the prime fac- 
torization of 123!, the total number  of 5's in the prime factorization equals 
24 + 4 = 28. Thus the total number  of trail ing zeros in 123! is 28. 

each contributes a 5 

123!= 1 2 3 . . .  1 2 0 . . .  1 1 5 . . .  1 0 0 . . .  9 5 . . .  7 5 . . .  5 0 . . .  2 5 . . .  1 0 . . .  5 . . . 1  

each contributes an additional 5 

m 

The next example is another  interest ing application of the floor function. 
It employs the following facts from number  theory: 

�9 Every posit ive integer that is not a square has an even number  ofposi t ive 
factors. For example, 18 has six positive factors: 1, 2, 3, 6, 9, 18; 21 has 
four: 1, 3, 7, 21; 19 has two: 1, 19. 

�9 Every perfect square has an odd number  o f  positive factors. For exam- 
ple, 25 has three positive factors, namely, 1, 5, and 25; 64 has seven: 
1, 2, 4, 8, 16, 32, and 64. 



2 2 0  C h a p t e r  4 I n d u c t i o n  a n d  A l g o r i t h m s  

�9 T h e r e  a re  [~/-nJ p e r f e c t  s q u a r e s  <_ n.  

�9 For  example,  there  are [ J ~ J  = 5  perfect  squares  not  exceeding 
27 �9 1, 4, 9, 16, 25; there  are [ j ~ J  = 8 perfect  squares  < 68 �9 1, 4, 9, 16, 
25, 36, 49, 64. 

There  are 1000 rooms in a hotel  and is occupied by The every room a guest .  
first guest  opens the door to every room. The n th  guest  closes every n th  
door if it is open and opens it otherwise,  where  2 < n < 1000. How m a n y  
doors will be open at  the  end?* 

S O L U T I O N :  
Before applying these  resul ts  to solve the puzzle, let us s tudy  a mini -vers ion  
with  10 t e n a n t s  and 10 apa r tmen t s .  The first t e n a n t  opens all 10 doors; the  
second t e n a n t  closes the 2nd, 4th, 6th, 8th, and 10th doors; the  th i rd  closes 
the 3rd door, opens the 6th door, and closes the  9th door; the  four th  t e n a n t  
opens the 4th and 8th doors. Cont inu ing  like this, the  10th t e n a n t  closes 
the 10th door. These da ta  are s u m m a r i z e d  in Table 4.2, where  O indicates  
the door is open and C indicates  the door is closed. 

T a b l e  4 . 2  
D o o r  

T e n a n t  1 2 3 4 5 6 7 8 9 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

O O O O O O O O O O 
�9 C C . C C . C 

�9 . C . O . . C . 

�9 . O . . . O . . 

. . . .  C . . . .  O 

. . . . .  C . . . .  

. . . . . .  C o o ~ 

. . . . . . .  C o ~ 

. . . . . . . .  O o 

. . . . . . . . .  C 

It follows from the table t ha t  doors 1, 4, and 9 r ema in  open at  the  end, 
so the n u m b e r  of such doors is three.  (Notice t ha t  3 - [x/~-6J ; so can you 
predict  the  answer  to the  given problem? Cons t ruc t  tables  like Table  4.2 
for 13 t e n a n t s  and 13 apa r tmen t s ,  18 t e n a n t s  and 18 a p a r t m e n t s ,  and 25 
t enan t s  and 25 apa r tmen t s ,  and look for a pat tern . )  

Let  us now r e tu rn  to the original problem. The first t e n a n t  opens all 
doors. Consider  the k th  t enan t ,  where  2 < k _< 1000. 

C a s e  1 Let  n be a perfect  square,  where  n 2 < 1000. Since n has  an odd 
n u m b e r  of positive factors, the  last  person to touch the door will open it. 
Thus  every n th  door will r ema in  open if n is a perfect  square.  The  n u m b e r  

* Based on M. vos Savant, Ask Marilyn, St. Martin Press, New York, 1992, p. 228. 
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of such doors equals the  n u m b e r  of perfect  squares  < 1000, namely,  
L~/IOOOJ - 31. 

C a s e  2 Suppose n is not  a perfect  square,  where  n 2 _< 1000. Since n has an 
even n u m b e r  of positive factors, the  last  person to touch the  door will close 
it. In o ther  words, every n th  door will r ema in  closed if n is not  a perfect  
square.  

Thus,  by the addi t ion principle, 31 + 0 - 31 doors will r ema in  open. They  
are doors n u m b e r e d  1, 4, 9, 16, 25 , . . . ,  900, and 961. I1 

More generally,  suppose there  are m t enan t s  and m apa r tmen t s ,  and the  
first t e n a n t  opens all doors. T h e j t h  t e n a n t  closes e v e r y j t h  door if it is open, 
and opens it otherwise,  where  2 < j < m. How m a n y  doors will r ema in  open 
at  the  end? 

Exercises 4.4 

1. Compute  the 36th t r i angu la r  number .  (It is the  so-called beas t ly  
n u m b e r . )  

2. Prove tha t  the  sum of two consecutive t r i angu la r  number s  is a perfect  
square.  

( T w e l v e  D a y s  o f  C h r i s t m a s )  Suppose you sent  your  love 1 gift on the  
first day of Chr is tmas ,  1 + 2 gifts on the second day, 1 + 2 + 3 gifts on the  
th i rd  day and so on. 

3. How m a n y  gifts did you send on the 12th day of Chr is tmas?  

4. How m a n y  gifts did your  love receive in the 12 days of Chr is tmas?  
Using PMI, prove each for every in teger  n > 1. 

n n (n + 1)(2n + 1) 
5. ~ ( 2 i - 1 ) = n  2 6. ~-~i2= 

i=1 i=1 6 

n [ ( n + l ) ~  2 n a ( r n _ l )  
7. ~_~i3 - ~ 8. ~-~ a r i - l =  

i=1 2 i=1 r -  1 

9. n 2 + n is divisible by 2. 

( r #  1) 

10. n 4 + 2n 3 + n 2 is divisible by 4. 

11. The n u m b e r  of lines formed by joining n (> 2) dis t inct  points in a plane, 
no three  of which being collinear, is n(n  - 1)/2. 

12. The n u m b e r  of diagonals of a convex n-gon* is n ( n  - 1)/2 > 3. 

13. Let  a be a positive integer  a n d p  a pr ime n u m b e r  such t h a t p  [a n. Then  
p [ a ,  where  n > 1. 
(Hint :  Use Exercise 37 in Section 4.2.) 

*An n-gon is a polygon with n sides. An n-gon such that the line segment joining any two 
points inside it lies within it is a convex polygon. 
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F igure  4.30 

14. P r o v e  t h a t  1 + 2 + . . .  + n - n ( n  + 1)/2 by c o n s i d e r i n g  t h e  s u m  in t h e  

r e v e r s e  order .*  (Do no t  use  i nduc t ion . )  

E v a l u a t e  each  sum.  
30 50 n n 

15. ~ (3k 2 - 1) 16. ~ (k 3 + 2) 17. ~ Li/2] 18. ~ [i/21 
k=l k=l i=l i=l 

F i n d  t h e  va lue  of x r e s u l t i n g  f rom e x e c u t i n g  each  a l g o r i t h m  f r a g m e n t .  

19. x ~ - 0  20. x ~ - 0  
f o r  i = l  t o  n do f o r  i = l  t o  n do 

x +-  x + (2 i  - 1) x <-- x + i ( i  + 1) 

21. x ~ O  

f o r  i = l  t o  n do 

f o r  j = l  t o  i do 

x ~ - x + l  

E v a l u a t e  each  s u m  a n d  p roduc t .  

n i n i n i n i 
22. ~ ~ i  23. ~ ~ j  24. ~ ~ j 2  25. ~ }-]~(2j--1) 

i=1 j= l  i=1 j= l  i=1 j= l  i=1 .j=l 
?l t l  rl t l  l l  rl 

26.  I-[ 22i 27.  ~ i 2 28.  I1 ]7 iJ 29.  [-I 1-I 2i+J 
i=l i=l i=l j=l  i=l j = l  

30. A m a g i c  s q u a r e  of o r d e r  n is a s q u a r e  a r r a n g e m e n t  of  t h e  pos i t ive  
i n t e g e r s  1 t h r o u g h  n 2 such  t h a t  t h e  s u m  of t he  i n t e g e r s  a l o n g  each  

row, co lumn,  a n d  d iagona l  is a c o n s t a n t  k, cal led t he  m a g i c  c o n s t a n t .  
F i g u r e  4.30 shows  two magic  squa re s ,  one  of o r d e r  3 a n d  t h e  o t h e r  of  
o r d e r  4. P r o v e  t h a t  t he  magic  c o n s t a n t  of a magic  s q u a r e  of  o r d e r  n is 
n ( n  2 § 1)/2. 

8 1 6 1 14 15 4 
3 5 7  1 2 7 6 9  
4 9 2 8+1110 5 

k - 1 5  13 2 3 16 

k - 3 4  

*An interesting anecdote is told about Karl Frederich Gauss (1777-1855), one of the great 
mathematicians. When he was a child, his teacher asked his pupils to compute the sum of the 
first 100 positive integers. According to the story, the teacher did so to get some time to grade 
his papers. To the teacher's dismay, Gauss found the answer in a few moments by pairing the 
numbers from both ends: 

1 + 2 + 3+ . . .+  50+ 51 + . . . +  98+ 99+ 100 

h L ' - - '  I 

The sum of each pair is 101 and there are 50 pairs. So the total sum is 50 �9 101 = 5050. 
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Let p, q, and r be pr ime numbers ,  and i , j ,  and k whole numbers .  F ind  the  
sum of the positive divisors of each. 

3 1. pi 32. piqj 33. piqJr k 

34. Let  p be a p r ime  and n e N. Prove t ha t  pn is not  a perfect  number .  
(Hint: Prove by contradict ion.)  

Find the  n u m b e r  of t imes  the s t a t e m e n t  x <-- x + 1 is executed by each 
loop. 

3 5 .  f o r  i =  1 to  n do 3 6 .  

f o r  j = l  to  i do 
x ~ x + l  

3 7 .  f o r  i = 1 to  n do 3 8 .  

f o r  j = 1 to  i do 

f o r  k = 1 to  j do 
x ~ - x + l  

f o r  i = 1 to  n do 

f o r  j = 1 to  i do 

f o r  k = 1 to  i do 
x ~ - x + l  

f o r  i = 1  to  n do 

f o r  j = 1 to  i do 

f o r  k -  1 to  i do 
f o r  1 = 1 to  i do 

x ~ - - x +  1 

According to legend, King Sh i rham of India  was so pleased wi th  the inven- 
tion of chess tha t  he offered to reward  its inventor  Sissa Ben Dahi r  wi th  
any th ing  he wished. His reques t  was a seemingly modes t  one: one gra in  
of whea t  on the first square  of a chessboard,  two on the  second, four on 
the third,  and so on. The king was del ighted with  this  simple request ,  
but  soon realized he could not fulfill it. The last  square  alone would take  
263 - 9,223,372,036,854,775,808 grains  of wheat .  Find each for an n x n 
chessboard.  

