
Chapter 11

Formal Languages
and F in i t e -S ta te

Mach ines

Time as he grows old teaches many lessons.

B A E S C H Y L U S

T he study of finite-state machines began with the neural networks
investigations of Warren S. McCulloch and Walter Pitts in 1943.

Today paradigms of finite-state constructs can be seen everywhere:
turnstiles, traffic signal controllers, automated teller machines, auto-
mated telephone service, garage door openers, household appliances, and
coin-operated machines such as vending machines and slot machines.

Finite-state machines significantly assist the study of formal languages;
for example, a machine can be designed (or a program developed) that
determines if an input string over the alphabet {a,b} contains abba as a
substring. (The string babaabbaba does, while abaaba does not.) This type
of machine produces no output, but instead tells whether or not the input
string has a certain property. (Example 11.26 explores this.)

Some machines, however, produce output values. For instance, adding
two binary numbers requires the input of two numbers, and yields their
sum as the output (see Example 11.42). Such a machine, a finite-state
automaton, is described in Section 11.4.

Since all finite-state automata must recognize particular languages, for-
mal languages and types of grammars become important. This chapter
explores formal languages, and how automata and formal languages are
related, as well as other interesting questions such as:

�9 How do we determine if a string of characters contains a certain
substring?

�9 How do we simulate an automatic teller machine?

733

734 Chapter 11 Formal Languages and Finite-State Machines

�9 Can we develop a p rog ram tha t accepts two b inary n u m b e r s , adds t h e m
bit by bit, and ou tputs the i r sum?

�9 Wha t sort of languages are accepted by f ini te-state a u t o m a t a ?

We now cont inue our s tudy of formal languages, begun in Sect ion 2.1.
The language of sets plays an i m p o r t a n t role in the s tudy, as we saw in
Chap te r 2.

You may recall t ha t an a lphabet E is a finite set of symbols; and a word
(or str ing) over E is a finite sequence of symbols from E.

How do we de te rmine whe the r or not two words over E are equal? To
this end, we make the following definition.

Equality of Words

Two words x = X l X 2 . . . x m a n d y = y l y 2 . . . y , , over Z are e q u a l , denoted by
x = y, if m = n and xi = Yi for every i. Thus two words are equal if they
contain the same n u m b e r of symbols and the corresponding symbols are
the same.

For example, if 0 l z = xyO, then x = 0, y = 1, and z = 0. Also, 011 4= 001.
The length of a word w is the n u m b e r of symbols in it. A word of length

zero is the empty word, denoted by the lowercase Greek le t te r ~; it conta ins
no symbols.

Again recall tha t E* denotes the set of words over E. (E* can be defined
recursively. See Exercise 23.) A language over E is a subset of Z*; it may
be finite or infinite.

Let E - {x ,y , z , + , - , . , / , 1",(,)}, where �9 denotes mul t ip l ica t ion and
1" denotes exponent ia t ion. Define a language L over E recurs ively as
follows:

�9 x , y , z e L .

�9 I f u and v are in L, then so are (+u) , (- u) , (u + v), (u - v), (u , v) , (u/v),

and (u 1" v).

Then L consists of all fully and legally paren thes ized algebraic express ions
in x, y, and z. For instance, ((((x �9 (y t z)) - (y �9 z)) + x) 1" z) is a fully
paren thes ized and well-formed algebraic expression. Note t h a t E* conta ins
nonsensical expressions such as) + x (/y* 1" also. II

(optional) Let E - {_, $, a , . . . ,z, 0 , . . . , 9, }. Define the language L of legal
identifiers in Java recursively.

11.! Formal Languages 735

SOLUTION:
An identifier in Java begins with a letter, underscore (_), or the dollar sign
($), followed by any number of a lphanumeric characters (letters or digits).
(See the syntax diagram in Figure 11.1.) A letter, an underscore, or $ by
itself is a valid identifier. It can also be followed by a letter or a digit; tha t
is, if x ~ L and y ~ E, then xy ~ L. Thus the language L can be defined
recursively as follows:

�9 _ (underscore), $, and every letter of the English alphabet are in L.

�9 If x ~ L a n d y e E, t h e n x y ~ L .

Figure 11.1 ~ letter _ ~ ~ ~ ~

underscore letter

$ digit m

(optional) The alphabet E for Java on a computer system that uses the
ASCII character set consists of the blank character, the upper- and lower-
case letters, digits, ar i thmetic and relational operators, special characters,
and control characters. So Java is a subset of Z*, consisting of all words
over E that are recognizable by a Java compiler, m

Since both ~ and { s } are subsets of E*, both are languages by definition.
The language ~ is the e m p t y l a n g u a g e . The language { ~ } is denoted by
the upper case Greek letter A. We emphasize that ~ r A, since J~J = 0,
whereas I AI - 1. However, if E - ~, E* -- A. Why?

Suppose an alphabet E contains at least one element a. Then L =
{a, aa, aaa, . . .} is an infinite language over E. Since L _ E*, E* is also
infinite. Thus, i fE r ~, E* contains infinitely many words, each of finite
length (see Exercise 29).

.

Let z be the concatenation of the words x and y; tha t is, z = xy. Then
x is a p re f ix of z and y a suff ix of z. For instance, consider the word z =
readabil i ty over the English alphabet; x - read is a prefix ofz andy = ability
is a suffix ofz. Since x -)~x = x~, every word is a prefix and a suffix of itself;
further, ~ is both a prefix and a suffix of every word.

The operations of union and intersection can be applied to languages
also; after all, languages are also sets. To this end, we extend the definition
of concatenation of strings to languages.

7 3 6 Chapter 11 Formal Languages and Finite-State Machines

Concatenation of Languages

Let A and B be any two languages over E. The c o n c a t e n a t i o n of A and
B, denoted by AB, is the set of all words ab with a �9 A and b �9 B. Tha t is,
A B = {ab l a � 9 � 9

The next two examples i l lustrate this definition.

~ Let E -- {0, 1},A = {0, 01}, and B - {X, 1,110}. Find the concatenat ions

AB and BA.

S O L U T I O N :

�9 AB consists of strings of the form ab with a �9 A and b �9 B. So

AB = {0~, 01, 0110, 01)~, 011, 01110}

= {0, 01, 0110, 01,011, 01110}

= {0, 01,011, 0110, 01110}

B A - {ba] b �9 B A a � 9

= {~0, ~01, 10, 101, 1100, 11001}

-- {0, 01, 10, 101, 1100, 11001} II

F i g u r e 11.2

Tree diagrams are useful in finding the various strings in the concatena-
tion of two finite languages. Figure 11.2, for example, shows the different
ways of obtaining the elements in AB for the languages in Example 11.4.

strings in A strings in B strings in AB

~ ;L ~ 0~.

0 ~ 1 ~, 01

110 ~ 0110

0 1 / ' - / 1

~ 1 1 0

01~

' ~-- 011

01110

Two interest ing points arise from this example:

(1) AB r BA.
(2) Further , IABI = 5 < 6 = 2 . 3 = IAI. IBI; whereas IBAI = 6 --

3 . 2 -- IB[-IAI. This is so since the word 01 in AB can be obtained
in two ways. Therefore, all we can say in general is, ifA and B are
finite languages, then IABI < IAI. iB].

II.I Formal Languages 737

(optional) In the p rog ra mming language QUICKBASIC, numer ic a

variable name mus t begin with a let ter followed by ei ther a period
or an a lphanumer ic character. (QUICKBASIC does not d is t inguish
between upper and lowercases in variable names.) Let A = {a, b , . . . ,z} and
B - {a , . . . , z, 0 , . . . , 9,. }. The concatenat ion AB gives all numer ic variable
names containing exactly two characters , namely:

aa, a b , . . . , a 0 , . . . , a9, a.

ba, b b , . . . , b0, . . . , b9, b.

za, zb, . . . , zO, . . . , z9, z. I

Let A be a language over E. Identify the languages A~ and AA.

S O L U T I O N "
�9 A O - {ab ta ~ A A b ~ ~}. Since 0 contains no elements, no
concatenat ions ab can be performed; therefore, A ~ - ~. (Similarly,
~ n - 0 .)

�9 AA =A{)~} = {aZ l a E A} - { a l a c A} - A . (Similarly, AA - A .) I

We are now ready to s tudy some propert ies of the concatenat ion
operat ion on languages.

Let A, B, C, and D be languages over an a lphabet Z. Then: any

(1) A ~ - 0 - OA (2) AA - A = AA (3) A (B C) = (AB)C

(4) A (B u C) = A B U A C (5) (B u C)A - B A u CA

(6) A (B ~ C) c_ A B n A C (7) (B A C)A c B A ~ CA

(8) If A c_ B and C c_ D, then AC c_ BD.

P R O O F :
We already proved par ts i and 2 in Example 11.6. We now shall prove par ts
4 and 6, and leave the other par ts as exercises.

(4) To prove that A (B u C) = A B u AC:

We need to show tha t (a) A (B U C) c_ A B u A C and (b) AB UAC _c A (B U C) .

�9 To prove that A (B u C) c_ A B u AC:

Let x ~ A (B u C). Then x is of the form yz, where y ~ A and z e B u C.
If z ~ B, then yz ~ A B and hence yz ~ A B u AC. If z ~ C, then yz ~ A C

and therefore yz E A B u AC. Thus, in both cases x = yz ~ A B u AC.
Consequently, A (B u C) c A B u AC.

738 Chapter I I Formal Languages and Finite-State Machines

�9 To prove that AB u A C c A(B U C)"
Let x �9 A B u A C . Suppose x �9 AB. T h e n x - ab for some a �9 A a n d b �9 B.
Since b �9 B, b also belongs to B U C. So x - ab �9 A(B u C). Simi la r ly ,
if x �9 AC, t h e n also x �9 A(B u C). T h u s in bo th cases x �9 A (B U C).
Consequent ly , AB u AC c A(B u C).

Therefore , by pa r t s (a) and (b), A(B u C) - AB u AC.

(6) To prove that A(B N C) c_ AB n AC"
L e t x �9 A(BNC). T h e n x - yz for some e l e m e n t y �9 A a n d z �9 BNC. Since
z �9 B n C, z �9 B and z �9 C. So yz belongs to bo th AB and AC, and h e n c e
yz �9 AB NAC; in o the r words, x �9 A B NAC. T h u s A(B n C) c_ A B NAC.

m

The next example verifies pa r t s (4) and (6) of this t heo rem.

Let E -- {a,b,c}, A - {a, ab}, B - {b, ab}, and C - {)~,bc}. Verify t h a t
I I

- (1) A (B u C) - A B u A C and (2) A (B N C) c _ A B N A C .

S O L U T I O N :
AB - { ab, aab, abb, abab }

AC - {aZ, abc, ab)~, abbc} = {a, ab, abc, abbc}

AB u AC - {a, ab, aab, abb, abc, abab, abbc}

AB n AC - {ab, abb }

(1) B u C - {s ab, bc}

T h e n A(B u C) - {aZ, ab, aab, abc, ab)~, abb, abab, abbc}

= {a, ab, aab, abb, abc, abab, abbc}

= A B u A C

(2) Since B N C - 0 , A(B n C) - 0 and hence A(B n C) c A B a AC. m

If the l anguages A and B are the same, t hen AB is of ten deno ted by A 2.
T h u s A 2 consis ts of words ob ta ined by c o n c a t e n a t i n g each word in A wi th
every word in A: A 2 - {xy Ix,y �9 A}. More general ly, let n �9 N. T h e n A n
consis ts of all words ob ta ined by n - 1 conca tena t ions of words in A. In
par t i cu la r , Z" denotes the set of words ob ta ined by n - 1 c o n c a t e n a t i o n s of
symbols in Z, t h a t is, words of l eng th n.

Let E - {a, b, c}, A - {a, ab, bc}, and B = {a, bc}. Find]E 2, A 2, and B 3.

S O L U T I O N :
�9 E 2 = { x y l x , y �9 E} = {aa, ab, ac, ba, bb, bc, ca, cb, cc}

�9 A 2 = {xy I x ,y �9 A} = {aa, aab, abc, aba, abab, abbc, bca, bcab, bcbc}

�9 B 2 = {aa, abc, bca, bcbc}

So B 3 = { aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc } m

1 I.I Formal Languages 739

. ,- . -,,, . :,:. ; ; ,

, : . ..,.;%,,
,,.-

�9 . : t i \ '

. ~ �9 r /

, ,.~ ,

Stephen Cole Kleene (1909-1994) was born in Hartford, Connecticut. His
father was an economics professor and his mother, a poet. In 1930, he graduated
from Amherst College and 4 years later received his Ph.D. in mathematics from
Princeton.

After teaching for 6 years at the University of Wisconsin, Madison, he joined
the faculty at Amherst College for a year. For the next 4 years he served in
the U.S. Naval Reserve. In 1946, he returned to the Madison campus and in
1964 became the Cyrus C. MacDuffee Professor of Mathematics and Computer
Science. He served as Chairman of the Department of Mathematics, Acting
Director of the Mathematics Research Center, and Dean of the College of Letters
and Science.

Kleene was awarded an honorary Doctor of Science by Amherst College in
1970, the Steele Prize by the American Mathematical Society in 1983, and the

National Medal of Science in 1990.
Kleene contributed significantly to the theory of recursive functions and the theory of automata.

Note" It follows by pa r t 8 of T h e o r e m 11.1 t h a t i fA _c B, t hen A 2 c B 2
(Why?). More general ly, it can be shown by induc t ion t h a t i fA c B, t h e n
A n c_ B n for every n e N.

Finally, f rom any language A over E, we can cons t ruc t a new language
A* using the var ious powers of A. F i rs t we define A ~ = A.

Kleene Closure

Let A be a language over an a lphabe t Z. Then A* -- u A n is the K l e e n e
n = 0

c l o s u r e of A, in honor of the Amer ican logician S t ephen Kleene. A* consis ts
of s t r ings ob ta ined by an a rb i t r a ry n u m b e r of conca tena t ions of words f rom
A. * is the K l e e n e o p e r a t o r .

The following example i l lus t ra tes this definit ion.

Let A - {0}, B -- {11}, C = {000}, and E - {0, 1 }. F ind the i r Kleene closures.

S O L U T I O N :
CA3

�9 S i n c e A = {0}, A n - {0 n}. SoA* - U A n - {0 n] n > 0}. In o the r
n - - 0

words, A* consists of s t r ings of zero or more 0's.

�9 Since B - {11} = {12}, B 2 = B B = {1111} = {14}. So B 3 - B B 2 =
o o

{12}{14} -- {16}. Thus, in general , B n - { 1 2 n } . Thus B* - U B n =
n - - 0

{ 12n I n > 0}. It consists of words of l ' s of even length.

�9 Since C - {03}, C n - {03n}. So C* = {03n I n > 0}, the set of s t r ings of
O's whose lengths are divisible by 3.

