
Chapter 11 

Formal  Languages  
and F in i t e -S ta te  

Mach ines  

Time as he grows old teaches many lessons. 

B A E S C H Y L U S  

T he study of finite-state machines began with the neural networks 
investigations of Warren S. McCulloch and Walter Pitts in 1943. 

Today paradigms of finite-state constructs can be seen everywhere: 
turnstiles, traffic signal controllers, automated teller machines, auto- 
mated telephone service, garage door openers, household appliances, and 
coin-operated machines such as vending machines and slot machines. 

Finite-state machines significantly assist the study of formal languages; 
for example, a machine can be designed (or a program developed) that  
determines if an input string over the alphabet {a,b} contains abba as a 
substring. (The string babaabbaba does, while abaaba does not.) This type 
of machine produces no output, but instead tells whether  or not the input 
string has a certain property. (Example 11.26 explores this.) 

Some machines, however, produce output values. For instance, adding 
two binary numbers requires the input of two numbers,  and yields their 
sum as the output (see Example 11.42). Such a machine, a finite-state 
automaton, is described in Section 11.4. 

Since all finite-state automata must recognize particular languages, for- 
mal languages and types of grammars  become important. This chapter 
explores formal languages, and how automata and formal languages are 
related, as well as other interesting questions such as: 

�9 How do we determine if a string of characters contains a certain 
substring? 

�9 How do we simulate an automatic teller machine? 
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�9 Can we develop a p rog ram tha t  accepts two b inary  n u m b e r s ,  adds  t h e m  
bit  by bit, and ou tputs  the i r  sum? 

�9 Wha t  sort  of languages  are accepted by f ini te-state  a u t o m a t a ?  

We now cont inue our s tudy of formal  languages,  begun in Sect ion 2.1. 
The language of sets plays an i m p o r t a n t  role in the s tudy,  as we saw in 
Chap te r  2. 

You may  recall t ha t  an a lphabet  E is a finite set of symbols;  and  a word 
(or str ing) over E is a finite sequence of symbols from E. 

How do we de te rmine  whe the r  or not  two words over E are  equal? To 
this  end, we make  the following definition. 

Equality of Words 

Two words x = X l X 2 . . . x m  a n d y  = y l y 2 . . . y , ,  over Z are e q u a l ,  denoted  by 
x = y, if m = n and xi = Yi for every i. Thus  two words are equal  if they 
contain the same n u m b e r  of symbols and the corresponding  symbols  are 
the same. 

For example,  if 0 l z  = xyO, then  x = 0, y = 1, and z = 0. Also, 011 4= 001. 
The length of a word w is the  n u m b e r  of symbols in it. A word of length  

zero is the  empty  word, denoted by the lowercase Greek le t te r  ~; it conta ins  
no symbols. 

Again recall tha t  E* denotes  the set of words over E. (E* can be defined 
recursively.  See Exercise 23.) A language over E is a subset  of Z*; it may  
be finite or infinite. 

Let E - {x ,y , z ,  + , - , . , / ,  1",(,)}, where  �9 denotes  mul t ip l ica t ion  and 
1" denotes  exponent ia t ion.  Define a language L over E recurs ively  as 
follows: 

�9 x , y , z  e L .  

�9 I f u  and v are in L, then  so are (+u) ,  ( - u ) ,  (u + v), (u - v), (u , v ) ,  (u/v),  

and (u 1" v). 

Then  L consists of all fully and legally paren thes ized  algebraic express ions  
in x, y, and z. For instance,  ((((x �9 (y t z)) - (y �9 z)) + x) 1" z) is a fully 
paren thes ized  and well-formed algebraic expression. Note t h a t  E* conta ins  
nonsensical  expressions such as ) + x ( /y* 1" also. II 

(optional) Let E - {_, $ , a , . . .  ,z, 0 , . . . ,  9, }. Define the  language  L of legal 
identifiers in Java  recursively.  
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SOLUTION: 
An identifier in Java  begins with a letter, underscore (_), or the dollar sign 
($), followed by any number  of a lphanumeric  characters (letters or digits). 
(See the syntax diagram in Figure 11.1.) A letter, an underscore, or $ by 
itself is a valid identifier. It can also be followed by a letter or a digit; tha t  
is, if x ~ L and y ~ E, then xy ~ L. Thus the language L can be defined 
recursively as follows: 

�9 _ (underscore), $, and every letter of the English alphabet are in L. 

�9 If x ~ L a n d y e  E, t h e n x y ~ L .  

Figure  11.1 ~ letter _ ~ ~  ~ ~  

underscore letter 

$ digit m 

(optional) The alphabet E for Java on a computer  system that  uses the 
ASCII character set consists of the blank character, the upper- and lower- 
case letters, digits, ar i thmetic and relational operators, special characters, 
and control characters. So Java is a subset of Z*, consisting of all words 
over E that  are recognizable by a Java compiler, m 

Since both ~ and { s } are subsets of E*, both are languages by definition. 
The language ~ is the e m p t y  l a n g u a g e .  The language { ~ } is denoted by 
the upper case Greek letter A. We emphasize that  ~ r A, since J~J = 0, 
whereas I AI - 1. However, if E - ~, E* -- A. Why? 

Suppose an alphabet E contains at least one element a. Then L = 
{a, aa, aaa, . . .}  is an infinite language over E. Since L _ E*, E* is also 
infinite. Thus, i fE r ~,  E* contains infinitely many words, each of finite 
length (see Exercise 29). 

. . . . . . . . . . . . . . .  

Let z be the concatenation of the words x and y; tha t  is, z = xy. Then 
x is a p re f ix  of z and y a suff ix  of z. For instance, consider the word z = 
readabil i ty  over the English alphabet; x - read is a prefix ofz andy  = ability 
is a suffix ofz. Since x - )~x = x~, every word is a prefix and a suffix of itself; 
further,  ~ is both a prefix and a suffix of every word. 

The operations of union and intersection can be applied to languages 
also; after all, languages are also sets. To this end, we extend the definition 
of concatenation of strings to languages. 
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Concatenation of Languages 

Let A and B be any two languages over E. The c o n c a t e n a t i o n  of A and 
B, denoted by AB, is the set of all words ab with a �9 A and b �9 B. Tha t  is, 
A B  = {ab l a � 9  � 9  

The next two examples i l lustrate this definition. 

~ Let E -- {0, 1},A = {0, 01}, and B - {X, 1,110}. Find the concatenat ions  

AB and BA.  

S O L U T I O N :  

�9 AB consists of strings of the form ab with a �9 A and b �9 B. So 

AB = {0~, 01, 0110, 01)~, 011, 01110} 

= {0, 01, 0110, 01,011, 01110} 

= {0, 01,011, 0110, 01110} 

B A -  {ba ] b �9 B A a  � 9  

= {~0, ~01, 10, 101, 1100, 11001} 

-- {0, 01, 10, 101, 1100, 11001} II 

F i g u r e  11.2 

Tree diagrams are useful in finding the various strings in the concatena- 
tion of two finite languages. Figure 11.2, for example, shows the different 
ways of obtaining the elements in AB for the languages in Example 11.4. 

strings in A strings in B strings in AB 

~ ;L ~ 0~. 

0 ~ 1 ~, 01 

110 ~ 0110 

0 1 / ' - / 1  

~ 1 1 0  

01~ 

' ~-- 011 

01110 

Two interest ing points arise from this example: 

(1) AB r BA.  
(2) Further ,  IABI = 5 < 6 = 2 . 3  = IAI. IBI; whereas IBAI = 6 -- 

3 . 2  -- IB[-IAI. This is so since the word 01 in AB can be obtained 
in two ways. Therefore, all we can say in general is, ifA and B are 
finite languages, then IABI < IAI. iB]. 
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(optional) In the p rog ra mming  language QUICKBASIC, numer ic  a 

variable name  mus t  begin with a let ter  followed by ei ther  a period 
or an a lphanumer ic  character.  (QUICKBASIC does not  d is t inguish 
between upper  and lowercases in variable names.)  Let A = {a, b , . . .  ,z} and  
B - {a , . . . ,  z, 0 , . . . ,  9,. }. The concatenat ion AB gives all numer ic  variable 
names  containing exactly two characters ,  namely: 

aa, a b , . . . ,  a 0 , . . . ,  a9, a. 

ba, b b , . . . ,  b0, . . . ,  b9, b. 

za, zb, . . . ,  zO, . . . ,  z9, z. I 

Let A be a language over E. Identify the languages  A~  and AA. 

S O L U T I O N "  
�9 A O  - {ab ta  ~ A A b  ~ ~}. Since 0 contains no elements,  no 
concatenat ions ab can be performed; therefore,  A ~  - ~. (Similarly, 
~ n  - 0 . )  

�9 AA =A{)~} = {aZ l a E A} - { a l a  c A} - A .  (Similarly, AA - A . )  I 

We are now ready to s tudy some propert ies  of the concatenat ion 
operat ion on languages. 

Let A, B, C, and D be languages over an a lphabet  Z. Then: any 

(1) A ~  - 0 - OA (2) AA - A  = AA (3) A ( B C )  = (AB)C 

(4) A ( B  u C) = A B  U A C  (5) (B u C)A - B A  u CA 

(6) A ( B  ~ C) c_ A B  n A C  (7) (B A C)A c B A  ~ CA 

(8) If A c_ B and C c_ D, then  AC c_ BD. 

P R O O F :  
We already proved par ts  i and 2 in Example  11.6. We now shall prove par ts  
4 and 6, and leave the other  par ts  as exercises. 

(4) To prove that  A (B  u C) = A B  u AC: 

We need to show tha t  ( a ) A ( B U C )  c_ A B u A C  and (b) AB UAC _c A ( B U C ) .  

�9 To prove that  A ( B  u C) c_ A B  u AC: 

Let x ~ A ( B  u C). Then x is of the form yz,  where y ~ A and z e B u C. 
If z ~ B, then  yz  ~ A B  and hence yz  ~ A B  u AC.  If z ~ C, then  yz  ~ A C  

and therefore yz  E A B  u AC.  Thus,  in both  cases x = yz  ~ A B  u AC.  
Consequently,  A ( B  u C) c A B  u AC.  
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�9 To prove that AB  u A C c  A(B  U C)" 
Let  x �9 A B u A C .  Suppose  x �9 AB. T h e n  x - ab for some a �9 A a n d  b �9 B. 
Since b �9 B, b also belongs  to B U C. So x - ab �9 A(B u C). Simi la r ly ,  
if x �9 AC, t h e n  also x �9 A(B u C). T h u s  in bo th  cases x �9 A (B  U C). 
Consequent ly ,  AB u AC c A(B u C). 

Therefore ,  by pa r t s  (a) and  (b), A(B u C) - AB  u AC. 

(6) To prove that A(B N C) c_ AB  n AC" 
L e t x  �9 A(BNC).  T h e n x  - yz for some e l e m e n t y  �9 A a n d z  �9 BNC. Since  
z �9 B n C, z �9 B and  z �9 C. So yz belongs  to bo th  AB and  AC, and  h e n c e  
yz �9 AB  NAC; in o the r  words,  x �9 A B  NAC.  T h u s  A(B n C) c_ A B  NAC.  

m 

The  next  example  verifies pa r t s  (4) and  (6) of this  t heo rem.  

Let  E -- {a,b,c}, A -  {a, ab}, B -  {b, ab}, and  C -  {)~,bc}. Verify  t h a t  
I I 

- ( 1 ) A ( B u C ) - A B u A C  and  ( 2 ) A ( B N C )  c _ A B N A C .  

S O L U T I O N :  
AB - { ab, aab, abb, abab } 

AC - {aZ, abc, ab)~, abbc} = {a, ab, abc, abbc} 

AB u AC - {a, ab, aab, abb, abc, abab, abbc} 

AB n AC - {ab, abb } 

(1) B u C - {s ab, bc} 

T h e n  A(B u C) - {aZ, ab, aab, abc, ab)~, abb, abab, abbc} 

= {a, ab, aab, abb, abc, abab, abbc} 

= A B u A C  

(2) Since B N C - 0 ,  A(B n C) - 0 and  hence  A(B n C) c A B  a AC. m 

If  the  l anguages  A and  B are  the  same,  t hen  AB is of ten deno ted  by A 2. 
T h u s  A 2 consis ts  of words  ob ta ined  by c o n c a t e n a t i n g  each word  in A wi th  
every word in A: A 2 - {xy Ix,y �9 A}. More general ly,  let n �9 N. T h e n  A n 
consis ts  of all words  ob ta ined  by n - 1 conca tena t ions  of words  in A. In 
par t i cu la r ,  Z" denotes  the  set  of words  ob ta ined  by n - 1 c o n c a t e n a t i o n s  of 
symbols  in Z, t h a t  is, words  of l eng th  n. 

Let  E - {a, b, c}, A - {a, ab, bc}, and B = {a, bc}. Find ]E 2, A 2, and  B 3. 

S O L U T I O N :  
�9 E 2 = { x y l x , y  �9 E} = {aa, ab, ac, ba, bb, bc, ca, cb, cc} 

�9 A 2 = {xy I x ,y  �9 A} = {aa, aab, abc, aba, abab, abbc, bca, bcab, bcbc} 

�9 B 2 = {aa, abc, bca, bcbc} 

So B 3 = { aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc } m 
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Stephen Cole Kleene (1909-1994) was born in Hartford, Connecticut. His 
father was an economics professor and his mother, a poet. In 1930, he graduated 
from Amherst  College and 4 years later received his Ph.D. in mathematics from 
Princeton. 

After teaching for 6 years at the University of  Wisconsin, Madison, he joined 
the faculty at Amherst  College for a year. For the next 4 years he served in 
the U.S. Naval Reserve. In 1946, he returned to the Madison campus and in 
1964 became the Cyrus C. MacDuffee Professor of  Mathematics and Computer 
Science. He served as Chairman of the Department of Mathematics, Acting 
Director of the Mathematics Research Center, and Dean of the College of Letters 
and Science. 

Kleene was awarded an honorary Doctor of Science by Amherst  College in 
1970, the Steele Prize by the American Mathematical Society in 1983, and the 

National Medal of Science in 1990. 
Kleene contributed significantly to the theory of recursive functions and the theory of automata. 

Note" It follows by pa r t  8 of T h e o r e m  11.1 t h a t  i fA  _c B, t hen  A 2 c B 2 
(Why?). More general ly,  it can be shown by induc t ion  t h a t  i fA c B, t h e n  
A n c_ B n for every n e N. 

Finally, f rom any  language  A over E, we can cons t ruc t  a new language  
A* using the  var ious  powers  of A. F i rs t  we define A ~ = A. 

Kleene Closure 

Let A be a language  over an a lphabe t  Z. Then  A* -- u A n is the  K l e e n e  
n = 0  

c l o s u r e  of A, in honor  of the  Amer ican  logician S t ephen  Kleene. A* consis ts  
of s t r ings  ob ta ined  by an a rb i t r a ry  n u m b e r  of conca tena t ions  of words  f rom 
A. * is the K l e e n e  o p e r a t o r .  

The following example  i l lus t ra tes  this  definit ion. 

Let  A -  {0}, B -- {11}, C = {000}, and  E - {0, 1 }. F ind  the i r  Kleene closures.  

S O L U T I O N :  
CA3 

�9 S i n c e A  = {0}, A n - {0 n}. SoA*  - U A n - {0 n ] n > 0}. In o the r  
n - - 0  

words,  A* consists  of s t r ings  of zero or more  0's. 

�9 Since B -  {11} = {12}, B 2 = B B  = {1111} = {14}. So B 3 - B B  2 = 
o o  

{12}{14} -- {16}. Thus,  in general ,  B n - { 1 2 n } .  Thus  B* - U B n = 
n - - 0  

{ 12n I n > 0}. It consists  of words  of l ' s  of even length.  

