)
~
- Recurrence

It often happens that, in studying a sequence of numbers a,, a connection
between a,, and a,_1, or between a, and several of the previous a;,7 < n, is
obtained. This connection is called a recurrence relation; it is the aim of this
chapter to illustrate how such recurrences arise and how they may be solved.

2.1 Some Exam

Example 2.1 (The towers of Hanoi)

We begin with a problem made famous by the nineteenth century French math-
ematician E. Lucas. Consider n discs, all of different sizes, with holes at their
centres (like old gramophone records), and three vertical poles onto which the
discs can be slipped. Initially all the discs are on one of the poles, in order of
size, with the largest at the bottom, forming a tower. It is required to move the
discs, one at a time, finishing up with the n discs similarly arranged on one of
the other poles. There is the important requirement that at no stage may any
disc be placed on top of a smaller disc. What is the minimum number of moves
required?

Let a,, denote the smallest number of moves required to move the n discs.
Then clearly a; = 1. Also, a2 = 3: move the top disc to one pole, the bottom
to the other, and then place the smaller on top of the larger. What about a,?
It should be clear that, to be able to move the bottom disc, there has to be an
empty pole to move it to, and so all the other n — 1 discs must have been moved
to the third pole. To get to this stage, a,,.; moves are needed. The largest disc
is then moved to the free pole, and then another a,,—; moves can position the

19
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other n — 1 discs on top of it. So

an = 2a,-1 + 1.

This recurrence relation, along with the initial condition a; = 1, enables
us to find ap,. We have az =21 +1=3,a3 =23+1="7,a4 =2.7+1=15,
and it appears that a, = 2" — 1. This can be confirmed by induction, or by
iteration:

an = 1+2an-1=1+2(1+2an-2)=1+2+2%2a,_»
= 1+2+22(1+2an_3):1+2+22+23an_3“
= 1+4+2+42%2+... 42724277 1g,
= 1+2+22+4+... 4201 =27 -1,

In the mythical story attached to the puzzle, n was 64 and priests had to move
discs of pure gold; when all was accomplished, the end of the world would
come. But 264 — 1 = 18446 744073 709 551 615, and at one move per second
the process would take about 5.82 x 10'! years; so we have nothing to worry
about! This is another good example of combinatorial explosion. i

Example 2.2

There are 3™ n-digit sequences in which each digit is 0,1 or 2. How many of
these sequences have an odd number of 0s?

Solution

Let b, denote the number of such sequences of length n with an odd number
of 0s. Each such sequence ends in 0,1 or 2. A sequence ending in 1 has any
of the b,-; sequences of length n — 1 preceding the 1; and similarly there are
b,-1 sequences ending in 2. If a sequence ends in 0, the 0 must be preceded
by a sequence of length n — 1 with an even number of 0s; but the number of
such sequences is 3"~! (the total number of sequences of length n — 1) minus
bn—1 (the number of sequences of length n —1 with an odd number of 0s); thus
there are 3"~ ! — b,,_, sequences ending in 0. So, by the addition principle,

bp=bp_y +by1+3"—b,; ie b,=b,_+3"L.
Again we can find b, by iteration:
b =3""14b, =3" 1+ (3" 2 4 b, 0) = ...
=371 43" 2+ 43+ by

But b; =1 (why?), so

1
bn=1+3+-~+$kl=5m“-n.
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Example 2.3 (Paving a garden path)

A path is 2 metres wide and n metres long. It is to be paved using paving
stones of size 1lm x 2m. In how many ways can the paving be accomplished?

Solution

Tot m doanate tha niimbhar Af navinoe af a D v s nath Maarle . — 1 gineco Ane
P Sl V] Pn UUCLIVUD L1IU LIULILIUCY: UL }J Vlllsﬂ UL QG & AT P(l.hllo \chall] })1 — 1 2llILG UL
paving stone fills the path. Also, po = 2, the two possibilities being shown in

Figure 2.1(a), and p3 = 3 (Figure 2.1(b)).

(a) (b)
Figure 2.1

It might appear that p,, = n for all n, but check now that p4 = 5. What is p,?
For a 2 x n path, the paving must start with one of the options shown in
Figure 2.2.

[y
3
I
[ory
[ -]
3
|
[ &)

-

o
-
-

Figure 2.2 |

In the first case it can be completed in p,_; ways; in the second it can be
completed in p, -2 ways. So, again by the addition principle,

Pn = Pn-1 + Pn—2 (n > 3).