740 Chapter I l Formal Languages and Finite-State Machines

�9 The Kleene closure is the set of all possible words over E, namely,
E*. (This explains why we denoted it by E* from the beginning of the
section.) m

We now turn to a few properties satisfied by the Kleene operator. We
shall prove one of them and leave the others as exercises. Proper ty 6 is a
bit hard to prove, so we omit it; properties 4 and 5 require induction.

Let A and B be languages over an alphabet E. Then" any

(1) A c A * (2) A c A *

(3) A ' A * - A * (4) If A _c B, then A* _ B*.

(5) (A*)* - A * (6) (A u B)* - (A* u B*)* - (A ' B *) *

P R O O F .
(3) To p r o v e t h a t A 'A*= A*:

�9 To p r o v e t h a t A * c A ' A * " Since A c A*, A*A c A ' A * by Theorem
11.1. But A*A - A * by Theorem 11.1. So

A* c A ' A * (11.1)
m

�9 T o p r o v e t h a t A * A * c A*" Letx ~ A ' A * . Thenx - y z withy, z ~ A*.
Since y , z E A*, y ~ A m and z ~ A n where m, n ~ W. So y z

AreA '' - A m+n. But A m+n c_ A*, so x - y z ~ A*. Thus

A ' A * c A* (11.2)

Thus, by set inclusions (11.1) and (11.2), A'A* - A*. m

A n i n t e r e s t i n g observa t ion" For any language A, A _c A*. That is, when
we apply the Kleene operator * on A, the result ing language A* contains A.
However, if we apply * to A*, we find that (A*)* - A*; so we do not get a
new language. This explains why A* is called the Kleene closure of A.

We conclude this section with an example involving both concatenat ion
and the Kleene operators.

~ Identify each language over E - {a, b}.

(1) {a,b}*{b} (2) {a}{a, b}* (3) {aI{a, bI*{b} (4) {a, bI*{b}*

SOLUTION"
(1) {a, b }* consists of all possible words over E including)~, whereas {b}

contains just one word, namely, b. Therefore, the language { a,b }* {b }
consists of words over E that have b as a suffix.

(2) Similarly, { a} { a, b }* consists of words that have a as a prefix.

I I.I Formal Languages 741

(3) {a} {a, b}* {b} consists of words t ha t begin with a and end in b.
(4) Every e lement in {b}* consists of a finite n u m b e r of b's. Therefore ,

{a, b}* {b}* consists of s t r ings followed by a finite n u m b e r of b's.
Notice tha t this is different from {a, b}* {b} (Why?). m

Exercises II . I

In Exercises 1-4, a language L over E = {a, b} is given. F ind five words in
each language.

1. L = {x e E* Ix begins with and ends in b.}

2. L = {x e E* Ix contains exactly one b.}

3. L is defined recursively as follows: (i) ~ e L (ii) x ~ L ~ xbb ~ L

4. L is defined recursively as follows: (i) ~, ~ L (ii) x ~ L ~ a x b ~ L

Define each language L over the given a lphabet recursively.

5. The language L of all pa l indromes over E -- {a, b}. (A p a l i n d r o m e
over E is a word tha t reads the same both forwards and backwards .
For instance, abba is a pal indrome.)

6. L = {anbn l n E N}, E = {a,b}

7. L = {0,00, 10, 100, 110,0000, 1010,. . .}, E = {0, 1}

8. L = set of b inary represen ta t ions of positive integers, E = {0,1 }

9. L = {1, 11,111, 1111, 11111,. . .}, E = {0, 1}

10. L = { x e E* I x = b n a b n, n > O } , E = { a , b }

11. L = set of words over Z = { 0, 1} with prefix 00

12. L = set of words over Z = { 0, 1} with suffix 11

Mark each as t rue or false.

13. Every language over an a lphabet is infinite.

14. If E = El, then Z* = E~.

15. C + + is a finite language.

16. Every language is a set.

Using Example 11.1, de te rmine if each is a well-formed and fully pa ren the -
sized a r i thmet ic expression.

17. (((x + y) / (((x - y) �9 z) t z)) 18. (x 1" ((Y - x) ? (-z)))

19. (y + (z t (+x))/(-x)) 20 . ((x - (y t z)) �9 (x + (3' t (+z))))

21. Define the set of words S over an a lphabet Z recursively.
(Hin t : Use concatenat ion.)

742 (',hapter 11 Formal Languages and Finite-State Machines

22. Define the language L of all b inary rep resen ta t ions of nonnega t ive
integers recursively.

23. Let E be an alphabet . Define E* recursively.
(Hint: Use concatenat ion.)

24. Define recursively the set S of integers acceptable in Java.

Arrange the b inary words of each length in increas ing order.

25. Length two. 26. Length three.

A t e r n a r y w o r d is a word over the a lphabet { 0, 1, 2 }. Ar range the t e r n a r y
words of each length in increasing order.

27. Length one 28. Length two

29. Let Z be a nonempty alphabet . Prove tha t Z is infinite.
(Hint: Assume E* is finite. Since E r O, it contains an e lement a. Let
x ~ Z* with largest length. Now consider xa.)

Let A - {a, bc} and B = {k, ab, bc}. Find each concatenat ion.

30. AB 31. B A 32. A 2 33. A 3

L e t A - {a, a b } , B - {a,b, ab}, C - {c}, and D - {c, bc}. Verify each.

34. A A - A 35. A A - A 36. A (B U C) - A B u A C

37. (B u C)A - BA u CA 38. A(B N C) - A B N AC

39. (B N C)A - B A n CA

40. If A c_ B and C c D, then AC c_ BD.

Mark each as t rue or false, where A and B are a rb i t r a ry finite languages.

41. A=O 42. AO-O 43. AO-OA 44. AA--A

45. A A - A A 46. [A x B I - I B x A [47.] A B I - I B A I

Find three words belonging to each language over ~ - 10, 11.

48. {0}* 49. {0}{1}* 50. {0}*{1} 51. {0}{11}*{1}

52. {0}*{1}* 53. {01}* 54. {0}{0 ,1}*{1} 55. {0}*{1}*{0}*

Prove each, where A, B, and C are a rb i t r a ry languages over Z and x e E.

56. IIx n II -- nllxll for every n > 0.

57. If A c_ B, then A n c_ B n for every n > 0.

58. If A Z B, then A* Z B*. 59. (A*)* - A*

60. OA=D 61. AA-A 62. A cA*

11.2 Grammars 743

63. A c A *

65. (B U C)A = BA u CA

67. (A'B*)* - (B'A*)*

64. A(B n C) c AB N AC

66. (B N C)A c B A N CA

68. (A* u B*)* = (A u B)*

Words in a natural language such as English or French can be combined
in several ways. Some combinations form valid sentences, while others do
not. The g r a m m a r of a language is a set of rules that determines whether
or not a sentence is considered valid. For instance, The milk drinks child
quickly, although meaningless, is a perfectly legal sentence.

The sentences in a language may be nonsensical, but must obey the
grammar. Our discussion deals with only the s y n t a x of sentences (the way
words are combined), and not with the s e m a n t i c s of sentences (meaning).
Although listing the rules that govern a natural language such as English
is extremely complex, specifying the rules for subsets of English is certainly
possible.

The next example introduces such a language.

~ ~ ~] ~ The sentence The child drinks milk quickly, has two parts: a subject, The
child, and a predicate drinks milk quickly. The subject consists of the def-
inite article The and the noun child. The predicate, on the other hand,
consists of the verb drinks and the object phrase milk quickly; the object
phrase in turn has the object milk and the adverb quickly. This structure
of the sentence can appear as a sequence of trees (Figures 11.3-11.7), with
the d e r i v a t i o n t r e e of the sentence in Figure 11.7.

F i g u r e 11.3 sentence

subject predicate

F i g u r e 11.4 sentence

subject predicate

article noun

The derivation tree exhibits certain characteristics:

�9 Each leaf represents a word, a t e r m i n a l symbol. The set of terminal
symbols is T - {the, child, drinks, milk, quickly}.

744 Chapter II Formal Languages and Finite-State Machines

Figure 11.5

Figure 11.6

Figure 11.7

sentence

subject predicate

article noun

I I
The child

article noun

I I
The child

sentence

subject predicate

verbl o b ~

drinks objict adverbl

noun quickly

article noun

The child

sentence

subject predicate

verbl o b ~

drinks objict adverb

noun

I
milk

quickly

�9 Each internal vertex represents a grammatical class, a nontermina l .
The set of nonterminals is N = {sentence, subject, predicate, article,
noun, object phrase, object, verb, adverb}. A nonterminal symbol is
enclosed within angle brackets , (and >. For instance, the nonterminal
"subject" is denoted by (subject>.

�9 The root of the tree represents the nonterminal symbol (sentence>
called the s t a r t symbol, denoted by a.

Certain rules can generate the above sentence. Every rule, called a pro-
duc t ion rule or a subs t i t u t ion rule, is of the form w -~ w' where w ~ N

11.2 Grammars 745

F i g u r e 11.8

and w' may be a terminal symbol, a nonterminal symbol, or a combination
of both.

The production rules of the above sentence are:

(sentence) -~ (subject)(predicate)

(subject) -~ (article)(noun)

(article) -~ the

(noun) -~ child

(noun) --~ milk

{predicate) --* {verb){object phrase)

(verb) --* drinks

(object phrase) -~ (object)(adverb)

(object) ~ (noun)

(adverb) -~ quickly I

The production rules specify the arrangement of words in a sentence:
the syntax of the language. They produce syntactically correct sentences
(which can be meaningless). For instance, the sentence, The milk drinks
child quickly makes no sense but is syntactically valid. Figure 11.8 shows
the derivation tree of this sentence.

(subject}

(articie) (niun)

the milk

(veib) ~)

drinks (ob j ec t) (adverb)

I I
(niun) quickly

child

Determining whether a program is syntactically correct is of the utmost
importance in computer science. Before executing a program, the compiler
checks the syntax of each sentence (or expression) by constructing deriva-
tion trees. (This process is pars ing, and the corresponding derivation tree
is a p a r s e tree .)

We now turn to present the definition of a phrase-structure grammar.

746 Chapter II Formal Languages and Finite-State Machines

Phrase-Structure Grammar

A phrase-s tructure g r a m m a r (or simply a g r a m m a r) G bears four
features:

�9 A finite set N of n o n t e r m i n a l s y m b o l s ;

�9 A finite set T of t e r m i n a l s y m b o l s , where N n T = ~;

�9 A finite subset P of [(N u T)* - T*] x (N u T)*; each e lement of P is
called a p r o d u c t i o n ;

�9 A s t a r t s y m b o l ~ belonging to N;

The g r a m m a r G is denoted by G = (N, T, P, a).

These features meet cer ta in requi rements :

�9 The s ta r t symbol a is nontermina l .

�9 No symbol can be both t e rmina l and nonterminal .

�9 Every product ion has at least one non te rmina l symbol on its LHS,
because P __ | (N u T)* - T*] x (N u T)*. Also, P is a b inary relat ion
from (N u T)* - T* to (N u T)*.

�9 If (w,w') e P, we then wri te w ~ w'; since w e (N u T)* - T*,
w contains at least one non te rmina l symbol; but w' e (N u T)*;
so it may contain t e rmina l symbols, nonterminals , or both.

G r a m m a r s not only produce na tura l languages, but also formal ones, as
the next two examples demons t ra te .

L e t N - {A,B,c~}, T - {a,b}, a n d P - {a --* aA, A --~ bA, A a}.
Then G - (N, T, P, a) is a g rammar . Notice tha t the product ion A ~ bA is
recursive. I

Let N = {A,a}, T - {a,b}, and P - {a --* aa , a --. Aa, A ~ b}. Then
G - (N, T, P, a) is a g rammar . Again notice tha t the product ion a ~ aa is
recursive. I

Next we define the language genera ted by a g rammar .

Derivation and Language

Let G = (N, T, P, a) be a g rammar . If w = xay and w' = xfly are any two
words in (N u T)*, and if there exists a product ion a ~ fl, t hen the word
w' is said to be d i r e c t l y d e r i v a b l e from w; we then wri te w .~ w'. If
there is a finite sequence of words w0, w l , . . . , Wn in (N U T)* such tha t

11.2 Grammars 747

WO ~ W l , W l ~ W2, . . . , W n - 1 ~ Wn, then Wn is d e r i v a b l e from w0.

The finite sequence of steps, wo ~ Wl - - ~ . . . ~ Wn, is a d e r i v a t i o n of
Wn from w0.

The set of words in T* derivable from a by G is the l a n g u a g e g e n e r a t e d
by G, denoted by L(G) .

The next two examples i l lustrate these definitions.

Identify the language L (G) genera ted by the g r a m m a r in Example 11.12.

S O L U T I O N :

Since the g r a m m a r contains exactly one product ion involving ~, namely,
--~ aA, s tar t with it to find every word in the language. Now select the

next production: A --~ bA or A --~ a. The product ion A -~ a produces
exactly one word, a. A ~ bA chosen n times, produces ~ == :- a A

a b A ~ ab2A ~ . . . ~ abnA. Now A -~ a yields the word abna and,
when n - 0, this yields a~a = aa. (Note: b ~ = ;~, the null word.) Every
word derivable from c~ fits the form abna, where n > 0. In o ther words,
L (G) = {abna l n >_ 0}. m

Example 11.14 i l lustrates tha t a g r a m m a r G can de termine if it genera tes
a s t r ing in the language L(G) . With some difficulty, the language could be
described. Again with some difficulty, and a lot of patience and practice,
a g r a m m a r G tha t generates a given language can be found, as Example
11.15 demonstra tes .

Define a g r a m m a r G -

{anb n In > 1}.
(N , T , P , ~) tha t generates the language L =

S O L U T I O N :

Since every word in L mus t contain the same numbe r of a 's and b's, G mus t
contain a product ion of the form c~ --~ aAb. Consequently, to produce a
new word from aAb containing the same numbe r of a 's and b's requires
another product ion A -~ aAb. From these two productions, we can derive
all s tr ings of the form an Ab n (Verify this.). All tha t remains to be done to
define the g r a m m a r is the product ion A -~ ~ to t e rmina te the recursive
procedure. Thus, N = {a, A}, T = {a, b, ~}, and P = {a ~ aAb, A ~ aAb,
A ~ } . m

The first two product ion rules in this example look quite similar, except
for the s tar t symbol, and can be combined into a single production, ~ --~
ac~b. The product ion rules ~ --* aAb and A -~ ~ can yield the word ab,
so the third product ion is ~ -~ ab. Thus P ' = {a --~ aab, a --~ ab} is an
additional product ion set tha t yields the same language. In other words,
the g r ammars G = (N, T, P, of) and G' = {N', T', P', ~) generate the same
language L, where N' = {a} and T' = {a, b}. Thus L (G) = L (G ') , so the
g r ammars G and G' are e q u i v a l e n t . Our conclusion: T h e g r a m m a r tha t

genera tes a l a n g u a g e need not be un ique .