�9 Since C - {03}, C n - {03n}. So C* = {03n I n > 0}, the  set of s t r ings  of 
O's whose lengths  are divisible by 3. 
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�9 The Kleene closure is the set of all possible words over E, namely,  
E*. (This explains why we denoted it by E* from the beginning of the 
section.) m 

We now turn  to a few properties satisfied by the Kleene operator. We 
shall prove one of them and leave the others as exercises. Proper ty  6 is a 
bit hard to prove, so we omit it; properties 4 and 5 require induction. 

Let A and B be languages over an alphabet E. Then" any 

(1) A c A *  (2) A c A *  

(3) A ' A *  - A *  (4) If A _c B, then A* _ B*. 

(5) (A*)* - A *  (6) (A u B)* - (A* u B*)* - ( A ' B * ) *  

P R O O F .  
(3) To p r o v e  t h a t  A 'A*=  A*: 

�9 To  p r o v e  t h a t  A * c  A ' A * "  Since A c A*, A*A c A ' A *  by Theorem 
11.1. But A*A - A *  by Theorem 11.1. So 

A* c A ' A *  (11.1) 
m 

�9 T o p r o v e  t h a t A * A * c  A*" Letx  ~ A ' A * .  Thenx  - y z  withy,  z ~ A*. 
Since y , z  E A*, y ~ A m and z ~ A n where m, n ~ W. So y z  

AreA  '' - A m+n. But A m+n c_ A*, so x - y z  ~ A*.  Thus 

A ' A *  c A* (11.2) 

Thus, by set inclusions ( 11.1 ) and ( 11.2), A'A* - A*. m 

A n  i n t e r e s t i n g  observa t ion"  For any language A, A _c A*. That  is, when 
we apply the Kleene operator * on A, the result ing language A* contains A. 
However, if we apply * to A*, we find that  (A*)* - A*; so we do not get a 
new language. This explains why A* is called the Kleene closure of A. 

We conclude this section with an example involving both concatenat ion 
and the Kleene operators. 

~ Identify each language over E - {a, b}. 

(1) {a,b}*{b} (2) {a}{a, b}* (3) {aI{a, bI*{b} (4) {a, bI*{b}* 

SOLUTION" 
(1) {a, b }* consists of all possible words over E including )~, whereas {b} 

contains just  one word, namely, b. Therefore, the language { a,b }* {b } 
consists of words over E that  have b as a suffix. 

(2) Similarly, { a} { a, b }* consists of words that  have a as a prefix. 
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(3) {a} {a, b}* {b} consists of words t ha t  begin with  a and end in b. 
(4) Every  e lement  in {b}* consists of a finite n u m b e r  of b's. Therefore ,  

{a, b}* {b}* consists of s t r ings followed by a finite n u m b e r  of b's. 
Notice tha t  this is different from {a, b}* {b} (Why?). m 

Exercises II . I  

In Exercises 1-4, a language L over E = {a, b} is given. F ind five words  in 
each language.  

1. L = {x e E* Ix begins with and ends in b.} 

2. L = {x e E* Ix contains exactly one b.} 

3. L is defined recursively as follows: (i) ~ e L (ii) x ~ L ~ xbb  ~ L 

4. L is defined recursively as follows: (i) ~, ~ L (ii) x ~ L ~ a x b  ~ L 

Define each language L over the given a lphabet  recursively.  

5. The language L of all pa l indromes  over E -- {a, b}. (A p a l i n d r o m e  
over E is a word tha t  reads the same both forwards and backwards .  
For  instance,  abba  is a pal indrome.)  

6. L = {anbn l n E N}, E = {a,b} 

7. L = {0,00, 10, 100, 110,0000, 1010,. . .},  E = {0, 1} 

8. L = set of b inary  represen ta t ions  of positive integers,  E = {0,1 } 

9. L = {1, 11,111, 1111, 11111,. . .},  E = {0, 1} 

10. L = { x e  E* I x = b n a b  n, n > O } , E = { a , b }  

11. L = set of words over Z = { 0, 1} with prefix 00 

12. L = set of words over Z = { 0, 1} with suffix 11 

Mark  each as t rue  or false. 

13. Every  language over an a lphabet  is infinite. 

14. If  E = El, then  Z* = E~. 

15. C + + is a finite language. 

16. Every  language is a set. 

Using Example  11.1, de te rmine  if each is a well-formed and fully pa ren the -  
sized a r i thmet ic  expression. 

17. (((x + y ) / ( ( ( x - y )  �9 z) t z))  18. (x 1" ((Y - x )  ? ( -z)) )  

19. (y + (z t (+x))/(-x)) 20 .  ( ( x -  (y t z)) �9 (x + (3' t (+z) ) ) )  

21. Define the  set of words S over an a lphabet  Z recursively. 
(Hin t :  Use concatenat ion.)  
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22. Define the language L of all b inary  rep resen ta t ions  of nonnega t ive  
integers  recursively.  

23. Let  E be an alphabet .  Define E* recursively.  
(Hint: Use concatenat ion.)  

24. Define recursively the set S of integers  acceptable in Java.  

Arrange  the b inary  words of each length in increas ing order.  

25. Length  two. 26. Length  three.  

A t e r n a r y  w o r d  is a word over the a lphabet  { 0, 1, 2 }. Ar range  the t e r n a r y  
words of each length in increasing order.  

27. Length  one 28. Length  two 

*29. Let Z be a nonempty  alphabet .  Prove tha t  Z* is infinite. 
(Hint: Assume E* is finite. Since E r O, it contains  an e lement  a. Let  
x ~ Z* with largest  length. Now consider xa.) 

Let A - {a, bc} and B = {k, ab, bc}. Find each concatenat ion.  

30. AB 31. B A  32. A 2 33. A 3 

L e t A -  {a, a b } , B -  {a,b, ab}, C -  {c}, and  D -  {c, bc}. Verify each. 

34. A A - A  35. A A - A  36. A ( B U C ) - A B u A C  

37. (B u C)A - BA  u CA 38. A(B  N C) - A B  N AC 

39. (B N C)A - B A n  CA 

40. If A c_ B and C c D, then AC c_ BD. 

Mark  each as t rue  or false, where  A and B are a rb i t r a ry  finite languages.  

41. A=O 42. AO-O 43. AO-OA 44. AA--A 

45. A A - A A  46. [ A x B I - I B x A [  47. ] A B I - I B A I  

Find three  words belonging to each language over ~ - 10, 11. 

48. {0}* 49. {0}{1}* 50. {0}*{1} 51. {0}{11}*{1}  

52. {0}*{1}* 53. {01}* 54. {0}{0 ,1}*{1}  55. {0}*{1}*{0}* 

Prove each, where  A, B, and C are a rb i t r a ry  languages  over Z and x e E. 

56. IIx n II -- nllxll for every n > 0. 

57. If A c_ B, then  A n c_ B n for every n > 0. 

58. If  A Z B, then  A* Z B*. 59. (A*)* - A* 

60. OA=D 61. AA-A 62. A cA* 
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63. A c A *  

65. (B U C)A = BA u CA 

67. (A'B*)* - (B'A*)* 

64. A(B n C) c AB N AC 

66. (B N C)A c B A N  CA 

68. (A* u B*)* = (A u B)* 

Words in a natural language such as English or French can be combined 
in several ways. Some combinations form valid sentences, while others do 
not. The g r a m m a r  of a language is a set of rules that determines whether  
or not a sentence is considered valid. For instance, The milk drinks child 
quickly, although meaningless, is a perfectly legal sentence. 

The sentences in a language may be nonsensical, but must obey the 
grammar. Our discussion deals with only the s y n t a x  of sentences (the way 
words are combined), and not with the s e m a n t i c s  of sentences (meaning). 
Although listing the rules that govern a natural language such as English 
is extremely complex, specifying the rules for subsets of English is certainly 
possible. 

The next example introduces such a language. 

~ ~ ~ ] ~  The sentence The child drinks milk quickly, has two parts: a subject, The 
child, and a predicate drinks milk quickly. The subject consists of the def- 
inite article The and the noun child. The predicate, on the other hand, 
consists of the verb drinks and the object phrase milk quickly; the object 
phrase in turn has the object milk and the adverb quickly. This structure 
of the sentence can appear as a sequence of trees (Figures 11.3-11.7), with 
the d e r i v a t i o n  t r e e  of the sentence in Figure 11.7. 

F i g u r e  11.3 sentence 

subject predicate 

F i g u r e  11.4 sentence 

subject predicate 

article noun 

The derivation tree exhibits certain characteristics: 

�9 Each leaf represents a word, a t e r m i n a l  symbol.  The set of terminal 
symbols is T - {the, child, drinks, milk, quickly}. 
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Figure  11.5 

Figure  11.6 

Figure  11.7 

sentence 

subject predicate 

article noun 

I I 
The child 

article noun 

I I 
The child 

sentence 

subject predicate 

verbl o b ~  

drinks objict adverbl 

noun quickly 

article noun 

The child 

sentence 

subject predicate 

verbl o b ~  

drinks objict adverb 

noun 

I 
milk 

quickly 

�9 Each internal vertex represents a grammatical class, a nontermina l .  
The set of nonterminals is N = {sentence, subject, predicate, article, 
noun, object phrase, object, verb, adverb}. A nonterminal symbol is 
enclosed within angle  brackets ,  ( and >. For instance, the nonterminal 
"subject" is denoted by (subject>. 

�9 The root of the tree represents the nonterminal symbol (sentence> 
called the s t a r t  symbol,  denoted by a. 

Certain rules can generate the above sentence. Every rule, called a pro- 
duc t ion  rule  or a subs t i t u t ion  rule, is of the form w -~ w' where w ~ N 
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F i g u r e  11.8 

and w' may be a terminal symbol, a nonterminal symbol, or a combination 
of both. 

The production rules of the above sentence are: 

(sentence) -~ (subject)(predicate) 

(subject) -~ (article)(noun) 

(article) -~ the 

(noun) -~ child 

(noun) --~ milk 

{predicate) --* {verb){object phrase) 

(verb) --* drinks 

(object phrase) -~ (object)(adverb) 

(object) ~ (noun) 

(adverb) -~ quickly I 

The production rules specify the arrangement of words in a sentence: 
the syntax  of the language. They produce syntactically correct sentences 
(which can be meaningless). For instance, the sentence, The milk drinks 
child quickly makes no sense but is syntactically valid. Figure 11.8 shows 
the derivation tree of this sentence. 

(subject} 

(articie) (niun) 

the milk 

(veib) ~ )  

drinks (ob j ec t )  (adverb) 

I I 
(niun) quickly 

child 

Determining whether a program is syntactically correct is of the utmost 
importance in computer science. Before executing a program, the compiler 
checks the syntax of each sentence (or expression) by constructing deriva- 
tion trees. (This process is pars ing,  and the corresponding derivation tree 
is a p a r s e  tree . )  

We now turn to present the definition of a phrase-structure grammar. 
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Phrase-Structure Grammar 

A phrase-s tructure  g r a m m a r  (or simply a g r a m m a r )  G bears  four 
features: 

�9 A finite set N of n o n t e r m i n a l  s y m b o l s ;  

�9 A finite set T of t e r m i n a l  s y m b o l s ,  where  N n T = ~;  

�9 A finite subset  P of [(N u T)* - T*] x (N u T)*; each e lement  of P is 
called a p r o d u c t i o n ;  

�9 A s t a r t  s y m b o l  ~ belonging to N; 

The g r a m m a r  G is denoted by G = (N, T, P, a). 

These features meet  cer ta in  requi rements :  

�9 The s ta r t  symbol a is nontermina l .  

�9 No symbol can be both  t e rmina l  and nonterminal .  

�9 Every product ion has at  least one non te rmina l  symbol on its LHS, 
because P __ | (N u T)* - T*] x (N u T)*. Also, P is a b inary  relat ion 
from (N u T)* - T* to (N u T)*. 

�9 If (w,w')  e P, we then  wri te  w ~ w'; since w e (N u T)* - T*, 
w contains at least one non te rmina l  symbol; but  w' e (N u T)*; 
so it may contain t e rmina l  symbols, nonterminals ,  or both.  

G r a m m a r s  not only produce na tura l  languages, but  also formal ones, as 
the next two examples demons t ra te .  

L e t N -  {A,B,c~}, T -  {a,b}, a n d P -  {a --* aA, A --~ bA, A a}. 
Then G - (N, T, P, a)  is a g rammar .  Notice tha t  the product ion A ~ bA is 
recursive. I 

Let N = {A,a}, T -  {a,b}, and P -  {a --* aa ,  a --. Aa,  A ~ b}. Then 
G - (N, T, P, a)  is a g rammar .  Again notice tha t  the product ion  a ~ aa  is 
recursive. I 

Next we define the language genera ted  by a g rammar .  

Derivation and Language 

Let G = (N, T, P, a)  be a g rammar .  If w = xay  and w' = xfly are any two 
words in (N u T)*, and if there  exists a product ion a ~ fl, t hen  the word 
w' is said to be d i r e c t l y  d e r i v a b l e  from w; we then  wri te  w .~ w'. If 
there  is a finite sequence of words w0, w l , . . . ,  Wn in (N U T)* such tha t  
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WO ~ W l ,  W l  ~ W2, . . . ,  W n - 1  ~ Wn,  then  Wn is d e r i v a b l e  from w0. 

The finite sequence of steps, wo ~ Wl - - ~  . . .  ~ Wn, is a d e r i v a t i o n  of 
Wn from w0. 

The set of words in T* derivable from a by G is the l a n g u a g e  g e n e r a t e d  
by G, denoted by L(G) .  

The next two examples i l lustrate these definitions. 

Identify the language L ( G )  genera ted  by the g r a m m a r  in Example  11.12. 

S O L U T I O N :  

Since the g r a m m a r  contains exactly one product ion involving ~, namely,  
--~ aA,  s tar t  with it to find every word in the language. Now select the 

next production: A --~ bA or A --~ a. The product ion A -~ a produces 
exactly one word, a. A ~ bA chosen n times, produces ~ == :- a A  

a b A  ~ ab2A ~ . . .  ~ abnA.  Now A -~ a yields the word abna  and, 
when n - 0, this yields a~a = aa. (Note: b ~ = ;~, the null word.) Every 
word derivable from c~ fits the form abna,  where n > 0. In o ther  words, 
L ( G )  = {abna l n >_ 0}. m 

Example 11.14 i l lustrates tha t  a g r a m m a r  G can de termine  if it genera tes  
a s t r ing in the language L(G) .  With some difficulty, the language could be 
described. Again with some difficulty, and a lot of patience and practice, 
a g r a m m a r  G tha t  generates  a given language can be found, as Example  
11.15 demonstra tes .  

Define a g r a m m a r  G - 

{anb n In  > 1}. 
( N , T , P , ~ )  tha t  generates  the language L = 

S O L U T I O N :  

Since every word in L mus t  contain the same numbe r  of a 's  and b's, G mus t  
contain a product ion of the form c~ --~ aAb. Consequently,  to produce a 
new word from aAb containing the same numbe r  of a 's and b's  requires  
another  product ion A -~ aAb. From these two productions,  we can derive 
all s tr ings of the form an Ab n (Verify this.). All tha t  remains  to be done to 
define the g r a m m a r  is the product ion A -~ ~ to t e rmina te  the recursive 
procedure. Thus,  N = {a, A}, T = {a, b, ~}, and P = {a ~ aAb, A ~ aAb, 
A ~ } .  m 

The first two product ion rules in this example look quite similar, except 
for the s tar t  symbol, and can be combined into a single production,  ~ --~ 
ac~b. The product ion rules ~ --* aAb and A -~ ~ can yield the word ab, 
so the third  product ion is ~ -~ ab. Thus  P ' =  {a --~ aab,  a --~ ab} is an 
additional product ion set tha t  yields the same language. In other  words, 
the g r ammars  G = (N, T, P, of) and G' = {N', T', P', ~) generate  the same 
language L, where N'  = {a} and T' = {a, b}. Thus  L ( G )  = L (G ' ) ,  so the 
g r ammars  G and G' are e q u i v a l e n t .  Our  conclusion: T h e  g r a m m a r  tha t  

genera tes  a l a n g u a g e  need  not  be un ique .  
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J o h n  W. B a c k u s  (1924-) was born in Philadelphia. He received his B.S. 
and M.S. in mathematics from Columbia University. After joining IBM in 
1950, he became instrumental in the development of F O R T R A N  and ALGOL 
(ALGOrithmic Language). He received the W. W. McDowell Award from The 
Institute of Electrical and Electronics Engineers (IEEE) in 1967, the National 
Medal of Science in 1975, the A. M. Turing Award from the Association for 
Computing Machinery in 1977, the Harold Pender Award from the University 
of Pennsylvania in 1983, and an honorary doctorate from York University, 
England, in 1985. 