39. The n u m b e r  of grains  on the last  square.  

40. The total  n u m b e r  of grains  on the chessboard.  

41. Let  an denote the n u m b e r  of t imes  the  s t a t e m e n t  x ~ x + 1 is executed 
in the following loop: 

f o r  i = 1 to  n do 

f o r  j = i to  L i / 2 ]  do 
x+-x+l 

Show tha t  

n 2 
~ -  if n is even 

an -- n 2 -  1 if n is odd 
4 

Find the n u m b e r  of t ra i l ing  zeros in the decimal  value of each. 

42. 100! 43. 378! 44. 500! 45. 1000! 
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46. Find the flaw in the "proof" in Example 4.21. 

Prove each, where tn denotes the nth  tr iangular  number  and n > 2. 

47. 8tn + 1 - - (2n  + 1) 2 48.  St n_ 1 ~- 4n = (2n)2 

2 t2 tn 2 n n(n + 1)(n + 2) 49.  tn_ 1 -+- -- 50.  ~-~ti--  
i=1 6 

Let A, A1, A2 , . . . ,  An, B1, B2 , . . . ,  Bn be any sets, and pl ,  p2 , . . . ,  Pn, q, ql ,  
q2 , . . . ,  qn be any propositions. Using induction prove each. 

( 5 )  n n n 
"51. A U Bi - ~ (A U Bi) *52. A ~ (tABi) - ~ (A N Bi) 

i=1 i=1 i=1 i=1 

*53,  ~ ( p l A p 2  A . . .  A p n ) - - ( ~ p l ) v  (~p2)  v . . .  v (~pn)  

"54,  ~ (/91 v p 2  v . . .  Vpn)=--( '~191) A ( ~ P 2 )  A . . .  A (~pn)  

*55. Prove that  any postage of n (>_ 2) cents can be made using two- and 
three-cent stamps. (Hint: Use the division algorithm and induction.) 

*56. Let a and b be any two positive integers with a>__b. Using 
the sequence of equations in the euclidean algorithm prove tha t  
god {a, b } - god { r~_ 1, rn }, n >_ 1. 

*57. Prove the strong version of mathematical  induction, using the weak 
version. 

*58. Prove the weak version of induction, using the well-ordering 
principle. 

**59. Let Sn denote the sum of the elements in the nth set of the sequence 
of sets of squares { 1 }, { 4, 9 }, { 16, 25, 36 }, . . . .  Find a formula for Sn. 
(J. M. Howell, 1989) 

**60. Redo Exercise 59 using the sequence of tr iangular numbers  {1}, 
{3,6}, {10,15,21}, . . . .  (J .M. Howell, 1988) 

Suppose we wrote an algorithm to solve a problem and translated the algo- 
r i thm into a computer program. Since it is impossible to test the program 
for all sets of input values, we rely on a mathematical  proof to ensure that  
the program will always yield the correct output. The principle of induction 
can certify the correctness of algorithms. 

Correct  P r o g r a m  

A c o r r e c t  program yields the correct result for all legal input values, 
assuming the program contains no compilation and execution errors. 
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Proving the correctness of a program, especially a complex one, is not  at all 
an easy task. It consists of two steps: 

(1) Proving tha t  the program will always terminate;  and 
(2) proving tha t  it will always produce the correct result. The second step 

consti tutes the part ial  correc tnes s  of the program. 

Loop Invariant 

First, we will establish the partial  correctness of simple w h i l e  loops. Let 
n denote the number  of i terations of a w h i l e  loop. Assume a predicate 
P(n). A relationship among the variables holds t rue before the loop is exe- 
cuted and after each iteration of the loop, no mat te r  how large n is. As 
the algori thm execution progresses, the values of the variables in the loop 
may vary, but  the relationship remains unaffected. Such a predicate is a 
l oop  invariant .  

To prove tha t  P(n) is a loop invariant,  we apply PMI, as the next two 
examples demonstrate.  

• Algorithm 4.6 computes the product of two positive integers x and Notice y. 
tha t  the values of the variables x and y are not affected by the loop in lines 
3-7. But the values of i and a n s w e r  do get changed during each i terat ion of 
the loop. 

Algorithm mult ip l icat ion(x,y)  
(* This a lgor i thm computes the product of the pos i t i ve  integers x and y, 

and p r i n t s  the answer. *) 
O. Begin (* a lgor i thm *) 
i .  answer <-- 0 (* i n i t i a l i z e  answer *) 
2. i <-- 0 (* counter *) 
3. whi le i < x do 
4. begin (* whi le *) 
5. answer <-- answer -I- y 
6. i ~ - i + l  
7. endwhi I e 
8. End (* a lgor i thm *) 

Algorithm 4.6 

Let an  and in denote the values of a n s w e r  and i at the end of n itera- 
tions. Let P(n)" an  = in" y .  We shall prove tha t  the predicate P(n) is a loop 
invariant.  

P R O O F  (by PMI)- 
Let P(n)" an  = in" y ,  n > O. 

Bas i s  s t ep  The value n -  0 means zero iterations; it corresponds to the 
situation before the loop is entered. When n - 0,a0 = 0 and i0 - 0. 
Therefore, a0 - i0 .y; so, P(0) is true. 
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I n d u c t i o n  s t e p  Assume P(k) is true;  tha t  is, ak -- ik "y after k i terat ions .  
Then ak+l - - a k  + y and ik+l - - i k  + 1, by lines 5 and 6. Thus: 

ak+l  -- ik "Y + Y, by the inductive hypothesis  

= (ik + 1)y 

= ik+ 1 . y  

So P(k + 1) is true.  
Thus,  by PMI, P(n) is t rue  for every n >__ O; tha t  is, P(n) is a loop invar iant .  

m 

How is the proper ty  tha t  P(n) is a loop invar ian t  useful? Since an - in "y 

after n i terat ions,  it mus t  be t rue  even when we exit the loop. The loop is 
t e rmina ted  when in - x. Then a n s w e r - a n  - x . y ,  as expected. Since P(n) 
is a loop invariant ,  the a lgor i thm does indeed work correctly. 

What  exactly is the i terat ion method? Suppose we would like to com- 
pute the value f ( n )  of a function f at an integer  n > no. In the i t e r a t i o n  
m e t h o d ,  we use f (no)  to compute  f (no  + 1), then  use the successive val- 
ues f (no  + 2), f (no  + 3) , . . .  to evaluate f (n ) .  For instance, to evaluate  
n? by i teration,  we successively evaluate 0!, 1!, 2! , . . . ,  (n - 1)! and then  
evaluate n!. 

• Algori thm an a lgor i thm comput ing  n!, n >_ 0. Let 4.7 is i terative for where 
- fact(n) be the value of  f a c t o r i a l  at the end of n i terat ions of the loop. Prove 

tha t  P(n):  f a c t ( n ) -  n!  is a loop invariant .  

Algorithm factorial (n) 
(* This algorithm computes and prints the value of 

n! for every n >__ O. *) 
O. Begin (* algorithm *) 
I. factor ial  <- 1 (* i n i t i a l i z e  *) 
2. i ~- 1 (* counter *) 
3. while i < n do 
4. begin (* while *) 
5. i < - - i + I  
6. factor ial  ,-- factor ial  * i 
7. endwhi I e 
9. End (* algorithm *) 

Algorithm 4.7 

P R O O F  (by PMI)" 
Let P(n): f a c t ( n ) -  n!, n > O. 

B a s i s  s t e p  When n -  0, f a c t ( 0 ) -  1 -  1! by line 1; so P(0) is true.  
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Induction step Assume P(k) is true: f a c t ( k ) -  k!. Then: 

fact(k + 1) = fact(k) �9 (k + 1), by line 6 

= k!. (k + 1), by the inductive hypothesis 

= (k + 1)~ 

Therefore, P(k + 1) is true. 
Thus, by induction, P(n) holds t rue  for every n _>_ O; tha t  is, P(n) is a loop 

invar iant  and hence the algori thm correctly computes the value of n!, for 
every n >__ O. I 

Searching and Sorting Algorithms 

The remainder  of this section establishes the part ial  correctness of a few 
s tandard  searching and sorting algorithms. We begin with two searching 
algorithms, l inear and binary. 

Linear Search Algorithm 

L e t X  = [ X l , X 2 , . . . , X n ]  be an unordered list (also known as a one-dimensional 
ar ray  or simply an array) of n distinct items. We would like to search the 
list for a specific item, called key. If key exists in the list, the a lgori thm 
should re tu rn  the location of key. 

We search the list from right to left for convenience. Compare Xn and 
key. If Xn - key, key occurs and location = n. Otherwise, compare Xn-1 and 
key. If they are equal, we are done. Otherwise, continue the search unti l  
it is successful or the list is empty. This algori thm is the l inear search 
algorithm. 

For example, let X = [Dallas, Boston, Nashville, Albany, Port land] and 
key = Albany. Then key occurs in the list at location 4. 

In general, we cannot assume key occurs in the list. To make the search 
process always successful, we store key in location 0: xo ~ key. So if the 
search routine re turns  the value zero for location, it implies key does not 
occur in the list. 

An iterative version of the l inear search algori thm is given in 
Algorithm 4.8. 

Algorithm linear search (X,n,key,location) 
(* This algori thm searches a l i s t  by the l inear  search method for  

a key and returns i t s  locat ion in the l i s t .  To make the search 
always successful, we store key in xo. I f  the algori thm returns 
the value 0 for  locat ion,  key does not occur in the l i s t .  *) 

O. Begin (* algorithm *) 
i .  x 0 <- key 
2. i ~ - n  
3. while xi # key do 
4. i ~ - i - i  
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5. location K-- i 
6. End (* algorithm *) 

Algorithm 4.8 

Prove tha t  the linear search algori thm in Algorithm 4.8 works correctly for 
every n > 0. 

PROOF (by PMI)" 
Let P(n)" The algori thm re turns  the correct location for every list of size 
n > 0 .  

D 

Basis  s tep When n = 0, the whi le  loop is skipped. The algori thm re turns  
the value 0 in location by line 5, which is correct. So P(0) is true. 

Induct ion  step Assume P(k) is t rue for an arbi t rary integer k > 0; tha t  
is, the algori thm works when the list contains k items. 

To show that  P(k + 1) is true, consider a list X with k + 1 elements. 

Case 1 Ifxk+l = key in line 3, the whi l e  loop will not be entered and the 
algori thm re turns  the correct value k + 1 for location in line 5. 

Case 2 Ifxk+l r key, i - k  at the end of the first iteration. This restricts 
us to a sublist with k elements. By the inductive hypothesis, the algori thm 
works correctly for such a list. 

In both cases, P(k + 1) holds. Thus, by induction, P(n) is t rue for n >_ 0. 
In other words, the algorithm re turns  the correct location for every list 
with n > 0 elements. 

Binary Search Algorithm 
The binary  search  a lgor i thm searches for a given key if the list X is 
ordered. The technique employed is divide  and conquer .  First  compute 
the middle  (mid) of the list, where m i d =  [(1 + n)/2J. The middle item is 
Xmid. 