748 Chapter II Formal Languages and Finite-State Machines

J o h n W. B a c k u s (1924-) was born in Philadelphia. He received his B.S.
and M.S. in mathematics from Columbia University. After joining IBM in
1950, he became instrumental in the development of F O R T R A N and ALGOL
(ALGOrithmic Language). He received the W. W. McDowell Award from The
Institute of Electrical and Electronics Engineers (IEEE) in 1967, the National
Medal of Science in 1975, the A. M. Turing Award from the Association for
Computing Machinery in 1977, the Harold Pender Award from the University
of Pennsylvania in 1983, and an honorary doctorate from York University,
England, in 1985.

� 9 , J " . L:"
Y,

, , ~ ,

�9 ~ , . . ~ , ' . : , , : ~

Peter N a u r (1928-), a computer scientist and prolific writer, was born in
Frederiksberg, Denmark. After receiving his M.A. in astronomy from
Copenhagen University in 1949, he spent the next two years at Cambridge
University, England, where he used the EDSAC, one of the earliest computers,
to pursue astronomy. He received his Ph.D. in astronomy from Copenhagen in
1957.

From 1953 to 1959, he consulted for the design of the first Danish com-
puter, the DASK. Beginning around 1964, he became increasingly involved
in datalogy (a word he coined), the study of data and data processes. In
1963, Naur was given the Hagemanns Gold Medal and three years later the
Rosenhjaer Prize.

Backus-Normal Form

The most widely used notation for describing the syntax of program-
ming languages is the B a c k u s - N o r m a l F o r m (BNF), developed by John
Backus, who described ALGOL 60 with it. Peter Naur edited the ALGOL
60 report, which appeared in 1963, so the BNF notation is also called the
B a c k u s - N a u r F o r m .

In BNF, the production symbol ~ is denoted by ::-; thus the production
w -~ w' is written as w ::= w'. Production rules with the same LHS are
combined by separating their RHS with vertical bars. For instance, the
productionsw -~ Wl, w ~ w 2 , . . . , w ~ wn becomew " ' - w l I w 2 1 . . . I wn.
(You may read the vertical bar as or.) Nonterminal symbols have angle
brackets around them.

11.2 Grammars 749

• Study the following production rules:

(sentence) ~ (subject)(predicate)

{subject) --~ {article){noun)

(p r ed i ca t e /~ (verb/(object/

(object) ~ (article)(noun)

(article) ~ a

(article} ~ the

(noun/--~ hare

(noun) --~ tortoise

(noun)--~ race

(verb) --~ beats

{verb)--~ wins

BNF shortens these rules:

{sentence) ::=

(subject/ : :=

(predicate) ::=

(object) ::=

(article} ::=

(noun/ : :=

(verb) ::=

(subject) (predicate)

(article/(noun/

(verb) (object)

{article) (noun)

a I the

hare l tor to i se t race

beats lw ins m

The grammar for the language of correctly nested parentheses contains one
production:

(nested p a r e n t h e s e s / : : - ~ [((nested parentheses/)

where ~ denotes the null string. [Using this definition, you may verify
that (()) and ((())) are valid nested parentheses, whereas (() and (())) are
not.] m

(optional) An integer is a string of digits preceded by an optional sign,
+ or - . Using BNF, it can be defined as follows:

(integer} :: = (signed integer)I (unsigned integer)

(signed integer):: = (sign)I (unsigned integer)

(sign/:: = + 1 -

750

F i g u r e 11.9

Derivation tree for the
integer +234.

Chapter 11 Formal Languages and Finite-State Machines

<unsigned integer> "" - <digit> i <digit> <unsigned integer>

<digit> :: = O I 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

For instance, 234, +234, and - 2 3 4 are valid integers. Figure 11.9 shows
the derivation tree for the integer +234.

<integer>

<signed integer>

<sign> <unsigned integer>

<digit><unsigned integer>

2<unsigned integer>

2(digit><unsigned integer>

23<unsigned integer>

23<digit>

234

The grammar defined in this example is G = (N, T, P, a), where:

�9 N = {<integer>, <signed integer>, <unsigned integer>, <sign>, (digit> },

�9 T = { + , - , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } ,

�9 The production rules are:

<integer/-+ (signed integer/ I (unsigned integer/

(signed integer) --+ <sign/] <unsigned integer/

<sign>--+ + l -

<unsigned integer> --+ <digit> I <digit> <unsigned integer>

(digit>-+Oi 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 i 9

m

11.2 Grammars 751

�9 The start symbol a is (integer).

Grammars are categorized by the productions that define them.

Context-Sensitive, Context-Free, and Regular Grammars

Let G = (N, T,P, a) be a grammar. Let A,B ~ N and ~, ~', fl ~ (N u T)*.
Notice that ~, ~', and fl could be the null word.

�9 Any phrase-structure grammar is t y p e 0.

�9 G is context-sensi t ive (or t y p e 1) if every production is of the form
~A~' ~ ~fl~'.

�9 G is c o n t e x t - f r e e (or t y p e 2) if every production is of the form A --~ a.

�9 G is r e g u l a r (or t y p e 3) if every production is of the form A --~ t or
A ~ tB, where t ~ T.

In a context-sensitive grammar, fl can replace A in the word c~Ac~' only
when A lies between c~ and a'. In a context-free grammar, the LHS of
every production is a single nonterminal symbol A, which c~ can replace.
In a regular grammar, the LHS of every production consists of a single
nonterminal symbol A and the RHS consists of a terminal symbol t or a
terminal symbol t followed by a nonterminal symbol B; t or tB can always
replace A. (In tB, the nonterminal must be on the RHS of the terminal
symbol t.)

A regular grammar is also context-free and a context-free grammar
is also context-sensitive. The Venn diagram in Figure 11.10 shows the
C h o m s k y h i e r a r c h y of the various grammars, named in honor of Noam
Chomsky, who developed the theory of formal languages.

Figure 11.10

Chomsky hierarchy of
grammars. I type 3]

type 2

type 1

type 0

Context-Sensitive, Context-Free, and Regular Languages

A language L(G) is context-sensit ive , context-free, or regular if the
grammar G is context-sensitive, context-free, and regular, respectively.

The next five examples clarify these definitions.

752 Chapter I I Formal Languages and Finite-State Machines

�9 % '7

(Avram) N o a m Chomsky (1928-), a linguist, writer, and political activist,
was born in Philadelphia, as the son of a Hebrew scholar. At 10 he proofread the
manuscript of his father's edition of a 13th century Hebrew grammar. "This
backdoor introduction to 'historical linguistics' had considerable impact on
his future" (The New York Times Magazine). The young Chomsky, however,
was more passionate about politics than about grammar.

On graduating from Central High School in Philadelphia in 1945, Chom-
sky entered the University of Pennsylvania and received his B.A. in 1949 and
M.A. 2 years later.

Chomsky received his Ph.D. in linguistics from the University of
Pennsylvania in 1955 and joined the faculty at the Massachusetts Institute
of Technology.

His first book, Syntactic Structures (1957), developed from his notes for
an introductory course in linguistics, triggered the Chomskyan revolution in linguistics "by disputing
traditional ideas about language development." Chomsky is considered the father of the theory of formal
languages.

In 1966, Chomsky became the Ferrari P. Ward Professor of Modern Languages and Linguistics. He
had been a visiting professor at Columbia, Princeton, and the University of California at Los Angeles and
at Berkeley.

A recipient of numerous awards and honorary degrees, including the Kyoto prize in Basic
Sciences in 1988, Chomsky was named one of the thousand "makers of the twentieth century" by the
London Times.

Every production of the G in Example 11.12 is A ~ t or A ~ tB, g rammar
so G is a regular grammar. Consequently, L(G) = {abnal n > 0} is a regular
language. (See also Example 11.14.) i

~ In Example 11.13, the RHS of the production a ~ Aa contains the terminal
symbol a on the right of the nonterminal symbol A, so G is not regular.
However, since every production appears as w ~ c~ where w ~ N and

~ (N u T)*, G is context-free; thus L(G) is a context-free language, m

(optional) Not production of the G in Example 11.18 every g rammar
is of the form A ~ t or A ~ tB. For instance, the production
(unsigned integer) ::= (digit){unsigned integer) is not of either form.

The production rules, however, can be rewri t ten as follows:

(integer) ::= +(unsigned integer)

{integer) ::= -{uns igned integer)

(unsigned integer) ::= 0(unsigned integer)[. . . [9(unsigned integer)

(unsigned i n t e g e r) : : = 0 [1 [2] 3 1 4 1 5 [6 1 7 1 8 1 9

11.2 Grammars 753

Clearly, the form A ~ t or A ~ tB always results . So this g r a m m a r G for
the set L(G) of integers is regular . Thus the set of in tegers is a r egu la r
language and hence context-free. I1

Consider the g r a m m a r G - (N, T, P, a), where N - {A, B, a }, T = {a, b },
and P = {a ~ aab, a ~ aAb, aAb -~ aBb, A ~ a, B ~ b, A ~ ~, B ~ ~ }. In
the product ion aAb ~ aBb, A can be replaced with B only i fA is su r rounded
by a and b. Notice tha t L(G) = {ambm,ambm+l,am+lb m [m >_ 1}. I

The G = (N, T ,P , ~) in Example 11.15 is context-free, L(G) - g r a m m a r so
{anb n In >_ 1} is a context-free language. Example 11.53 will demons t r a t e
tha t G is not regular . II

A language L(G) may contain words derivable from a in more t han one
way. Accordingly, we make the following definition.

Ambiguous Grammar

A g r a m m a r G is a m b i g u o u s i fa s t r ing in L(G) has more than one der ivat ion
tree.

The next two examples present ambiguous g rammars .

The following G defines the of simple algebraic g r a m m a r syntax expres-
sions:

(expression) ::= (expression) (sign> (expression) I (letter>

<sign> ::= + l -

<letter> : : = a l b l c l . . . I z

This g r a m m a r can produce the expression a - b + c two ways, as the
derivat ion t rees in F igure 11.11 show. As a result , G is an ambiguous
g rammar . 1

o ~ (optional) The following are simplified product ion rules for an i f - then
statement S:

S ::= if (expression) then <statement> I

if (expression) then (s ta tement) else (s ta tement)

(expression) ::= E1 I E2

(s ta tement) ::= S1 I $2 I if (expression> then (s ta tement)

To see tha t these rules produce an ambiguous g rammar , notice tha t the
i f - then s t a t emen t

I f E1 then i f E2 then $1 else $2 (11.3)

754 Chapter I! Formal Languages and Finite-State Machines

F i g u r e 11 .11

(expre

(let ;er)

ssion) (sign)

I
(expression) (sign) (expression)

I I
(letter) + c

(expression)

~ ~ (sign) (expression)

I + (expression)

(letter)

(sign)

I
(expression) (letter)

I I
(letter) c

I
b

can be interpreted in two ways:

(i) If E1 then (if E2 then S 1 else $2), or
(ii) If E 1 then (if E2 then S 1) else $2.

Using indentation, these possibilities can be displayed as follows:

(i) i f El then (i i) i f El then
i f E2 then i f E2 then

Sl Sl
else else

$2 $2

Accordingly, s tatement (11.3) can be generated by two distinct derivation
trees (see Figure 11.12).

To avoid this confusion, each e l s e is paired with the nearest if.
Consequently, s ta tement (i) is the correct interpretation of s ta tement
(11.3). If you would like s ta tement (11.3) to mean s ta tement (ii), you have

11.2 Grammars 755

F i g u r e 11.12

if (expression>

I
E1

then <s ta t~n t)

if (expression} then (statement} else (statement}

I I J
E2 S 1 S 2

<if-then statement>

<exprission } t h e n ~ ~ <statement}l

E 1 if (expression) then (statement) S 2

I I
E2 S 1

two options:

i f El then i f El then
i f E 2 then begin

Sl i f E 2 then
else S I

el se end
$2 else

S2 m

The way a grammar produces its language of terminal and nonterminal
symbols determines whether it is regular, context-free, or context-sensitive.
The BNF notation facilitates such a differentiation.

Exercises 11.2

In the grammar G = (N, T,P, a), N = {(sentence), (noun phrase}, (verb},
{object phrase), (article), (noun)}, T = { a, the, cat, dog, chicken, milk, drinks,
eats}, a = (sentence) and the production rules are:

(sentence) ~ (noun phrase)(verb)(object phrase)

(noun phrase) --> (article)(noun)

(article) --> a Jthe

756 Chapter 11 Formal Languages and Finite-State Machines

{noun) --~ cat ldogJchicken J milk

{verb) --~ drinks leats

{object phrase) --~ {article)(noun)

Determine if each is a valid sentence in L(G).

1. The cat dr inks the milk. 2. A chicken eats the dog.

3. The dog swallows the cat. 4. The chicken dr inks a rabbit .

Const ruc t a derivation tree for each sentence in L(G).

5. The cat eats the chicken. 6. A dog dr inks the milk.

With the g r a m m a r in Example 11.12, cons t ruc t a derivat ion tree for each
word in L(G).

7. aa 8. aba 9. ab2a 10. ab3a

Determine if each word belongs to the language genera ted by the g r a m m a r
in Example 11.13.

11. aba 12. abba 13. a3ba 14. a2b3a 4

Use the g r a m m a r G = (N , T , P , a) , where N = {A,a}, T = {a,b}, and
P = {a ~ aa , a -~ aA, A ~ b}, to answer Exercises 15-23.
Draw a derivation tree for each word in L(G).

15. ab 16. a2b 17. a3b 18. a4b

Do the following words belong to L(G)?

19. aba 20. abba 21. a3b 22. a5b

23. Identify the language L(G).

Consider the g r a m m a r G - (N ,T ,P ,a) , where N = {a}, T - {a,b}, and
P -- {a ~ aab, a -~ ab}. Determine if each word belongs to L(G).

24. abba 25. abab 26. a2b 2 27. a3b 3

28. Identify the language L(G).

Find the language genera ted by each g r a m m a r G = (N, T, P, a) where:

29. N = {a,A,B}, T = { a , b } , P = {a ~ aA, A - ~ Bb, A ~ a, B-- . b}

30. N = {a,A,B}, T = {a,b}, P = {a ~ aAa, A ~ bBb, a ~ k, A ~ a,
B--* a, B --~ b}

Develop a g r a m m a r tha t generates each language over { 0, 1 }.

31. {1, 11, 1111, 11111111, . . .}

32. {0, 00, 10, 100, 110, 0000, 1010, . . . }

11.2 Grammars 757

33. The set of words with prefix 00.

34. The set of words with suffix 11.

35. The set of binary representations of positive integers.

Create a grammar to produce each language over { a,b}.

36. {bnab n I n > 0 } 37. { a n b l n > l } 38. { a n b a l n > l }

39. {amb n I m, n > 1} 40. The set of palindromes.

Using Example 11.18, draw the derivation tree for each integer.