This is a second order recurrence relation, since each p,, is given in terms of
the previous two. We obtain ps = 5+3 =8, pg =8+ 5=13,py = 13+ 8 =
21, etc; the sequence (p,) thus turns out to be the well-known Fibonacci
sequence (F,):

1,2,3,5,8,13,21,34,55,89,....

Fibonacci, or Leonardo of Pisa (c. 1200 AD) introduced this sequence when
investigating the growth of the rabbit population (see Exercise 2.5); it crops
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up amazingly frequently in diverse mathematical situations. We shall obtaina
— formula for F,, in the next section

Example 2.4 (Flags)

:
A flag is to consist of n horizontal stripes, where each stripe can be any o b
of red, white and blue, no two adjacent stripes having the same colour. Under
these conditions, the first (top) stripe can be any of three colours, the second
has two possibilities, the third has two, and so on (each stripe avoiding the
colour of the one above it); so there are 3 x 2"~ possible designs.

Suppose now that, in order to avoid possible confusion of flying the flag
upside-down, it is decreed that the top and bottom strlpes should be of different

ralanva Tnf‘ n Aoanntos tha nnmhar
Co0urs. Let a, aenscie ne numoser uf su

(why?) and a; = 6. Further, since there is a one-to-one correspondence between

flags of n stripes with bottom stripe same as top, and flags of n — 1 stripes with
bottom stripe different from top,

n= 3x2"1 — (no. of flags with bottom colour same as top colour)
= 3x2"' — (no. of flags of n — 1 stripes with bottom colour
different from top).

Thus
an=32""1!—q,,. (2.1)
We could iterate again (try it!), but here is another method. Since
Qp + Gy = 3.2 1

we also have
Qp—1 +Qp-2 = 3.on ¢

whence
2(an—1 + Gp-2) = 32" 1 =q, +an_.

Thus
Ap = Qn-1 + 205_2. _ (2.2)

This again is a second order recurrence relation; we now show how to solve it.
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2.2 The Auxiliary Equation Method

In this section we concentrate on recurrence relations of the form

where A, B are constants, B # 0, and where a; and a. are given. Equation (2.3)

e rallad o aonAand Arndan lieane nantinraman walndine wrhdh Anmadned naafBala.d

iD Cailed a seCoIia Order iiricar recCurrernice lCldblUll Wlb.ll. LUIISLALIL bUClllblCIlbD, ll.'
turns out that there is a very neat method of solving such recurrences.

First, we ask: are there any real numbers o # 0 such that a, = o™ satisfies
(2.3)? Substituting a, = a™ into (2.3) gives a™ = Aa™"! + Ba™"?%, i.e. a® =
Ac + B. Thus a, = a™ is a solution of (2.3) precisely when « is a solution of
the auxiliary equation

2= Az + B. (2.4)

Thus if @ and B are distinct roots of (2.4),a, = a"™ and a,, = 8™ both satisfy
(2.3). If the auxiliary equation has a repeated root «, then

- Az - B=(z—a)’=1z*-2az+a?
so that A = 20 and B = —a?. In this case a,, = na™ also satisfies (2.3), since

Aan_y + Bag_2 = A(n - Da™ ! + B(n — 2)a™?

'y Y4 n

ER YR /] s n n n
=2Z2n—-1)a —(n—-2)0" =na =an.

We now prove

Theorem 2.1

Suppose (a,) satisfies (2.3), and that a; and a, are given. Let «, 8 be the roots
of the auxiliary equation (2.4). Then

(i) if @ # B, there are constants K, K such that a, = K;a™ + K28 for all
n>1,;

(ii) if & = B, there are constants K3, K4 such that a, = (K3 + nKy)a™ for all
n>1

Proof
(if Choose K7, Ko so that a; = Kya + K28, a2 = K1a? + K282, i.e. take

_uf—a _ma—a
b=t i (25)
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Then the assertion that a, = Ko™ + K38™ is certainly true for n = 1,2. We

Ak4+1 = Aak + Bak_l = A(Klak + Kzﬂk) + B(Kla"_l + Kgﬁk_l)

= K,1a*"1(Aa + B) + K81 (A8 + B)
= K ot + K85+,

so the result follows.

TETANY o | ISR P /S RO DY g /g 7\ N 74 oL \..2 P |
(1) Uhoose K3, (4 so that A; = (3 + R4)a, ag = (K3 + 2H84)a”, 1.e. take
2a,0 — ag a2 — Q1 &
K3 = , Ky= -2 (2.6)

Then the assertion that a, = (K3 + nK4)a™ is certainly true for n = 1,2,
Assume it is true for all n < k. Then

ary1 = Aay + Bay_; = A(Ks + kKy)a* + B(K3 + (k — 1) K4)o* ™!
= K3a*~!(Aa + B) + K4o* "' (Aka + B(k — 1))
= K3o**! + K4a*™! (214:’]1£ a?(k - 1)) . ¥
= K30*t! 4 Ky(k + 1ok, b

as required.