� 9  , J "  . L:" 
Y, 

, , ~  , 

�9 ~ , . . ~ , ' . : , , : ~  

Peter  N a u r  (1928-), a computer scientist and prolific writer, was born in 
Frederiksberg, Denmark. After receiving his M.A. in astronomy from 
Copenhagen University in 1949, he spent the next two years at Cambridge 
University, England, where he used the EDSAC, one of the earliest computers, 
to pursue astronomy. He received his Ph.D. in astronomy from Copenhagen in 
1957. 

From 1953 to 1959, he consulted for the design of the first Danish com- 
puter, the DASK. Beginning around 1964, he became increasingly involved 
in datalogy (a word he coined), the study of data and data processes. In 
1963, Naur was given the Hagemanns Gold Medal and three years later the 
Rosenhjaer Prize. 

Backus-Normal Form 

The most widely used notation for describing the syntax of program- 
ming languages is the B a c k u s - N o r m a l  F o r m  (BNF),  developed by John 
Backus, who described ALGOL 60 with it. Peter Naur edited the ALGOL 
60 report, which appeared in 1963, so the BNF notation is also called the 
B a c k u s - N a u r  F o r m .  

In BNF, the production symbol ~ is denoted by ::-; thus the production 
w -~ w' is written as w ::= w'. Production rules with the same LHS are 
combined by separating their RHS with vertical bars. For instance, the 
productionsw -~ Wl, w ~ w 2 , . . . , w  ~ wn becomew " ' - w l  I w 2 1 . . .  I wn.  
(You may read the vertical bar as or.)  Nonterminal symbols have angle 
brackets around them. 
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• Study the following production rules: 

(sentence) ~ (subject)(predicate) 

{subject) --~ {article){noun) 

(p r ed i ca t e /~  (verb/(object/ 

(object) ~ (article)(noun) 

(article) ~ a 

(article} ~ the 

(noun/--~ hare 

(noun) --~ tortoise 

(noun)--~ race 

(verb) --~ beats 

{verb)--~ wins 

BNF shortens these rules: 

{sentence) ::= 

(subject/ : := 

(predicate) ::= 

(object) ::= 

(article} ::= 

(noun/ : :=  

(verb) ::= 

(subject) (predicate) 

(article/(noun/ 

(verb) (object) 

{article) (noun) 

a I the 

hare l tor to i se t race  

beats lw ins  m 

The grammar  for the language of correctly nested parentheses contains one 
production: 

(nested p a r e n t h e s e s / : : -  ~ [ ((nested parentheses/)  

where ~ denotes the null string. [Using this definition, you may verify 
that  (()) and ((())) are valid nested parentheses,  whereas (() and (())) are 
not.] m 

(optional) An integer is a string of digits preceded by an optional sign, 
+ or - .  Using BNF, it can be defined as follows: 

(integer} :: = (signed integer)I (unsigned integer) 

(signed integer)::  = (sign)I (unsigned integer) 

(sign/:: = + 1 -  
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F i g u r e  11.9 

Derivation tree for the 
integer +234. 

Chapter 11 Formal Languages and Finite-State Machines 

<unsigned integer> "" - <digit> i <digit> <unsigned integer> 

<digit> :: = O I 1 1 2 1 3 1 4 1 5 1 6 1  7 1 8 1 9  

For instance, 234, +234, and - 2 3 4  are valid integers. Figure 11.9 shows 
the derivation tree for the integer +234. 

<integer> 

<signed integer> 

<sign> <unsigned integer> 

<digit><unsigned integer> 

2<unsigned integer> 

2(digit><unsigned integer> 

23<unsigned integer> 

23<digit> 

234 

The grammar  defined in this example is G = (N, T, P, a), where: 

�9 N = {<integer>, <signed integer>, <unsigned integer>, <sign>, (digit> }, 

�9 T = { + , - , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } ,  

�9 The production rules are: 

<integer/-+ (signed integer/ I (unsigned integer/ 

(signed integer) --+ <sign/ ] <unsigned integer/ 

<sign>--+ + l -  

<unsigned integer> --+ <digit> I <digit> <unsigned integer> 

(digit>-+Oi 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 i 9  

m 
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�9 The start  symbol a is (integer). 

Grammars  are categorized by the productions that  define them. 

Context-Sensitive, Context-Free, and Regular Grammars 

Let G = (N, T,P, a) be a grammar.  Let A,B ~ N and ~, ~', fl ~ (N u T)*. 
Notice that  ~, ~', and fl could be the null word. 

�9 Any phrase-structure grammar  is t y p e  0. 

�9 G is context-sensi t ive  (or t y p e  1) if every production is of the form 
~A~' ~ ~fl~'. 

�9 G is c o n t e x t - f r e e  (or t y p e  2) if every production is of the form A --~ a. 

�9 G is r e g u l a r  (or t y p e  3) if every production is of the form A --~ t or 
A ~ tB, where t ~ T. 

In a context-sensitive grammar,  fl can replace A in the word c~Ac~' only 
when A lies between c~ and a'. In a context-free grammar,  the LHS of 
every production is a single nonterminal  symbol A, which c~ can replace. 
In a regular grammar,  the LHS of every production consists of a single 
nonterminal symbol A and the RHS consists of a terminal symbol t or a 
terminal symbol t followed by a nonterminal  symbol B; t or tB can always 
replace A. (In tB, the nonterminal must be on the RHS of the terminal 
symbol t.) 

A regular grammar  is also context-free and a context-free grammar  
is also context-sensitive. The Venn diagram in Figure 11.10 shows the 
C h o m s k y  h i e r a r c h y  of the various grammars,  named in honor of Noam 
Chomsky, who developed the theory of formal languages. 

Figure 11.10 

Chomsky hierarchy of 
grammars. I type 3 ] 

type 2 

type 1 

type 0 

Context-Sensitive, Context-Free, and Regular Languages 

A language L(G) is context-sensit ive ,  context-free,  or regular if the 
grammar  G is context-sensitive, context-free, and regular, respectively. 

The next five examples clarify these definitions. 
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�9 % '7 

(Avram) N o a m  Chomsky  (1928-), a linguist, writer, and political activist, 
was born in Philadelphia, as the son of a Hebrew scholar. At 10 he proofread the 
manuscript of his father's edition of a 13th century Hebrew grammar. "This 
backdoor introduction to 'historical linguistics' had considerable impact on 
his future" (The New York Times Magazine). The young Chomsky, however, 
was more passionate about politics than about grammar. 

On graduating from Central High School in Philadelphia in 1945, Chom- 
sky entered the University of Pennsylvania and received his B.A. in 1949 and 
M.A. 2 years later. 

Chomsky received his Ph.D. in linguistics from the University of 
Pennsylvania in 1955 and joined the faculty at the Massachusetts Institute 
of Technology. 

His first book, Syntactic Structures (1957), developed from his notes for 
an introductory course in linguistics, triggered the Chomskyan revolution in linguistics "by disputing 
traditional ideas about language development." Chomsky is considered the father of the theory of formal 
languages. 

In 1966, Chomsky became the Ferrari P. Ward Professor of Modern Languages and Linguistics. He 
had been a visiting professor at Columbia, Princeton, and the University of California at Los Angeles and 
at Berkeley. 

A recipient of numerous awards and honorary degrees, including the Kyoto prize in Basic 
Sciences in 1988, Chomsky was named one of the thousand "makers of the twentieth century" by the 
London Times. 

Every production of the G in Example 11.12 is A ~ t or A ~ tB, g rammar  
so G is a regular grammar.  Consequently, L(G) = {abnal n > 0} is a regular  
language. (See also Example 11.14.) i 

~ In Example 11.13, the RHS of the production a ~ Aa contains the terminal  
symbol a on the right of the nonterminal  symbol A, so G is not regular.  
However, since every production appears as w ~ c~ where w ~ N and 

~ (N u T)*, G is context-free; thus L(G) is a context-free language, m 

(optional) Not production of the G in Example 11.18 every g rammar  
is of the form A ~ t or A ~ tB. For instance, the production 
(unsigned integer) ::= (digit){unsigned integer) is not of either form. 

The production rules, however, can be rewri t ten as follows: 

(integer) ::= +(unsigned integer) 

{integer) ::= -{uns igned integer) 

(unsigned integer) ::= 0(unsigned integer)[ . . .  [ 9(unsigned integer) 

(unsigned i n t e g e r ) : : = 0 [  1 [ 2 ] 3 1 4 1 5 [ 6 1 7 1 8 1 9  
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Clearly, the  form A ~ t or A ~ tB always results .  So this g r a m m a r  G for 
the set L(G) of integers  is regular .  Thus  the  set of in tegers  is a r egu la r  
language and hence context-free.  I1 

Consider the  g r a m m a r  G - (N, T, P, a),  where  N - {A, B, a }, T = {a, b }, 
and P = {a ~ aab,  a ~ aAb, aAb -~ aBb, A ~ a, B ~ b, A ~ ~, B ~ ~ }. In 
the product ion aAb ~ aBb, A can be replaced with B only i fA is su r rounded  
by a and b. Notice tha t  L(G) = {ambm,ambm+l,am+lb m [ m >_ 1}. I 

The G = (N, T ,P ,  ~) in Example  11.15 is context-free,  L(G) - g r a m m a r  so 
{anb n In >_ 1} is a context-free language. Example  11.53 will demons t r a t e  
tha t  G is not  regular .  II 

A language L(G) may contain words derivable from a in more t han  one 
way. Accordingly, we make  the following definition. 

Ambiguous Grammar 

A g r a m m a r  G is a m b i g u o u s  i fa  s t r ing in L(G) has more than  one der ivat ion 
tree. 

The next  two examples present  ambiguous  g rammars .  

The following G defines the of simple algebraic g r a m m a r  syntax  expres- 
sions: 

(expression) ::= (expression) (sign> (expression) I (letter> 

<sign> ::= + l -  

<letter> : : = a l b l c l . . .  I z 

This g r a m m a r  can produce the expression a - b + c two ways, as the  
derivat ion t rees  in F igure  11.11 show. As a result ,  G is an ambiguous  
g rammar .  1 

o ~ (optional) The  following are simplified product ion rules for an i f - then 
statement  S: 

S ::= if (expression) then  <statement> I 

if (expression) then  (s ta tement)  else (s ta tement)  

(expression) ::= E1 I E2 

(s ta tement)  ::= S1 I $2 I if (expression> then  (s ta tement)  

To see tha t  these rules produce an ambiguous  g rammar ,  notice tha t  the 
i f - then s t a t emen t  

I f  E1 then i f  E2 then $1 else $2 (11.3) 
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F i g u r e  11 .11  

(expre 

(let ;er) 

ssion) (sign) 

I 
(expression) (sign) (expression) 

I I 
(letter) + c 

(expression) 

~ ~  (sign) (expression) 

I + (expression) 

(letter) 

(sign) 

I 
(expression) (letter) 

I I 
(letter) c 

I 
b 

can be interpreted in two ways: 

(i) If E1 then (if E2 then S 1 else $2), or 
(ii) If E 1 then (if E2 then S 1) else $2. 

Using indentation, these possibilities can be displayed as follows: 

(i) i f  El then ( i i )  i f  El then 
i f  E2 then i f  E2 then 

Sl Sl 
else else 

$2 $2 

Accordingly, s tatement  ( 11.3) can be generated by two distinct derivation 
trees (see Figure 11.12). 

To avoid this confusion, each e l s e  is paired with the nearest  if. 
Consequently, s ta tement  (i) is the correct interpretation of s ta tement  
(11.3). If you would like s ta tement  (11.3) to mean s ta tement  (ii), you have 
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F i g u r e  11.12 

if (expression> 

I 
E1 

then <s ta t~n t )  

if (expression} then (statement} else (statement} 

I I J 
E2 S 1 S 2 

<if-then statement> 

<exprission } t h e n ~ ~  <statement}l 

E 1 if (expression) then (statement) S 2 

I I 
E2 S 1 

two options: 

i f El then i f El then 
i f E 2 then begin 

Sl i f E 2 then 
else S I 

el se end 
$2 else 

S2 m 

The way a grammar produces its language of terminal and nonterminal 
symbols determines whether it is regular, context-free, or context-sensitive. 
The BNF notation facilitates such a differentiation. 

Exercises 11.2 

In the grammar G = (N, T,P, a), N = {(sentence), (noun phrase}, (verb}, 
{object phrase), (article), (noun)}, T = { a, the, cat, dog, chicken, milk, drinks, 
eats}, a = (sentence) and the production rules are: 

(sentence) ~ (noun phrase)(verb)(object phrase) 

(noun phrase) --> (article)(noun) 

(article) --> a Jthe 
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{noun) --~ cat ldogJchicken  J milk 

{verb) --~ drinks leats 

{object phrase) --~ {article)(noun) 

Determine  if each is a valid sentence in L(G). 

1. The cat dr inks the milk. 2. A chicken eats the  dog. 

3. The dog swallows the cat. 4. The chicken dr inks  a rabbit .  

Const ruc t  a derivation tree for each sentence in L(G). 

5. The cat eats the chicken. 6. A dog dr inks  the milk. 

With the g r a m m a r  in Example 11.12, cons t ruc t  a derivat ion tree for each 
word in L(G). 

7. aa 8. aba 9. ab2a 10. ab3a 

Determine  if each word belongs to the language genera ted  by the g r a m m a r  
in Example 11.13. 

11. aba 12. abba 13. a3ba 14. a2b3a 4 

Use the g r a m m a r  G = ( N , T , P , a ) ,  where  N = {A,a}, T = {a,b}, and 
P = {a ~ aa ,  a -~ aA, A ~ b}, to answer  Exercises 15-23. 
Draw a derivation tree for each word in L(G). 

15. ab 16. a2b 17. a3b 18. a4b 

Do the following words belong to L(G)? 

19. aba 20. abba 21. a3b 22. a5b 

23. Identify the language L(G). 

Consider the g r a m m a r  G - (N ,T ,P ,a ) ,  where N = {a}, T - {a,b}, and 
P -- {a ~ aab,  a -~ ab}. Determine  if each word belongs to L(G). 

24. abba 25. abab 26. a2b 2 27. a3b 3 

28. Identify the language L(G). 

Find the language genera ted by each g r a m m a r  G = (N, T, P, a)  where: 

29. N = {a,A,B}, T = { a , b } , P  = {a ~ aA, A - ~  Bb, A ~ a, B-- .  b} 

30. N = {a,A,B}, T = {a,b}, P = {a ~ aAa, A ~ bBb, a ~ k, A ~ a, 
B--* a, B --~ b} 

Develop a g r a m m a r  tha t  generates  each language over { 0, 1 }. 

31. {1, 11, 1111, 11111111, . . .}  

32. {0, 00, 10, 100, 110, 0000, 1010, . . . }  



11.2 Grammars 757 

33. The set of words with prefix 00. 

34. The set of words with suffix 11. 

35. The set of binary representations of positive integers. 

Create a grammar  to produce each language over { a,b}. 