41. 234 42. - 234

43. An identifier in Java is a letter, underscore, or $, followed by any
number of alphanumeric characters. With BNF, define the g rammar
for a Java identifier.

Use the grammar in Exercise 43 to see if each string is a valid Java
identifier.

44. catch 22 45. 20/20 46. algorist 47. three roots

Construct a derivation tree for each identifier.

48. result2 49. value 50. R2D2 51. math

The production rules of a grammar for simple arithmetic expressions are:

(expression) ::= (digit)I ((expression))I + ((expression)) I

- ((expression)) I (expression)(operator)(expression)

(digit) ::= 01 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

(operator) ::= + l - I * [/ i 1 "

Use this g r a m m a r to a n s w e r Exercises 52-59 .
Determine if each is a valid arithmetic expression.

52. 2 , 3 + 4 53. - (3 , 4 1 " 5) 54. 3+ 1"7 55. 6 + 5 / 8 ,

Construct a derivation tree for each expression.

56. 3 + 5 , 6 57. 5 + (4 1 " 3) 58. (5 + 3) - 7 / 4 59. - (3 1" (5 + 2))

A number in ALGOL (excluding the exponential form) is defined as
follows:

(number) ::= (decimal number)I (sign) (decimal number)

(decimal number) : : - (unsigned integer) I. (unsigned integer) i

(unsigned integer). (unsigned integer)

758 Chapter II Formal Languages and Finite-State Machines

(unsigned integer) " ' - (digit) I (unsigned integer)(digit)

(digi t) : :=01 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

<sign> ::= + l -

Use this grammar to answer Exercises 60-67.
Determine if each is a valid ALGOL number.

60. 234 61. 2.34 62. 234. 6 3 . . 2 3 4

Draw a derivation tree for each ALGOL number.

64. -3 .76 65. +376 6 6 . . 3 7 6 67. 0.23

For Exercises 68-73, use the following definition of a simple algebraic
expression:

(expression) ::=

(sign) ::=

(adding operator) ::=

(term) ::=

(multiplying operator) ::=

(factor) ::=

(term) I (sign) (term) I

{expression) {adding operator){term)

+ 1 -

+ l -

(factor) [

{term) {multiplying operator){factor)

*1/

(letter) I ((expression))l (expression)

(l e t t e r / : : = a l b l c l . . . I z

Determine if each is a legal expression.

68. a + b , (c / d) 69. a + b + c 70. - a , b / c + d 71. ((a - b) + c)

Construct a derivation tree for each expression.

72. (a , b) + c / d 73. a , (b + c / d)

74. Use BNF to define a grammar for the language of well-formed
parentheses (wfp).

Use the grammar in Exercise 74 to see if each is a valid sequence of
parentheses.

75. (()) 76. ()(()) 77. (()()) 78. ()()()

79. Figures 11.13 and 11.14 diagram the syntax for an unsigned integer
and an unsigned number, respectively. Define the grammar for an
unsigned number in BNF.

11.3 Finite-State Automata 759

F i g u r e 11.13 unsigned integer: [~ digit]

F i g u r e 11.14

unsigned number:

unsigned unsigned ~ +
integer ~ �9 ~ integer ~ E

unsigned
integer

Using the grammar in Exercise 79, check if each is a valid unsigned
number.

80. 177.76 81. .1776 82. 1776. 83. 17.76E-2

This section presents an abstract model of a machine that accepts input
values, but produces no output values.

Often the question arises whether or not a word over an alphabet is
acceptable. For example, is 2R2D an acceptable identifier or is 17.06 a
valid real number in C + +? Finite-state automata can model the steps in
determining if a given word exists in a language. Accordingly, finite-state
automata, also known as l a n g u a g e r e c o g n i z e r s , play a central role in the
development of compilers.

Before we study the definition, we present a simple example of a language
recognizer.

Determining if an input string over the alphabet { b} contains abba a, a s a
substring involves the following five steps:

S t ep 0 If the first symbol in the string is a, move to step 1 and look for
the character b. Otherwise, no progress has been made.

S t ep 1 If the next character is b, the substring ab has occurred, so go to
step 2 and look for another b. Otherwise, the symbol b is still missing, so
stay in step 1.

S t ep 2 If the next symbol is b, the substring abb exists; go to step 3; if a,
re turn to step 1.

S t ep 3 If the next symbol is a, the given input string contains the
substring abba; otherwise, re turn to step 0 and start all over again.

760 Chapter II Formal Languages and Finite-State Machines

S t e p 4 Once the substring abba has occurred in the input string, any
sequence of a's and b's may follow.

These steps can be represented by a digraph (see Figure 11.15), each
vertex representing a step. Exactly two edges, labeled a or b, leave each
vertex.

F i g u r e 11.15
a

b

To determine the action required from a given step, simply follow the
directed edges from the corresponding vertex. For example, at vertex s3
(step 3) if the next input symbol is a, move to vertex s4 (step 4); other-
wise, return to vertex so (step 0). The other (labeled) edges are interpreted
similarly.

The digraph indicates a string contains abba as a substring if and only
if the directed path the string determines terminates at vertex s4. The
string abab determines the path so-sl-s2-sl-s2, which does not end at s4;
consequently, abab is not acceptable. On the other hand, the string ababbab
determines the path so-sl-s2-sl-s2-s~-s4-s4, which terminates at s4; so the
string does have the desired property, m

The digraph in Figure 11.15 displays a f i n i t e - s t a t e a u t o m a t o n .
(Automaton is the singular form of automata.) Its five vertices, so through
s4, are the s t a t e s of the automaton. Since the whole process begins at so
(step 0), so is the in i t i a l s tate . A string is acceptable, that is, contains
abba as a substring, if and only if its path ends at s4; accordingly, s4 is an
a c c e p t i n g s tate .

The digraph shows the transition of the machine between states. For
example, if the automaton is at state s2 and the input symbol is a, the
automaton switches its state to s 1. The digraph is the t r a n s i t i o n d i a g r a m
of the finite-state automaton.

The initial state is customarily identified by an arrow pointing to it and
an accepting state by two concentric circles, as Figure 11.16 shows. The
transition diagram appears in Figure 11.17.

F i g u r e 11.16

The initial state An accepting state

!1.3 Finite-StateAutomata 761

F i g u r e 11.17
a

b

a

a

Each state si and an input symbol de te rmine a unique state sj. So we can
define a function f : S x I --~ S as follows, where S = {so, Sl, s2, s3, s4 }, the
set of states, and I = {a, b}, the input alphabet:

f (so , a) = 81 f (so , b) = so
f(s2, a) = s i f(s2, b) = s 3
f(s4, a) - - 8 4 f(s4, b) = 8 4

f (s l , a) = s i f (s i , b) = s 2
f(s3, a) - - 8 4 f(s3, b) - - so

The function f is the t r a n s i t i o n f u n c t i o n of the finite-state au tomaton .
It can also be defined by the t r a n s i t i o n t a b l e in Table 11.1.

Table 11.1
State Input symbol

a b

s0 s1 80

Sl 81 s2

s2 81 s3

s3 s4 so

s4 s4 s4

We are now ready to define a finite-state au tomaton.

Finite-State Automaton

A f in i t e - s ta te a u t o m a t o n (FSA), M, manifests five characterist ics:

�9 A finite set, S, of s t a t e s of the au tomaton .

�9 A specially designated state, so, called the in i t ia l s tate .

�9 A subset A of S, consist ing of the a c c e p t i n g s t a t e s (or f inal s ta te s)
of the automaton.

�9 A finite set, I, of i n p u t symbo l s .

�9 A function f : S x I ~ S , called the t r a n s i t i o n f u n c t i o n or the next -
s ta t e f u n c t i o n .

In symbols, M - (S , A , I , f , so).

762 Chapter II Formal Languages and Finite-State Machines

F i g u r e 11.18

For instance, for the FSA in Example 11.26, S = {80,s1,82,83,84}, A =

{s4}, I - {a,b}, and the t rans i t ion function f i s defined by Table 11.1.
New York City subway commute r s use an FSA everyday, as the next

example shows.

A turnst i le in the subway ent rance contains four a rms at waist level (Figure
11.18). Initially, it is locked so tha t the a rms cannot be moved. Deposi t ing
a token into the slot, however, unlocks it and allows the a rms to ro ta te
th rough one quar t e r of a complete turn , so the commute r passes t h rough
the turnsti le .

The turns t i le has two states: locked (l) and unlocked (u). Deposit ing a
token (t) shifts the turns t i le from the locked state to the unlocked state and
no mat te r how many t imes the commute r inputs t, the turns t i le remains
in the same state. Push ing (p), the arms, takes the turns t i le back to the
locked state. Once it is in the locked state, it remains there regardless of
how many t imes the commute r pushes the arms; tha t is, regardless of the
number of t imes he inputs p into the device.

The turns t i le exemplifies an FSA. Figure 11.19 shows its t rans i t ion
diagram.

F i g u r e 11.19

l

The next two examples draw t ransi t ion d iagrams of FSAs from their
algebraic definitions.

Draw the t rans i t ion diagram of the FSA M - (S, A, I, f , so), where S -
{ s o , s l , s 2 } , A = {s2}, I = {a, b}, and the t rans i t ion function f is defined by

f(s0, a) = Sl, f(s0, b) = so, f(sl, a) - s2,
f (s l , b) = so, f(s2, a) - s2, f(s2, b) - so.

*Based on B. Hayes, "On the Finite-State Machine, A Minimal Model of Mousetraps,
Ribosomes, and the Human Soul," Scientific American, Vol. 249 (Dec. 1983), pp. 20-28, 178.

11.3 Finite-StateAutomata 763

F i g u r e 11.20

T a b l e 11.2

S O L U T I O N :
The FSA contains th ree s ta tes - - so, S l , and s2 - - wi th s2 the only accept-
ing state. Since there are two input symbols, exactly two edges leave each
vertex. Draw a directed edge from s ta te si to s ta te sj if the re is an input
symbol x such tha t f (s i , x) - s j; t hen label the edge x. For example, since
f (s l , b) - so, a directed edge runs from Sl to so labeled b. Figure 11.20 shows
the resu l t ing t rans i t ion diagram.

b a

a

--~

m

Draw the t rans i t ion d iagram of the FSA M - (S, A, I, f , so), where S -
{so, s 1, s2, s3, s4}, A - {s2}, I - { a, b, c }, and f is defined by Table 11.2.

a

s4

s3 Sl
s4 s4

b c

s2 s3

s2 s 3

s4 83

s2 s4

s4 s4

F i g u r e 11.21

S O L U T I O N :
The au toma ton contains five states, with s2 the only accept ing one. Since
there are three input symbols, th ree edges originate from every state. Draw
a directed edge from s ta te si to s ta te sj if there exists an input symbol x such
tha t f (s i , x) -- s j . For instance, f (s l , c) = s3, so a directed edge labeled c
runs from sta te Sl to s ta te s3. Figure 11.21 displays the resu l t ing t rans i t ion
diagram, where, for convenience, the three loops at s4 appear as a single
loop with labels a, b, and c.

c c

m

764 Chapter 11 Formal Languages and Finite-State Machines

Suppose a string is input into an FSA. If the path it determines ends at an
accepting state, the string is a c c e p t e d (or recognized) by the automaton;
otherwise, it is r e j e c t e d by the automaton.

Determine if the strings a3b2ab and ab3a are accepted by the FSA in
Figure 11.17.

SOLUTION:
First, find the path determined by the string and check if it terminates at
s4, the accepting state. (Recall that a3b2ab - aaabbab.) Begin at the initial
state, so. When a is input, move to state S l. Every time a is input, remain
there, so the path defined by a a a is so-s 1-s 1-s 1. When b is input, t ransfer to
state s2. The path obtained thus far is s o - s l - s l - s l - s 2 . Now b moves to s3 and
a to s4, yielding the path 80-81-81-s1-82-83-84. Once in s4, remain there no
matter what the input is. Thus the path determined by the given string is
SO-Sl-81-81-S2-Sn-S4-S4. Since it terminates at s4, the FSA accepts the given
word.

Notice that the path determined by the string ab3a is 80-81-82-83-80-81,

and it does not end at the accepting state s4; consequently, the automaton
rejects the string, m

Two different FSAs may accept the same language over an alphabet.
This occurrence requires that we make a new definition.

Equivalent Finite-State Automata

The set of words accepted by an FSA, M, is the l a n g u a g e a c c e p t e d (or
recognized) by M and is denoted by L (M) . Two finite-state automata, M
and M', are equ iva lent if they recognize the same language: L (M) = L (M ') .

Identify the language L (M) accepted by the automaton M in Figure 11.20.

SOLUTION:
Look for paths beginning at so and terminat ing at 82. L (M) consists of all
words over { a, b } that end in aa. 1

By Example 11.31, the automaton in Figure 11.20 accepts the language of
words over { a, b } ending in aa. You may verify that the FSA in Figure 11.22
accepts the same language. Consequently, the automata in Figures 11.20
and 11.22 are equivalent.

Figure 11.22 b

v

1

11.3 Finite-State Automata 765

The next four examples build FSAs with desired properties, as Example
11.26 did.

Design an FSA tha t accepts words over I = {a, b} containing an even
number of a's.

S O L U T I O N :
Every word over I contains ei ther an even number of a ' s (E) or an odd
number of a ' s (O), so the au tomaton has two states, E and O, E being the
accepting state. Initially, the number of a ' s in the word is zero, an even
integer; E is the initial s tate of the automaton. If the au tomaton is at E and
an a is input, it moves to state O. If it is at O and an a is input, it moves to
state E. Figure 11.23 shows the t ransi t ion diagram of the FSA.

Figure 11.23

--9

a

A word over I has even parity if it contains an even number of a ' s
and o d d p a r i t y if an odd number. Since the au tomaton in Example 11.33
determines whether a word has even or odd parity, it is called a parity-
check machine. I

Design an FSA accepting words over { a, b } tha t begin with aa and end in bb.

S O L U T I O N :
We build the au tomaton step by step:

Step 0 Initially, the au tomaton is at the initial s tate so.

Step 1 If the first symbol is a, move to state S l from so and wait for
the next symbol. But if the first symbol is b, the word is not acceptable
(state s2). See Figure 11.24.

Figure 11.24

Step 2 If the input symbol at s l is a, move to state s3 and determine
whether the str ing ends with bb. On the other hand, if the input symbol
at Sl is b, move to s2 to t rap such unacceptable words. Once at s2, remain
there no mat te r what the input symbol is. See Figure 11.25.

766 Chapter 11 Formal Languages and Finite-State Machines

F i g u r e 11.25

b b

S t e p 3 Every word tha t t r iggers a move from so to 8 3 begins wi th aa. Any
number o fa ' s can follow it (see the loop at s3 in Figure 11.26). However, if
b follows the word, move to a new state s4, as in Figure 11.26.

F i g u r e 11.26
a

b b

a b

S t e p 4 If the input symbol at 8 4 is a, r e tu rn to S 3 and look for the pair bb.
But if it is b, move to a new state s5. See Figure 11.27.