Now part i t ion the list into three disjoint sublists: [x 1 , . . . ,  Xmid-1], 
[Xmid], and [Xmid+l,-.-, Xn]. If Xmid--key, the search is successful and 
location = mid.  If they are not equal, we search only the lower half or the 
upper half of the list. If key < Xmid, search the sublist [xl, . . . ,  Xmid-1]; 
otherwise, search the sublist [Xmid+l,.. . ,  Xn]. Continue like this until  the 
search is successful or the sublist is empty. 

~ se the binary search algorithm to search the list 

X = {3, 5, 8, 13, 21, 34, 55, 89] for key = 5. 

SOLUTION" 
Let xi denote the i th element of the list X, where 1 < i < n and n - 8. 
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S t e p  1 Compute  mid  for the  list X: 

mid  - L(1 + n)/2] - L(1 + 8)/2] - 4. 

Therefore,  the  middle t e r m  is Xmi d - 13. 

S t e p  2 Compare  Xmid and key: 
Since x4 r 5, key, if it occurs, m u s t  exist in the  lower sublis t  

[Xl,X2,X3] -- [3, 5, 8] or in the  upper  sublist  [x5,x6,x7,x8] = [21, 34, 55, 89]. 
Since key < x4, search the  first sublist  and cont inue steps 1 and 2 unt i l  
e i ther  key is located or the  sublis t  becomes empty.  

S t e p  3 Compute  mid  for the  list [Xl,X2,X3]" 

m i d -  [(1 + 3)/2] - 2 

So Xmid -- x2 -- 5. 

S t e p  4 Compare  Xmi d and key: 
Since Xmid = key, the  search is successful. Key occurs at  location 2 and 

we are done. (As an exercise, use the a lgor i thm to search the  list X with  
key = 23.) m 

The steps in this  example  can be t r ans la t ed  into an a lgor i thm.  See 
Algor i thm 4.9. 

Algorithm binary search(X,l,n,key,mid) 
(* This algori thm searches an ordered l i s t  X of n elements for  a special 

O. 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 

item (key). I t  returns the locat ion of key i f  the search is 
successful and zero otherwise. The var iable mid returns such a value. 
The variables low and high denote the lower and upper indices of the 
l i s t  being searched. *) 

Begin (* algori thm *) 
low <- I 
high K-- n 
while low _< high do (* l i s t  is nonempty *) 
begin (* while *) 

mid ~-- [(low + high)/2]  
i f  key=xmi d then (* key exists in the l i s t * )  

ex i t  the loop 
else i f  key < Xmi d then (* search lower ha l f * )  

high <- mid - i 
else (* search the upper ha l f  *) 

low +- mid + I 
endwh i 1 e 

i f  low > high then (* search is unsuccessful *) 
mid , - 0  

End (* algorithm *) 

Algorithm 4.9 



230 Chapter 4 Induction and Algorithms 

The next example establishes the partial correctness of this a lgori thm 
using strong induction. 

Prove that  the binary search algori thm (Algorithm 4.9) works correctly for 
every ordered list of size n > 0. 

PROOF (by s trong induction): 
Let P(n)" The algori thm works for every ordered list of size n. 

Basis  step When n - 0, low - 1 and h i g h  - O. Since low < h i g h  is false in 
line 3, the whi le  loop is not executed. So the algori thm re turns  the correct 
value 0 from line 14, as expected, and P(0) is true. 

Induct ion  step Assume P(i) holds for every i < k, where k > 0; tha t  is, 
the algori thm re turns  the correct value for any list of size i < k. 

To show that  P(k + 1) is true, consider an ordered list X of size k + 1. 
Since h i g h  = k + 1 > 1 = low,  the loop is entered and the middle index is 
computed in line 5. 

Case 1 If key- -Xmid ,  we exit the loop (line 7) and the value of m i d  is 
returned,  so the algori thm works. 

Case 2 If key < Xmid, search the sublist x l, . . . ,  Xmid-1; otherwise, search 
the sublist Xmid+l, . . .  , X,z. In both cases, the sublists contain fewer than  
k + 1 elements, so the algori thm works in either case by the inductive 
hypothesis. 

Thus P(k + 1) is true. So, by PMI, P(n) is t rue for n >_ 0; tha t  is, the 
algorithm works correctly for every ordered list of zero or more items, i 

Next we present  two s tandard sorting algori thms and prove their  
correctness. 

Sorting Algorithms 

Suppose we are given a list ofn items and would like to sort them in "ascend- 
ing order." Several methods are available. Two algori thms that  can do the 
job are bubble sort and selection sort. 

Bubble  Sor t  

Bubble  sort is a simple, elegant algorithm for sorting a list of n items. It 
"bubbles up" smaller items to the top and pushes larger items to the bottom: 
Compare consecutive elements, beginning with the first pair. Swap them if 
they are out of order. Compare the next pair and swap them if necessary. 
Continue like this to the end of the list. This ends the first pass. Now place 
the largest element at the end of the list. Repeat these steps with all but  
the largest element until  the result ing sublist consists of one element. The 
list is now ordered. 
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The following example demonstrates this method. 

sort, = [34, 13, 21, 3, 89]. Using bubble sort the list X 

SOLUTION:  
Let xi denote the ith element in the list, where 1 < i < 5. The given list is 

1 2 3 4 5 

Step 1 Compare Xl and X2. Since Xl > X2, swap them. This yields the list 

1 2 3 4 5 

Now comparex2 andx3. Sincex2 > x3, interchangex2 andx3. This produces 
the list 

1 2 3 4 5 

Since X 3 > X4, switch them, yielding the list 

1 2 3 4 5 

Compare X4 and x5. Since X4 < X5, they are in the correct order 
and no interchanging is needed. This completes the first pass. At the 
end of the first pass, the largest element in the list is placed in proper 
position: 

1 2 3 4 5 

X 1 1 3 1 2 1 1 3 1 3 4 1 8 9 ]  

to besor ted  
in correct position 

Step 2 In the second pass, compare the elements xl through X4 and swap 
them if necessary. This results in the two largest elements being placed 
correctly: 

1 2 3 4 5 

to be sorted correctly sorted 
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S t e p  3 The th i rd  pass involves the  e lements  x l t h r o u g h  X 3. At the  end of 
this  pass, the  th ree  largest  e lements  are correctly placed: 

1 2 3 4 5 

~ �9 y ,J 

to be sorted in correct  order  

S t e p  4 At the end of the  four th  pass the list is complete ly  sorted: 

1 2 3 4 5 

all in correct  order 

T w o  i m p o r t a n t  observat ions"  

�9 At the end of the  i th  pass, the  i largest  e lements  are correct ly placed 
at  the  end of the  list, where  1 < i < n. So the  (i + 1)st pass involves 
the  e lements  Xl t h rough  Xn_ i . 

�9 Bubble sort  takes  n - 1 passes to sort  a list of n i tems,  even if the  
list becomes ordered at  the  end of the i th  pass, where  i < n - 1. 
Once the list is sorted, it makes  no sense to go t h r o u g h  the  remain-  
ing passes, so the  addi t ional  passes can be avoided wi th  a boolean 
variable. 

The various steps in Example  4.30 can be developed into an a lgor i thm 
for bubble sort, as p resen ted  in Algor i thm 4.10. 

Algorithm bubble sort(X,n) 
(* This algorithm sorts a l i s t  X of n elements 

using the bubble algorithm. *) 
O. Begin (* algorithm *) 
1. for i - -1  to n - 1 do 
2. for j = l  to n -  i do 
3. i f  Xj > Xj+ 1 then 
4. swap xj and Xj+ 1 
5. End (* algorithm *) 

Algorithm 4.10 
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Establish the correctness of the bubble sort algorithm. 

P R O O F  (by PMI)" 
Let P(n)" The algori thm sorts every list of size n > 1. 

Bas i s  s t ep  When n -  1, the list contains just  one element and hence is 
clearly sorted, so P(1) is true. 

I n d u c t i o n  s t e p  Assume P(k) is true; tha t  is, the algori thm sorts correctly 
every list of k (> 1) items. 

To show that  P(k + 1) is true, consider a list X - [ X l , X 2 , . . . ,  Xk+l]. 
Since k + 1 > 2, the fo r  loop in line 1 is entered. When i -  1, j runs from 1 
through n - 1. Lines 3 and 4 are executed: the consecutive elements xj and 
Xj+l are compared and swapped if out of order. The inner fo r  loop places 
the largest of the elements Xl, x2, . . . ,  Xk+l in position k + 1. This leaves 
a sublist of k elements, [xl, x2, . . . ,  Xk]. By the inductive hypothesis, the 
algorithm correctly sorts it. It follows that  the algori thm correctly sorts 
the entire list X; tha t  is, P(k + 1) is true. 

Thus, by the principle of induction, P(n) is t rue for n > 1; that  is, the 
bubble sort algori thm always works, m 

S e l e c t i o n  S o r t  

Unlike bubble sort, s e l e c t i o n  s o r t  finds the largest element and swaps it 
with xn if xn is not the largest element. Find the largest of the remaining 
elements Xl, x2, . . . ,  Xn-1, and switch it with Xn-1 if it isn ' t  xn-1. Continue 
like this until  the list is completely sorted. 

In each pass, unlike in bubble sort, if two elements are out of order, we 
do not swap them right away but  wait to find the largest element of the 
sublist. At the end of the ith pass, the largest of the elements xl, x2 , . . . ,  
X n - i + l  is swapped with Xn_ i+l ,  where 1 < i < n. 

This outline of the selection sort algori thm can be a bit refined. In the 
ith pass, initially assume Xn-i+l is the largest element. Find the largest of 
the elements x l, x2 , . . . ,  Xn-i. Swap it with Xn-i+l if necessary. Algorithm 
4.11 results. 

Algorithm selection sort(X,n) 
(* This algorithm sorts a l i s t  X of n items using the i terat ive version 

of selection sort. Maxindex denotes the index of the largest element 
in a given pass. *) 

O. Begin (* algorithm *) 
1. i f  n > i then(* l i s t  contains at least two elements *) 
2. for i = 1  to n - 1 do 
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g. 

I0. 
11. 

3. begin (* for *) 
4. maxindex ~- n - i + i (* assume Xn_i+ 1 is the 

largest element; save i ts index. *) 
5. for j----1 to n - i do 
6. i f  Xj > Xmaxindex, then (* update maxindex *) 
7. maxindex ~- j 
8. i f  maxindex r  i + i ,  then (* found a larger 

element; swap the corresponding elements *) 
swap Xmaxindex and Xn_i+ 1 

endfor 
End (* algorithm *) 

A1 gori thm 4. i i  

~ Establish the correctness of Algorithm 4.11. 

P R O O F  (by PMI): 
Let P(n)" The algori thm works correctly for every list of size n _> 1. 

Bas i s  s tep  When n = 1, the list contains one element and is clearly sorted, 
so P(1) is true. 

I n d u c t i o n  s tep  Assume P(k) is true; tha t  is, the algori thm sorts correctly 
every list of size k >__ 1. 