36. {bnab n I n > 0 }  37. { a n b l n > l }  38. { a n b a l n > l }  

39. {amb n I m, n > 1} 40. The set of palindromes. 

Using Example 11.18, draw the derivation tree for each integer. 

41. 234 42. - 234  

43. An identifier in Java is a letter, underscore, or $, followed by any 
number of alphanumeric characters. With BNF, define the g rammar  
for a Java identifier. 

Use the grammar  in Exercise 43 to see if each string is a valid Java  
identifier. 

44. catch 22 45. 20/20 46. algorist 47. three roots 

Construct a derivation tree for each identifier. 

48. result2 49. value 50. R2D2 51. math 

The production rules of a grammar for simple arithmetic expressions are: 

(expression) ::= (digit)I ((expression))I + ((expression)) I 

- ((expression)) I (expression)(operator)(expression) 

(digit) ::= 01 1 1 2 1 3 1 4 1 5 1 6 1  7 1 8 1 9  

(operator) ::= + l - I * [ / i 1 "  

Use this  g r a m m a r  to a n s w e r  Exercises  52-59 .  
Determine if each is a valid arithmetic expression. 

52. 2 , 3 + 4  53. - ( 3 , 4 1 " 5 )  54. 3+ 1"7 55. 6 + 5 / 8 ,  

Construct a derivation tree for each expression. 

56. 3 + 5 , 6  57.  5 + ( 4 1 " 3 )  58.  ( 5 + 3 ) - 7 / 4  59.  - ( 3  1" ( 5 + 2 ) )  

A number in ALGOL (excluding the exponential form) is defined as 
follows: 

(number) ::= (decimal number)I  (sign) (decimal number) 

(decimal number) : : -  (unsigned integer) I. (unsigned integer) i 

(unsigned integer). (unsigned integer) 
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(unsigned integer) " ' -  (digit) I (unsigned integer)(digit) 

(digi t ) : :=01 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9  

<sign> ::= + l -  

Use this grammar  to answer Exercises 60-67. 
Determine if each is a valid ALGOL number. 

60. 234 61. 2.34 62. 234. 6 3 . . 2 3 4  

Draw a derivation tree for each ALGOL number.  

64. -3 .76  65. +376 6 6 . . 3 7 6  67. 0.23 

For Exercises 68-73, use the following definition of a simple algebraic 
expression: 

(expression) ::= 

(sign) ::= 

(adding operator) ::= 

(term) ::= 

(multiplying operator) ::= 

(factor) ::= 

(term) I (sign) (term) I 

{expression) {adding operator){term) 

+ 1 -  

+ l -  

(factor) [ 

{term) {multiplying operator){factor) 

*1/  

(letter) I ( (expression) )l (expression) 

( l e t t e r / : : = a l b l c l . . .  I z 

Determine if each is a legal expression. 

68. a + b , ( c / d )  69. a + b + c  70. - a , b / c + d  71. ( ( a - b ) + c )  

Construct a derivation tree for each expression. 

72. ( a , b ) + c / d  73. a , ( b + c / d )  

74. Use BNF to define a grammar  for the language of well-formed 
parentheses (wfp). 

Use the grammar  in Exercise 74 to see if each is a valid sequence of 
parentheses. 

75. (()) 76. ()(()) 77. (()()) 78. ()()() 

79. Figures 11.13 and 11.14 diagram the syntax for an unsigned integer 
and an unsigned number, respectively. Define the grammar  for an 
unsigned number  in BNF. 
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F i g u r e  11.13 unsigned integer: [ ~ digit ] 

F i g u r e  11.14 

unsigned number: 

unsigned unsigned ~ + 
integer ~ �9 ~ integer ~ E 

unsigned 
integer 

Using the grammar  in Exercise 79, check if each is a valid unsigned 
number. 

80. 177.76 81. .1776 82. 1776. 83. 17.76E-2 

This section presents an abstract model of a machine that  accepts input 
values, but produces no output values. 

Often the question arises whether or not a word over an alphabet is 
acceptable. For example, is 2R2D an acceptable identifier or is 17.06 a 
valid real number in C + +? Finite-state automata can model the steps in 
determining if a given word exists in a language. Accordingly, finite-state 
automata, also known as l a n g u a g e  r e c o g n i z e r s ,  play a central role in the 
development of compilers. 

Before we study the definition, we present a simple example of a language 
recognizer. 

Determining if an input string over the alphabet { b} contains abba a, a s  a 
substring involves the following five steps: 

S t ep  0 If the first symbol in the string is a, move to step 1 and look for 
the character b. Otherwise, no progress has been made. 

S t ep  1 If the next character is b, the substring ab has occurred, so go to 
step 2 and look for another b. Otherwise, the symbol b is still missing, so 
stay in step 1. 

S t ep  2 If the next symbol is b, the substring abb exists; go to step 3; if a, 
re turn to step 1. 

S t ep  3 If the next symbol is a, the given input string contains the 
substring abba; otherwise, re turn to step 0 and start  all over again. 
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S t e p  4 Once the substring abba has occurred in the input string, any 
sequence of a's and b's may follow. 

These steps can be represented by a digraph (see Figure 11.15), each 
vertex representing a step. Exactly two edges, labeled a or b, leave each 
vertex. 

F i g u r e  11.15 
a 

b 

To determine the action required from a given step, simply follow the 
directed edges from the corresponding vertex. For example, at vertex s3 
(step 3) if the next input symbol is a, move to vertex s4 (step 4); other- 
wise, return to vertex so (step 0). The other (labeled) edges are interpreted 
similarly. 

The digraph indicates a string contains abba as a substring if and only 
if the directed path the string determines terminates at vertex s4. The 
string abab determines the path so-sl-s2-sl-s2, which does not end at s4; 
consequently, abab is not acceptable. On the other hand, the string ababbab 
determines the path so-sl-s2-sl-s2-s~-s4-s4, which terminates at s4; so the 
string does have the desired property, m 

The digraph in Figure 11.15 displays a f i n i t e - s t a t e  a u t o m a t o n .  
(Automaton is the singular form of automata.) Its five vertices, so through 
s4, are the s t a t e s  of the automaton. Since the whole process begins at so 
(step 0), so is the in i t i a l  s tate .  A string is acceptable, that is, contains 
abba as a substring, if and only if its path ends at s4; accordingly, s4 is an 
a c c e p t i n g  s tate .  

The digraph shows the transition of the machine between states. For 
example, if the automaton is at state s2 and the input symbol is a, the 
automaton switches its state to s 1. The digraph is the t r a n s i t i o n  d i a g r a m  
of the finite-state automaton. 

The initial state is customarily identified by an arrow pointing to it and 
an accepting state by two concentric circles, as Figure 11.16 shows. The 
transition diagram appears in Figure 11.17. 

F i g u r e  11.16 

The initial state An accepting state 
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F i g u r e  11.17 
a 

b 

a 

a 

Each state si and an input  symbol de te rmine  a unique state sj. So we can 
define a function f : S x I --~ S as follows, where S = {so, Sl, s2, s3, s4 }, the  
set of states, and I = {a, b}, the input  alphabet:  

f ( so ,  a) = 81 f ( so ,  b) = so 
f(s2, a) = s i  f(s2, b) = s 3  
f(s4, a) - - 8 4  f(s4, b) = 8 4  

f ( s l ,  a) = s i  f ( s i , b )  = s 2  
f(s3, a) - - 8 4  f(s3, b) - - so  

The function f is the t r a n s i t i o n  f u n c t i o n  of the finite-state au tomaton .  
It can also be defined by the t r a n s i t i o n  t a b l e  in Table 11.1. 

Table  11.1 
State Input symbol 

a b 

s0 s1 80 

Sl 81 s2 

s2 81 s3 

s3 s4 so 

s4 s4 s4 

We are now ready to define a finite-state au tomaton.  

Finite-State Automaton 

A f in i t e - s ta te  a u t o m a t o n  (FSA), M, manifests  five characterist ics:  

�9 A finite set, S, of s t a t e s  of the au tomaton .  

�9 A specially designated state, so, called the in i t ia l  s tate .  

�9 A subset  A of S, consist ing of the a c c e p t i n g  s t a t e s  (or f inal  s ta te s )  
of the automaton.  

�9 A finite set, I, of i n p u t  symbo l s .  

�9 A function f : S  x I ~ S ,  called the t r a n s i t i o n  f u n c t i o n  or the next -  
s ta t e  f u n c t i o n .  

In symbols, M - ( S , A , I , f  , so). 
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F i g u r e  11.18 

For  instance, for the FSA in Example 11.26, S = {80,s1,82,83,84}, A = 

{s4}, I - {a,b}, and the t rans i t ion  function f i s  defined by Table 11.1. 
New York City subway commute r s  use an FSA everyday, as the next  

example shows. 

A turnst i le  in the subway ent rance  contains four a rms  at waist  level (Figure 
11.18). Initially, it is locked so tha t  the a rms  cannot  be moved. Deposi t ing 
a token into the slot, however,  unlocks it and allows the a rms  to ro ta te  
th rough  one quar t e r  of a complete turn ,  so the commute r  passes t h rough  
the turnsti le .  

The turns t i le  has two states: locked (l) and unlocked (u). Deposit ing a 
token (t) shifts the turns t i le  from the locked state  to the unlocked state  and 
no mat te r  how many  t imes the commute r  inputs  t, the turns t i le  remains  
in the same state. Push ing  (p), the arms, takes the turns t i le  back to the 
locked state. Once it is in the locked state, it remains  there  regardless of 
how many t imes the commute r  pushes the arms;  tha t  is, regardless  of the 
number  of t imes he inputs  p into the device. 

The turns t i le  exemplifies an FSA. Figure 11.19 shows its t rans i t ion  
diagram. 

F i g u r e  11.19 

l 

The next two examples draw t ransi t ion d iagrams of FSAs from their  
algebraic definitions. 

Draw the t rans i t ion  diagram of the FSA M - (S, A, I, f ,  so), where S - 
{ s o , s l , s 2 } ,  A = {s2}, I = {a, b}, and the t rans i t ion  function f is defined by 

f(s0, a) = Sl, f(s0, b) = so,  f(sl, a) - s2, 
f ( s l ,  b) = so, f(s2, a) - s2, f(s2, b) - so. 

*Based on B. Hayes, "On the Finite-State Machine, A Minimal Model of Mousetraps, 
Ribosomes, and the Human Soul," Scientific American,  Vol. 249 (Dec. 1983), pp. 20-28, 178. 
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F i g u r e  11.20 

T a b l e  11.2 

S O L U T I O N :  
The FSA contains  th ree  s ta tes  - -  so, S l ,  and s2 - -  wi th  s2 the  only accept- 
ing state.  Since there  are two input  symbols,  exactly two edges leave each 
vertex. Draw a directed edge from s ta te  si to s ta te  sj if the re  is an input  
symbol x such tha t  f ( s i , x )  - s j;  t hen  label the  edge x. For  example,  since 
f ( s l ,  b) - so, a directed edge runs  from Sl to so labeled b. Figure  11.20 shows 
the resu l t ing  t rans i t ion  diagram. 

b a 

a 

--~ 

m 

Draw the t rans i t ion  d iagram of the FSA M - (S, A, I, f ,  so), where  S - 
{so, s 1, s2, s3, s4}, A - {s2}, I - { a, b, c }, and f is defined by Table 11.2. 

a 

s4 

s3 Sl 
s4 s4 

b c 

s2 s3 

s2 s 3 

s4 83 

s2 s4 

s4 s4 

F i g u r e  11.21 

S O L U T I O N :  
The au toma ton  contains  five states,  with s2 the only accept ing one. Since 
there  are three  input  symbols, th ree  edges originate from every state.  Draw 
a directed edge from s ta te  si to s ta te  sj if there  exists an input  symbol x such 
tha t  f ( s i , x )  --  s j .  For instance,  f ( s l , c )  = s3,  so a directed edge labeled c 
runs  from sta te  Sl to s ta te  s3. Figure  11.21 displays the resu l t ing  t rans i t ion  
diagram,  where,  for convenience,  the  three  loops at  s4 appear  as a single 
loop with labels a, b, and c. 

c c 

m 
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Suppose a string is input into an FSA. If the path it determines ends at an 
accepting state, the string is a c c e p t e d  (or recognized)  by the automaton; 
otherwise, it is r e j e c t e d  by the automaton. 

Determine if the strings a3b2ab and ab3a are accepted by the FSA in 
Figure 11.17. 

SOLUTION:  
First, find the path determined by the string and check if it terminates  at 
s4, the accepting state. (Recall that  a3b2ab - aaabbab.) Begin at the initial 
state, so. When a is input, move to state S l. Every time a is input, remain 
there, so the path defined by a a a  is so-s 1-s 1-s 1. When b is input, t ransfer  to 
state s2. The path obtained thus far is s o - s l - s l - s l - s 2 .  Now b moves to s3 and 
a to s4, yielding the path 80-81-81-s1-82-83-84. Once in s4, remain there no 
matter  what the input is. Thus the path determined by the given string is 
SO-Sl-81-81-S2-Sn-S4-S4. Since it terminates at s4, the FSA accepts the given 
word. 

Notice that  the path determined by the string ab3a is 80-81-82-83-80-81, 

and it does not end at the accepting state s4; consequently, the automaton 
rejects the string, m 

Two different FSAs may accept the same language over an alphabet. 
This occurrence requires that  we make a new definition. 

Equivalent Finite-State Automata 

The set of words accepted by an FSA, M, is the l a n g u a g e  a c c e p t e d  (or 
recognized)  by M and is denoted by L ( M ) .  Two finite-state automata,  M 
and M', are equ iva lent  if they recognize the same language: L ( M )  = L ( M ' ) .  

Identify the language L ( M )  accepted by the automaton M in Figure 11.20. 

SOLUTION: 
Look for paths beginning at so and terminat ing at 82. L ( M )  consists of all 
words over { a, b } that  end in aa.  1 

By Example 11.31, the automaton in Figure 11.20 accepts the language of 
words over { a, b } ending in aa.  You may verify that  the FSA in Figure 11.22 
accepts the same language. Consequently, the automata in Figures 11.20 
and 11.22 are equivalent. 

Figure  11.22 b 

v 

1 
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The next four examples build FSAs with desired properties,  as Example 
11.26 did. 

Design an FSA tha t  accepts words over I = {a, b} containing an even 
number  of a's. 

S O L U T I O N :  
Every word over I contains ei ther  an even number  of a ' s  (E) or an odd 
number  of a ' s  (O), so the au tomaton  has two states, E and O, E being the 
accepting state. Initially, the number  of a ' s  in the word is zero, an even 
integer; E is the initial s tate of the automaton.  If the au tomaton  is at E and 
an a is input, it moves to state O. If it is at O and an a is input, it moves to 
state E. Figure 11.23 shows the t ransi t ion diagram of the FSA. 

Figure 11.23 

--9 

a 

A word over I has even parity if it contains an even number  of a ' s  
and o d d  p a r i t y  if an odd number.  Since the au tomaton  in Example 11.33 
determines whether  a word has even or odd parity, it is called a parity- 
check machine.  I 

Design an FSA accepting words over { a, b } tha t  begin with aa and end in bb. 

S O L U T I O N :  
We build the au tomaton  step by step: 

Step 0 Initially, the au tomaton  is at the initial s tate so. 

Step 1 If the first symbol is a, move to state S l from so and wait for 
the next symbol. But if the first symbol is b, the word is not acceptable 
(state s2 ). See Figure 11.24. 

Figure 11.24 

Step 2 If the input  symbol at s l is a, move to state s3 and determine 
whether  the str ing ends with bb. On the other hand, if the input  symbol 
at Sl is b, move to s2 to t rap such unacceptable words. Once at s2, remain  
there  no mat te r  what  the input  symbol is. See Figure 11.25. 
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F i g u r e  11.25 

b b 

S t e p  3 Every word tha t  t r iggers a move from so to 8 3 begins wi th  aa. Any 
number  o fa ' s  can follow it (see the loop at s3 in Figure 11.26). However,  if 
b follows the word, move to a new state s4, as in Figure 11.26. 