F i g u r e 11.27 a

a

a,b

S t e p 5 Once at s5, any number of b's may occur. However, if the input
symbol at s5 is a, re turn to s3 to look for bb. Since words ending in bb
are acceptable, s5 is the accepting state. These six steps create the FSA
in Figure 11.28.

F i g u r e 11.28

b b

a

b b

Y
a

m

! 1.3 Finite-State Automata 767

(optional) An identifier in a programming language consists of a let ter
followed by any number of a lphanumeric characters (Section 11.1). Design
an FSA that recognizes such legal identifiers.

F i g u r e 11.29

S O L U T I O N :
Let I denote the set of all characters in the alphabet recognizable by a com-
piler. Let l denote a letter, d a digit, and n any nonalphanumeric character.
The au tomaton will have three states: so, s l, and s2. State s2 traps all
invalid strings. (Accordingly, it is called a t r a p s t a t e or a d u m p s t a t e .)
The result ing automaton appears in Figure 11.29.

d, n

B

The FSA in Figure 11.29 can be t ranslated into an algori thm which deter-
mines if a sequence of characters is a legal identifier. See Algorithm 11.1.

Algorithm i d e n t i f i e r
(* This algori thm determines whether a sequence of characters is a

val id i d e n t i f i e r , using the FSA in Figure 11.29. Al l characters
are read from the same input l ine . SymboZ denotes an a rb i t r a r y
character; stote denotes an a rb i t ra ry state; stoteO, stotel ,
and store2 denote the various states of the FSA. stote2 is a
dump state. *)

Begin (* algori thm *)
state ~- state0 (* i n i t i a l i z e state *)
read (symbo I)
while not at the end of the current l ine
begin
case state of

state0: i f symbol is a l e t t e r then
state <-- s ta te l

else (* inva l id sequence; dump i t . *)
state ~- state2

s ta te l : i f symbol is a l e t t e r or a d i g i t then
state ~- state1

else
state K- state 2

(* do nothing; stay there. *) state2:
read(symbol)

endwh i I e

F i g u r e 11 .30

Chapter 1 ! Formal Languages and Finite-State Machines

i f state -- sta te l then
the sequence is a va l id i d e n t i f i e r

else
the sequence is an inva l id i d e n t i f i e r

End (* algorithm *)

Algorithm ii.I

With a trap state, an FSA can simulate an automatic teller machine,
or ATM, which is widely used because it allows bank customers to
make transactions without human intervention, as the following example
demonstrates.

~ After a bank customer inserts his bank card into the ATM, it requests him
to input his secret identification number (ID). Suppose the ID is 234. Design
an FSA that models the ATM.

SOLUTION:
The input to the automaton contains three digits d. It has five states:
so (the initial state, waiting for the first digit in the ID), S l (the first
digit is correct; now waiting for the second digit), s2 (the second digit is
correct; waiting for the third digit), s3 (the third digit is correct), and s4
(the trap state that captures all invalid ID's). The ensuing FSA is shown in
Figure 11.30.

2 3 4 / ~

768

m

The salient characteristics of an FSA have emerged through its many
applications to ATMs, programming languages, parity checks, and subway
turnstiles. Every FSA manifests an input set, a transition function, and a
finite number of states.

Exercises 11.3

Using the FSA in Figure 11.17, identify the directed paths determined by
each input string.

1. a3b 2. abab 3. ab 3 4. a2b3a

11.3 Finite-State Automata 769

With the FSA in Figure 11.21, identify the directed pa th de te rmined by
each word:

5. abcab 6. caba 2 7. a2bc 3 8. ab2c 3

Determine if each word is acceptable by the FSA in Figure 11.17.

9. ab 3 10. a2b2a 2 11. a3b2a 3 12. ab4ab2ab

Determine if the FSA in Figure 11.21 recognizes each word.

13. abcabc 14. abacbc 15. ab4c 3 16. ab5c 6

Draw the t rans i t ion diagram of the FSA, M - (S , A , I , f , so), where I -
{a,b}, and-

17. S = { 8 0 , 8 1 , 8 2 } , A - {s2}

f(so, a) - so f(so, b) - s l f (s l , a) = so f (s l , b) = s2
f (s 2 , a) - s o f(s2, b) - s 2

18. S = { 8 0 , 8 1 , 8 2 , 8 3 } , A - {s3}

f (so , a) - s l f (so , b) - so f (s l , a) = sl f (s l , b) - s2
f(s2, a) - Sl f (s2 , b) - s3 f (s3 , a) = Sl f (s3 , b) - so

19. S = {s0, s l , s 2 , s 3 } , A - {s2}

f

SO 80 81

81 81 82

82 82 S3

83 83 83
l

20. S - { s 0 , s l , s 2 , s 3 , s4}, A - {s3}

a b

SO

81

82

83

S4

81 S4

84 S2

83 S4

83 83

S4 S4

Construct a t rans i t ion table for each FSA.

21. a

b

22.

a

b a

a

770 Chapter II Formal Languages and Finite-State Machines

23.

a
--~

a

24. a

a b

b

Character ize the language recognized by the FSAs in Exercises 25-35.

25. O a b b ~)
, b

a

26.

a

27-34 . The finite-state au toma ta in Exercises 17-24.

*35. b

Let m denote the number of a ' s in a string. Design an FSA tha t accepts
s tr ings over { a, b } which:

36. Contain exactly one a.

38. Contain aba as a substr ing.

40. Begin with aa or bb.

37. Begin with aa.

39. Contain a a a as a substr ing.

41. Contain baab as a substr ing.

11.4 Finite-State Machines 771

F i g u r e 11.31

42. Have m - 0(mod 3). 43. Have m -- 2(mod 3).

44. Simulate an automatic teller machine by means of an FSA that accepts
1776 as a valid identification number.

45. Design an FSA to model an automatic teller machine that accepts 23
or 45 as a valid identification number.

46. An integer is a nonempty str ing of digits, preceded by an optional sign
(+ or -) . See the syntax diagram in Figure 11.31. Design an FSA tha t
recognizes integers.

v

I I v

F i g u r e 11.32

47. A real number, excluding the exponential form, consists of an optional
sign (+ or -) followed by one or more digits, a decimal point, and one
or more digits. (See the syntax diagram in Figure 11.32.) Design an
FSA that recognizes such real numbers.

I - d I " " I

48. Write an algorithm to implement an automatic teller machine as an
FSA that accepts 234 as a valid identification number.

49. Write an algorithm to determine if a sequence of characters represents
a valid integer.

50. Write an algorithm to determine if a sequence of characters represents
a valid real number. Exclude the exponential form.

As a generalization of FSAs, finite-state machines abstractly model com-
puting machines. In an FSA, movements from state si to state sj depend
on the input at si, and no output emerges. But as a finite-state machine
moves from state si to state sj, an output does emerge. Consequently, a
finite-state machine possesses two features not required of an FSA: a finite
set O of output symbols and an output function g : S x I --~ O, where I is

772 Chapter 11 Formal Languages and Finite-State Machines

the input alphabet. (An accepting state cannot exist here because a word is
not being checked for certain characteristics.) The output depends on two
things: the current state and the input symbol.

Finite-State Machine

A f i n i t e - s t a t e m a c h i n e (FSM), M, bears six characteristics:

�9 A finite set, S, of s t a t e s ;

�9 A finite i n p u t a l p h a b e t , I;

�9 A finite set, O, of o u t p u t s y m b o l s ;

�9 A t r a n s i t i o n f u n c t i o n , f �9 S x I ~ S;

�9 An o u t p u t f u n c t i o n , g : S x I --~ O;

�9 An i n i t i a l s t a t e , so.

In symbols, M = (S, I, O, f, g, s0).
In this definition, the output function g depends on both the state of the

machine and the current input. Such FSMs are called M e a l y m a c h i n e s ,
after George H. Mealy, who introduced them in 1955. (Another type of FSM
appears in the Supplementary Exercises.)

Let S - { s o , s i , s 2 } , I - {a ,b} , and O - {0, 1}. Define functions f �9 S x I --~ S
i |

and g : S x I ~ O by means of Table 11.3. For example, f (s o , b) - s l ,

f (s 2 , b) = s l , g (so , b) = 1, and g (s 2 , b) = 1.

T a b l e 11.3 f g . .

a b a b

s o s 1 0 1
s 1 s 2 1 0
s 2 s 1 1 1

Then M = (S, I, O, f, g, s0) is an FSM with t ransi t ion function f and ou tput
function g. Table 11.3 is the t r a n s i t i o n t a b l e of the machine, m

Like an FSA, an FSM can be represented by a t r a n s i t i o n d i a g r a m ,
with one main difference: every directed edge (sj, Sk) has two labels. One
indicates the input symbol i; the other the output o from enter ing i into
state sj. For instance, i f f (sj, i) -- Sk and g (s j , i) --- 0, the directed edge (sj, Sk)
is labeled i/O.

The next example i l lustrates how to draw transi t ion diagrams of
FSMs.

11.4 Finite-State Machines 773

~ Draw the t ransi t ion diagram for the FSM in Example 11.37.

S O L U T I O N :
The FSM has three states - - so, Sl, and s2; and two input symbols - - a and
b; two output symbo l s -0 and 1. Two input symbols produce exactly two
outgoing edges for each state. Each directed edge (sj, Sk) in the diagram is
labeled i/o, where f (sj, i) = Sk and g(sj, i) = o. For instance, since f (so, a) =
so and g(so,a) = 0, a loop exists at so labeled a/O. And because f(so,b) =
Sl and g(s0,b) = 1, the edge (s0,sl) is labeled b/1. The other directed edges
carry similar labels. Figure 11.33 shows the t ransi t ion diagram produced
by this process.

F i g u r e 11 .33

b/1

b/1 m

The transi t ion diagram of an FSM can generate the transi t ion table, as
the following example demonstrates.

Construct the transi t ion table of the FSM in Figure 11.34.

F i g u r e 11 .34 ~b/1 a/1
.. a /O

b/O

b/1

T a b l e 11 .4

S O L U T I O N :
From the t ransi t ion diagram, f(s0, a) = 81, f(s0, b) = s2, f (s l , a) = s2,
f (s l , b) = Sl, f (s2, a) = s2, and f (s2, b) = s2; also g(so, a) = 0, g(so, b) = 1,
g(s l , a) = 0, g(sl , b) = 1, g(s2, a) = 1, andg(s2, b) = 0. These values generate
the transit ion table in Table 11.4.

a b a
I I

so o

Sl [I s 2 s I 0
s 2 s 2 s 2 1

m

Suppose we input the s t r ingx = XlX2... Xn into an FSM. Suppose fur ther
that there exist states 8i-1 and si, and an output Yi such that f (S i _ l , X i) = Si

and g(s i - l ,X i) -- Yi for every i. Then YlY2... Yn is the output p r o d u c e d by
the machine for the input x.

774 Chapter II Formal Languages and Finite-State Machines

Find the output of the FSM in Figure 11.33 for the input string abbaba.

S O L U T I O N :
Start at state so. When a is input, stay at so with output 0. When the next
symbol b is input, move to S l and produce the output 1. When the third
symbol b is input at s 1, move to s2 and output 0. Continuing like this yields
the output 010111. m

The next two examples present FSMs useful in electronics. These
machines have limited memory: at each state they must remember the
previous input.

~ ~ ~ ~ ~ ~ Let I - O - {0, 1}. A u n i t d e l a y m a c h i n e , an FSM M = (S , I , O , f , g , so),
delays an input string by unit time. When the string x l x2 . . . Xn is input, it
produces 0XlX2... Xn as the output. Construct such a machine.

S O L U T I O N :
Since each state has two possible outputs, each has two outgoing edges.
The machine must certainly have an initial state so. With the first output
always 0, both edges leaving so must yield 0. The machine must remember
whether the previous input was 0 or 1; this requires two additional states,
Sl and s2. If the previous input was 0, the machine moves to state S l and
outputs 0; if it was 1, it moves to state s2 and outputs 1. Figure 11.35 shows
the transition diagram of this FSM.

F i g u r e 11.35 0/0

-~ ~ 1 / 0 1 1 0 / 1

1/0

1/1

For instance, the input 101110 yields the output 010111 (Verify this.),
which has lost the trailing zero of the input. By appending a 0, however, to
the input, that is, by inputing 1011100, the desired output results: 0101110.
Deleting the leading 0 yields an exact copy of the input, m

Design an FSM that adds two binary integers, x and y.

S O L U T I O N :
Assume, for convenience, x and y contain the same number of bits, and
the leftmost bits are zeros. Thus, let x = (XnXn-l...XlXO)two and y =
(Ynyn-l . . .YlY0)two, where Xn = Yn -- 0. Add the corresponding bits xi and

11.4 Finite-State Machines 775

T a b l e 11.5

Sum bits.

Yi from right to left, as usual. Adding xi and Yi yields a sum bit Z i and a
carry bit ci:

Zi = (Xi Jr-Yi) mod 2 and ci = (xi q--Yi) div 2
For instance, adding the bits 1 and 1 gives the sum bit 0 and the carry
bit 1. Tables 11.5 and 11.6 display the sum and carry bits for paired values
of xi and Yi.

Yi

1

1
0

0
xi 1

T a b l e 11.6

Carry bits.

F i g u r e 11.36

F i g u r e 11.37

0
xi 1

Yi

0 1

0 0
0 1

,,,

Any two binary numbers can be added if the pairs 00, 01, 10, and 11
can be. When two bits xi and Yi are added, the carry is 0 or 1. Consequently,
a machine can be manufactured with two states: cO (carry is 0) and cl
(carry is 1). Since at first the carry is 0, cO is the initial state of the machine
(Figure 11.36).

Since four bit-pairs exist, exactly four edges leave each state. Tables 11.5
and 11.6 can find the state following a given state and the output from a
given input. For instance, if at state cO and input 11, output 0 and move
to state cl (Figure 11.37). If at state cl and input 10, output 0 and remain
at state cl (Figure 11.38). Continuing like this produces the transit ion
diagram in Figure 11.39.

@ 11/0 ~ @

F i g u r e 11.38

--~ @

11/0 ~ v ~ 10/0

776

F i g u r e 11.39

Chapter l l Formal Languages and Finite-State Machines

00/0 01/1 01/0 10/0

11/1 m

Finally, every FSA is a special case of an FSM. To see this, label all
incoming edges to each accepting state with output 1 and all incoming
edges to each nonaccepting state with output 0. Consequently, an input
string is a c c e p t e d by the FSM if and only if the last output of the machine
is 1, as the following example illustrates.

[~ ~] ~ ~ ~ Example 11.26 showed that the FSA in Figure 11.40 accepts a string over
{ a, b } if and only if the string contains abba as a substring. To convert the
automaton into an FSM, add an output to every edge. Each incoming edge
to the accepting state s4 is labeled with output 1, and every incoming edge
to other edges 0. The resulting FSM appears in Figure 11.41.