Example 2.4 (continued)

In the flag problem we obtained the recurrence relation a, = an_; + 2a5,-s,

= 0.0, = B, Thn auxiliarv equation 2 e 2 = 0 has soluti

‘11}\07‘0 T+ — 1
v vy W auxiia. ) TN wilsvaisas - - Lvow e} A WAV R

4eT AT wi]

a=-1,=2,s0
An = Kl(—-l)n + K22n'

where 0 = "‘Kl + 2K2 and 6 = K]_ +4K2, i.e. Kl = 2,K2 = 1. So

n=2(—1)" + 27,

Example 2.3 (continued)
The Fibonacci sequence (F),) is given by

=1 FR=2 F,=F,,+F,2 (n>3).
The auxiliary equation 2 —~r — 1 = 0 has solutlons (1x+5),s

F, = K,o" + K"
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where a = 1(1+ /5), 8 = (1 — V/5). The initial condition F} = 1,F; = 2,

V5 V5 YA V5

This result may seem rather odd since F, is to be an integer. Check that
expansion by the binomial theorem leads to a cancellation of all terms involving

V5, giving

R=m (7)) (") (M) e )

This again is a surprise since it is by no means obvious that the sum of binomial
coefficients should be divisible by 2.
Note that, since |8| < 1, the second term in (2.7) tends to 0 as n — oo, giving

n+-1 n+41
1 1 1 {1 1 1-
Fo=—a™' — —g™ = (__ﬂé) - ( 2\/3) . (2.7)

F, 1
+_, + V5

F. 5 the golden ratio.

Example 2.5

Solve the recurrence relation a, = 4a,-; —4a,-2 (n > 3),a; = 1,a; = 3.

Solution
The auxiliary equation is 22 ~ 4z + 4= 10, i.e. (r -~ 2)2=0,50
An = (K] + an)Z".

The initial conditions give 1 = 2(K; + K3), 3 = 4(K; + 2K3), whence K, =
K, = ;. Thus
an = (n +1)2"" 2%,

The auxiliary equation method extends to higher order recurrences in the ob-
vious way.

Example 2.6

Suppose that a; = 3,a2 = 6,a3 = 14 and, for n > 4,

Then the auxiliary equation is 3 —6z2+11z—6 = 0,i.e. (z—1)(z—2)(z-3) =0,
50 an, = K; + K32™ + K33™. Using the initial conditions, we get

a, =1+2""1 4371,
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Non-homogeneous recurrence relations

The auxiliary equation method has been used for recurrence relations such a
Gy = Qp-1 + 2a,_2. These are homogeneous linear recurrences with constant
coefficients: a,, is a linear combination of some of the previous a;. We now
briefly consider the non-homogeneous case, e.g.

an = Aan_ + Ban_2 + t,,

where t,, is some function of n. One example of this was (2.1), which we solved
by manipulating it into a second order homogeneous recurrence; but now we
give an alternative method of solution. For we can obtain a solution by first
finding the solution of the recurrence relation obtained by replacing ¢,, by 0, and

than ar]rhnn- fr\ 11‘ anv narticenlar cn]nl“lnn of tho non-homaocanannie racvirrancs
VAL AL Lananalsr 6 J y A VAV UALLLA VUL LAUVLUIAL VLl VAAw AAUIRL ALULJIU&\J.L‘J WD L TUULL CLILG,

Example 2.4 (again)

We solve a, = —ap_; +3.2%71, a; = 0.

Solution
First we solve a, = —an—_1. We could use the auxiliary equation z = -,
but it is easy just to spot that a, = (—1)""'a,, i.e. a, = K(~1)" Fora
particular solution of a, = —an_1 + 3.2"71, we try something sensible such
as a, = A2". Substituting gives A2" = —A2""! 4+ 3.2 ! whence 4 = 1. %
we have a, = K(—1)" + 2". Since a; = 0, we need K = 2; so we have finally
= 2(—1)™ + 2™, as before.

Note that the initial conditions are not apphed until the final stage of the

procedure.

,

2.3 Generating Functions

The generating function of a sequence a;,az,as, ... is defined to be

o0

flz) =) a'.

i=1

For example, the generating function of the Fibonacci sequence is
T+2z% + 3 + 5z 4+ -,

If a sequence starts with ag we take f(z) = 3 2, a;x%; for example, the gener-
ating function of the sequence a, = 2" (n > 0) is

1
1—2:1:

1+ 2+ 2222 +--
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-~

Sometimes, given a recurrence relation, it is possible to find the generating
ations such as : function of the sequence and then to find a, by reading off the coefficient of

with constant z".
s a;. We now

Example 2.4 (yet again!)