F i g u r e  11.26 
a 

b b 

a b 

S t e p  4 If the input symbol at 8 4 is a, r e tu rn  to S 3 and look for the pair bb. 
But if it is b, move to a new state s5. See Figure 11.27. 

F i g u r e  11.27 a 

a 

a,b 

S t e p  5 Once at s5, any number  of b's may occur. However, if the input  
symbol at s5 is a, re turn  to s3 to look for bb. Since words ending in bb 
are acceptable, s5 is the accepting state. These six steps create the FSA 
in Figure 11.28. 

F i g u r e  11.28 

b b 

a 

b b 

Y 
a 

m 
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(optional) An identifier in a programming language consists of a let ter  
followed by any number  of a lphanumeric  characters (Section 11.1). Design 
an FSA that  recognizes such legal identifiers. 

F i g u r e  11.29 

S O L U T I O N :  
Let I denote the set of all characters in the alphabet recognizable by a com- 
piler. Let l denote a letter, d a digit, and n any nonalphanumeric  character.  
The au tomaton  will have three states: so, s l, and s2. State s2 traps all 
invalid strings. (Accordingly, it is called a t r a p  s t a t e  or a d u m p  s t a t e . )  
The result ing automaton appears in Figure 11.29. 

d, n 

B 

The FSA in Figure 11.29 can be t ranslated into an algori thm which deter- 
mines if a sequence of characters is a legal identifier. See Algorithm 11.1. 

Algorithm i d e n t i f i e r  
(* This algori thm determines whether a sequence of characters is a 

val id  i d e n t i f i e r ,  using the FSA in Figure 11.29. Al l  characters 
are read from the same input l ine .  SymboZ denotes an a rb i t r a r y  
character; stote denotes an a rb i t ra ry  state;  stoteO, stotel ,  
and store2 denote the various states of the FSA. stote2 is a 
dump state.  *) 

Begin (* algori thm *) 
state ~- state0 (* i n i t i a l i z e  state *) 
read (symbo I ) 
while not at the end of the current l ine  
begin 
case state of 

state0: i f  symbol is a l e t t e r  then 
state <-- s ta te l  

else (* inva l id  sequence; dump i t .  *) 
state ~- state2 

s ta te l :  i f  symbol is a l e t t e r  or a d i g i t  then 
state ~- state1 

else 
state K- state 2 

(* do nothing; stay there. *) state2: 
read(symbol) 

endwh i I e 
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i f  state -- sta te l  then 
the sequence is a va l id  i d e n t i f i e r  

else 
the sequence is an inva l id  i d e n t i f i e r  

End (* algorithm *) 

Algorithm ii.I 

With a trap state, an FSA can simulate an automatic teller machine, 
or ATM, which is widely used because it allows bank customers to 
make transactions without human intervention, as the following example 
demonstrates. 

~ After a bank customer inserts his bank card into the ATM, it requests  him 
to input his secret identification number  (ID). Suppose the ID is 234. Design 
an FSA that  models the ATM. 

SOLUTION:  
The input to the automaton contains three digits d. It has five states: 
so (the initial state, waiting for the first digit in the ID), S l (the first 
digit is correct; now waiting for the second digit), s2 (the second digit is 
correct; waiting for the third digit), s3 (the third digit is correct), and s4 
(the trap state that  captures all invalid ID's). The ensuing FSA is shown in 
Figure 11.30. 

2 3 4 / ~  

768 

m 

The salient characteristics of an FSA have emerged through its many 
applications to ATMs, programming languages, parity checks, and subway 
turnstiles. Every FSA manifests an input set, a transition function, and a 
finite number  of states. 

Exercises 11.3 

Using the FSA in Figure 11.17, identify the directed paths determined by 
each input string. 

1. a3b 2. abab 3. ab 3 4. a2b3a 
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With the FSA in Figure  11.21, identify the directed pa th  de te rmined  by 
each word: 

5. abcab 6. caba 2 7. a2bc 3 8. ab2c 3 

Determine  if each word is acceptable by the FSA in Figure  11.17. 

9. ab 3 10. a2b2a 2 11. a3b2a 3 12. ab4ab2ab 

Determine  if the FSA in Figure 11.21 recognizes each word. 

13. abcabc 14. abacbc 15. ab4c 3 16. ab5c 6 

Draw the t rans i t ion  diagram of the FSA, M - ( S , A , I , f ,  so), where I - 
{a,b}, and- 

17. S = { 8 0 , 8 1 , 8 2 }  , A -  {s2} 

f(so, a) - so f(so, b) - s l  f ( s l ,  a) = so f ( s l ,  b) = s2 
f ( s 2 , a ) - s o  f(s2, b ) - s 2  

18. S = { 8 0 , 8 1 , 8 2 , 8 3 }  , A -  {s3} 

f ( so ,  a) - s l  f ( so ,  b) - so f ( s l ,  a) = sl  f ( s l ,  b) - s2 
f(s2, a) - Sl f ( s2 ,  b) - s3 f ( s3 ,  a) = Sl f ( s3 ,  b) - so 

19. S = {s0, s l , s 2 , s 3 } ,  A -  {s2} 

f 

SO 80 81 

81 81 82 

82 82 S3 

83 83 83 
l .... 

20. S -  { s 0 , s l , s 2 , s 3 ,  s4}, A -  {s3} 

a b 

SO 

81 

82 

83 

S4 

81 S4 

84 S2 

83 S4 

83 83 

S4 S4 

Construct  a t rans i t ion  table for each FSA. 

21. a 

b 

22. 

a 

b a 

a 
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23. 

a 
--~ 

a 

24. a 

a b 

b 

Character ize the language recognized by the FSAs in Exercises 25-35.  

25. O a  b b ~ )  
, b 

a 

26.  

a 

27-34 .  The finite-state au toma ta  in Exercises 17-24. 

*35.  b 

Let m denote the number  of a ' s  in a string. Design an FSA tha t  accepts 
s tr ings over { a, b } which: 

36. Contain exactly one a. 

38. Contain  aba  as a substr ing.  

40. Begin with aa  or bb. 

37. Begin with aa.  

39. Contain a a a  as a substr ing.  

41. Contain baab  as a substr ing.  
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F i g u r e  11.31 

42. Have m - 0(mod 3). 43. Have m -- 2(mod 3). 

44. Simulate an automatic  teller machine by means of an FSA that  accepts 
1776 as a valid identification number.  

45. Design an FSA to model an automatic teller machine that  accepts 23 
or 45 as a valid identification number.  

46. An integer is a nonempty  str ing of digits, preceded by an optional sign 
(+ or - ) .  See the syntax diagram in Figure 11.31. Design an FSA tha t  
recognizes integers. 

v 

I I v 

F i g u r e  11.32 

47. A real number,  excluding the exponential form, consists of an optional 
sign (+ or - )  followed by one or more digits, a decimal point, and one 
or more digits. (See the syntax diagram in Figure 11.32.) Design an 
FSA that  recognizes such real numbers.  

I - d  I " " I 

48. Write an algorithm to implement an automatic teller machine as an 
FSA that  accepts 234 as a valid identification number.  

49. Write an algorithm to determine if a sequence of characters represents  
a valid integer. 

50. Write an algorithm to determine if a sequence of characters represents  
a valid real number.  Exclude the exponential form. 

As a generalization of FSAs, finite-state machines abstractly model com- 
puting machines. In an FSA, movements  from state si to state sj depend 
on the input at si, and no output  emerges. But as a finite-state machine 
moves from state si to state sj, an output  does emerge. Consequently, a 
finite-state machine possesses two features not required of an FSA: a finite 
set O of output  symbols and an output  function g : S x I --~ O, where I is 
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the input  alphabet.  (An accepting state cannot  exist here because a word is 
not being checked for certain characteristics.)  The output  depends on two 
things: the current  state and the input  symbol. 

Finite-State  Machine 

A f i n i t e - s t a t e  m a c h i n e  (FSM), M, bears six characteristics: 

�9 A finite set, S, of s t a t e s ;  

�9 A finite i n p u t  a l p h a b e t ,  I; 

�9 A finite set, O, of o u t p u t  s y m b o l s ;  

�9 A t r a n s i t i o n  f u n c t i o n ,  f �9 S x I ~ S; 

�9 An o u t p u t  f u n c t i o n ,  g : S  x I --~ O; 

�9 An i n i t i a l  s t a t e ,  so. 

In symbols, M = (S, I, O, f, g, s0). 
In this definition, the output  function g depends on both the state of the 

machine and the current  input. Such FSMs are called M e a l y  m a c h i n e s ,  
after George H. Mealy, who introduced them in 1955. (Another type of FSM 
appears in the Supplementary  Exercises.) 

Let S - { s o , s i , s 2 } ,  I - {a ,b} ,  and O - {0, 1}. Define functions f �9 S x I --~ S 
i | 

and g : S x I ~ O by means of Table 11.3. For example, f ( s o , b )  - s l ,  

f ( s 2 , b )  = s l ,  g ( so ,  b) = 1, and g ( s 2 , b )  = 1. 

T a b l e  11.3 f g . .  

a b a b 

s o s 1 0 1 
s 1 s 2 1 0 
s 2 s 1 1 1 

Then M = (S, I, O, f,  g, s0) is an FSM with t ransi t ion function f and ou tput  
function g. Table 11.3 is the t r a n s i t i o n  t a b l e  of the machine, m 

Like an FSA, an FSM can be represented by a t r a n s i t i o n  d i a g r a m ,  
with one main difference: every directed edge (sj, Sk) has two labels. One 
indicates the input  symbol i; the other  the output  o from enter ing  i into 
state sj. For instance, i f  f (sj, i) -- Sk and g ( s j ,  i) --- 0, the directed edge (sj, Sk) 
is labeled i/O. 

The next example i l lustrates how to draw transi t ion diagrams of 
FSMs. 
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~ Draw the t ransi t ion diagram for the FSM in Example 11.37. 

S O L U T I O N :  
The FSM has three states - -  so, Sl, and s2; and two input symbols - -  a and 
b; two output  symbo l s -0  and 1. Two input symbols produce exactly two 
outgoing edges for each state. Each directed edge (sj, Sk) in the diagram is 
labeled i/o, where f (sj, i) = Sk and g(sj,  i) = o. For instance, since f (so, a) = 
so and g(so,a)  = 0, a loop exists at so labeled a/O. And because f(so,b) = 
Sl and g(s0,b) = 1, the edge (s0,sl) is labeled b/1. The other directed edges 
carry similar labels. Figure 11.33 shows the t ransi t ion diagram produced 
by this process. 

F i g u r e  11 .33  

b/1 

b/1 m 

The transi t ion diagram of an FSM can generate the transi t ion table, as 
the following example demonstrates.  

Construct the transi t ion table of the FSM in Figure 11.34. 

F i g u r e  11 .34  ~b/1 a/1 
.. a /O 

b/O 

b/1 

T a b l e  11 .4  

S O L U T I O N :  
From the t ransi t ion diagram, f(s0, a) = 81, f(s0, b) = s2, f ( s l , a )  = s2, 
f ( s l ,  b) = Sl, f (s2,  a) = s2, and f (s2,  b) = s2; also g(so, a) = 0, g(so, b) = 1, 
g(s l ,  a) = 0, g(sl ,  b) = 1, g(s2, a) = 1, andg(s2,  b) = 0. These values generate  
the transit ion table in Table 11.4. 

a b a 
I I  

so o 

Sl [I s 2 s I 0 
s 2 s 2 s 2 1 

m 

Suppose we input the s t r ingx = XlX2... Xn into an FSM. Suppose fur ther  
that  there exist states 8i-1 and si, and an output  Yi such that  f ( S i _ l , X  i) = Si 

and g(s i - l ,X i )  -- Yi for every i. Then YlY2... Yn is the output  p r o d u c e d  by 
the machine for the input x. 
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Find the output of the FSM in Figure 11.33 for the input string abbaba. 

S O L U T I O N :  
Start  at state so. When a is input, stay at so with output 0. When the next 
symbol b is input, move to S l and produce the output 1. When the third 
symbol b is input at s 1, move to s2 and output 0. Continuing like this yields 
the output 010111. m 

The next two examples present FSMs useful in electronics. These 
machines have limited memory: at each state they must remember  the 
previous input. 

~ ~ ~ ~ ~ ~  Let I - O - {0, 1}. A u n i t  d e l a y  m a c h i n e ,  an FSM M = (S , I ,  O , f , g ,  so), 
delays an input string by unit time. When the string x l x2 . . .  Xn is input, it 
produces 0XlX2... Xn as the output. Construct such a machine. 

S O L U T I O N :  
Since each state has two possible outputs, each has two outgoing edges. 
The machine must certainly have an initial state so. With the first output 
always 0, both edges leaving so must yield 0. The machine must remember  
whether the previous input was 0 or 1; this requires two additional states, 
Sl and s2. If the previous input was 0, the machine moves to state S l and 
outputs 0; if it was 1, it moves to state s2 and outputs 1. Figure 11.35 shows 
the transition diagram of this FSM. 

F i g u r e  11.35 0/0 

-~ ~ 1 / 0 1 1 0 / 1  

1/0 

1/1 

For instance, the input 101110 yields the output 010111 (Verify this.), 
which has lost the trailing zero of the input. By appending a 0, however, to 
the input, that  is, by inputing 1011100, the desired output results: 0101110. 
Deleting the leading 0 yields an exact copy of the input, m 

Design an FSM that  adds two binary integers, x and y. 

S O L U T I O N :  
Assume, for convenience, x and y contain the same number of bits, and 
the leftmost bits are zeros. Thus, let x = (XnXn-l...XlXO)two and y = 
(Ynyn-l . . .YlY0)two, where Xn = Yn -- 0. Add the corresponding bits xi and 
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T a b l e  11.5 

Sum bits. 

Yi from right to left, as usual. Adding xi and Yi yields a sum bit Z i and a 
carry bit ci: 

Zi = (Xi Jr-Yi) mod 2 and ci = (xi q--Yi) div 2 
For instance, adding the bits 1 and 1 gives the sum bit 0 and the carry 
bit 1. Tables 11.5 and 11.6 display the sum and carry bits for paired values 
of xi and Yi. 

Yi 

1 

1 
0 

0 
xi 1 

T a b l e  11.6 

Carry bits. 

F i g u r e  11.36 

F i g u r e  11.37 

0 
xi 1 

Yi 

0 1 

0 0 
0 1 

,,, 

Any two binary numbers can be added if the pairs 00, 01, 10, and 11 
can be. When two bits xi and Yi are added, the carry is 0 or 1. Consequently, 
a machine can be manufactured with two states: cO (carry is 0) and cl  
(carry is 1). Since at first the carry is 0, cO is the initial state of the machine 
(Figure 11.36). 

Since four bit-pairs exist, exactly four edges leave each state. Tables 11.5 
and 11.6 can find the state following a given state and the output from a 
given input. For instance, if at state cO and input 11, output 0 and move 
to state cl (Figure 11.37). If at state cl  and input 10, output 0 and remain 
at state cl (Figure 11.38). Continuing like this produces the transit ion 
diagram in Figure 11.39. 

@ 11/0 ~ @  

F i g u r e  11.38 

--~ @ .... 

11/0 ~ v ~  10/0 
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F i g u r e  11.39 
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00/0 01/1 01/0 10/0 

11/1 m 

Finally, every FSA is a special case of an FSM. To see this, label all 
incoming edges to each accepting state with output 1 and all incoming 
edges to each nonaccepting state with output 0. Consequently, an input 
string is a c c e p t e d  by the FSM if and only if the last output of the machine 
is 1, as the following example illustrates. 