F i g u r e 11.40

b

a

F i g u r e 11.41

alO ~ blO

b/O

a/1

~ a / 1

According to Example 11.30, the word a3b2ab is accepted by the automa-
ton in Figure 11.40. The machine in Figure 11.41 verifies this: the substring
a 3 takes the machine from so to sl and it outputs 0 three times, b 2 takes it
to s3 and it outputs 0 twice, a takes it from s3 to s4 and it outputs 1; b takes
the machine from s4 to itself and it outputs 1. With the last output 1, the
string is accepted by the FSM, as expected, m

As this example indicates, FSMs like Mealy machines add output to the
FSA configuration. This means that we can use them in such fields as
electronics, in addition to using their transition tables and diagrams as
definitional models.

11.4 Finite-State Machines 777

Exerc i se s 11.4

Using the FSM in Figure 11.33, evaluate each.

1. f (s l , a) 2. f(s2, b) 3. f(so, b) 4. f(s2, a)

5. g(sl, b) 6. g(s2, b) 7. g(so, b) 8. g(s2, a)

Draw the t ransi t ion diagram of the FSM with each t ransi t ion table.

so jlso
Sl 81

s2 So

f g

b a b

81 1 0

s2 0 0
Sl 1 1

10.

so II
Sl

s2

f g

a b a b

Sl sl 0 1
Sl s2 1 0
Sl s2 0 1

11.

80

Sl

82

83

f g

a b a b

sl sl 0 0
81 82 0 1

s3 s2 0 1
s,~ Sl 1 0

12 .

80

81

82

83

f g

a b a b

81 S2 1 0
82 82 0 1

S2 83 0 0

S 2 S 3 1 1

Construct a t ransi t ion table for each FSM.

13 .

14.

15 .

C~ a/1 a/O

__.) , ~

b/1

('~ a/1 a/1

--->

b/1
b/O

a/O b/1
'~ a I0 (~ alO a/O

b/1

778 Chapter 11 Formal Languages and Finite-State Machines

F i g u r e 11.42

16.
a/1 b/O

--.-->

b/O

(~ b/O b/1

a/O

Using the FSM in Figure 11.33, find the output from each input string.

17. abba 18. baab 19. a2b3a 20. a3b2ab 3

Using the unit delay machine in Figure 11.35, find the output of each input
string.

21. 1101 22. 1111 23. 0000 24. 101110

25. With a transition table, define the transition function f a n d the output
function g of the FSM for binary addition in Figure 11.39.

Using the FSM in Figure 11.39, compute the sum of each pair of binary
numbers.

26. 1001 27. 00111 28. 1011 29. 11011
0110 10010 0110 10101

30. Redraw Figure 11.20 as the transition diagram of an FSM.

31-34. Redraw the transition diagram of each automaton in Exercises
17-20 of Section 11.3 as that of an FSM.

Determine if the input string in Exercises 35-38 is accepted by the FSM in
Figure 11.42.

('~ b/O a/1

b/O

35. abba 36. aabb 37. a 3 38. b3a 4

39. Identify the language accepted by the FSM in Figure 11.42.

Design an FSM accepting strings over { a, b} that:

40. Contain aa as a substring. 41. Contain exactly one a.

With x an input symbol and s an arbitrary state of an FSM M -
(S,I, O, f ,g , so), define g(s,x) in each case.

42. f(s, x) is an accepting state. 43. f(s, x) is a nonaccepting state.

1 I.,5 Deterministic Finite-State Automata and Regular Languages 779

Is the language accepted by an FSA context-sensitive? Or is it context-free,
regular, or something else? This section provides a definitive answer to
these questions.

In an F S A M - (S , A , I , f , so) , where II[= m, exactly m outgoing edges
leave every state si, each labeled with a unique element of I. Besides, since
f �9 S x I --~ S, every s ta te- input pair yields a unique state; in other words,
every s ta te- input pair uniquely determines the next state.

For the automaton in Figure 11.15, the pair (s2, a) determines the
state Sl, whereas the pair (s2, b) determines the state s3. Accordingly, the
automata in Section 11.3 are called d e t e r m i n i s t i c f i n i t e - s t a t e a u t o m a t a
(DFSA).

This determinism suggests that the language accepted by a DFSA is
indeed regular, as the next example demonstrates.

By Example 11.31 the language L (M) accepted by the DFSA in Figure 11.43
consists of words over { a, b } ending in aa. Employing it, a regular g r ammar
G - (N , T , P , c~) can be constructed. Choose {a, b} as the set of terminal
symbols: T - {a, b}. Choose the states as the nonterminal symbols: N =
{so, s l, s2 }. Select the initial state so as the start symbol: a - so.

F i g u r e 11 .43 b
a

a a

Define the two productions rules:

�9 If there is an edge labeledx from state si to state sj, define the production
si ~ xsj. The various productions obtained this way are"

so ~ a s l , So ~ bso, 81 ~ as2,

S l ----> bso, s2 ~ as2, and s2 ---> bso.

�9 If there is an edge labeled x from state si to an accepting state, induce
the production si ~ x. Two additional productions can be obtained by
this method:

S l --> a and s2 --> a

The g rammar G - (N, T, P, a) where N, T, P, and a are defined as above is
clearly regular, therefore L (G) is a regular language. You may verify that
L (G) consists of strings over T ending in aa. Thus L (M) - L (G) . m

780 Chapter II Formal Languages and Finite-State Machines

This example leads us to a fundamenta l result whose proof resembles
tha t in Example 11.44.

~ The language accepted by a DFSA is regular.

P R O O F :
Let M = (S,A, I, f , so) be a DFSA and L (M) denote the language accepted by
the automaton. We shall construct a regular g rammar G using the machine
M and show that L (G) - L (M) .

To construct the g rammar G - (N, T , P , ~) , choose N - S as the set of
states, T = I as the input alphabet, and a = so as the initial state. Define
the productions P this way:

Let si and sj be any two states, and x any input symbol. If f (s i , x) = sj,

define the production si ~ xs j ; if f (s i , x) = sj, an accepting state, include
the production si ---> x. Clearly, G is a regular grammar.

T o p r o v e t h a t L (M) c_ L (G) :

Let x = X l X 2 . . . Xn be a str ing accepted by the au tomaton M; tha t is, let
x ~ L (M) . Then the t ransi t ion diagram of the au tomaton contains a directed
path so-s 1-s2 Sn, where Sn is an accepting state. Correspondingly, these
production rules follow:

so --* X lS l (11.4)

S 1 ---> X 2 8 2

S i - 1 ----> X i S o i

S n - 1 ---> X n (Note: Sn is an accepting state.)

and the derivation of the string x:

~, X l S 1 (11.5)

~, x l X 2 8 2

~, X l X 2 . . . X n _ l S n _ l

X l X 2 . . . X n _ l X n

since S n - 1 ---> X n . Thus x ~ L(G), so L (M) c_ L (G) .

Conversely, let x = X l X 2 . . . X n E L (G) . Then it must have a derivation of
the form (11.4). Correspondingly, the t ransi t ion diagram of the au tomaton
M must contain a directed path, so-s l-S2 Sn. The str ing determined
by this path is x = X l X 2 . . . Xn. Since the last production in the derivation

781

Exercises 11.5

(11.4) is S n - 1 --> Xn, Sn must be an accepting state, thus x ~ L (M) and hence
L (G) c_ L (M) .

Thus L (M) = L (G) . In other words, the language accepted by the DFSA
is regular, m

This proof provides an elegant method for finding the regular language
accepted by a DFSA. We demonstrate it again in the next example.

~ Find the of the regular language accepted by the parity check grammar
machine in Example 11.33.

SOLUTION:
Using the transition diagram in Figure 11.23, N = {E, O}, T - {a, b}, S -
{E}, and the production rules are:

E o a O , E ~ b E , O ~ a E , O - + b O , E o b , and O- -+a

The regular grammar defined by the parity check machine M is G -
(N, T , P , S) . [So L (G) = L (M) - the set of strings over T containing an
even number of a's.] n

Finally, is the converse of Theorem 11.3 true? With G a regular grammar,
does a DFSA exist such that L (M) = L(G)? The next two sections will give
us an answer.

Determine if each is a DFSA.

0

0

11.5 Deterministic Finite-State Automata and Regular Languages

0

a b

a b

- -)

a a

- + ~..

782 Chapter II Formal Languages and Finite-State Machines

0 a ,b
a

a

a ,b

r

Write the regular g rammar defined by the DFSA in each figure.

5. Figure 11.17 6. Figure 11.28

7-14. Construct the regular g rammar defined by each DFSA in Exercises
17-24 of Section 11.3.

By making a DFSA, define a regular g rammar G = (N, T , P , ~) that
generates the language consisting of strings over {a, b } that:

15. Contain exactly one a.

17. Begin with aa.

19. Contain aba as a substring.

21. Begin with aa or bb.

16. Contain at least one a.

18. End with bb.

20. Contain a a a as a substring.

22. Contain baab as a substring.

We ended the preceding section with a question: For a regular g rammar G,
is there a DFSA M such that L (G) = L(M)? The obvious tempta t ion is to
simply reverse the steps in Example 11.44 (or Theorem 11.3) to look for it.
Let 's see what happens if we do so.

~ With the regular G - (N, T, P, ~), where N - {A, c~ }, T = {a, b}, g rammar
and P = {a --* aa, a ~ aA, A ~ b}, let us see what happens if we reverse
the steps in Theorem 11.3 in order to construct a D F S A M = (S , A , I , f , so).

Then I = T = {a, b} and so = a. Corresponding to the productions a - . aa
and a --* aA, there must be two states, namely, a and A; besides, by virtue
of the production A ~ b, an accepting state F must exist. Thus S must be
{a,A, F}.

Use the productions to draw the edges in the t ransi t ion diagram of the
automaton: If si -~ xsj , draw an edge from state si to sj and label it x; if
si ~ x, draw an edge from si to the accepting state F and label it x. The
diagram in Figure 11.44 results.

Unfortunately, it is not a DFSA for two reasons: (1) A state, c~, has two
outgoing edges with the same label a; (2) not every state, namely A and F,
has two edges with different labels. Thus reversing the steps i l lustrated in
Example 11.44 does no t yield a DFSA.

11.6 Nondeterministic Finite-State Automata 783

F igure 11.44

a @ b @ n

But, fortunately, we have ano the r option. The au toma ton in Figure
11.44 is a nondeterminis t ic finite-state au tomaton . "Nondeterminis t ic"
means tha t each s t a t e - inpu t pair may de termine more t han one state.
For instance, the pair (a, a) de termines two states, a and A. If a is input at
s tate a, two choices exist for the next state: remain at a or move to A.

We can now move to the following definition.

Nondeterministic Finite-State Automata

A n o n d e t e r m i n i s t i c f in i te - s tate a u t o m a t o n (NDFSA) M exhibits five
characteristics:

�9 A finite set S of states;

�9 A specially designated state ~, called the in i t ia l state;

�9 A subset A of S consist ing of the a c c e p t i n g s ta tes (or final s tates) of
the au tomaton;

�9 A finite set I of input symbols;

�9 A function f : S • I --, P(S), called the t r a n s i t i o n f u n c t i o n (or the
next - s ta te funct ion) . [Note: P(S) denotes the power set of S.]

In symbols, M - (S, A, I, f , c~).
In an NDFSA, each s t a t e - inpu t pair is l inked with a set of states, not

necessarily a unique state; it can be the null set. A NDFSA can be repre-
sented by a t rans i t ion diagram and a t ransi t ion table can define a t rans i t ion
function, as the next two examples illustrate.

For the NDFSA in Figure 11.44, S - {a, A, F} a n d A {F}. The t rans i t ion
table in Table 11.7 defines the t rans i t ion function.

Table 11.7
a

{c~,A}
0
0

0
{F}
0

m

The NDFSA M - (S, A, I, f , a), where S - {a ,A,B,C}, A - {F}, I
{a, b}, and f is defined by Table 11.8. Its t rans i t ion d iagram is given in
Figure 11.45.

784 Chapter 11 Formal Languages and Finite-State Machines

Table 11.8 I
a

A {a,A}
{A}
{F}
O

O
{B,F}
{B}
O

F i g u r e 11.45 ~a~b~a
~ ~ ~ ~ /

b I

The definition of a s tr ing accepted by an FSA can be extended to NDFSA
as well.

Equivalent Nondeterministic Finite-State Automata

A str ing is a c c e p t e d or r e c o g n i z e d by a NDFSA M = (S, A, I, f , so) if
a directed path runs from the initial vertex so to an accepting state tha t
generates the string. The language of all strings accepted by M is L (M) .
Two NDFSAs are e q u i v a l e n t if they accept the same language.

The next two examples i l lustrate the definition of (L (M)) .

The word a3b is accepted by the NDFSA in Figure 11.44 since the
corresponding path, ~-~-~-A-F, ends at an accepting state F. Notice tha t
L (M) = {a nb I n >_ 1 }. I

The str ing a2b3a is accepted by the NDFSA in Figure 11.45. Two paths
generate it, a - a - A - B - B - B - F and a - A - A - B - B - B - F . The au tomaton accepts
strings amb and a mb ha, where m, n >_ 1. Thus L (M) - {a rob, amb na] m,
n > l } . I

The question we posed at the beginning of this section can be partially
answered now.

Every regular language is accepted by an NDFSA.

PROOF:
Let G = (N, T, P, a) be a regular grammar. Through essentially the same
steps as in Example 11.46, make a suitable NDFSAM = (S, A, I, f , so) such
that L (G) = L (M) . Select I = T, so = {a }, and N as the set of nonaccepting
states of M. Since the g rammar contains productions of the form si
x, introduce an accepting state F; choose S = N u {F} and A - {F}.
Finally, since every production of G is si ~ xsj or si ~ x, the t ransi t ion
function f : S x I --+ P (S) follows: f (s i , x) - - {sj I s i --+ x s j } U {F I si -+ x}.

11.6 Nondeterministie Finite-State Automata 785

As in Theorem 11.3, it can be shown that L(G) = L (M) . (Complete the
proof.) m

Although nondeterminist ic finite-state au tomata have been defined, an
explicit answer to the question posed earlier has yet to surface: Given a
regular g rammar G, does there exist a DFSA such tha t L(G) = L(M)? We
will answer this in the next section.

E x e r c i s e s 11.6

Draw the transi t ion diagram of the NDFSA M = (S , A , I , f , so), where:

1. S = {so,s l ,s2) , A = {s2} 2. S - {so,sl ,s2}, A = {81}

S I a b

80 {81} {80}
81 {81} {81,82}

O 0
. . . .