To show that  P(k + 1) is true, consider a list X =  |x x, x2, . . . ,  Xk+l] with 
k + 1 elements, where k + 1 _> 2. Since k + I >_ 2, the condition in line 1 is 
satisfied, and we enter  the loop in line 2. When i = 1, max index  = (k + 1) - 
1 + 1 = k + 1. The fo r  loop in lines 5-7 compares each of the elements Xl, 
x2 , . . . ,  xh with Xmaxindex and updates it as needed. Line 8 updates  max index  
if we have found an element larger than Xh+l. If maxindex ~: k + 1, then 
the elements xk+ 1 and Xmaxindex are swapped. This stores the largest of the 
k + 1 elements in position k + 1, leaving a sublist of k elements,  namely, 
x 1, x2,..  �9 xh to be sorted. 

Therefore, by the inductive hypothesis, the algori thm sorts correctly the 
list X containing k + 1 elements. 

Thus, by induction, P(n) is t rue for every n >_ 1; tha t  is, the algori thm 
correctly sorts every list of size n. B 

These searching and sorting algori thms are pursued again in Section 4.7. 
Additional sorting algori thms appear in the exercises. 

Exercises 4.5 

Prove that  the given predicate P(n) in each algori thm is a loop invariant.  

1. Algorithm exponential (x,n) 2. 
(* This algorithm computes 
x n, where xEIR + and 
n ~W. *) 

Algorithm divi sion(x,y) 
(* This algorithm computes 
the quotient and the 
remainder when a positive 
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0. Begin (* algorithm *) 
i .  answer +- I 
2. while n > 0 do 
3. begin (* while *) 
4. answer +- answer, x 
5. n < - n - 1  
6. endwhile 
7. End (* algorithm *) 
P(n): an = x n, where an 
denotes the value of answer 
after n iterations of the 
while loop. 

3. Algorithm Euclid(x,y,clivi sor) 
(* See Algorithm 4.2 *) 
P(n): gcd{xn,Yn}--gcd{x,y} 
where Xn and Yn denote 
the values of x=dividend 
and y- -d iv isor  after n 
i terat ions. 

4. Algorithm gcd (x,y) 
(* This algorithm computes 
the gcd of two positive 
integers x and y. *) 
0. Begin (* algorithm *) 
i .  while x # y do 
2. i f  x > y then 
3. x ~ - x - y  
4. else 
5. y , - y - x  
6. gcd +- x 
7. End (* a lgor i thm *) 
P(n): gcd {xn ,Yn } - - - gcd {x , y } ,  
where Xn and Yn denote the 
values of x and y at the end 
of n i t e r a t i o n s  of the loop. 

integer x is 
divided by a positive 
integer y using addition and 
subtraction. *) 
0. Begin (* algorithm *) 
1. dividend ~- x 
2. divisor <- y 
3. quotient ~-- 0 
4. remainder ,-- dividend 
5. while dividend > 

di vi sor do 
6. begin (* while *) 
7. di vi dend <-- di vi dend 

- di vi sor 
8. quotient K-quotient + i 
9. remainder <-dividend 

10. endwhile 
11. End (* algorithm *) 

5. Algorithm sum (x,y) (* This 
algorithm prints the sum of 
two nonnegative integers x 
and y. *) 
0. Begin (* algorithm *) 
I .  sum , -  x 
2. count , -  0 (* counter *) 
3. whi le count < y do 
4. begin (* whi le *) 
5. sum , -  sum-I- i 
6. count , -  count + I 
7. endwhile 
8. End (* algorithm *) 
P(n): x--qny + rn, where qn 
and rn denote the quotient 
and the remainder after n 
i terat ions. 

6. Algorithm square (x) (* This algorithm prints the square of x EW. *) 
0. Begin (* algorithm *) 
1. answer , -  0 
2. i <-- 0 (* counter *) 
3. While i < x do 
4. begin (* while *) 
5. answer <-answer + (2i + 1): 
6. i < - i  + i  
7. endwhi I e 
8. End (* algorithm *) 
P(n): an --n 2, where an denotes the value of answer at the end of n 
i terat ions. 
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Using the algori thm in Exercise 4, compute the gcd of each pair  of 
integers. 

7. 18,3 8. 28,12 9. 28,48 10. 24,112 

Sort the following lists using the bubble sort algorithm. 

11. 23, 7, 18, 19, 53 12. 19, 17, 13, 8, 5 

13-14. Sort each list in Exercises 11 and 12 using the selection sort  
algorithm. 

Write an iterative algori thm to do the tasks in Exercises 15-17. 

15. Compute n V., n _> 0. 

16. Determine if two n x n matrices A and B are equal. 

17. Compute the product of two n x n matrices A and B. 

18. Let A=(aij)nxn and B-(b i j )nxn .  A is l e s s  than or equal to B, 
denoted by A < B, if aij <_ bij for every i and j .  Write an a lgor i thm 
to determine ifA < B. 

Consider a list X of n numbers  xl, x2 , . . . ,  Xn. Write iterative a lgor i thms to 
do the tasks in Exercises 19-25. 

19. Find the sum of the numbers.  

20. Find the product of the numbers.  

21. Find the maximum of the numbers.  

22. Find the min imum of the numbers.  

23. Pr in t  the numbers  in the given order x l, x2 , . . . ,  xn. 

24. Pr in t  the numbers  in the reverse order Xl, x2 , . . . ,  Xn. 

25. Write an algori thm to determine if a str ing S of n characters  is a 
palindrome. 

26-36.  Establish the correctness of each algori thm in Exercises 15-25. 

Use the i n s e r t i o n  s o r t  algori thm in Algorithm 4.12 to answer Exercises 
37-39. 

Algorithm insertion sort(X,n) 
(* This algorithm sorts a l i s t  X of n elements into 

ascending order by inser t ing a new element in the 
proper place at the end of each pass. *) 

O. Begin (* algorithm *) 
i .  for  i - - 2  to n do 
2. begin (* for  *) 
3. temp ~-- xi (* temp is a temporary var iable *) 
4. j < - - i - 1  
5. while j >__ 1 do 
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6. begin (* while *) 
7. i f Xj > temp then 
8. xjH_ 1 <-- xj 
9. j + - j - - 1  

10. endwh i I e 
11. x j+  1 <-- temp 
12. endfor 
13. End (* algorithm *) 

Algorithm 4.12 

Sort each list. 

37. 3, 13, 8, 6, 5, 2 38. 11, 7, 4, 15, 6, 2, 9 

39. Establish the correctness of the algorithm. 

The growth of functions can be investigated using three impor tant  nota- 
tions: the big-oh (O), the big-omega (gz), and the big-theta ((~)) notations.* 
We will employ it in Sections 4.7 and 5.7 to analyze some s tandard  
algorithms. 

Suppose we have developed two algori thms to solve a problem. To deter- 
mine if one is bet ter  than the other, we need some type of yardst ick to 
measure their  efficiency. Since the complexity of an algori thm is a function 
of the input size n, we measure efficiency in terms ofn. To this end, we begin 
with the big-oh notation, introduced in 1892 by the German mathemat ic ian  
Paul Gustav Heinrich Bachmann. The big-oh symbol is also known as the 
L a n d a u  s y m b o l  after the German mathemat ic ian  Edmund Landau who 
popularized it. 

The Big-0h Notation 

Let f, g: N ~ E. Then f(n) is of o r d e r  at  m o s t  g(n), if a positive constant  
C and a positive integer no exist such tha t  I f(n)l _< CIg(n)l for every n > no. 
In symbols, we write f(n)= O(g(n)). (Read this as f(n) is big-oh ofg(n).) 

In this definition, if we can find one value for C, any value greater  than  
tha t  also will work, so the value of C is not unique. 

When we say the time needed to execute an algorithm is O(g(n)), it 
simply means the time needed is not more than some constant  t imes Jg(n)l 
when n is sufficiently large. For instance, let Cn denote the max imum 
number  of element comparisons required in line 3 of the linear search 
algori thm (Algorithm 4.8), where n denotes the input size. Using Cn as an 

*g2 and (~) are the uppercase Greek letters omega and theta, respectively. 
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P a u l  Gus tav  Heinr ich  B a c h m a n n  (1837-1920), the son of a 
Lutheran minister, was born in Berlin. He inherited a pious attitude and 
a great love for music. During his early years, he had difficulties in math- 
ematical studies, but his talent was discovered by one of his teachers. 

After recovering from tuberculosis in Switzerland, Bachmann studied 
mathematics, first at the University of Berlin and then at the University of  
GSttingen, where he attended Dirichlet's lectures. In 1862 he received his 
doctorate from Berlin under the guidance of the famous German math- 
ematician Ernst Kummer, for a thesis on group theory. He became a 
professor at Breslau and later at Munster. 

Around 1890, he resigned his position and moved to Weimar, Germany, 
where he continued his mathematical writing, composed music, played 
the piano, and wrote music criticism for newspapers. His writings include 
several volumes on number theory and a book on Fermat's Last Theorem. 
Bachmann died in Weimar. 

:i:,,); :.. 

E d m u n d  L a n d a u  (1877-1938), the son of a gynecologist, was born in 
Berlin. After attending high school, he studied mathematics at the University 
of Berlin, receiving his doctorate under the German mathematician Georg 
Frobenius in 1899. He taught at Berlin until 1909 and then moved to the 
University of GSttingen, where both David Hilbert and Felix Klien were col- 
leagues. After the Nazis forced him to quit teaching, he never gave another 
lecture in Germany. 

Landau's principal contributions were to analytic number theory, espe- 
cially to the distribution of primes. He wrote several books and more than 250 
papers, and exercised tremendous influence on the development of number 
theory. Landau died suddenly in Berlin. 

e s t i m a t e  of the  execut ion of the  a lgor i thm,  it can be shown t h a t  c,~ - O ( n )  
(see E x a m p l e  4.44). This  m e a n s  c,~ grows no fas ter  t h a n  n, w h e n  n is 
sufficiently large. 

Before we ana lyze  the  execut ion  t imes  of a lgor i thms ,  we will s t udy  a few 
s imple  examples  to show how to use  the  big-oh nota t ion .  

Let  f ( n ) -  50n 3 - 6n + 23. Show t h a t  f ( n ) -  O(n3). 

S O L U T I O N :  
f(n) = 50n 3 - 6 n  + 23 

Therefore ,  

i f (n )  ] - ]  50n 3 - 6n + 23 I 

<]  50n 3 ] + i - 6 n  I + I 23 I, by the  t r i ang le  inequa l i ty  
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= 50n 3 + 6 n + 2 3  

< 5 0 n 3 + 6 n 3 + 2 3 n 3  w h e n n > l  

= 79n 3 

(Note" no = 1) 

Thus, by taking C -  79, it follows that  f (n)  - O ( n 3 ) .  II 

More generally, we have the following result. 

m 
~ Let f(n) = E ai ni be a polynomial in n of degree m. Then f(n) - O(nm). 

i=0 

P R O O F :  
f ( n )  - amn m + am_ in  m-1 + . . .  + a l n  + ao. By the triangle inequality, 
we have" 

[f(n)l _< [am[n m + [am-l ln  m-1 -F . . . -F  [alln + la0[ 

<_ [amln m + [am_ll nm + . . .  + [alln m + [ao[n m, n >_ 1 

- -  Ja i l  n m - -  C n  m ,  where C - l a i  [ 

i=1 

= O ( n  m) 

Thus, when n is sufficiently large, the leading term dominates the 
value of the polynomial. II 

In Example 4.33, although f ( n ) -  O(n3), it is also true that  f ( n )  <_ 79n 5 
and f ( n )  < 79n 6. So we could say correctly, but meaninglessly, that  
f ( n ) - O ( n  5) and also f ( n ) - O ( n 6 ) .  To make comparisons meaningful, 
however, we shall always choose the smallest possible order of magnitude. 