[ ~ ~ ] ~ ~ ~  Example 11.26 showed that  the FSA in Figure 11.40 accepts a string over 
{ a, b } if and only if the string contains abba as a substring. To convert the 
automaton into an FSM, add an output to every edge. Each incoming edge 
to the accepting state s4 is labeled with output 1, and every incoming edge 
to other edges 0. The resulting FSM appears in Figure 11.41. 

F i g u r e  11.40 

b 

a 

F i g u r e  11.41 

alO ~ blO 

b/O 

a/1 

~ a / 1  

According to Example 11.30, the word a3b2ab is accepted by the automa- 
ton in Figure 11.40. The machine in Figure 11.41 verifies this: the substring 
a 3 takes the machine from so to sl and it outputs 0 three times, b 2 takes it 
to s3 and it outputs 0 twice, a takes it from s3 to s4 and it outputs 1; b takes 
the machine from s4 to itself and it outputs 1. With the last output 1, the 
string is accepted by the FSM, as expected, m 

As this example indicates, FSMs like Mealy machines add output to the 
FSA configuration. This means that  we can use them in such fields as 
electronics, in addition to using their transition tables and diagrams as 
definitional models. 
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Exerc i se s  11.4 

Using the FSM in Figure 11.33, evaluate each. 

1. f (s l ,  a) 2. f(s2, b) 3. f(so, b) 4. f(s2, a) 

5. g(sl, b) 6. g(s2, b) 7. g(so, b) 8. g(s2, a) 

Draw the t ransi t ion diagram of the FSM with each t ransi t ion table. 

so jlso 
Sl 81 

s2 So 

f g 

b a b 

81 1 0 

s2 0 0 
Sl 1 1 

10. 

so II 
Sl 

s2 

f g 

a b a b 

Sl sl 0 1 
Sl s2 1 0 
Sl s2 0 1 

11. 

80 

Sl 

82 

83 

f g 

a b a b 

sl sl 0 0 
81 82 0 1 

s3 s2 0 1 
s,~ Sl 1 0 

12 .  

80 

81 

82 

83 

f g 

a b a b 

81 S2 1 0 
82 82 0 1 

S2 83 0 0 

S 2 S 3 1 1 

Construct  a t ransi t ion table for each FSM. 

13 .  

14. 

15 .  

C~ a/1 a/O 

__.) , ~  

b/1 

('~ a/1 a/1 

---> 

b/1 
b/O 

a/O b/1 
'~ a I0 (~ alO a/O 

b/1 
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F i g u r e  11.42 

16. 
a/1 b/O 

--.--> 

b/O 

(~ b/O b/1 

a/O 

Using the FSM in Figure 11.33, find the output from each input string. 

17. abba 18. baab 19. a2b3a 20. a3b2ab 3 

Using the unit delay machine in Figure 11.35, find the output of each input 
string. 

21.  1101 22.  1111 23.  0000 24.  101110 

25. With a transition table, define the transition function f a n d  the output 
function g of the FSM for binary addition in Figure 11.39. 

Using the FSM in Figure 11.39, compute the sum of each pair of binary 
numbers. 

26.  1001 27.  00111 28.  1011 29.  11011 
0110 10010 0110 10101 

30. Redraw Figure 11.20 as the transition diagram of an FSM. 

31-34. Redraw the transition diagram of each automaton in Exercises 
17-20 of Section 11.3 as that of an FSM. 

Determine if the input string in Exercises 35-38 is accepted by the FSM in 
Figure 11.42. 

('~ b/O a/1 

b/O 

35. abba 36. aabb 37. a 3 38. b3a 4 

39. Identify the language accepted by the FSM in Figure 11.42. 

Design an FSM accepting strings over { a, b} that: 

40. Contain aa as a substring. 41. Contain exactly one a. 

With x an input symbol and s an arbitrary state of an FSM M - 
(S,I,  O, f ,g ,  so), define g(s,x) in each case. 

42. f(s, x) is an accepting state. 43. f(s, x) is a nonaccepting state. 
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Is the language accepted by an FSA context-sensitive? Or is it context-free, 
regular, or something else? This section provides a definitive answer to 
these questions. 

In an F S A M  - ( S , A , I , f ,  so) ,  where II[ = m, exactly m outgoing edges 
leave every state si,  each labeled with a unique element of I. Besides, since 
f �9 S x I --~ S, every s ta te- input  pair yields a unique state; in other  words, 
every s ta te- input  pair uniquely determines the next state. 

For the automaton in Figure 11.15, the pair (s2, a) determines the 
state Sl, whereas the pair (s2, b) determines the state s3. Accordingly, the 
automata  in Section 11.3 are called d e t e r m i n i s t i c  f i n i t e - s t a t e  a u t o m a t a  
(DFSA). 

This determinism suggests that  the language accepted by a DFSA is 
indeed regular, as the next example demonstrates.  

By Example 11.31 the language L ( M )  accepted by the DFSA in Figure 11.43 
consists of words over { a, b } ending in aa.  Employing it, a regular g r ammar  
G - ( N ,  T , P ,  c~) can be constructed. Choose {a, b} as the set of terminal  
symbols: T - {a, b}. Choose the states as the nonterminal  symbols: N = 
{so, s l, s2 }. Select the initial state so as the start  symbol: a - so. 

F i g u r e  11 .43  b 
a 

a a 

Define the two productions rules: 

�9 If there is an edge labeledx from state si to state sj,  define the production 
si ~ xsj. The various productions obtained this way are" 

so ~ a s l ,  So ~ bso, 81 ~ as2,  

S l ----> bso,  s2 ~ as2,  and s2 ---> bso. 

�9 If there is an edge labeled x from state si to an accepting state, induce 
the production si ~ x.  Two additional productions can be obtained by 
this method: 

S l --> a and s2 --> a 

The g rammar  G - (N, T, P, a) where N, T, P, and a are defined as above is 
clearly regular, therefore L ( G )  is a regular language. You may verify that  
L ( G )  consists of strings over T ending in aa.  Thus L ( M )  - L ( G ) .  m 
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This example leads us to a fundamenta l  result  whose proof  resembles 
tha t  in Example 11.44. 

~ The language accepted by a DFSA is regular. 

P R O O F :  
Let M = (S,A, I, f ,  so) be a DFSA and L ( M )  denote the language accepted by 
the automaton.  We shall construct  a regular g rammar  G using the machine 
M and show that  L ( G )  - L ( M ) .  

To construct  the g rammar  G - (N, T , P ,  ~) ,  choose N - S as the set of 
states, T = I as the input  alphabet, and a = so as the initial state. Define 
the productions P this way: 

Let si and sj be any two states, and x any input symbol. If f ( s i , x )  = sj,  

define the production si ~ xs j ;  if f ( s i , x )  = sj,  an accepting state, include 
the production si ---> x.  Clearly, G is a regular grammar.  

T o  p r o v e  t h a t  L ( M )  c_ L ( G ) :  

Let x = X l X 2 . . .  Xn be a str ing accepted by the au tomaton  M; tha t  is, let 
x ~ L ( M ) .  Then the t ransi t ion diagram of the au tomaton  contains a directed 
path so-s  1-s2 . . . . .  Sn, where Sn is an accepting state. Correspondingly, these 
production rules follow: 

so --* X lS l  (11.4) 

S 1 ---> X 2 8 2  

S i - 1  ----> X i S o i  

S n -  1 ---> X n  (Note: Sn is an accepting state.) 

and the derivation of the string x: 

~, X l S  1 (11.5) 

~, x l X 2 8 2  

~, X l X  2 . . .  X n _ l S n _ l  

X l X 2  . . . X n _ l X n  

since S n - 1  ---> X n .  Thus x ~ L(G), so L ( M )  c_ L ( G ) .  

Conversely, let x = X l X 2 . . . X n  E L ( G ) .  Then it must  have a derivation of 
the form (11.4). Correspondingly, the t ransi t ion diagram of the au tomaton  
M must  contain a directed path, so-s  l-S2 . . . . .  Sn. The str ing determined 
by this path is x = X l X 2 . . .  Xn. Since the last production in the derivation 
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Exercises 11.5 

(11.4) is S n -  1 --> Xn, Sn must be an accepting state, thus x ~ L ( M )  and hence 
L ( G )  c_ L ( M ) .  

Thus L ( M )  = L ( G ) .  In other words, the language accepted by the DFSA 
is regular, m 

This proof provides an elegant method for finding the regular language 
accepted by a DFSA. We demonstrate it again in the next example. 

~ Find the of the regular language accepted by the parity check grammar  
machine in Example 11.33. 

SOLUTION:  
Using the transition diagram in Figure 11.23, N = {E, O}, T - {a, b}, S - 
{E}, and the production rules are: 

E o a O ,  E ~ b E ,  O ~ a E ,  O - + b O ,  E o b ,  and O- -+a  

The regular grammar defined by the parity check machine M is G - 
(N, T , P , S ) .  [So L ( G )  = L ( M )  - the set of strings over T containing an 
even number  of a's.] n 

Finally, is the converse of Theorem 11.3 true? With G a regular grammar,  
does a DFSA exist such that  L ( M )  = L(G)? The next two sections will give 
us an answer. 

Determine if each is a DFSA. 

0 

0 

11.5 Deterministic Finite-State Automata and Regular Languages 

0 

a b 

a b 

- - )  

a a 

- +  ~.. 
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0 a ,b  
a 

a 

a ,b  

r 

Write the regular g rammar  defined by the DFSA in each figure. 

5. Figure 11.17 6. Figure 11.28 

7-14. Construct  the regular g rammar  defined by each DFSA in Exercises 
17-24 of Section 11.3. 

By making a DFSA, define a regular  g rammar  G = (N, T , P , ~ )  that  
generates the language consisting of strings over {a, b } that:  

15. Contain exactly one a. 

17. Begin with aa.  

19. Contain aba  as a substring. 

21. Begin with aa or bb. 

16. Contain at least one a. 

18. End with bb. 

20. Contain a a a  as a substring.  

22. Contain baab  as a substring. 

We ended the preceding section with a question: For a regular  g rammar  G, 
is there a DFSA M such that  L ( G )  = L(M)? The obvious tempta t ion  is to 
simply reverse the steps in Example 11.44 (or Theorem 11.3) to look for it. 
Let 's see what happens if we do so. 

~ With the regular G - (N, T, P, ~), where N - {A, c~ }, T = {a, b}, g rammar  
and P = {a --* aa,  a ~ aA, A ~ b}, let us see what happens if we reverse 
the steps in Theorem 11.3 in order to construct a D F S A M  = ( S , A , I , f ,  so). 

Then I = T = {a, b} and so = a. Corresponding to the productions a - .  aa 
and a --* aA, there must  be two states, namely, a and A; besides, by virtue 
of the production A ~ b, an accepting state F must  exist. Thus  S must  be 
{a,A, F}. 

Use the productions to draw the edges in the t ransi t ion diagram of the 
automaton:  If si -~ xsj ,  draw an edge from state si to sj and label it x; if 
si ~ x, draw an edge from si to the accepting state F and label it x. The 
diagram in Figure 11.44 results. 

Unfortunately,  it is not a DFSA for two reasons: (1) A state, c~, has two 
outgoing edges with the same label a; (2) not every state, namely A and F, 
has two edges with different labels. Thus reversing the steps i l lustrated in 
Example 11.44 does no t  yield a DFSA. 
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F igure  11.44 

a @ b @ n 

But, fortunately,  we have ano the r  option. The au toma ton  in Figure  
11.44 is a nondeterminis t ic  finite-state au tomaton .  "Nondeterminis t ic"  
means  tha t  each s t a t e - inpu t  pair  may de termine  more t han  one state. 
For  instance, the pair  (a, a) de termines  two states, a and A. If  a is input  at 
s tate a,  two choices exist for the next state: remain  at a or move to A. 

We can now move to the following definition. 

Nondeterministic Finite-State Automata 

A n o n d e t e r m i n i s t i c  f in i te - s tate  a u t o m a t o n  (NDFSA) M exhibits five 
characteristics:  

�9 A finite set S of states;  

�9 A specially designated state  ~, called the in i t ia l  state;  

�9 A subset  A of S consist ing of the a c c e p t i n g  s ta tes  (or final s tates)  of 
the au tomaton;  

�9 A finite set I of input  symbols;  

�9 A function f : S • I --, P(S), called the t r a n s i t i o n  f u n c t i o n  (or the 
next - s ta te  funct ion) .  [Note: P(S) denotes the power set of S.] 

In symbols, M - (S, A, I, f ,  c~). 
In an NDFSA, each s t a t e - inpu t  pair is l inked with a set of states,  not 

necessarily a unique state; it can be the null set. A NDFSA can be repre- 
sented by a t rans i t ion diagram and a t ransi t ion table can define a t rans i t ion  
function, as the next two examples illustrate. 

For  the NDFSA in Figure 11.44, S - {a, A, F} a n d A  {F}. The t rans i t ion  
table in Table 11.7 defines the t rans i t ion function. 

Table  11.7 
a 

{c~,A} 
0 
0 

0 
{F} 
0 

m 

The NDFSA M - (S, A, I, f ,  a), where S - {a ,A,B,C},  A - {F}, I 
{a, b}, and f is defined by Table 11.8. Its t rans i t ion  d iagram is given in 
Figure 11.45. 
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Table  11.8 I 
a 

A {a,A} 
{A} 
{F} 
O 

O 
{B,F} 
{B} 
O 

F i g u r e  11.45 ~a~b~a 
~ ~ ~ ~ / . . . .  

b I 

The definition of a s tr ing accepted by an FSA can be extended to NDFSA 
as well. 

Equivalent Nondeterministic Finite-State Automata 

A str ing is a c c e p t e d  or r e c o g n i z e d  by a NDFSA M = (S, A, I, f ,  so) if 
a directed path runs from the initial vertex so to an accepting state tha t  
generates the string. The language of all strings accepted by M is L ( M ) .  
Two NDFSAs are e q u i v a l e n t  if they accept the same language. 

The next two examples i l lustrate the definition of (L (M) ) .  

The word a3b is accepted by the NDFSA in Figure 11.44 since the 
corresponding path, ~-~-~-A-F, ends at an accepting state F. Notice tha t  
L ( M )  = {a nb I n >_ 1 }. I 

The str ing a2b3a is accepted by the NDFSA in Figure 11.45. Two paths  
generate it, a - a - A - B - B - B - F  and a - A - A - B - B - B - F .  The au tomaton  accepts 
strings amb and a mb ha, where m, n >_ 1. Thus L ( M )  - {a rob, amb na ] m, 
n > l } .  I 

The question we posed at the beginning of this section can be partially 
answered now. 

Every regular language is accepted by an NDFSA. 

PROOF:  
Let G = (N, T, P, a) be a regular grammar.  Through essentially the same 
steps as in Example 11.46, make a suitable NDFSAM = (S, A, I, f ,  so) such 
that  L ( G )  = L (M) .  Select I = T, so = {a }, and N as the set of nonaccepting 
states of M. Since the g rammar  contains productions of the form si 
x, introduce an accepting state F; choose S = N u {F} and A - {F}. 
Finally, since every production of G is si ~ xsj or si ~ x, the t ransi t ion 
function f : S x I --+ P ( S )  follows: f ( s i , x )  - -  {sj I s i  --+ x s j }  U {F I si -+ x}. 
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As in Theorem 11.3, it can be shown that  L(G)  = L (M) .  (Complete the 
proof.) m 

Although nondeterminist ic  finite-state au tomata  have been defined, an 
explicit answer to the question posed earlier has yet to surface: Given a 
regular g rammar  G, does there exist a DFSA such tha t  L(G)  = L(M)? We 
will answer this in the next section. 