J

I s2

a b

{81} {80}
{82} {81,82}

0 0

3. S = { s o , s l , s 2 , s 3) , A = {s2}

S I a

80 {80,81}
81 {81,82}
s2 {s2}

{s~}

{83}
{81}
{s3}
{s3}

4. S = {so, s l , s 2 , s 3 } , A = {s2}

S I a b

80 {80, 81 } {83 }
81 {81,82} {80}
s2 0 0

{81} {83}

5. S-{8o,81, '32,83,84) , A = {s2,s3} 6. S - {80 ,81 ,82 , s3 ,84 ,85) , A = {s2,s5}

so
81
82
83
84

a b

{S0,Sl} {84}
{Sl,82} {81,S3}

0 0
0 0

{84} {84}

s0
81
82
83
84
85

a b

{80,81} {84}
{Sl,S2} {83}

{S2} {S2}
{S3} {S3}
{83} {S4,S5}
{s5} {s5}

Construct a t ransi t ion table for each NDFSA.

, - - ~

a

b

786 Chapter 11 Formal Languages and Finite-State Machines

0

a

b

0

10.

a a

a a

b b

a, b

Does the NDFSA in Figure 11.45 accept each string? Identify a path defined
by any accepted string.

11. ab2a 12. abab

13. a3b 14. ab2ab

Is each string accepted by the NDFSA in Exercise 1? Give a path for accepted
strings.

15. a2b 16. ab2a

17. a3b 3 18. (ab) 3

Does the NDFSA in Exercise 10 accept each string? Show a path that defines
any accepted string.

19. abba 20. (ab) 3

21. a2b 2 22. a4b2ab 3

Construct a NDFSA that accepts the language generated by the regular
grammar G - (N, T, P, or), where:

23. N = { a , A , B } , T = { a , b } , a n d P = { a o a A , A ~ a A , A ~ b B , B - ~
bB, A ~ a}

24. N = {a,A,B}, T = {a,b}, a n d P = {a ~ aA, a ~ bA, A - ~ aB, a
b, B o b}

11.7 Automata and Regular Languages 787

25. N = {a, A, B, C, D}, T = {a,b}, and P = {cT ~ ba, a ~ aA, A ~ aA,
A ~ bB, B ~ aA, B ~ bC, C ~ aD, C ~ ba, D ~ aD, D ~ bD, C
a}

26. N = {a ,A,B,C}, T = {a,b}, and P = {a ~ bcr, a ~ aA, A ~ aA,
A ~ bB, B o aA, B ~ bC, C ~ aA, C ~ bcr, B ~ b}

Create a NDFSA tha t accepts the regular language over {a, b} of s t r ings
that:

27. Contain exactly one a.

29. Begin with aa.

31. Contain aba as a substr ing.

33. Begin with aa or bb.

*35. Begin with aa, but not end in bb.

28. Contain at least one a.

30. End with bb.

32. Contain a 3 as a substr ing.

34. Contain ba2b as a substr ing.

*36. Begin with aa and end in bb.

The preceding two sections demons t ra ted tha t the language accepted by a
DFSA is regular and tha t every regular language is accepted by an NDFSA.
This section shows tha t every NDFSA is equivalent to a DFSA, which
answers affirmatively our quest ion about the existence of a possible DFSA
M such tha t L (G) = L (M) . Every regular language is, in fact, accepted by a
suitable DFSA.

The next two examples i l lustrate step by step how to construct a DFSA
equivalent to a given NDFSA.

Consider the regular g r a m m a r G - (N, T, P, a), where N - {A, a }, T =

{a,b}, a n d P - {a ~ aa, c~ ~ aA, A ~ b}. The N D F S A M = (S , A , I , f , so)
tha t accepts L (G) is shown in Figure 11.46 (same as Figure 11.44). By
Example 11.49, L (M) - {a'~b In > 1}. Using M, we shall construct the
DFSA M' - (S',A', I ' , f ' , ' s 0) which accepts L(G)"

F i g u r e 11.46

a r - - @ b ~ @

!

S t e p 1 C h o o s e I ' - I = {a,b}, s 0 - {so} - {a}, a n d S ' - P (S) . The
various states in M' are subsets of S. If there are n states in M, there can
be 2 n states in M', so the states of M' are:

O, {or}, {A}, {F}, {~,A}, {cy,F}, {A,F}, and { ~ , A , F }

788 Chapter II Formal Languages and Finite-State Machines

T a b l e 11 .9

S t e p 2 The accepting states of M' are those states of M' tha t contain an
accepting state of M. They are {F}, {a ,F} , {A,F}, and {a,A,F}.

S t e p 3 Let X - {s l, s2 , . . . , sin} be a state in M'. An input symbol x leads
m

from state X to state Y, where Y - u f (s i , x) . In other words, an edge
i = l

m

labeled x runs from state X to state Y if Y = u f (s i , x) .
i = l

Figure 11.46 produces all possible transit ions:

f (0 , a) = 0 f (0 , b) = 0 f (a , a) - {a,A} f (a , b) = 0
f (A , a) = 0 f (A , b) = {F} f (F , a) = 0 f (F , b) = 0

Since f(O, a) - 0 - f (0 , b), edges run from 0 to itself labeled a and b. Since
f (a , a) - {~, A} and f (a ,b) = O, an edge labeled a goes from {~ } to {a, A}
and an edge b from {a } to 0. Similarly, there is an edge labeled a from {A}
to 0, an edge b from {A} to {F}, and two edges a and b from {F} to O.

Since f(~, a) uf (A, a) = {~, A} u O = {~, A}, an edge labeled a runs from
{a, A} to {a, A}. Also, f (a , b) u f(A,b) = 0 u {F} = {F}, so an edge b
goes from {a,A} to {F}. Similarly, there are edges labeled a and b from
{a, F} to {~, A} and 0, respectively; edges a and b from {A, F} to 0 and
{F}, respectively; and edges a and b from {cr, A,F} to {or, A} and {F},
respectively.

These results appear in the t ransi t ion table in Table 11.9.

0

{A}
{F}

{cy,A}
{a,F}
{A,F}

{a,A,F}

a b

0 0
{a,A} 0

0 {F}
0 0

{a,A} {F}
{a,A} 0

0 {F}
{a,A} {F}

Figure 11.47 shows the resul t ing DFSA.
Since the states {A}, {or, F}, {A, F}, and {~, A, F} cannot be reached from

the initial state {or }, they can be dropped out to yield the simplified DFSA
M' in Figure 11.48.

From this t ransi t ion diagram, L(M') - {aanb In > 0} - {anbln > 1} -
L(G). Thus the au tomata M and M' are equivalent, so the NDFSA is the
same as the DFSA. m

Construct a DFSA M' - (S ' ,A ' I' f ' , ') equivalent to the NDFSA , , 8 0

M - (S , A , I , f , so) in Example 11.50. Recall tha t L(M) - {amb, ambna[
m, n > 1 }. The key steps lie below. (Fill in the details.)

11.7 Automata and Regular Languages 789

F i g u r e 11.47 a,b

a,b

b

F i g u r e 11.48

SOLUTION:
S t ep 1 Select I ' = I - {a,b}, s~ - {so} - {a }, and S' = P(S). The states

of M' are 0, {a}, {A}, {B}, {F}, {a,A}, {a,B}, {a ,F}, {A,B}, {A,F}, {B,F},
{a,A,B}, {a,A,F}, {~,B,F}, {A,B,F}, and {~,A,B,F}.

Step 2 The accepting states of M' are {F}, {a,F}, {A,F}, {B,F}, {a,A,F},
{a ,B,F} , {A,B,F}, and {a,A,B,F}.

790 Chapter 11 Formal Languages and Finite-State Machines

Step 3 The transition table of the DFSA is Table 11.10.

T a b l e 11 .10

0

{A}
{B}
{F}

{c~, A}
{a,B}
{c~, F}
{A, B}
{A, F}
{B,F}

{c~, A, B}
{c~, A, F}
{a,B,F}
{A,B,F}

{a,A,B,F}

a b

0 0
{a,A} 0

{A} {B, F}
{F} {B}

{a,A} {B,F}
{a, A, F} {B}

{or, A} 0
{A, F} {B, F}

{A} {B, F}
{F} {B}

{c~, A, F} {B,F}
{a,A} {B,F}

{a, A, F} {B}
{A, F} {B, F}

{a, A, F} {B,F}

F i g u r e 11.49

Step 4 The table indicates the states {a, B}, {a, F}, {A, B}, {c~, A, B},
{a, B, F }, {A, B, F}, and {a, A, B, F } are not reachable from any state, so
they are not the initial state {a }. Delete the corresponding rows from the
table. It is now obvious from the table that the states {A}, {A, F}, {a, A, F}
also cannot be reached from {a }; delete those rows also from the table.

The resulting transition diagram of the DFSA M' appears in
Figure 11.49.

: ,b a,b

~ a ~ b

From the diagram, it follows that L(M') = {amb, ambnaim, n >_ 1} =
L(M). ThusM andM' are equivalent automata. As in the previous example,
we have shown that the equivalency between an NDFSA and a DFSA. i

The techniques illustrated in the two previous examples can be general-
ized to arrive at the following result. (The proof is a bit complicated, so we
omit it.)

11.7 Automata and Regular Languages 791

~ Every NDFSA is equivalent to a DFSA. m

The next theorem follows from Theorems 11.3, 11.4, and 11.5.

~ A language is regular if and only if it is accepted by a DFSA. m

As Theorem 11.6 indicates, a DFSA can define a regular grammar and vice
versa. Each is a characterization of the other.

We now look for an example of a simple-looking language that is n o t

regular.

~ Show that the language L - {anb n I n > 1} is not regular.

P R O O F (by c o n t r a d i c t i o n) :
Suppose L is regular. Then, by Theorem 11.6, a DFSA M exists such that
L (M) - L . Suppose M has m states. Since the string x - a m + l b m+ 1 E L , x is
accepted by the DFSA. Let P be the path corresponding to x; it ends at an
accepting state F.

F i g u r e 11.50

a a

@a@a @b@
- - -) ~ ,~ ...

The path corresponding to the substring a m+l contains m + 1 states. But,
since only m states exist, by the pigeonhole principle at least two of the m + 1
states, say, si and s j , where i < j, must be the same; consequently, there
must be a directed cycle at s i , each edge labeled a (see Figure 11.50). Let
l be the length of the cycle. The path so - s1 s i - s j+ 1-sj+2 F generates
the string x' = a m + l - l b m + l . Since this path ends at F (an accepting state),
x' is accepted by the automaton; so x' ~ L. This is a contradiction, since x'
does not contain the same number of a 's and b's. Thus L is not a regular
language, m

It follows by this example that the set of well-formed nested parentheses
is also n o t a regular language. (Why?)

These discussions lead us to a powerful conclusion: Regular languages
are accepted by DFSAs.

792 Chapter 11 Formal Languages and Finite-State Machines

Exercises 11.7

1-6. Construct a DFSA equivalent to each NDFSA in Exercises 1-4, 7, 8
of Section 11.6. Eliminate all unreachable states.

7-8. Design DFSAs equivalent to the NDFSAs in Exercises 23 and 24 of
Section 11.6. Eliminate all unreachable states.

Let L be the language recognized by an FSA and L R - - {Xn . . . Xl [X l . . . X n E
L}. Construct an NDFSA that accepts L R from each FSA in Exercises 9-16.
(Hin t : Reverse the directions of the edges; switch the roles of the initial
state and the accepting states.)

9. Figure 11.20

11. Exercise 18 in Section 11.3

13. Exercise 37 in Section 11.3

15. Exercise 40 in Section 11.3

10. Exercise 17 in Section 11.3

12. Exercise 36 in Section 11.3

14. Exercise 38 in Section 11.3

16. Exercise 41 in Section 11.3

17-24. Identify the language L (M) accepted by the FSA in Exercises 9-16.

25-32. Construct a DFSA equivalent to the NDFSA in Exercises 9-16.

The abstract models of computing machines with limited capabilities are
DFSA, FSM, and NDFSA. An automaton checks if a given input s tr ing has
a desired property and produces no output values. An FSM, on the other
hand, yields an output value corresponding to each input.

Formal Language

�9 A f o r m a l l a n g u a g e over an alphabet E is a subset of E*, the set of all
possible words over Z (page 734).

�9 The c o n c a t e n a t i o n of two languages A and B over Z consists of words
ab with a e A and b E B (page 736).

�9 A ~ = { a l a 2 . . . an l ai E A}, where A ~ - A (page 739).
cx$

�9 A* = u A n is the K l e e n e c l o s u r e of a language A (page 739).
n : 0

Grammar

�9 A g r a m m a r G = (N, T , P , ~) consists of a finite set N of n o n t e r m i -
hal s y m b o l s , a finite set T of t e r m i n a l s y m b o l s , a finite set P of
p r o d u c t i o n ru les , and a s t a r t s y m b o l c~ (page 746).

Chapter Summary 793

�9 A word w' = xf ly is directly derivable from a word w = x a y if a
product ion a ~ / ~ exists; we then wri te w ~ w'. A word Wn is derivable
from wi if the re exists a finite sequence of d e r i v a t i o n s , Wl =, w2, w2
w3, . . . ,Wn-1 ~ Wn. The language derivable from cr is the l anguage
generated by G, denoted by L (G) (page 746).

�9 In BNF, each product ion w ~ w' is wr i t t en as w ::= w'; each non te rmi -
nal symbol w is enclosed by angle brackets , as in (w); and produc t ion
rules wi th the same lef t -hand sides are combined wi th vert ical bars into
a single rule (page 748).

�9 A t y p e 0 g r a m m a r has ph rase - s t ruc tu re (page 751).

�9 In a context-sens i t ive (type 1) g r a m m a r , every product ion is of the
form c~Ac~' --~ c~flc~'. (page 751)

�9 In a context-free (type 2) g r a m m a r , every product ion is of the form
A ~ ~. (page 751).

�9 In a regular (type 3) g r a m m a r , every product ion is of the form A--~ t
or A ~ tB (page 751).

�9 A language L(G) is context-sensit ive , context-free, or regular
according as whe the r G is context-sensi t ive, context-free, or r egu la r

(page 751).

�9 An ambiguous language contains a word tha t has more t h a n one
derivat ion t ree (page 753).

�9 The language accepted by a DFSA is regular (page 780).

Finite-State Automaton (FSA)

�9 A F S A M - (S , A , I , f , so) consists of a finite set S of s t a t e s , a finite set
A of accept ing states, a finite set I of i n p u t s y m b o l s , a trans i t ion
funct ion f : S x I ~ S, and an initial state so. Every s t a t e - i n p u t pair
yields a un ique next -s ta te of the a u t o m a t o n (page 761).

�9 A transi t ion table defines the t rans i t ion function. (page 761).

�9 A transi t ion diagram can represen t a DFSA. The initial s ta te so is
identified by drawing an a r row toward it; an accept ing s ta te by two
concentric circles a round it (page 762).

�9 An input s t r ing is a c c e p t e d by an a u t o m a t o n M if and only
if the s t r ing t races a pa th t ha t ends at an accepting state. The
language L(M) accepted by M consists of all words recognized by it

(page 764).

�9 Two a u t o m a t a M and M' are equivalent if L (M) = L (M ') (page 764).