Commonly Used Order Functions 

The most common order functions and their names are listed below, 
arranged in increasing order of magnitude: 

�9 Constant O(1) 

�9 Logarithmic O(lg n) 

�9 Linear O(n) 

�9 (no name exists) O(n lg n) 

�9 Quadratic O(n 2) 

�9 Cubic O(n 3) 

�9 Polynomial O(n m) 
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T a b l e  4 . 3  

�9 Exponential  O(2 n) 

�9 Factorial  O(n!) 

When we say tha t  the order of magni tude  of an algori thm is a constant ,  
we mean tha t  the execution time is bounded by a constant;  tha t  is, it is 
independent  of the input  size n. If the order is linear, the execution t ime 
grows linearly; it is directly proportional to the input  size. 

Approximate values of some of the order functions are given in Table 4.3 
for comparison; the graphs of a few of them are given in Figure  4.31. 

lg  n n n lg  n n 2 

3 10 30 100 
6 100 600 10,000 
9 1,000 9,000 100,000 

13 10,000 130,000 100,000,000 
16 100,000 1,600,000 10,000,000,000 
19 1,000,000 19,000,000 one trillion 

F i g u r e  4 . 3 1  

y = n !  

y = 2  n 

128 

64 

32 

16 

8 

4 

2 

1 

1 2 3 4 5 6 7 8 9 

, = n  2 

- y = n  lgn 

. y = n  

- - - y = n  lg n 

y = l  

-+---~ n 
10 

The order functions satisfy the following relationships among the fre- 
quently used execution times, when n is sufficiently large: O(1) < O(lg n) 
< O(n) < O(n lg n) < O(n 2) < O(n 3) < O(2 n) < O(n!). They give us an 
idea of how long algori thms of varying orders will take to execute jobs. 
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For  instance, if two algor i thms solve a problem, one with O(n) and the 
other  with O(lg n), then  (other th ings  being equal) the second a lgor i thm 
will work faster. 

The next two examples also i l lustrate  how to es t imate  the growth  of 
functions. 

Show tha t  n! = O(n n) and lgn!  ~ - O ( n  lgn) .  

S O L U T I O N :  

�9 n! = n ( n - 1 ) . . . 3  �9 2 �9 1 

< n .  n . . . n . n ,  n, where n >_ 1 
= n n 

-- O(n n) (Note" Use C -  1.) 

�9 Since n! _< n n from above, 
lg n! < n lg n (Note: If 0 < x < y, then  lg x < lg y.) 

= O(n lg n) 

m 

The following example shows how to es t imate  in a nested f o r  loop the 
growth of the n u m b e r  of t imes an ass ignment  s t a t ement  is executed. 

Es t imate  f(n), the num be r  of t imes the s t a t ement  x <- x + 1, is executed in 
the following f o r  loop. 

f o r  i - - i  to n do 
f o r  j = l  to i do 

x < - - x +  1 

S O L U T I O N :  
Since the s t a t ement  x ~ x + 1 is executed i t imes for each value of i, where  
1 < i  < n ,  

n 

f (n)  - E i = n(n + 1) _ O(n2 ) 
n 

i=1 

As n increases, f(n) grows as n 2. II 

The  Growth  of a S u m  of Two F u n c t i o n s  

Imagine an a lgor i thm consist ing of two subalgori thms.  Suppose the orders 
of execution t imes of the subalgor i thms are given by fl (n) - O(gl(n))  and 
f2(n) - O(g2(n)). The next theorem shows how to compute the order  of the 
algorithm. 

Let fl(n) - O(gl(n)) and f2(n) - O(g2(n)). Then  (fl  + f2)(n) 
O(max{Igz (n)l, Ig2(n)l}). 
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P R O O F  
By definition, there  exist positive constants  C1, C2, nl ,  and n2 such t ha t  
]fl(n)i < C1 ]gl(n)] for n > nl ,  and if2(n)] < C2ig2(n)] for n > n2. Let  
C - max{C1, C2}, no - max{n1, n2}, andg(n )  - max{ [gl(n)i, ig2(n)] }. Then" 

Ifl(n) + f2(n)l < Cllgl (n) i  + C2]g2(n)l 

<_ Clg(n)i + Clg(n)], where n >_ no 

- 2Cig(n)i 

Thus  f l(n)  + f2(n) = O(g(n)); tha t  is, (fl  + f2)(n) - O(max{igl (n)i, Ig2(n)l}). 
I 

It follows by this theorem tha t  i f f l (n)  - O(g(n)) and f2(n) - O(g(n)), t hen  
(['1 + f2 ) (n )=O(g(n ) ) .  Why? 

The Growth of a Product of Two Functions 

The next theorem helps us to es t imate  the growth of (f] .f2)(n), the product  
of the functions fl and f2. 

Le t f l (n )  - O(gl(n))  andf2(n)  - O(g2(n)). Then  ( f l . f2)(n)  - O(gl(n) .g2(n)) .  

P R O O F  
Again, by definition, there  are constants  C1, C2, nl ,  and n2 such tha t  
]fl(n)] _< Cligl(n)[ for n >_ n], and ]f2(n)l _< C2[g2(n)] for n >_ n2. Let 
C -  C1C2 and no - max{n],n2}. Then" 

](f].  f 2 ) ( n ) i -  ]f](n).  f2(n)i 

= [fl(n)].  ]f2(n)] 

<_ Cligl(n)[ . C2]g2(n)i 

= Clgl(n)g2(n)i ,  where  n >_ no 

Thus  (fl" f2)(n) - O(gl(n)g2(n)) .  I 

The next two examples employ this handy theorem along with the earlier 
theorems.  

Let f ( n )  = 6n 2 + 5n + 7 lg n!. Es t imate  the growth off(n).  

S O L U T I O N :  
Since 6n 2 - O(n 2) and 5n - O(n), 6n 2 + 5n - O(n 2) by Theorem 4.15. 
Fur the rmore ,  7 - O(1), and lg n! - O(n lg n) by Example  4.34. So 

7 lg n! = O(1).  O(n lg n) 

= O(1.  n lg n), by Theorem 4.16 

= O(n lg n) 
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Since lg n < n, n lg n < n 2 for n > 1 (see Figure  4.31), it follows by 
Theorem 4.15 tha t  f ( n )  - O(n 2) + O(n lg n) - O(n2). i 

Let f ( n )  - (3n 2 + 4n - 5) lg n. Es t imate  the growth off(n).  

SOLUTION: 
3n 2 + 4n - 5 -  O(n2), by Theorem 4.14 
Clearly, 

lg n - O(lg n) 

So 

f ( n )  - (3n 2 + 4n - 5) lg n 

= O(n2) �9 O(lg n) 

= O ( n  2 lg n), by Theorem 4.16 II 

We now tu rn  to the big-omega and the big-theta nota t ions  for investi- 
gat ing the growth of functions. 

The Big-Omega and Big-Theta Notations 

The big-oh notat ion has been widely used in the s tudy of the growth  of func- 
tions; however, it does not give us an exact order  of growth. For  instance, 
f ( n ) - O ( g ( n ) )  jus t  implies tha t  the function f does not  grow any faster  
t han  g. In other  words, it simply provides an upper  bound for the size of 
f ( n )  for large values of n, but  no lower bound. 

When we need the lower bound,  we employ the big-omega notat ion.  
When we need both bounds  to es t imate  the growth of f, we use the big- 
the ta  notation.  Both nota t ions  were introduced in the 1970s by Donald 
Knu th  of Stanford Universi ty.  

We now pursue  the big-omega notat ion.  As you could imagine by now, its 
definition closely resembles tha t  of the big-oh notat ion;  it can be obtained 
by simply changing _< to >_. 

The Big-Omega Notation 

Let f , g "  • ~ R.  Suppose there  is a positive cons tant  C and a positive 
integer  no such tha t  If(n)] >__ Cig(n) i  for every n >_ no. Then  f ( n )  is g2(g(n)); 
tha t  is, f ( n )  - ~ ( g ( n ) ) .  [As above, read this as f ( n )  is big-omega of g(n).] 

The following example i l lustrates  this definition. 

Let f ( n ) -  50n 3 - 6n + 23. When  n >_ 0, 50n 3 - 6n + 23 > 50n 3. So, with 

C - 5 0  and g ( n )  - n 3, it follows tha t  f ( n )  >__ C . g ( n )  for every n >_ 0. Thus  
f ( n )  - g2(n3). (Notice tha t  here no - 0.) i 
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D o n a l d  Erv in  K n u t h  (1938-), a pioneer in the development of the theory of 
compilers, programming languages, and the analysis of algorithms, is also 
a prolific writer in computer science. He was born in Milwaukee, Wisconsin, 
where his father, the first college graduate in the Knuth family, taught 
bookkeeping at a Lutheran high school; his talent for mathematics and music 
played a significant role in the intellectual development and pursuit of the 
young Knuth. 

As a youngster, Knuth had a marvelous gift for solving complex problems. 
As an eighth grader, he entered the Ziegler's Candies Contest to find the 
number of words that can be formed from the letters in Ziegler's Giant Bar. 
Knuth listed 4500 such words, 2000 more than in Ziegler's master list. This 
won a television set for the school and enough Ziegler candy for the entire 
student body. 

In high school, Knuth entered the prestigious Westinghouse Science Talent Search (now Intel Science 
Talent Search) with his project, The Prtrzebie System of Weights and Measures, that would replace the 
cumbersome British system. His project won an honorable mention, and $25 from MAD Magazine for 
publishing it. When he graduated from high school, he was already an accomplished mathematician, 
musician, and writer. 

He majored in physics at the Case Institute of Technology (now Case Western Reserve University) and 
was introduced to an IBM 650 computer, one of the earliest mainframes. After studying the manual from 
cover to cover, he decided that he could do better and wrote assembler and compiler code for the school's 
IBM 650. 

In 1958, Knuth developed a system for analyzing the value of a basketball player, which the coach then 
used to help the team win a league championship. Newsweek wrote an article about Knuth's system and 
Walter Cronkite carried it on the CBS Evening News. 

In his sophomore year, Knuth switched his major to mathematics. His work at Case was so distin- 
guished that when he was awarded his B.S. in 1960, the faculty made an unprecedented decision to grant 
him an M.S. concurrently. 

Knuth then entered the California Institute of Technology for graduate work and received his 
Ph.D. in mathematics 3 years later. He joined the faculty there, also consulting for the Burroughs 
Corporation writing compilers for various programming languages, including ALGOL 58 and 
FORTRAN H. 