E x e r c i s e s  11.6 

Draw the transi t ion diagram of the NDFSA M = ( S , A , I , f ,  so), where: 

1. S = {so,s l ,s2) ,  A = {s2} 2. S -  {so,sl ,s2},  A = {81} 

S I a b 

80 {81} {80} 
81 {81} {81,82} 

O 0 
. . . .  

J 

I s2 

a b 

{81} {80} 
{82} {81,82} 

0 0 

3. S = { s o , s l , s 2 , s 3 ) , A  = {s2} 

S I a 

80 {80,81} 
81 {81,82} 
s2 {s2} 

{s~} 

{83} 
{81} 
{s3} 
{s3} 

4. S = {so, s l , s 2 , s 3 } , A  = {s2} 

S I a b 

80 {80, 81 } {83 } 
81 {81,82} {80} 
s2 0 0 

{81} {83} 

5. S-{8o,81, '32,83,84) ,  A = {s2,s3} 6. S - {80 ,81 ,82 , s3 ,84 ,85 )  , A = {s2,s5} 

so 
81 
82 
83 
84 

a b 

{S0,Sl} {84} 
{Sl,82} {81,S3} 

0 0 
0 0 

{84} {84} 

s0 
81 
82 
83 
84 
85 

a b 

{80,81} {84} 
{Sl,S2} {83} 

{S2} {S2} 
{S3} {S3} 
{83} {S4,S5} 
{s5} {s5} 

Construct  a t ransi t ion table for each NDFSA. 

, - - ~  

a 

b 
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0 

a 

b 

0 

10. 

a a 

a a 

b b 

a, b 

Does the NDFSA in Figure 11.45 accept each string? Identify a path defined 
by any accepted string. 

11. ab2a 12. abab 

13. a3b 14. ab2ab 

Is each string accepted by the NDFSA in Exercise 1? Give a path for accepted 
strings. 

15. a2b 16. ab2a 

17. a3b 3 18. (ab) 3 

Does the NDFSA in Exercise 10 accept each string? Show a path that  defines 
any accepted string. 

19. abba 20. (ab) 3 

21. a2b 2 22. a4b2ab 3 

Construct a NDFSA that accepts the language generated by the regular 
grammar G - (N, T, P, or), where: 

23. N = { a , A , B } , T = { a , b } , a n d P = { a o a A ,  A ~ a A ,  A ~ b B ,  B - ~  
bB, A ~  a} 

24. N = {a,A,B}, T = {a,b}, a n d P  = {a ~ aA, a ~ bA, A - ~  aB, a 
b, B o  b} 
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25. N = {a, A, B, C, D}, T = {a,b}, and P = {cT ~ ba,  a ~ aA, A ~ aA, 
A ~ bB, B ~ aA, B ~ bC, C ~ aD, C ~ ba,  D ~ aD, D ~ bD, C 
a} 

26. N = {a ,A,B,C},  T = {a,b}, and P = {a ~ bcr, a ~ aA, A ~ aA, 
A ~  bB, B o  aA, B ~  bC, C ~  aA, C ~  bcr, B ~ b} 

Create a NDFSA tha t  accepts the regular  language over {a, b} of s t r ings 
that:  

27. Contain exactly one a. 

29. Begin with aa. 

31. Contain aba as a substr ing.  

33. Begin with aa or bb. 

*35. Begin with aa, but  not end in bb. 

28. Contain  at least one a. 

30. End  with bb. 

32. Contain  a 3 as a substr ing.  

34. Contain  ba2b as a substr ing.  

*36. Begin with aa and end in bb. 

The preceding two sections demons t ra ted  tha t  the language accepted by a 
DFSA is regular  and tha t  every regular  language is accepted by an NDFSA. 
This section shows tha t  every NDFSA is equivalent  to a DFSA, which 
answers  affirmatively our  quest ion about  the existence of a possible DFSA 
M such tha t  L ( G )  = L ( M ) .  Every regular  language is, in fact, accepted by a 
suitable DFSA. 

The next two examples i l lustrate step by step how to construct  a DFSA 
equivalent  to a given NDFSA. 

Consider the regular  g r a m m a r  G - (N, T, P, a),  where N - {A, a }, T = 

{a,b}, a n d P -  {a ~ aa,  c~ ~ aA, A ~ b}. The N D F S A M  = ( S , A , I , f ,  so) 
tha t  accepts L ( G )  is shown in Figure 11.46 (same as Figure 11.44). By 
Example 11.49, L ( M )  - {a'~b In > 1}. Using M, we shall construct  the 
DFSA M' - (S',A',  I ' ,  f ' ,  ' s 0) which accepts L(G)" 

F i g u r e  11.46 

a r - - @  b ~ @  

! 

S t e p  1 C h o o s e I '  - I = {a,b}, s 0 -  {so} - {a}, a n d S '  - P (S ) .  The 
various states in M'  are subsets of S. If there  are n states in M, there  can 
be 2 n states in M',  so the states of M'  are: 

O, {or}, {A}, {F}, {~,A}, {cy,F}, {A,F}, and { ~ , A , F }  
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T a b l e  11 .9  

S t e p  2 The accepting states of M'  are those states of M'  tha t  contain an 
accepting state of M. They are {F}, {a ,F} ,  {A,F}, and {a,A,F}. 

S t e p  3 Let X - {s l, s2 , . . . ,  sin} be a state in M'. An input  symbol x leads 
m 

from state X to state Y, where Y - u f ( s i , x ) .  In other  words, an edge 
i = l  

m 

labeled x runs  from state X to state Y if Y = u f ( s i , x ) .  
i = l  

Figure 11.46 produces all possible transit ions:  

f ( 0 ,  a) = 0 f ( 0 ,  b) = 0 f ( a ,  a) - {a,A} f ( a ,  b) = 0 
f (A ,  a) = 0 f (A ,  b) = {F} f (F ,  a) = 0 f (F ,  b) = 0 

Since f(O, a) - 0 - f ( 0 ,  b), edges run  from 0 to itself labeled a and b. Since 
f (a ,  a) - {~, A} and f (a ,b)  = O, an edge labeled a goes from {~ } to {a, A} 
and an edge b from {a } to 0.  Similarly, there  is an edge labeled a from {A} 
to 0,  an edge b from {A} to {F}, and two edges a and b from {F} to O. 

Since f(~,  a) uf (A,  a) = {~, A} u O  = {~, A}, an edge labeled a runs  from 
{a, A} to {a, A}. Also, f ( a , b )  u f(A,b) = 0 u {F} = {F}, so an edge b 
goes from {a,A} to {F}. Similarly, there  are edges labeled a and b from 
{a, F} to {~, A} and 0,  respectively; edges a and b from {A, F} to 0 and 
{F}, respectively; and edges a and b from {cr, A,F} to {or, A} and {F}, 
respectively. 

These results appear  in the t ransi t ion table in Table 11.9. 

0 

{A} 
{F} 

{cy,A} 
{a,F} 
{A,F} 

{a,A,F} 

a b 

0 0 
{a,A} 0 

0 {F} 
0 0 

{a,A} {F} 
{a,A} 0 

0 {F} 
{a,A} {F} 

Figure 11.47 shows the resul t ing DFSA. 
Since the states {A}, {or, F}, {A, F}, and {~, A, F} cannot be reached from 

the initial state {or }, they can be dropped out to yield the simplified DFSA 
M' in Figure 11.48. 

From this t ransi t ion diagram, L(M')  - {aanb In > 0} - {anbln > 1} - 
L(G). Thus the au tomata  M and M' are equivalent, so the NDFSA is the 
same as the DFSA. m 

Construct  a DFSA M' - (S ' ,A '  I' f ' ,  ' )  equivalent to the NDFSA , , 8 0 

M - ( S , A , I , f ,  so) in Example 11.50. Recall tha t  L(M) - {amb, ambna[ 
m, n > 1 }. The key steps lie below. (Fill in the details.) 
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F i g u r e  11.47 a,b 

a,b 

b 

F i g u r e  11.48 

SOLUTION:  
S t ep  1 Select I '  = I - {a,b}, s~ - {so} - {a }, and S' = P(S). The states 

of M' are 0,  {a}, {A}, {B}, {F}, {a,A}, {a,B}, {a ,F},  {A,B}, {A,F}, {B,F}, 
{a,A,B}, {a,A,F}, {~,B,F}, {A,B,F}, and {~,A,B,F}. 

Step  2 The accepting states of M' are {F}, {a,F},  {A,F}, {B,F}, {a,A,F}, 
{a ,B,F} ,  {A,B,F}, and {a,A,B,F}. 
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Step  3 The transition table of the DFSA is Table 11.10. 

T a b l e  11 .10  

0 

{A} 
{B} 
{F} 

{c~, A} 
{a,B} 
{c~, F} 
{A, B} 
{A, F} 
{B,F} 

{c~, A, B} 
{c~, A, F} 
{a,B,F} 
{A,B,F} 

{a,A,B,F} 

a b 

0 0 
{a,A} 0 

{A} {B, F} 
{F} {B} 

{a,A} {B,F} 
{a, A, F} {B} 

{or, A} 0 
{A, F} {B, F} 

{A} {B, F} 
{F} {B} 

{c~, A, F} {B,F} 
{a,A} {B,F} 

{a, A, F} {B} 
{A, F} {B, F} 

{a, A, F} {B,F} 

F i g u r e  11.49 

Step  4 The table indicates the states {a, B}, {a, F}, {A, B}, {c~, A, B}, 
{a, B, F }, {A, B, F}, and {a, A, B, F } are not reachable from any state, so 
they are not the initial state {a }. Delete the corresponding rows from the 
table. It is now obvious from the table that  the states {A}, {A, F}, {a, A, F} 
also cannot be reached from {a }; delete those rows also from the table. 

The resulting transition diagram of the DFSA M' appears in 
Figure 11.49. 

: ,b  a,b 

~ a ~ b  

From the diagram, it follows that  L(M') = {amb, ambnaim, n >_ 1} = 
L(M). ThusM andM'  are equivalent automata. As in the previous example, 
we have shown that  the equivalency between an NDFSA and a DFSA. i 

The techniques illustrated in the two previous examples can be general- 
ized to arrive at the following result. (The proof is a bit complicated, so we 
omit it.) 
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~ Every NDFSA is equivalent to a DFSA. m 

The next theorem follows from Theorems 11.3, 11.4, and 11.5. 

~ A  language is regular if and only if it is accepted by a DFSA. m 

As Theorem 11.6 indicates, a DFSA can define a regular grammar  and vice 
versa. Each is a characterization of the other. 

We now look for an example of a simple-looking language that  is n o t  

regular. 

~ Show that  the language L - {anb n I n > 1} is not regular. 

P R O O F  (by c o n t r a d i c t i o n ) :  
Suppose L is regular. Then, by Theorem 11.6, a DFSA M exists such that  
L ( M )  - L .  Suppose M has m states. Since the string x - a m + l b  m+ 1 E L ,  x is 
accepted by the DFSA. Let P be the path corresponding to x; it ends at an 
accepting state F. 

F i g u r e  11.50 

a a 

@a@a @b@ 
- - - )  ~ ,~  ... 

The path corresponding to the substring a m+l contains m + 1 states. But, 
since only m states exist, by the pigeonhole principle at least two of the m + 1 
states, say, si and s j ,  where i < j, must  be the same; consequently, there 
must be a directed cycle at s i ,  each edge labeled a (see Figure 11.50). Let 
l be the length of the cycle. The path so - s1  . . . . .  s i - s j+  1-sj+2 . . . . .  F generates 
the string x' = a m + l - l b  m + l .  Since this path ends at F (an accepting state), 
x' is accepted by the automaton; so x' ~ L. This is a contradiction, since x' 
does not contain the same number of a 's  and b's. Thus L is not a regular 
language, m 

It follows by this example that  the set of well-formed nested parentheses 
is also n o t  a regular language. (Why?) 

These discussions lead us to a powerful conclusion: Regular languages 
are accepted by DFSAs. 
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Exercises 11.7 

1-6. Construct  a DFSA equivalent to each NDFSA in Exercises 1-4, 7, 8 
of Section 11.6. Eliminate all unreachable states. 

7-8. Design DFSAs equivalent to the NDFSAs in Exercises 23 and 24 of 
Section 11.6. Eliminate all unreachable states. 

Let L be the language recognized by an FSA and L R - -  {Xn . . .  Xl [ X l . . .  X n  E 
L}. Construct  an NDFSA that  accepts L R from each FSA in Exercises 9-16. 
(Hin t :  Reverse the directions of the edges; switch the roles of the initial 
state and the accepting states.) 

9. Figure 11.20 

11. Exercise 18 in Section 11.3 

13. Exercise 37 in Section 11.3 

15. Exercise 40 in Section 11.3 

10. Exercise 17 in Section 11.3 

12. Exercise 36 in Section 11.3 

14. Exercise 38 in Section 11.3 

16. Exercise 41 in Section 11.3 

17-24. Identify the language L ( M )  accepted by the FSA in Exercises 9-16. 

25-32.  Construct  a DFSA equivalent to the NDFSA in Exercises 9-16. 

The abstract  models of computing machines with limited capabilities are 
DFSA, FSM, and NDFSA. An automaton checks if a given input s tr ing has 
a desired property and produces no output  values. An FSM, on the other  
hand, yields an output  value corresponding to each input. 

Formal Language 

�9 A f o r m a l  l a n g u a g e  over an alphabet E is a subset of E*, the set of all 
possible words over Z (page 734). 

�9 The c o n c a t e n a t i o n  of two languages A and B over Z consists of words 
ab with a e A and b E B (page 736). 

�9 A ~ = { a l a 2 . . .  an l ai E A}, where A ~ - A (page 739). 
cx$ 

�9 A* = u A n is the K l e e n e  c l o s u r e  of a language A (page 739). 
n : 0  

Grammar 

�9 A g r a m m a r  G = (N, T , P ,  ~)  consists of a finite set N of n o n t e r m i -  
hal  s y m b o l s ,  a finite set T of t e r m i n a l  s y m b o l s ,  a finite set P of 
p r o d u c t i o n  ru les ,  and a s t a r t  s y m b o l  c~ (page 746). 
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�9 A word w' = xf ly  is directly derivable from a word w = x a y  if a 
product ion a ~ / ~  exists; we then  wri te  w ~ w'. A word Wn is derivable  
from wi if the re  exists a finite sequence of d e r i v a t i o n s ,  Wl =, w2, w2 
w3, . . .  ,Wn-1  ~ Wn. The language  derivable from cr is the  l anguage  
generated by G, denoted by L ( G )  (page 746). 

�9 In BNF, each product ion w ~ w' is wr i t t en  as w ::= w'; each non te rmi -  
nal symbol w is enclosed by angle brackets ,  as in (w); and produc t ion  
rules wi th  the  same lef t -hand sides are combined wi th  vert ical  bars  into 
a single rule (page 748). 

�9 A t y p e  0 g r a m m a r  has ph rase - s t ruc tu re  (page 751 ). 

�9 In a context-sens i t ive  (type 1) g r a m m a r ,  every product ion is of the  
form c~Ac~' --~ c~flc~'. (page 751) 

�9 In a context-free (type 2) g r a m m a r ,  every product ion is of the  form 
A ~ ~. (page 751). 

�9 In a regular (type 3) g r a m m a r ,  every product ion is of the  form A--~ t 
or A ~ tB (page 751). 

�9 A language L(G)  is context-sensit ive ,  context-free,  or regular 
according as whe the r  G is context-sensi t ive,  context-free,  or r egu la r  

(page 751). 

�9 An ambiguous  language contains  a word tha t  has more t h a n  one 
derivat ion t ree (page 753). 

�9 The language accepted by a DFSA is regular  (page 780). 

Finite-State Automaton (FSA) 

�9 A F S A M  - ( S , A , I , f ,  so) consists of a finite set S of s t a t e s ,  a finite set 
A of accept ing  states, a finite set I of i n p u t  s y m b o l s ,  a trans i t ion  
funct ion f : S x I ~ S, and an initial  state so. Every s t a t e - i n p u t  pair  
yields a un ique  next -s ta te  of the a u t o m a t o n  (page 761). 