B

N*‘ Consider the recurrence relation a, = 32" ! —a,_; (n > 2), a; = 0. Let

f(z) = a1 + a2® + - --. Then
hich we solved

3; but now we ¢ fir)=a1z+ (3.2 —a;)z® + (3.2%2 —ax)z® + - -
lution by first
1gt, by 0, and
us recurrence.

=a1z+ 322+ 2’2 + ) — (az? +apr® + )

=0+ 6z%(1 + 2z + 2%2% +---) — zf(z).

Thus (1 +z)f(z) = 16_”;1 so that

f(2) =6$2(14»9:;)(11 “2x) 20 (1 —22:5 + 119;)
on using the method of partial fractions. Thus
f;o_nl)i.zl.«o: 1; f(x) = 4r®(1 + 22 + 2222 + . .) + 202(1—z+ a2 —--+).
sensible such

Reading off the coefficient of z™ gives
e A= 1. So

re have ﬁnally - : an = 4.2“-2 + 2(__1)1&—2 = 9n + 2(_1)11,’

as before.

I'stage of the 1

Example 2.5 (again)

ap =4a,—) —4ap_2 (n > 3),a; = 1,a; = 3.
f(z) = a1z + axx? + azz® +agzt + -

*be = + 3z% + (4a2 — 4a;)r3 + (4a3 — 4ax)z? + - --

= z+ 32° + 4(a2z® + 037" + ) — 4(a12% + @zt + )

= z+ 3z% + 4z(f(z) — a1 z) — 42 f (),

8 so that : ‘
(1-4z+428)f(z) =2 + 32 ~ 42 = ¢ - 2°.
Thus 5
le, the gener- T—z
f(JI) - (1 _ 21‘_)2 : (
Now, since
1 2
__:1+z+$ + s

l-=zx
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differentiating gives

3
I

=1+2c+3z%+---,

(I -z)?
so that
—1—-—=1+22m+322z2+---
(1 - 2z)? ' ' )
Thus
f(z)=(x—2*)(1+22z +3.2%c% +4.2%23 + . ..
whence
a, = coefficient of z" ' in 1+22z+ ---
— coefficient of "2 in 1 + 2.2z +
=n 2n—1 (n _ 1)2n—2 — (n + 1)211.—2
as before.

2.4 Derangements

Suppose that n people at a party leave their coats in the cloakroom. After the
party, they each take a coat at random. How likely is it that no person gets the

Rely 1o

correct coat?

A derangement of 1, ... ,nis a permutation 7 of 1, ... ,n such that = (7) #:

for each i. For example, there are nine derangements of 1,2,3,4 :

2 41 3
2 1 4 3
2 3 41
3 1 4 2
3 4 2 1
3 4 1 2
4 1 2 3
4 3 1 2
4 3 2 1

In each of these 1 is not in the first place, 2 is not in the second, and so on.

Let d,, denote the number of derangements of 1,... ,n. Then (check!)

dl =0, d2:1, d3=2, d4=9.
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Our aim is to obtain a recurrence relation for the d; and then use it to obtain
: la for d... Bef 5 | lati ] n
the number of ways of assigning n objects to n boxes, where, for each object,
there is one prohibited box, and where each box is prohibited to just one object.
Above, the objects and boxes are both labelled by 1,... ,n, with box (position)
i prohibited to object (number) ¢, but the labelling of the boxes and objects is

of course arbitrary and does not affect the problem.

Next note that in three of the nine derangements of 1,2,3,4 listed above,
4 swaps places with another number: this happens in 2143,3412 and 4321. In
the remaining derangements 4 does not swap places with another. With this
in mind, we put

d, =en+ f n

where e,,, f,, denote the numbers of derangements of 1,... ,n in which n swaps,
does not swap, places with another. Now if n swaps places with 7 (and there are
n— 1 possible choices for i), the remaining n — 2 numbers have to be deranged,
and this can be done in d,,_, ways; so

€n = (ﬂ - l)dn_z.

If n does not swap places with any other, then some r goes to place n (and
there are n— 1 choices of ), while n does not go to place 7. So we have to assign
places to 1,... ,n, excluding r, where the places available are 1,... ,n — 1, and
where each has precisely one forbidden place (for ¢ # r,n, place i is forbidden;
for i = n, place r is forbidden). So there are d,,_; possible arrangements, and
S0

fo=(n—-1)dn_,.