From 1968-1969, he worked at the Institute for Defense Analyses, Princeton, New Jersey. In 1969, 
Knuth joined the faculty at Stanford University. 

Knuth's landmark project, The Art of Computer Programming, was initiated by Addison-Wesley 
Publishing Co. in early 1962, while he was still in graduate school. Dedicated to the study of algorithms, 
it would be a seven-volume series when completed. A revered work, it was the pioneer textbook in the 
1970s and continues to be an invaluable resource. Knuth developed two computer languages to deal with 
mathematics typography, TEX, a typesetting program, and Metafont, a program to develop the shapes of 
letters. 

He has received numerous honorary degrees from universities around the world: the Grace Murray 
Hopper Award (1971), the Alan M. Turing Award (1974), the Lester R. Ford Award (1975), the National 
Medal of Science (1979), the McDowell Award (1980), the Computer Pioneer Award (1982), and the Steele 
Prize (1987). 

An accomplished church organist and composer of music for the organ, Knuth retired from Stanford 
in 1992. 
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We now make  an in te res t ing  observation.  To this end, let f ( n )  = f~(g(n)); 
so If(n)[ >_ Clg(n)[ for n >_ no. Then  Ig(n)l _< C'[f(n)[ for some positive 
constant  C t = 1/C; so g(n )  = O( f (n ) ) .  Conversely, let g(n )  = O(f(n)). 
By re t rac ing these steps, it follows tha t  f(n) = ~ ( g ( n ) ) .  T h u s  f(n) = 
f~(g(n)) if and only i fg(n)  - O(f(n)). 

We now define the big-theta  notat ion,  us ing the big-oh and big-omega 
notations.  

The Big-Theta Notation 

Let f , g  �9 N --+ R such tha t  f ( n ) -  O(g(n)) and f ( n ) =  gz(g(n)). Then  f (n )  is 
said to be of o r d e r  g(n) .  We then  write f ( n ) =  |  read this as f (n)  is 
big-theta of g(n) .  

The next two examples i l lustrate  this definition. 

Let f ( n )  - (3n 2 -+- 4n - 5) lg n. By Example 4.37, f ( n )  - O(n 2 lg n). When 

n > 1, we also have: 

(3n 2 + 4n - 5)lg n > 3n 2 lg n 

Tha t  is, 

f ( n )  > 3(n 2 lg n) 

So 

f ( n )  - f2(n 2 lg n) 

Thus  f (n)  -- O(n 2 lg n) - f2(n 2 lg n), so f (n)  - | 2 lg n). II 

Let f (n)  show the n u m b e r  of t imes the ass ignment  s t a t ement  x ~ x + 1 
is executed by the nested for loops in Example 4.35. Recall tha t  f ( n )  - 
n (n  + 1)/2 -- O(n2). 

Since n + 1 >_ n for every n >_ 1, it follows tha t  n(n  + 1)/2 >_ n2/2; 
so f (n)  - f2(n2). Thus  f (n)  - | II 

We now make  two in teres t ing  observat ions from Examples  4.39 and 
4.40: 

�9 I ff(n)  is a polynomial  in n of degree m, then  f (n )  =O(nm) .  

�9 f ( n ) =  |  if and only if Alg(n)] <_ If(n)] <_ B [ g (n )  ] for some 
constants  A and B. 

See Exercises 50 and 51. 
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Before closing this section, we add that  the definitions of the big-oh, big- 
omega, and big-theta notations remain valid even if the domain of f consists 
of real numbers. 

Exercises 4.6 

Using the big-oh notation, estimate the growth of each function. 

1. f ( n ) - 2 n + 3  

4. f ( n ) - 3 +  l g n  

7. f (n)  - lg (5n)! 

2. f (n) - 4n 2 + 2 n - 3  

5. f (n) = 31g n + 2 

8. f (n )  - 23 

n n 

10. f ( n ) -  ~ k 3 11. f ( n ) =  ~ Li/2J 
k = l  i=1 

3. f (n )  = 2n 3 - 3n 2 + 4n 

6. f (n) = (3n)! 

n 
9. f ( n ) =  ~ k 2 

k = l  

n 

12. f (n )  - ~ [i/2] 
i - 1  

Verify each. 

n- 1 n 
13. 2 ' 2 - O ( n ! )  14. ~ 2 i - O ( 2  n) 15. ~ i  k - O ( n  k+l) 

i=0  i=0  

?l H 

n 1 - 0 ( 1 )  17. ~ i ( i + l ) = O ( n  a) 18. ~ ( 2 i  1 ) 2 - 0 ( n  a) 16. - - i ( i + 1 ) -  
i=1 i=1 i=1 

19-22. Let an denote the number  of times the s tatement  x ~-- x + 1 is 
executed by each loop in Exercises 35-38 in Section 4.4. Using the 
big-oh notation, estimate the growth of a,2 in each case. 

23-32.  Using the big-omega notation, estimate the growth of each function 
in Exercises 1-5 and 8-12. 

Verify each. 

33. (3n)! - g~(6 n) 

n 

35. ~ (2i - 1) - g~(n 2) 
i=1 

37. 2n + 3 - S2(n) 

39. 2n 3 - 3 n  2 + 4 n - ~ ( n  3) 

41. 3 1 g n + 2 - S 2 ( l g n )  

n 

43. ~ [i/2J -- f2(n 2) 
i--1 

Jl 

34. ~ i(i + 1 ) -  g2(n 3) 
i=1 

n 

36. ~ (2i - 1) 2 - i2(n 3) 
i=1 

38. 4n 2 + 2 n - 3 = ~ ( n  2) 

40. 3 +  l g n - ~ ( l g n )  

42. 2 3 -  ~(1) 
n 

44. ~ [i/27 = g2(n 2) 
i=1 
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45. Let f l(n) = O(g(n)) and f2 (n) = k f  1 (n), where k is a positive constant.  
Show tha t  f2 (n) = O(g(n)). 

46. Consider the constant  function f ( n )  = k. Show tha t  f ( n )  = O(1). 

Let f (n) = O(h (n ) )  and g ( n )  = O(h(n) ) .  Verify each. 

47. ( f  + g ) (n )  = O(h (n ) )  48. ( f  . g ) (n )  = O((h(n)) 2) 

49. Let f, g, and h be three functions such tha t  f ( n )  = O(g(n)) and g ( n )  - 
O(h(n) ) .  Show tha t  f ( n )  = O(h(n) ) .  

m 

50. Let f (n)  = ~ ai ni,  where each ai is a real number  and am ~ O. Prove 
i=O 

tha t  f (n)  = |  

51. Let f , g  : N ~ IR. Prove tha t  f ( n )  - |  if and only i fA  ]g(n) ] < 
If(n)[ < B ]g(n) I for some constants  A and B. 

The time complexities of s tandard  algori thms can be used to est imate theo- 
retically using the big-oh and big-theta notations. Before beginning to code 
an algori thm we should make sure it will do its job. Why is analyzing the 
algori thm important?  Several routines can perform the same task, but  not 
necessarily with the same efficiency, so we should employ the one tha t  is 
most efficient. 

Two norms are used to measure  the efficiency of an algorithm: space 
complexity and t ime complexity. 

Space Complexity 

S p a c e  c o m p l e x i t y  refers to how much storage space the algori thm needs. 
Since this depends on factors such as the computer  used and methods of 
data  storage, we restr ict  our discussion to t ime complexity. 

Time Complexity 
The t ime complex i ty  of an algori thm refers to the t ime it takes to run  the 
algorithm. It is often measured by the number  of fundamenta l  operations 
performed by the algorithm. In the case of a sorting or searching algorithm, 
we shall use element-comparison as the basic operation. Since the t ime 
required by an algori thm depends on the input  size n, we measure  t ime 
complexity in te rms  of n. 

Often we are interested in three  cases: 

�9 The best-case  t ime is the min imum time needed to execute an 
algori thm for an input  of size n. 
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�9 The w o r s t - c a s e - t i m e  is the m a x i m u m  time needed to execute the 
a lgor i thm for an input  of size n. 

�9 The a v e r a g e - c a s e - t i m e  is the average t ime needed to execute the 
a lgor i thm for an input  of size n. Es t imat ing  the average t ime is often a 
difficult task, involving probability.  

We begin our analysis with the a lgor i thm for matr ix  mult ipl icat ion.  

~ Es t imate  the n u m b e r  of operat ions  (additions and mult ipl icat ions)  a n  

needed to compute the product  C of two matrices A and B of order  n. 

S O L U T I O N :  
n 

L e t A  - (a i j )nxn ,  B -  (b i j )nxn ,  and C~-  (cij)nx n. S i n c e  cij - ~ a i kbk j  , it takes 
k = l  

n mult ipl icat ions and n - 1 addit ions to compute each cij. There  are n 2 
e lements  in C and each takes a total  of n + (n - 1) - 2n - 1 operat ions.  
Therefore,  an - n 2 ( 2 n -  1) - O(n 3) - e)(n3). Thus  the produc t  takes 
O(n 3) -- (~)(n 3) operations,  m 

Next we es t imate  the n u m b e r  of operat ions required to compute  the 
product  of two binary integers. 

Use Algori thm 4.5 to est imate the max imum numbe r  a,~ of operat ions  
(shifting and additions) required to compute the product  of two binary  
integers x - (x~.. .  x0)two and y - (Yn �9 �9 �9 y0)two. 

S O L U T I O N :  
The worst  case occurs when yj - i for everyj .  Each yj cont r ibutes  a shift of j  

tl 

places to the left. Therefore,  the total  number  of s h i f t s -  E J - n ( n  + 1)/2, 
j=0 

by Example 4.15. 
There  are n + 1 partial  products.  Adding them involves an (n + 1)-bit 

integer,  an (n + 2)-bit i n t e g e r , . . . ,  a (2n + 1)-bit integer. Therefore,  the 
total  numbe r  of bit addit ions required is 2n + 1. Thus: 

an - (maximum no. of shifts) + (maximum no. of addit ions) 

n ( n  + 1) 
= + 2 n + 1  

2 

= O(n 3) -- (-)(n 3) m 

Next, we es t imate  the n u m b e r  of comparisons required by the bubble 
sort  algorithm, so review it before proceeding any further .  

Let denote the number  of comparisons required in line 3 of the bubble Cn 

sort  a lgor i thm (see Algori thm 4.10). Es t imate  the order  of magn i tude  of Cn. 

S O L U T I O N :  
In line 3 of the algori thm, the consecutive elements  xj  and x j + l  are 
compared for every value o f j .  Since j varies from 1 to n - i, the 
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n u m b e r  of compar isons  is n - i, by v i r tue  of the  inner  loop, where  1 < 
i < n -  1. So 

m 

n - 1  n - 1  n - 1  

C n - - E ( n - i ) - - E n - E i  
i=1 i=1 i - 1  

= n ( n -  1 ) -  

n ( n -  1) 

(n - 1)n 
~ ,  by Example  4.15 

-- O(n 2) - | 2) 

Thus  the bubble sort  a lgor i thm takes  O(n 2) - - |  2) comparisons,  m 

We tu rn  our analysis  to the search a lgor i thms  presen ted  in Section 5. 
Review them before proceeding any fur ther .  