�9 A transi t ion table defines the  t rans i t ion  function. (page 761). 

�9 A transi t ion diagram can represen t  a DFSA. The initial  s ta te  so is 
identified by drawing  an a r row toward it; an accept ing s ta te  by two 
concentric circles a round  it (page 762). 

�9 An input  s t r ing  is a c c e p t e d  by an a u t o m a t o n  M if and only 
if the s t r ing  t races  a pa th  t ha t  ends at an accepting state.  The  
language L(M) accepted by M consists of all words recognized by it 

(page 764 ). 

�9 Two a u t o m a t a  M and M'  are equivalent  if L ( M )  = L ( M ' )  (page 764). 
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Finite-State Machine (FSM) 

�9 An F S M  M = (S,I ,  O , f , g ,  so) consists of a finite set S of states,  a finite 
set I of i n p u t  s y m b o l s ,  a finite set O of o u t p u t  s y m b o l s ,  a t r a n s i t i o n  
f u n c t i o n  f : S x I --~ S, an o u t p u t  f u n c t i o n  g : S x I ~ O, and an 
i n i t i a l  s t a t e  so. Every s t a t e - inpu t  pair produces a next -s ta te  and an 
output  value (page 772). 

�9 A t r a n s i t i o n  tab le  can define the t rans i t ion  and ou tpu t  funct ions of 
an FSM (page 772). 

�9 A t r a n s i t i o n  d i a g r a m  also can define an FSM (page 772). 

Nondeterministic Finite-State Automaton (NDFSA) 

�9 An N D F S A M  -- ( S , A , I , f ,  ~) consists of a finite set S of states,  a subset  
A of S of accepting states,  a finite set I of input  symbols, a t rans i t ion  
function f : S x I ~ P(S),  and an initial s tate  a. A s t a t e - inpu t  pair  may 
be paired with zero, one, or more states (page 783). 

�9 Every regular  language is accepted by a NDFSA (page 784). 

�9 Every NDFSA is equivalent  to a DFSA (page 787). 

�9 Every regular  language is accepted by a DFSA (page 787). 

Review Exercises 

Let A = {4, a, bc} and B = {a, ab}. Find each. 

1. A B  2. BA  3. A 3 4. B 3 

Find three  words belonging to each language over { a,b,c }. 

5. {a,b}{c}* 6. {a}b*{c}* 

7. {ab}{ab}* 8. {b} {a,b,c}* {b} 

A g r a m m a r  G = (N, T , P , a )  has N = {{noun phrase),  (verb}, (adjective), 
(noun}, (article) }, T = {a,the,chicken,wolf, cabbage,eats,walks,reliable,  
discreet, gracious}, a = (sentence), and the product ion rules are: 

(sentence) ~ {noun phrase) (verb) (noun phrase) 

(noun phrase) ~ (article){noun) I (article){adjective)(noun) 

{article) ~ the la  

(noun) ~ chicken I w o l f l c a b b a g e  

(adjective) ~ reliable I discreet I gracious 

(verb) --~ eats lwa lks  
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Determine  if each is a valid sentence in L(G) .  

9. The gracious chicken walks the wolf. 

10. The reliable wolf eats a chicken. 

Make a derivation tree for each sentence. 

11. The discreet wolf eats the cabbage. 

12. The reliable cabbage walks the gracious chicken. 

Using the g r a m m a r  G - (N, T, P, a) where  N = {a, A, B}, T = {a,b}, and 
P = {a ~ ba,  a ---> aA, A ~ aB, A ~ ba ,  B ~ aB, B --> bB,  A ~ a , B  ~ a, 
B ~ b}, de termine  if each s t r ing belongs to L(G) .  

13. ab3a 14. (ab) 3 15. aba2b 16. ab2a 4 

Const ruc t  a parse tree for each string. 

17. ba2b 18. b2a3b 19. aba 2 20. a2b2a 2 

Develop a g r a m m a r  tha t  generates  each language over { a,b }. 

21. {b n in >_ 1~ 22. {anba'* In > 0} 23. {b 2n+l In >_ 0} 24. {ab'*aln >_ 0} 

With the g r a m m a r  below, construct  parse trees for the simple w h i l e  
s t a t e m e n t s  in Exercises 25 and 26. 

(while s t a t e m e n t ) ' -  while (expression) do (statement)  

(statement)  " ' - ( a s s i g n m e n t  s t a t emen t ) f  (while s ta tement)  I s 

{assignment s t a t e m e n t ) " ' -  ( v a r i a b l e ) =  {expression) 

(variable/ " ' -  a [b {c I . . .  I z 

(expression) " -  (variable)(sign)(variable) J 

(variable) (operator)(variable/  

(operator) " ' -  =J ~:l < l< l> l  > 

{s ign) - ' -  + 1 -  

25. While x >_ y do x "= y + z. 

26. While x >_ y do while y < z do a "-  b + c. 

27. Draw the t ransi t ion diagram of the D F S A M  - ( S , A , I , f ,  so), where  
S - { s o , s l , s 2 , s 3 , s 4 } ,  A = {83} , I = {a,b}, and f is defined by Table 
11.11. 

28. Redo Exercise 27 w i t h A  = { 8 1 , 8 3 }  and f defined by Table 11.12. 

Const ruct  the t ransi t ion table for each DFSA. 
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T a b l e  11 .11 

sO Sl 
Sl s4 
s2 s4 
s3 s3 
s4 s4 

s4 
s2 
S3 
s3 
s4 

T a b l e  11 .12 

s2 
s3 
s4 

a b 

Sl s2 
Sl Sl 
s4 s3 
s3 s3 
s4 s4 

29. 

b 

30. 

a;b 

31-34 .  Identify the language L(M)  accepted by the a u t o m a t a  in Exercises 
27-30. 

Design a DFSA tha t  accepts s tr ings over { a, b } that:  

35. Begin with aaa. 36. Contain abb as a substr ing.  

37. II 

s0 s0 

81 s2 

82 80 

s3 s3 

f g 

b a b 

sl 1 0 
82 0 0 
83 1 0 
S2 1 0 

38.  

80 

81 

S2 

S3 

f g 

a b a b 

sO Sl 0 0 

s2 s3 0 1 
s3 s2 1 1 
s3 s2 1 0 
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Construct a transition table for each FSM. 

39.   a/O O Jl 
-~ b/1 ~ a/O ~ 

40. a / O ~ -~) a / l ~ ' )  

b/1 b/O 

Using the FSM in Figure 11.33 (Example 11.38), find the output from each 
input string. 

41. a2b2aba 42. aba2ba 43. ab3ab 44. a2b3a 2 

45-46.  Redraw the DFSAs in Exercises 27 and 29 as FSMs. 

Design an FSM to accept string over { a, b } that: 

47. Contain ab 2 as a substring. 48. Begin with a or b 2. 

49-50.  Compose the regular g rammar  defined by the DFSA in Exercises 
27-28. 

Draw the transition diagram of the NDFSA M - ( S , A , I , f ,  so), where I - 
{ a,b } and: 

51. S - { s o , s l , s 2 ) , A  = {Sl} 

11 

so II {sit {s0t 
si I] {s2} {sl,s2} 
s2 {s2} {s2} 

52. S - {80, S l , 8 2 } ,  A - {81 } 

a . b 

{80,82} {81} 
I s2 I] {Sl} {80,82} 

Construct a transition table for each NDFSA. 
Determine if the NDFSA in Exercise 52 accepts each input string. 

53. a,b 

---) 

b 
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54. ('~ a, b a, b ~") 
a b 

_...) 

55. a 3 56. ab2ab 4 57. a2b 3 58. a3b 4 

59-62 .  De te rmine  if each input  s t r ing  in Exercises 55-58 is accepted by 
the  NDFSA in Exercise 54. 

Create  a NDFSA tha t  accepts the  language L ( G )  genera ted  by the  regula r  
g r a m m a r  G = (N, T, P, a),  where:  

63. N = { a , A , B } ,  T = {A,B} ,  and P = {a -~ ba,  a ~ aA, A -~ aB, A 
bA, A ~ bB,  B ~ aB, B ~ bB,  a ~ a , A  ~ b} 

64. N = { a , A , B } ,  T = {a,b}, and P = {a -> aA, a ~ b a , A  --~ a a , A  ~ aB, 

A ~ bA,  B --> aB, B ~ ba ,  B -~ bA,  a --~ a , A  ~ b} 

65-66 .  Cons t ruc t  a DFSA equivalent  to each NDFSA in Exercises  51 and 
52. 

67-68 .  Wha t  languages  do the DFSAs in Exercises 65 and 66 accept? 

Let A and B be any languages  over a finite a lphabet  E. Prove each. 

*69. (A u B*)* = (A* u B)* **70. (AUB)* = (A*UB*)* = (A 'B*)*  

Supplementary Exercises 

Let m denote the n u m b e r  of a ' s  and n the n u m b e r  of b's in a s t r ing  over 
{ a,b }. Design an FSA tha t  accepts s t r ings with  the  given propert ies .  

1. m - l (mod  2) and n - l (mod  2). 

2. m - 0 ( m o d  3) and n - l (mod  3). 

3. m -- 0(mod 2) and n - l (mod  2), or m - l (mod  2) and n - 0(mod 2). 

4. Design an FSA tha t  accepts positive in tegers  n divisible by 3. 

*5. Using the  syntax d iagram in Figure  11.51 for a real number ,  design 
an FSA to recognize valid real numbers .  

*6. The Roman  numera l s  M, D, C, L, X, V, and I have values 1000, 500, 
100, 50, 10, 5, and 1, respectively. In the str ict  addit ive nota t ion  
no n u m e r a l  with a smal ler  value precedes a n u m e r a l  wi th  a larger  
value. For  instance,  19 is wr i t t en  as XVIIII in lieu of the  shor te r  
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Figure  11.51 

representat ion XIX and MMLXXVI, unlike MCMXCVI, is a well- 
formed sequence. Excepting M's, C, X, or I should not appear  more 
than four times in the same sequence, and D, L, or V no more than  
once. This makes sense since CCCCC - D, XXXXX - L, and so 
on. Design an FSA to recognize the language of such well-formed 
sequences of additive Roman numerals.  

Develop a g rammar  that  generates each language over {a,b }. 

*7. The set of words that  begin and end with a. 

*8. The set of words that  begin with aa and end with bb. 

9. Using BNF, define a g rammar  for the language of well-formed nested 
parentheses.  

10. Use productions instead of BNF to define the g rammar  in Exercise 9. 

A Moore m a c h i n e  M = (S,I,  O , f , g ,  so), named after Edward Moore who 
introduced it in 1956, is an FSM consisting of a finite set S of states, a 
finite set I of input symbols, a finite set O of output  symbols, a t ransi t ion 
function f : S • I ~ S, an output  function g : S ~ O, and an initial 
state so. Draw a transi t ion diagram for the Moore machine defined by each 
transit ion table. 

11. 

$ 

SO 

Sl 

S2 

S3 

f 
input 

1 

SO Sl 

83 S2 

S2 S3 

80 81 

12. 

input 
s o 1 

. . . .  

SO Sl S3 0 

Sl Sl 82 1 
s2 s3 s2 1 
83 Sl 82 0 

Construct a t ransi t ion table for each Moore machine. 

13. 

1 1 0 1 1 
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E d w a r d  F o r r e s t  M o o r e  (1925-) was born in Baltimore, Maryland. He graduated from Virginia 
Polytechnic Institute in 1947 and received his Ph.D. in mathematics from Brown 3 years later. After 
teaching at the University of Illinois for a year, he joined the technical staff at Bell Telephone Labs. In 
1966, he joined the faculty of the University of Wisconsin, Madison, and taught there until his retirement 
in 1985. 

Moore has made outstanding contributions to the logical design of switching circuits, automata theory, 
graph theory, and database management. 

14. 

0 0 ff  1 

-~ 0 ~ - - ' ~  Y ~  v 

1 

The ou tpu t  genera ted  by the Moore machine  M - (S,I ,  O , f , g ,  so) for the  
input  s t r ing  a l a 2 . . . a m  is g(so)g(s l ) . . .g(sm) ,  where  si - f ( s i - l , a i )  and 1 
_< i _< m. Find the ou tput  produced by the machine  in Exercise 13 for each 
input.  

15. 011 16. 1010 17. 10001 18. 1101101 

19. L e t L  be a r e g u l a r  language.  Prove t h a t L  R - {xn. . .x]  I x l . . . x , ,  ~ L} 
is also regular .  

**20. An FSM M - (S,I ,  O, f , g ,  so) is s i m p l y  m i n i m a l  if no ou tpu t  rows 
in its t rans i t ion  table are identical.  If l S i -  n, I I I -  m, and I O i -  P, 
how m a n y  simply min imal  FSMs are possible? 

Computer Exercises 

Write  a p rogram to do each task,  where  E - {a,b }. 

1. De te rmine  if a s t r ing  over Z" 

�9 Begins wi th  aa. 

�9 Ends  with  bb. 

�9 Conta ins  exactly one a. 

�9 Conta ins  at least  one a. 

�9 Conta ins  aba as a substr ing.  

�9 Has its n u m b e r  of a ' s  congruent  to 1 mod 3. 
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�9 Has an even n u m b e r  of a ' s  and b's. 

�9 Has both  its n u m b e r  of a 's  and b's  congruen t  to 1 mod 3. 

2. Let  m denote  the n u m b e r  of a ' s  and n the  n u m b e r  of b's in a s t r ing  over 
E. Read in a word over E and see if it has: 

�9 m - 0(mod 5) �9 m _-- 3(mod 5) 

�9 m _-- 0(mod 3) or m - l (mod  3) �9 m - 0(mod 3) or m -- 2(mod 3) 

�9 m - 0 ( m o d 3 )  a n d n - l ( m o d 3 )  �9 m - 0 ( m o d 3 )  a n d n = 2 ( m o d 3 )  

3. For  a DFSA with  n (< 10) states,  labeled 1 t h rough  n, read in its n u m b e r  
of s ta tes  n and t rans i t ion  table. Read in a sequence of input  s t r ings  over 
Z and de te rmine  if each is accepted by the  DFSA. 

4. Imp lemen t  the uni t  delay machine  in Example  11.41. 

5. Read in two binary  n u m b e r s  and use the FSM in Example  11.42 to 
compute  the i r  sum. 

6. By means  of the  syntax  d iagram in Figure  11.31, de t e rmine  if a s t r ing  
of charac ters  represen ts  a valid integer.  

7. Ascer ta in  with the syntax  d iagram in Figure  11.32 w h e t h e r  a s t r ing  of 
charac ters  represen ts  a valid real number .  (Excluding the  exponent ia l  
form.) 

8. Read in the n u m b e r  of s ta tes  n, the t r ans i t ion  table, and a set of input  
s t r ings  for an FSM with n (< 10) states,  labeled 1 th rough  n. P r in t  the  
ou tput  produced by each input  string. 

9. Using a DFSA with n (< 10) states,  labeled 1 th rough  n, read its n u m b e r  
of s ta tes  n and t rans i t ion  table. De te rmine  the corresponding regular  
g r ammar .  

Exploratory Writing Projects 

Using l ibrary and In t e rne t  resources,  wri te  a t e am repor t  on each of the  
following in your  own words. Provide a wel l -documented bibliography. 

1. Discuss how BNF rules are used to define p r o g r a m m i n g  languages  such 
as C § § and Java.  

2. Discuss Tur ing  machines  and Church ' s  thesis.  

3. Explain how vending machines ,  slot machines ,  and garage door openers  
can be modeled by FSAs. 

4. Wri te  an essay on Kleene closure. 

5. Wri te  an essay on different  types of FSMs and the i r  applications.  
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