Thus by the addition principle, we have

dn = (n = 1)(dn—1 +dn_2).

o~
o
0
~—

Using this recurrence we get
ds = 4(9 + 2) = 44, dg = 5(44 + 9) = 265,

and s0 on.

The recurrence (2.8) does not permit the use of the auxiliary equation
method, since the coefficients of d,—; and d,_; are not constants. However,
we can manipulate (2.8) into a more manageable form. Equation (2.8) can be
rewritten as

dp —ndp = "(dn—l - (n - 1)dn—2)s

where the expression on the right is the negative of the expression on the left,
with n replaced by n — 1. So iteration gives

dn - ndn_l = —(dn—-l - (n - 1)dn.—2)

= (-=1)*(dn—2 — (n — 2)dn—3)



30 Discrete Mathematics

e

= (=1)""(d2 - 2d1) = (-1)"(1 - 0) = (-1)",

i.e.

4 —ndy = (D)™ | (2.9)

Thus . 2
d_n, _ dn—1 — (_1)n, '
nl (n—-1)! n'
If we now sum the identities

dm dm—l _ (_1)m

m! (m-1!  ml
over m = 2,3,...,n, we get cancellations on the left, giving
dy di _ (-1 (=1 GRS G VI < W G2 Vi
S T e LR TR D=l D i
m= m=0
But d; = 0, so we obtain
(-)™ 11 (="
! —nl{1 - = —
dp,=n Z = n!{1 TRET + } (2.10)
m=0
One interesting consequence of (2.10) is that, as n — oo,
dn 1 |
n! e /

so the probability of no one getting their own coat back after the party tends
1
to - = 0.367 88 as n ~+ 00. Indeed, for n as small as 6,

e
dg 265
— = — = 0.368 06,
6! 720 0
. o1 .
agreeing with - to 3 decimal places.
Example 2.7
(a) Find the number of permutations of 1,... ,n in which exactly k£ of the

numbers are in their correct position, and deduce that

nl = f: (’Z) de. | (2.11)

=0

(b) What is the average number of numbers in their correct position in a random
permutation of 1,--- |n?
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Solution

(a) There are () ways of choosing the k numbers to be fixed. The remaining
n — k have to be deranged, and this can be done in d,,_; ways. So there are
(})dn—r permutations with exactly k fixed numbers.

But any of the n! permutations fixes ¥ numbers for some k between 0 and n.

So
— /n\ n\

. [n (7
n! =k2=‘0 kk)d"_k = ke ds

B

on putting £ = n — k.

(b) The average number of fixed numbers in a permutation of 1,... ,n is

So the average number of fixed numbers is 1.

Alternative proofs of (2.10)

A proof of (2.10) using the inclusion-exclusion principle will be given in Chapter
6. Here we give yet another proof, a simple application of the inversion principle,
as in Corollary 1.15, applied to (2.11).

In (2.11), put a, for n! and b, for d,,. Then (2.11) is

2 /n
3
k=0
so that, by Corollary 1.15,

d, — Z(_l)n+k (Z’) kl = Z(_l)n-Hc (n f'k)'

k=0
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n (_1)2n—-l ) {
=”!Z“—7I_— (on putting £ =n — k) _
£=0 = B
e (1)
=nly I
=0

2.5 Sorting Algorithms

Given a pile of exam scripts, we might want to sort them, i.e. put them in
increasing or decreasing order of marks. Are there any efficient ways of doing
this? We start with a simple but not very efficient procedure. b

Bubblesort

Take a list of n numbers, in random order. Compare the first two, swapping
them round if they are not in increasing order. Then compare the second and
third numbers, again swapping if necessary. In this way proceed up the se-
quence; the largest number will then be at the end. Next repeat the whole
process for the first n — 1 numbers: this will take the second largest to the
second last position. Repeat for the first n — 2, and so on.
The total number of comparisons involved in this procedure is
1 2 1

1
n-1)+(n-2)+-- +2+1—2 n(n-1) = ~ 5

so we say that the bubblesort algorithm has O(n?) complexity.

Example 2.8

Start with 7,10, 4,6, 3. '
After the first 4 comparisons we have 7,4, 6, 3, 10.
After the next 3 comparisons we have 4,6, 3,7, 10.
After the next 2, we have 4, 3,6, 7, 10. .
After the final comparison we have 3, 4,6, 7, 10.

Mergesort

The idea here is to split the given list into two (roughly) equal parts, sort each
separately, and then merge (combine) them.