794 Chapter II Formal Languages and Finite-State Machines

Finite-State Machine (FSM)

�9 An F S M M = (S,I , O , f , g , so) consists of a finite set S of states, a finite
set I of i n p u t s y m b o l s , a finite set O of o u t p u t s y m b o l s , a t r a n s i t i o n
f u n c t i o n f : S x I --~ S, an o u t p u t f u n c t i o n g : S x I ~ O, and an
i n i t i a l s t a t e so. Every s t a t e - inpu t pair produces a next -s ta te and an
output value (page 772).

�9 A t r a n s i t i o n tab le can define the t rans i t ion and ou tpu t funct ions of
an FSM (page 772).

�9 A t r a n s i t i o n d i a g r a m also can define an FSM (page 772).

Nondeterministic Finite-State Automaton (NDFSA)

�9 An N D F S A M -- (S , A , I , f , ~) consists of a finite set S of states, a subset
A of S of accepting states, a finite set I of input symbols, a t rans i t ion
function f : S x I ~ P(S), and an initial s tate a. A s t a t e - inpu t pair may
be paired with zero, one, or more states (page 783).

�9 Every regular language is accepted by a NDFSA (page 784).

�9 Every NDFSA is equivalent to a DFSA (page 787).

�9 Every regular language is accepted by a DFSA (page 787).

Review Exercises

Let A = {4, a, bc} and B = {a, ab}. Find each.

1. A B 2. BA 3. A 3 4. B 3

Find three words belonging to each language over { a,b,c }.

5. {a,b}{c}* 6. {a}b*{c}*

7. {ab}{ab}* 8. {b} {a,b,c}* {b}

A g r a m m a r G = (N, T , P , a) has N = {{noun phrase), (verb}, (adjective),
(noun}, (article) }, T = {a,the,chicken,wolf, cabbage,eats,walks,reliable,
discreet, gracious}, a = (sentence), and the product ion rules are:

(sentence) ~ {noun phrase) (verb) (noun phrase)

(noun phrase) ~ (article){noun) I (article){adjective)(noun)

{article) ~ the la

(noun) ~ chicken I w o l f l c a b b a g e

(adjective) ~ reliable I discreet I gracious

(verb) --~ eats lwa lks

Chapter Summary 795

Determine if each is a valid sentence in L(G) .

9. The gracious chicken walks the wolf.

10. The reliable wolf eats a chicken.

Make a derivation tree for each sentence.

11. The discreet wolf eats the cabbage.

12. The reliable cabbage walks the gracious chicken.

Using the g r a m m a r G - (N, T, P, a) where N = {a, A, B}, T = {a,b}, and
P = {a ~ ba, a ---> aA, A ~ aB, A ~ ba , B ~ aB, B --> bB, A ~ a , B ~ a,
B ~ b}, de termine if each s t r ing belongs to L(G) .

13. ab3a 14. (ab) 3 15. aba2b 16. ab2a 4

Const ruc t a parse tree for each string.

17. ba2b 18. b2a3b 19. aba 2 20. a2b2a 2

Develop a g r a m m a r tha t generates each language over { a,b }.

21. {b n in >_ 1~ 22. {anba'* In > 0} 23. {b 2n+l In >_ 0} 24. {ab'*aln >_ 0}

With the g r a m m a r below, construct parse trees for the simple w h i l e
s t a t e m e n t s in Exercises 25 and 26.

(while s t a t e m e n t) ' - while (expression) do (statement)

(statement) " ' - (a s s i g n m e n t s t a t emen t) f (while s ta tement) I s

{assignment s t a t e m e n t) " ' - (v a r i a b l e) = {expression)

(variable/ " ' - a [b {c I . . . I z

(expression) " - (variable)(sign)(variable) J

(variable) (operator)(variable/

(operator) " ' - =J ~:l < l< l> l >

{s ign) - ' - + 1 -

25. While x >_ y do x "= y + z.

26. While x >_ y do while y < z do a "- b + c.

27. Draw the t ransi t ion diagram of the D F S A M - (S , A , I , f , so), where
S - { s o , s l , s 2 , s 3 , s 4 } , A = {83} , I = {a,b}, and f is defined by Table
11.11.

28. Redo Exercise 27 w i t h A = { 8 1 , 8 3 } and f defined by Table 11.12.

Const ruct the t ransi t ion table for each DFSA.

796 Chapter 11 Formal Languages and Finite-State Machines

T a b l e 11 .11

sO Sl
Sl s4
s2 s4
s3 s3
s4 s4

s4
s2
S3
s3
s4

T a b l e 11 .12

s2
s3
s4

a b

Sl s2
Sl Sl
s4 s3
s3 s3
s4 s4

29.

b

30.

a;b

31-34 . Identify the language L(M) accepted by the a u t o m a t a in Exercises
27-30.

Design a DFSA tha t accepts s tr ings over { a, b } that:

35. Begin with aaa. 36. Contain abb as a substr ing.

37. II

s0 s0

81 s2

82 80

s3 s3

f g

b a b

sl 1 0
82 0 0
83 1 0
S2 1 0

38.

80

81

S2

S3

f g

a b a b

sO Sl 0 0

s2 s3 0 1
s3 s2 1 1
s3 s2 1 0

Chapter Summary 797

Construct a transition table for each FSM.

39. a/O O Jl
-~ b/1 ~ a/O ~

40. a / O ~ -~) a / l ~ ')

b/1 b/O

Using the FSM in Figure 11.33 (Example 11.38), find the output from each
input string.

41. a2b2aba 42. aba2ba 43. ab3ab 44. a2b3a 2

45-46. Redraw the DFSAs in Exercises 27 and 29 as FSMs.

Design an FSM to accept string over { a, b } that:

47. Contain ab 2 as a substring. 48. Begin with a or b 2.

49-50. Compose the regular g rammar defined by the DFSA in Exercises
27-28.

Draw the transition diagram of the NDFSA M - (S , A , I , f , so), where I -
{ a,b } and:

51. S - { s o , s l , s 2) , A = {Sl}

11

so II {sit {s0t
si I] {s2} {sl,s2}
s2 {s2} {s2}

52. S - {80, S l , 8 2 } , A - {81 }

a . b

{80,82} {81}
I s2 I] {Sl} {80,82}

Construct a transition table for each NDFSA.
Determine if the NDFSA in Exercise 52 accepts each input string.

53. a,b

---)

b

798 Chapter II Formal Languages and Finite-State Machines

54. ('~ a, b a, b ~")
a b

_...)

55. a 3 56. ab2ab 4 57. a2b 3 58. a3b 4

59-62 . De te rmine if each input s t r ing in Exercises 55-58 is accepted by
the NDFSA in Exercise 54.

Create a NDFSA tha t accepts the language L (G) genera ted by the regula r
g r a m m a r G = (N, T, P, a), where:

63. N = { a , A , B } , T = {A,B} , and P = {a -~ ba, a ~ aA, A -~ aB, A
bA, A ~ bB, B ~ aB, B ~ bB, a ~ a , A ~ b}

64. N = { a , A , B } , T = {a,b}, and P = {a -> aA, a ~ b a , A --~ a a , A ~ aB,

A ~ bA, B --> aB, B ~ ba , B -~ bA, a --~ a , A ~ b}

65-66 . Cons t ruc t a DFSA equivalent to each NDFSA in Exercises 51 and
52.

67-68 . Wha t languages do the DFSAs in Exercises 65 and 66 accept?

Let A and B be any languages over a finite a lphabet E. Prove each.

69. (A u B)* = (A* u B)* **70. (AUB)* = (A*UB*)* = (A 'B*)*

Supplementary Exercises

Let m denote the n u m b e r of a ' s and n the n u m b e r of b's in a s t r ing over
{ a,b }. Design an FSA tha t accepts s t r ings with the given propert ies .

1. m - l (mod 2) and n - l (mod 2).

2. m - 0 (m o d 3) and n - l (mod 3).

3. m -- 0(mod 2) and n - l (mod 2), or m - l (mod 2) and n - 0(mod 2).

4. Design an FSA tha t accepts positive in tegers n divisible by 3.

*5. Using the syntax d iagram in Figure 11.51 for a real number , design
an FSA to recognize valid real numbers .

*6. The Roman numera l s M, D, C, L, X, V, and I have values 1000, 500,
100, 50, 10, 5, and 1, respectively. In the str ict addit ive nota t ion
no n u m e r a l with a smal ler value precedes a n u m e r a l wi th a larger
value. For instance, 19 is wr i t t en as XVIIII in lieu of the shor te r

Chapter Summary 799

Figure 11.51

representat ion XIX and MMLXXVI, unlike MCMXCVI, is a well-
formed sequence. Excepting M's, C, X, or I should not appear more
than four times in the same sequence, and D, L, or V no more than
once. This makes sense since CCCCC - D, XXXXX - L, and so
on. Design an FSA to recognize the language of such well-formed
sequences of additive Roman numerals.

Develop a g rammar that generates each language over {a,b }.

*7. The set of words that begin and end with a.

*8. The set of words that begin with aa and end with bb.

9. Using BNF, define a g rammar for the language of well-formed nested
parentheses.

10. Use productions instead of BNF to define the g rammar in Exercise 9.

A Moore m a c h i n e M = (S,I, O , f , g , so), named after Edward Moore who
introduced it in 1956, is an FSM consisting of a finite set S of states, a
finite set I of input symbols, a finite set O of output symbols, a t ransi t ion
function f : S • I ~ S, an output function g : S ~ O, and an initial
state so. Draw a transi t ion diagram for the Moore machine defined by each
transit ion table.

11.

$

SO

Sl

S2

S3

f
input

1

SO Sl

83 S2

S2 S3

80 81

12.

input
s o 1

. . . .

SO Sl S3 0

Sl Sl 82 1
s2 s3 s2 1
83 Sl 82 0

Construct a t ransi t ion table for each Moore machine.

13.

1 1 0 1 1

800 Chapter II Formal Languages and Finite-State Machines

E d w a r d F o r r e s t M o o r e (1925-) was born in Baltimore, Maryland. He graduated from Virginia
Polytechnic Institute in 1947 and received his Ph.D. in mathematics from Brown 3 years later. After
teaching at the University of Illinois for a year, he joined the technical staff at Bell Telephone Labs. In
1966, he joined the faculty of the University of Wisconsin, Madison, and taught there until his retirement
in 1985.

Moore has made outstanding contributions to the logical design of switching circuits, automata theory,
graph theory, and database management.

14.

0 0 ff 1

-~ 0 ~ - - ' ~ Y ~ v

1

The ou tpu t genera ted by the Moore machine M - (S,I , O , f , g , so) for the
input s t r ing a l a 2 . . . a m is g(so)g(s l) . . .g(sm) , where si - f (s i - l , a i) and 1
_< i _< m. Find the ou tput produced by the machine in Exercise 13 for each
input.

15. 011 16. 1010 17. 10001 18. 1101101

19. L e t L be a r e g u l a r language. Prove t h a t L R - {xn. . .x] I x l . . . x , , ~ L}
is also regular .

**20. An FSM M - (S,I , O, f , g , so) is s i m p l y m i n i m a l if no ou tpu t rows
in its t rans i t ion table are identical. If l S i - n, I I I - m, and I O i - P,
how m a n y simply min imal FSMs are possible?

Computer Exercises

Write a p rogram to do each task, where E - {a,b }.

1. De te rmine if a s t r ing over Z"

�9 Begins wi th aa.

�9 Ends with bb.

�9 Conta ins exactly one a.

�9 Conta ins at least one a.

�9 Conta ins aba as a substr ing.

�9 Has its n u m b e r of a ' s congruent to 1 mod 3.

Chapter Summary 801

�9 Has an even n u m b e r of a ' s and b's.

�9 Has both its n u m b e r of a 's and b's congruen t to 1 mod 3.

2. Let m denote the n u m b e r of a ' s and n the n u m b e r of b's in a s t r ing over
E. Read in a word over E and see if it has:

�9 m - 0(mod 5) �9 m _-- 3(mod 5)

�9 m _-- 0(mod 3) or m - l (mod 3) �9 m - 0(mod 3) or m -- 2(mod 3)

�9 m - 0 (m o d 3) a n d n - l (m o d 3) �9 m - 0 (m o d 3) a n d n = 2 (m o d 3)

3. For a DFSA with n (< 10) states, labeled 1 t h rough n, read in its n u m b e r
of s ta tes n and t rans i t ion table. Read in a sequence of input s t r ings over
Z and de te rmine if each is accepted by the DFSA.

4. Imp lemen t the uni t delay machine in Example 11.41.

5. Read in two binary n u m b e r s and use the FSM in Example 11.42 to
compute the i r sum.

6. By means of the syntax d iagram in Figure 11.31, de t e rmine if a s t r ing
of charac ters represen ts a valid integer.

7. Ascer ta in with the syntax d iagram in Figure 11.32 w h e t h e r a s t r ing of
charac ters represen ts a valid real number . (Excluding the exponent ia l
form.)

8. Read in the n u m b e r of s ta tes n, the t r ans i t ion table, and a set of input
s t r ings for an FSM with n (< 10) states, labeled 1 th rough n. P r in t the
ou tput produced by each input string.

9. Using a DFSA with n (< 10) states, labeled 1 th rough n, read its n u m b e r
of s ta tes n and t rans i t ion table. De te rmine the corresponding regular
g r ammar .

Exploratory Writing Projects

Using l ibrary and In t e rne t resources, wri te a t e am repor t on each of the
following in your own words. Provide a wel l -documented bibliography.

1. Discuss how BNF rules are used to define p r o g r a m m i n g languages such
as C § § and Java.

2. Discuss Tur ing machines and Church ' s thesis.

3. Explain how vending machines , slot machines , and garage door openers
can be modeled by FSAs.

4. Wri te an essay on Kleene closure.

5. Wri te an essay on different types of FSMs and the i r applications.

802 Chapter II Formal Languages and Finite-State Machines

Enrichment Readings

1. W. J. Barnier, "Finite-State Machines as Recognizers," The UMAP
Module 671 (1986), pp. 209-232.

2. B. Hayes, "On the Finite-State Machine, a Minimal Model of Mouse-
traps, Ribosomes, and the Human Soul," Scientific American, Vol. 249
(Dec. 1983), pp. 19-28, 178.

3. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, Reading, MA, 1979.

4. Z. Kohavi, Switching and Finite Automata Theory, 2nd ed., McGraw-
Hill, New York, 1978.

5. P. Linz, An Introduction to Formal Languages and Automata, D. C.
Heath, Lexington, MA 1990.

6. J. C. Martin, Introduction to Languages and the Theory of Computation,
2nd ed., McGraw-Hill, New York, 1997.

7. M. Sipser, Introduction to the Theory of Computation, PWS, Boston,
1997.

8. W.A. Wulfet al., Fundamental Structures of Computer Science, Addison-
Wesley, Reading, MA, 1981, pp. 1-64.

	sdarticle13