Use the l inear  search a lgor i thm (Algori thm 4.8) to e s t ima te  the best  t ime,  
the  worst  t ime, and the average t ime requi red  to search for a key in a list 
X of n elements .  

S O L U T I O N :  
Let an, bn, and Cn denote  the n u m b e r  of e lement  compar isons  needed in 
line 3 in the average case, the best  case, and the worst  case, respectively. 

�9 The best  case is realized ifxn - key. Since this  takes  only one compar ison  
for all inputs  of size n, bn = 1. So bn = O(1) and the  execution t ime  is a 
constant .  

�9 To compute  Cn, notice tha t  the  wors t  case occurs when  key does not  
exist in the list, in which case the w h i l e  loop is executed n + 1 t imes.  
Therefore,  

C n - n + l  

< n + n ,  w h e n n > _  1 

= 2n - O(n) 

Thus,  in the  worst  case, the  l inear  search a lgor i thm takes  O(n) 
comparisons.  The run  t ime varies l inearly with  input  size. 

�9 To compute  the average t ime an, we need to consider two cases: key 
occurs or does not occur in the list. If key occurs in position i, n - i  + 1 
e lement  compar isons  will be required,  where  1 < i < n. If key does not  
occur in the list, n + 1 comparisons  will be needed. So the  average t ime  
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t aken  is given by 

( l + 2 + . . . + n ) + ( n  + 1) 
an = 

n + l  

(n + 1)(n + 2) 

- 2(n  + 1) 
n 

= - + 1 - O(n) 
2 

Again, it takes  O(n) e lement  comparisons.  Thus,  the  average case, f rom the  
complexity point,  is no be t t e r  t h a n  the  worst  case in l inear  search.  II 

Note :  In the average case analysis,  we assumed  key  could occur in any  of 
the n posit ions with  an equal  chance. We also assumed  tha t  it had  the  same  
chance of not occurr ing in the  list. If  t ha t  were not  the  case, we would need 
to apply the concept of expected value in probabi l i ty  theory  to compu te  an. 

Next  we examine  the complexi ty of the  b inary  search a lgor i thm.  

Let Cn denote the m a x i m u m  n u m b e r  of compar isons  in lines 6 t h r o u g h  8 of 
the  b inary  search a lgor i thm (Algori thm 4.9). Show tha t  Cn = O(lg n). 

S O L U T I O N :  

C a s e  I Let n be a power of 2, say, n - 2 h where  k >_ 0. Initially,  m i d  - [( low 

+ h igh ) /2J  - / ( 1  + 2k)/2J - 2 k - l ,  so the lower sublist  contains  2 h-1 - i ele- 
men t s  and the upper  sublist  2 k- 1 e lements .  By now two compar isons  have 
t aken  place, one in line 6 and the  o ther  in line 8. Since the upper  subl is t  
contains  more e lements ,  par t i t ion  it into three  sublists.  This t ime  the  max- 
i m u m  n u m b e r  of e lements  in a sublis t  is 2 h-2 and two more  compar i sons  
are needed. At the  next  stage, two more  comparisons  are needed. Cont inue  
like this  unt i l  the  list contains  one e lement ,  when  k = 0. Again, two more  
comparisons  ensue. 

Thus,  in the worst  case, two compar isons  are needed for each power  i 
of 2, where  0 _< i _< k. Therefore,  

Cn - -  2(k + 1) - 2k + 2 

- 2 1 g n + 2 ,  s i n c e n - 2  k 

= O(lg n) 

C a s e  2 Suppose n is not a power of 2. Let  n be an in teger  such t ha t  
2 j < n < 2 j+l .  T h e n j  < lg n. Let  N -  2 j+l .  Clearly, Cn < CN. By the  above 
analysis,  CN = 2 ( j  + 2). Thus:  

Cn < C N  

= 2 ( j  + 2) 
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< 2(lg n + 2) 

< 2 ( l g n §  w h e n n > 4  

= 4 1 g n  

= O(lg n) 

Thus, whe ther  or not n is a power of 2, C n -  O(lg n), so the a lgor i thm 
takes O(lg n) comparisons in the worst  case. I 

Additional examples of analyzing the complexities of algori thms appear  
in the exercises and the next chapter.  

Exercises 4.7 

1. Show tha t  it takes O(n 2) additions to compute the sum of two square  
matrices of order n. 

2. Let A and B be two square matr ices of order n. Let Cn denote the 
number  of comparisons needed to determine whether  or not A < B. 
Show tha t  Cn - O(n2). 

Let A be a square matr ix  of order n. Let Sn denote the number  of swappings 
of elements needed to find the t ranspose A T of A. 

3. Find a formula for Sn. 4. Show that  Sn = O(n2). 

5. Show tha t  the number  of additions of two n-bit integers is O(n). 

Let an denote the number  of additions (lines 5 and 6) required to compute 
the square of an integer using the algori thm in Exercise 6 of Section 5. 

6. Find a formula for a n .  7. Show that  an = O ( n ) .  

Algorithm 4.13 finds the maximum value in a list X of n items. Use it to 
answer Exercises 8 and 9. 

Algorithm fi ndmax (X, n,max) 
(* This a lgor i thm re turns the la rges t  i tem in a l i s t  X of  n 

items in a va r iab le  ca l led  max. *) 
O. Begin (* a lgor i thm *) 
1. max +- Xl (* i n i t i a l i z e  max *) 
2. i ~ - 2  
3. wh i le  i < n do 
4. begin (* wh i le  *) 
5. i f  x i > max then 
6. max K- xi 
7. i ~- i + l  
8. endwhi le 
9. End (* a lgor i thm *) 

(* update max *) 

Algorithm 4.13 
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8. Establish the correctness of the algorithm. 

9. Let Cn denote the number of comparisons needed in line 5. Show that  
Cn = O(n) .  

10. Let Cn denote the number of element-comparisons in line 6 of the 
insertion sort algorithm in Algorithm 4.12. Show that Cn - O(n2). 

Use the m i n m a x  a l g o r i t h m  in A l g o r i t h m  4 .14 to a n s w e r  Exerc i se s  11 -13 .  

Algorithm iterative minmax(X,n,min,max) 
(* This algorithm returns the minimum and the maximum 

of a l i s t  X of n elements. *) 
0. Begin (* algorithm *) 
1. i f  n > 1 then 
2. begin (* if  *) 
3. rain <-- Xl 
4. max <-- Xl 
5. for i = 2 to n do 
6. begin (* for *) 
7. i f xi < mi n then 
8. min K-- xi 
9. i f  x i > max then 

10. max K- xi 
1 I .  endfor 
12. endif  
13. End (* algorithm *) 

Algorithm 4.14 

11. Find the maximum and the minimum of the list 12, 23, 6, 2, 19, 15, 
37. 

12. Establish the correctness of the algorithm. 

13. Using the big-oh notation, estimate the number Cn of comparisons in 
lines 7 and 9 of the algorithm. 

14. Letcn denote the maximum number of comparisons in lines 6 through 8 
of the binary search algorithm (Algorithm 4.9). Show that Cn - (~)(lg n). 

This chapter provided a quick introduction to number theory, one of the 
oldest branches of mathematics. By accepting the well-ordering principle as 
an axiom, we established the principle of induction. We saw many examples 
of how pivotal induction is in proving loop invariants. 

We also illustrated how to add and multiply any two nondecimal 
numbers, and how to subtract binary integers using complements. 
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Finally, we established the part ial  correctness of algori thms and dis- 
cussed the time complexities of some s tandard algori thms using the big-oh 
and big-theta notations. 

The Well-Ordering Principle 

�9 Every nonempty  subset of N has a least element (page 186). 

The Division Algorithm 

�9 The d i v i s i o n  a l g o r i t h m  When an integer a is divided by a positive 
integer b, there exist a unique quotient  q and a unique remainder  r 
such tha t  a - bq + r, where 0 < x < b (page 186). 

�9 An integer p >_ 2 is a p r i m e  if its only positive factors are 1 and p 
(page 189). 

The Greatest Common Divisor (gcd) 

�9 A positive integer d is the gcd of two positive integers a and b if: 

�9 d l a a n d d J b ; a n d  

�9 i f d ' i a  and d ' l b ,  then d ' i d .  (page 191). 

�9 The e u c l i d e a n  a l g o r i t h m ,  which uses successive applications of 
the division algorithm, provides a procedure to compute gcd{a,b} 
(page 193). 

�9 Two positive integers a and b are relatively prime if gcd{a,b} = 1 
(page 194). 

�9 Every decimal integer has a unique nondecimal representat ion in a 
given base and every nondecimal integer has a unique decimal value 
(page 197). 

�9 Binary subtraction can be performed using two's complement  
(page 203). 

Mathematical Induction 
�9 W e a k  v e r s i o n  Let P(n) be a predicate such that  

�9 P(n0) is true; and 

�9 for every k > no, if P(k) is true, P(k  + 1) is also true. 

Then P(n) is t rue for every n >_ no (page 209). 

�9 Strong version Let P(n) be a predicate such that  

~ P(no) is true; and 
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�9 for every k >_ no, if P(n0), P(n0 + 1 ) , . . . ,  P(k) are true, P(k + 1) is 
also true. Then P(n) is true for n >_ no (page 218). 

�9 The  F u n d a m e n t a l  T h e o r e m  of  A r i t h m e t i c  Every positive 
integer >_ 2 is either a prime or can be expressed as a product of primes 
(page 218). 

Algorithm Correctness 

�9 Using induction, we verified the partial correctness of several standard 
algorithms: linear search (page 228), binary search (page 230), bubble 
sort (page 233), and selection sort (page 234). 

The Big-0h Notation 

�9 f ( n ) = O ( g ( n ) ) ,  if there are positive constants C and no such that  
If(n)] > C ]g(n) ] for every n > no (page 237). 

�9 f ( n )  = ~ ( g ( n ) ) ,  if If(n)] > C ]g(n) ] for every n >_ no (page 243). 

�9 f ( n )  = ( - )g(n) ,  i f f (n)=  O(g(n)) and f ( n )  = ~ ( g ( n ) )  (page 245). 

�9 The time complexity of an algorithm is the execution time of the 
algorithm (page 245). 

Review Exercises 

Using the euclidean algorithm, find the gcd of each pair of integers. 

1. 18,28 2. 36, 12 3. 15,24 4. 1024, 3076 

Express each number in base 10. 

5. 2000eight 6. 2345sixteen 7. BADsixtee n *8. BAD.CAsixteen 

Rewrite each number in the indicated base b. 

9. 245, b = 2  10. 348, b = 8  11. 1221, b = 8  12. 1976, b = 1 6  

In Exercises 13-16, perform the indicated operation. 

13. ll010two 14. 5768sixtee n 15. 5AB8sixtee n 16. ll0110two 

+l l l two +78CBsixteen • BiDsixteen - l l011two 

Rewrite each binary integer in base eight. 