The process of combining two sorted lists of lengths £ and m into one list can
be accomplished by £+ m — 1 comparisons. For suppose we have two such lists,
both in increasing order. Compare the first (smallest) numbers in the lists, and
take the smaller as the first member of a new list L, crossing it out of its original
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position. Repeat the process to find the second member of L, and so on. The
comparisons is cl - ince when
the two original lists is left no comparison is necessary.

Before the merging takes place, the two halves of the original list can be
sorted by a similar method. Let t,, denote the number of comparisons needed
to sort a list of n members by this method. If we split n into ¢ + k, then
bh=te+tr +€+k—1=t +t +n— 1.

Thus, if we consider the particular case where n = 2™, so that the lists can
be bisected at each stage, we have

fom = 2t2m—1 + (zm — 1)
Put a,, = tam; then the recurrence relation becomes
@m =2am,-1 + (2™ - 1). : (2.12)

Using the method of Section 2.2, first solve the homogeneous recurrence a,, =
20,,—1. The solution is clearly a, = A2™ for some constant A. We then have
to find a particular solution of (2.12). Try

a, = Bn2™ + C.

(Trying @, = B.2" + C would not work, since a, = 2" is already a solution of
the homogeneous recurrence; so we take the hint given by Theorem 2.1(ii) and
insert n.) We then require

Bn2"+C =2B(n-12"'42C0+2" -1
i.e.

So take B = C = 1 to obtai
A= -1, giving

[
[
)
[
[
i

o
.
I
[

ap =2"(n-1)+ 1.
Thus tam = 1+ 2™(m — 1). On putting n = 2™, we get
| tn =1+ n(logyn —1),

so the mergesort method has complexity O(nlogn), an improvement on the
0O(n?) of bubblesort.
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2.6 Catalan Numbers

In this section we introduce a well-known sequence of numbers known as the
Catalan numbers, which arise as the counting numbers of a remarkable numbe
of different types of structure. They are named after the Belgian mathematicias
E.C. Catalan (1814-1894) who discussed them in his publications, but they hal
been studied earlier by several mathematicians, including Euler in his work o
triangulating polygons (to be discussed shortly).

We describe fully one of the occurrences of Catalan numbers, and begin with

+ fall 3 i
uil ICLOWINE Cal8y prociCi.

Example 2.9
How many “up-right” routes are there from A to B in Figure 2.37

B(5,3)

A(0,0) _ ~
- Figure 2.3 !
4

Solution

Rv an “un-richt?” route we maean a nat raom A ta R follaowine ad MAmarac
HJ (w7 ¥8 utl l.lbl.ll} WA UNW VY U ALLNSCANAL A yuaun ARVWSLAL £ A UV &S ANSALIVIYY llla W \.luuucﬂ,

always moving up or to the right. Any path must consist of 8 moves, 5 of which

must be to the right, and 3 up. So the total number of possible routes is (g)

More generally, the number of up-right routes from the bottom left vertex to
the top right vertex of an m x n array is (™™").

Suppose we now have a square n x n array, and ask for the number p,
of up-right paths from bottom left to top right which never go above the
diagonal AB. In the case n = 3, shown in Figure 2.4, there are 5 such routes
represented by RURURU, RURRUU, RRUURU, RRURUU, RRRUUU where
R,U stand respectively for right, up. Thus p3 = 5. What is p,,?

Any qualifying route (let’s call it a good route) from A to B must “hit’
the diagonal at some stage before B, even if it is only at A. So consider any
good route from A to B, and suppose that, prior to reaching B, it last met
the diagonal at the point C(m,m) where 1 < m < n. Then there are p,
possibilities for the part of the route between A and C. The route must then
proceed to D(m + 1,m), and eventually to E(n,n — 1), but it must never go
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E, since otherwise C would not have been the last hit before

above the lin

ans Y

e eD W !
B. But D and E are opposite vertices of a square of side length n —m — 1, so
there are p,,_,—1 good routes from D to E. See Figure 2.5.

//E

Figure 2.5

)

B, it last met
there are p,,
ute must then
1ust never go

By the multiplication principle, the number of good routes from A to B, with
(m,m) as the last contact with the diagonal before B, is therefore pynpr—m-1-
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Since m can take any value from 0 to n — 1, it now follows from the addition
principle that, with py = 1,

n—-1
Pn = Z PmPn-m—1- (213)

m=0 . 3
This recurrence relation differs from the ones met so far, but we can use gen-
nrating fanctinong ta anlve it T ot £12) ha tha conoarating fiimestionm:
L v § aulll& AULIVUAVILILY UV DVAYS AU Ad U J \d/, L LRV ¥ L) E,DLL\II. UlU-lLL& ALALAL UAVSLL .

f(z) = po + ;1T + p2z® + -
Then
— 2 2
fiz) = (Po+mz+pz®+---)( Do+ P17 +poz® + )

00

= Zzn(popn +pP1Prn1+ -+ pnpo) ‘
;0

= 5 papz® by (2.13).
n=0

Thus zf%(z) = Yooy Pr12" 2 = f(2) — 1, whence
zf%(z) - f(z)+1=0.

Solving this quadratic, we obtain

_1+xy1-4z

fl@) = =%

= .21_${1 ~(1-4z)%).

o . . I,
We have to take the negative sign to avoid having a term of the form - in
T

f(z). So

1 1 1 1 4222 1 1 3 4343
fo) = -5 455 Sr-2372 3 )
- ll.4x+l.l.4222+l.1.§.43”3+. }
2z ' 2 22 72 T3'32°32 T3
— 1+l.j4_:£+l.§.42$2+1.§_.§.ﬁ.+...
2 22 T3 T332 T4 ‘ E

Thus, forn > 1,

1.35....2n-1),,  2¢
2n(n + 1)! T (n+ 1)
2" (2n)! 1 (Zn)

m+1)! 2°n  n+l

Pn 1.35....(2n - 1)

Thus, for example, p3 = (}) = 5 and p; = £ (§) = 14. Note also that py =1
fits in with the convention that (g) =1 '
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The numbers p,, are the Catalan numbers, usually denoted by C,,. Thus

1 2n
C"_n+1(n)' (2.14)

The sequence (Cy)n>0 begins
1,1,2,5,14,42,139,429,... .
From (2.13) we have
Cm = CoCm-1 +C1Cm—2 + - + Crn1Co. (2.15)

As remarked earlier, the Catalan numbers appear in many situations. One im-
mediate interpretation, obtained by replacing R and U by 0 and 1 respectively,
is:

C, = number of binary sequences of length 2n containing exactly n Os and n
Is, such that at each stage in the sequence the number of 1s up to that point
never exceeds the number of Os.

Euler’s interest was in the following:

Crn-2 = number of ways of dividing a convex n-gon into triangles by drawing
n — 3 non-intersecting diagonals. For example, the C'; ways of triangulating a
pentagon are shown in Figure 2.6.

PADAVAVAY,

Figure 2.6

See Exercise 2.16 for this problem and Exercise 2.17 for another appearance
of Cp.

Another derivation of the formula (2.14)

i hlan o ace ) N,

18, ol alo2 it b oLt i Ll.a & cm to mam m Y LI
¥ve ClOodt LIS SeCLiun Uy pUlllblIlg VUL Lilal LIITIE 1d all alleilaulVv

€ ing
method of counting good up-right routes, due to D. André (1887). It avoids
the rather awkward recurrence relation (2.13), instead making use of a clever
mirror principle.

The number of good routes from A(0,0) to B(n,n) which do not cross the
diagonal AB is the total number (2:) of up-right routes from A to B minus
the number of routes which do cross AB. Let’s call routes which cross AB bad
routes.

enious



38 Discrete Mathematics

F B(n,n)
R
: 8
1
Figure 2.7

Consider any bad route. There will be a first point on that route above the
diagonal 4B; suppose this is the point R(m,m + 1). If we replace the part of
the route from A to R by its image in the “mirror” GF (see Figure 2.7) then
we get an up-right route from H(-1,1) to B(n,n). Conversely, any up-right
route from H to B must cross GF somewhere, and arises from precisely one
bad route from A to B. So the number of bad routes is just the number of

So finally the number of good routes from A to B is
2n\ 2n \ _ (2n n (2n\ 1 2n v
n n+l) \n n+l\n) n+1l\n)’ &

Exercises

o

Exercise 2.1

Solve the recurrence relations
(a) an = 3an_1+1,01 =1
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(b) @n = 5apn—1 —6an—2,a1 = —l,a2 = 1;

(d) an =4an—1 — 3a,_2 +2"%,a; = 1,0y = 11

Show that d,, = 2d,,_; + d_2. Solve this recurrence and deduce that
do =1+2("7") +22("7) +22("F) + -

Exercise 2.4

Use generating functions to solve Exercise 2.1(a) and 2.1(b).

Exercise 2.5

Fibonacci’s rabbits. Start with 1 pair of rabbits, and suppose that each
pair produces one new pair in each of the next two generations and
then dies. Find f,, the number of pairs belonging to the nth generation

(fl =1= f2)-

Exercise 2.6

Solve the recurrence relation (2.1) for the flags by iteration.