17. 10110101 18. 1101101101 19. 100110011 20. 10011011001 

21-24. Rewrite the binary integers in Exercises 17-20 in base 16. 

Find the value of x resulting from the execution of each algorithm 
fragment. 
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2 5 .  x ~-  0 2 6 .  x ~-- 0 
f o r  i = 1 to n do f o r  i = 1 to n do 

f o r  j = 1 to n do f o r  j = 1 to i do 
x <-- x + i f o r  k = i to j do 

x + - x + l  

27. Find  a fo rmula  for the  n u m b e r  an of t imes  the  s t a t e m e n t  x ~ x + I is 
executed by the  following loop: 

for i = 1 to n do 
for j = 1 to [i/2] do 

x , -  x + l  

28. Let  a,b,c,d ~ N. Let  d lab, d lac, and  b and  c be re la t ively  p r ime  
number s .  Prove  t h a t  d la. 

29. Let  a,b E N and  gcd{a,b} = 1. Prove  t h a t  gcd{a - b,a + b} - 1 or 2. 

Us ing  induct ion  prove each, where  n is a posit ive integer .  

30. n 2 - n is divisible by 2. 31. n 3 - n is divisible by 3. 

n n(4n 2 - 1) n 1 n 
32. >--]~ (2i - 1) 2 -  33. F1 -- i=l -- 3 ( 2 i -  1)(2i + 1) 2n + 1 

34. The  produc t  of any  two consecut ive positive in tegers  is even. 

35. Suppose you have an un l imi ted  supply of identical  black and  whi te  
socks. Us ing  induct ion  and the  pigeonhole  principle,  show t h a t  you 
m u s t  select at  least  2n + 1 socks in order  to ensure  n m a t c h i n g  pairs.  
(C. T. Long) 

Eva lua te  each sum and  product .  
n n n 

36. ~ i ( i + l )  37. ~ ~ ( 2 i + 3 j )  
i = l  i = l j = l  

n n n n 
38. ~ ~ 2 i3 j 39. ~ ~ 2 j 

i - l  j = l  i = l j - - i  
n n n n 

40. 1-] 1-] 2i3J 41. 1-[ 1-] 32j 
i = l j = l  i = l j = l  

n n n i 

42. ]-] ~ 2 i *43. ~ i ] -  Ij  
i - l j = l  i = l  j = l  

44. Let S n  denote  the  value of sum af ter  n i te ra t ions  of the  while  loop in 
Algor i thm 4.15. Prove  t h a t  P(n): Sn = n(n + 1) is a loop invar ian t .  

Algor i thm evensum (n) 
(* This a l g o r i t h m  computes the sum of  the f i r s t  x 

p o s i t i v e  even i n t e g e r s .  *)  
O. Begin (*  a l g o r i t h m  *) 
I .  sum <-- 0 
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2. i ,-- 0 (* coun te r  *) 
3. wh i l e  i < n do 
4. begin (* wh i l e  *)  
5. i < - - i  §  
6. sum <- sum + 2 * i 
7. endwhi 1 e 
8. End (*  a l g o r i t h m  *)  

Algorithm 4.15 

45. Using Example  4.23 predict a formula  for the n u m b e r  of t ra i l ing zeros 
in n V where n > 1. 

46. Let a n  denote the n u m b e r  of operat ions (additions and mult ipl icat ions)  
in line 6 of the a lgor i thm in Exercise 44. Find the order  of magn i tude  
o f  a n .  

47. Add two lines to the following n u m b e r  pa t tern ,  where tn denotes  the  
n th  t r i angula r  number .  

t l + t 2 + t 3  = t 4  

t5 + t6 + t7 + t8 = t9 + tl0 

tl l  + t12 + t13 + t14 + t15 = t16 + t17 + t18 

Prove each, where tn denotes the n th  t r i angula r  number .  

2 3 50. 2 t n t n  - tn2 48. t 2 - t n _  1 - n 49. t 2 - tn + t n - l t n + l  - 1  - 1  

Supplementary Exercises 

1. Prove tha t  (m 2 - n 2, 2 m n ,  m 2 + n 2) is a solution of the equat ion 
x 2 + y2 _ z 2. 

2. Prove tha t  the product  of the sums of two squares  of two integers  
can be wr i t ten  as a sum of two squares.  

3. Let tk denote the kth  t r i angula r  numbe r  and n any t r i angula r  num- 
ber. Prove tha t  (2k + 1)2n + tk is also a t r i angula r  number .  (R. F. 
Jordan,  1991) 

4. In 1950, P. A. Piza discovered the following formula about  sums of 
n n n 

powers of t r iangular  number s  ti " [3 ~ ti] 3 --  ~ t 3 + 2 ~ t 4. Verify 
it for n - 3 and n - 4. i=1 i-1 i - 1  

5. Show tha t  111 cannot  be a square  in any base. 

*6. Prove tha t  one more than  the product  of four consecutive integers  
is a perfect square, and the square  root of the resul t ing n u m b e r  is 
the average of the product  of the smaller  and larger number s  and 
the product  of the two middle integers.  (W. M. Waters,  1990) 
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A composite number  n is D u f f i n i a n  if none of its positive factors, except 
1, is a factor of the sum s of its proper factors. For example, let n = 21. 
The sum of its proper factors - 1 + 3 + 7 = 11. Since both 3 and 7 are not 
factors of 11, 21 is Duffinian. (You may verify tha t  10 is not Duffinian.) 

7. Determine if 18, 25, 36, and 43 are Duffinian. 

8. Let p be a prime and k a positive integer > 2. Prove tha t  pk is 
Duffinian. 

9. Prove tha t  n is Duffinian if and only if none of the factors of n, except 
1, is a factor of n. 

10. Prove or disprove: The product of two Duffinian numbers  is 
Duffinian. 

Prove each, where n is a positive integer. 

"11. n(3n4+ 7n2+ 2) is divisible by 12. 

"12. n(3n4+ 13n2+ 8) is divisible by 24. 

* '13 .  Let Sn denote the sum of the elements in the n th  set in the sequence 
of sets of positive integers {1}, {3, 5}, {7, 9, 11}, {13, 15, 17, 19}, . . . .  
Find a formula for Sn. (R. Euler, 1988) 

* '14 .  Let Sn denote the sum of the elements in the n th  set in the sequence 
ofpositive integers {1}, {2, 3 , . . . ,  8}, {9, 10 , . . . ,  21}, {22, 2 3 , . . . ,  40}, . . . .  
Find a formula for Sn. (C. W. Trigg, 1980) 

* '15 .  Three schools in each state, Alabama, Georgia, and Florida, enter  
one person in each of the events in a track meet. The number  of 
events and the scoring system are unknown,  but  the number  of 
points for the third place is less than  tha t  for the second place, 
which in tu rn  is less than  the number  of points for the first place. 
Georgia scored 22 points, and Alabama and Florida tied with 9 each. 
Florida won the high jump. Who won the mile run? (M. vos Savant, 
1993) 

Computer Exercises 

Write a program to perform each task. 

1. Read in an integer b >_ 2 and select b + i integers at random. Find two 
integers in the list such that  their  difference is divisible by b. 

2. Read in an integer n >_ 2 and select n positive integers at random. Find 
a sequence of integers from the list whose sum is divisible by n. 

3. Read in a positive integer > 2 and determine if it is a prime. 



258 Chapter 4 Induction and Algorithms 

4. Determine if each value of f ( n )  = n 2 - n + 41 is a prime, where 0 < 
n < 4 1 .  

5. Redo Program 4 with f ( n )  - n 2 - 79n + 1601, where 0 < n < 80. 

6. Determine if the n th  F e r m a t  n u m b e r f ( n )  - 2 2n + 1 is a prime, where 
0 < n < 4 .  

7. Find all perfect numbers  < 1000. (There are three such numbers.)  

8. Find the gcd{x,y} using the euclidean algorithm. 

9. Read in a sequence of pairs of integers n and b. For each integer 
n, determine its base-b representat ion and use this representa t ion 
to compute the corresponding decimal value. Pr in t  each integer n, 
base b, base-b representat ion,  and its decimal value in a tabular  
form. 

10. Read in a positive integer n and find the number  of trail ing zeros 
in n!. 

11. A p a l i n d r o m e  is a positive integer that  reads the same backward and 
forward. Find the eight palindromic t r iangular  numbers  < 1000. 

12. Compute the total number  of grains of wheat needed for each of the 
squares on an 8 x 8 chessboard, as in Exercises 39 and 40 in Section 4.4. 
( H i n t "  The answer is 18,446,744,073,709,551,615 grains, which may be 
too large for an integer variable to hold, so th ink of a suitable data 
structure.) 

13. Read in a positive integer N _< 1000. Using Example 4.24, determine 
how many doors will remain open at the end. Do n o t  use the fact tha t  
there are [~/-nJ perfect squares < n. 

14. Pr int  the ages 1-31 on five tablets A, B, C, D, and E, as in Figure 4.2. 
Read in some tablets at random and compute the corresponding age. 
Extend the puzzle to six tablets to include ages through 63. 

15. Read in a positive integer n and determine if it is a prime. 

16. Construct  a table of values of the function E ( n )  - n 2 - n + 41, where 
0 < n _< 41, and identify each value as prime or composite. 

17. Redo program 16 with L ( n )  - n 2 + n + 41, where 0 < n < 41, and 
identify each value as prime or composite. 

18. Redo program 16 with H ( n )  - 9n 2 - 471n + 6203, where 0 < n < 39, 
and identify each value as prime or composite. 

19. Redo program 16 with G ( n )  - n 2 - 2999n + 2248541, where 1460 < 
n < 1539, and identify each value as prime or composite. 

20. Read in a positive integer n, and list all primes < n and are of the form 
k 2 + l .  
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21. Read in a positive integer n and find a prime between: 

(a) n and 2n. (b) n 2 and n 2 + 1. 

Exploratory Writing Projects 

Using library and Internet resources, write a team report on each of the 
following in your own words. Provide a well-documented bibliography. 

1. Describe how twin primes were used in 1994 by Thomas Nicely of 
Lynchburg College, Virginia, to detect defects in the Pentium chip. 

2. Explain how to construct Tables A-E in Figure 4.2 and how the puzzle 
works. Extend the puzzle to cover ages through 63. 

3. Describe the origin of mathematical induction. Include biographies of 
those who developed this proof technique. Comment on its importance 
in computer science. 

4. Describe the origin of figurate numbers. Explain the various types 
and their properties. Include the relationships between the 12 days of 
Christmas puzzle, and polygonal numbers and tetrahedral numbers. 

5. Explore the history of magic squares. Do they have any practical 
applications? 

6. Describe the origin of the big-oh, big-omega, and big-theta notations. 
Include biographies of mathematicians who developed them. 

7. Investigate the various classes of prime numbers. 

8. Describe the history of finding larger and larger primes, and their 
practical applications. Comment on the Greatest Internet Mersenne 
Prime Search (GIMPS), founded in 1996 by George Woltman. 

9. Discuss the game of Nim and its relationship to binary numbers. 

10. Discuss Eleusis, a card game devised by R. Abbott of New York. 
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