Exercise 2.8

Solve the recurrence (2.12) by using the method given in Example 2.4,
first eliminating 1 and then eliminating powers of 2. You should obtain
ap —9an_1 +8a,_2 —4a,_3 =0.
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Exercise 2.9

Verify that if a], and o} are two solutions of the recurrence a,, = Aa,_| +
Bay,» then a;, + a;, is also a solution.

Exercise 2.10

Show that the generating function for the Fibonacci sequence is %
Hence obtain (2.7).

Exercise 2.11

Let M = (}}).

(a) Prove that M"+2 = (;::+1 g::;) where F,, is the nth Fibonacci num-
ber.

(b) By taking determinants show that F,Fp42 — F2; = (—1)™.

(c) By considering the identity M™*+"+2 = M™+tIM"+1 prove that
Fosn=FaFy+ Fn_1Fp1. :

Exercise 2.12
Prove that Fy + Fo + -+ F, = Fj .0 — 2.

Exercise 2.13

For each of the following, work out the values for the first few values
of n and make a guess at the general case. Then prove your guesses by
induction.

() i+ Fs+ F5 4+ ---+ Fap_y;

(b) Fo+ Fy+ Fg + -+ 4 Fap;

(c) A —-F+F—---4+(-1)"1F,.

Exercise 2.14

In beliringing, successive permutations of n bells are played one after
the other. Following one permutation 7, the next permutation must be
obtained from 7 by moving the position of each bell by at most one
place. For example, for n = 4, the permutation 1234 could be followed
by any one of 2134, 2143, 1324, 1243. Show that if a,, denotes the number
of permutations which could follow 12...n, then a, = a1 + ap—2 + 1.

Hence find an,.
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Exercise 2.15

(a) Let g, denote the number of subsets of {1,...,n} containing no two
consecutive integers. Thus, for example, g; = 2 (include the empty
set!) and g, = 3. Find a recurrence relation for g,,, and deduce that
gn = F n+l-

(b) A k-element subset of {1,...,n} can be considered as a binary se-

oy PP - S {omm [P

e sm L Vmon b ln am . - 1g mmnd o 1. N . . T4 1 19
Jurlie UL ICHELLL 7o COLLLALLIIIE A LD allu 7L — A Ud (DT LXalllpPle 1.14).
Use Example 1.17 to show that the number of k-subsets of {1,... ,n}
containing no two consecutive integers is ("‘,’:"’1).
— n—k . . .
(c) Deduce that Fr =3 <y, (""). How does this relation show up in

Pascal’s triangle?

Exercise 2.16

Let ¢, denote the number of ways of triangulating a convex (n + 2)-gon
by drawing n — 1 diagonals. Show that ¢, = C,, as follows. Label the
vertices 1,... ,n + 2, and consider the triangle containing edge 12. If it
contains vertex r as its third vertex, in how many ways can the remaining
two parts of the interior of the (n + 2)-gon be triangulated? Deduce that
t, = ) tit; where summation is over all pairs i,j withi +j=n - 1.

Exercise 2.17

Show that if 2n points are marked on the circumference of a circle and if
ay, is the number of ways of joining them in pairs by n non-intersecting
chords, then a,, = C,,.

Exercise 2.18
.4.6...(4n—2

Derive Euler’s formula C,, = 2 Py for the Catalan numbers, and
note that (n + 1)C, = (4n — 2)Cp_;.

Exercise 2.19
Prove that d, > (n — 1)! for all n > 4.

Exercise 2.20

Insertionsort. Sort a list x;,... ,T, into increasing order as follows. At
stage 1, form list L, consisting of just z;. At stage 2, compare z; with
zo and form list Ly consisting of x; and x; in increasing order. At stage
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i, when z,,...,7;-) have been put into list L;_; in increasing order,

obtained; this creates list L;. Repeat until L,, is obtained. Compare the
efficiency of this method with that of bubblesort.

Exercise 2.21

In a mathematical model of the population of foxes and rabbits, the

populations z, and y, of foxes and rabbits at the end of n years are
1% {Tn+1Yy — § 0.8 0.5y 7z .

related by ("7 ) = o1e 1.2/\y, )

Show that 5z,42 — 9241 + 4z, = 0, and hence find z, in terms of z,

and Yo-

Deduce that z, — gyo — Tg a8 n — 00, provided zry < gyg. What
happens to yn?

Exercise 2.22

In a football competition, there are n qualifying leagues. At the next
stage of the competition, each winner of a league plays a runner up in
another league. In how many ways can the winners and the runners up
be paired?



