
Chapter 7 

R e l a t i o n s  

The invention of the symbol - by Gauss affords a striking example of the 
advantage which may be derived from an appropriate notation, and 

marks an epoch in the development of the science of arithmetic. 

- -  G .  B .  M A T H E W S  

F unctions are a special case of relations, which are also used in everyday 
life. Relations have applications to many disciplines, including biology, 

computer science, psychology, and sociology. The EQUIVALENCE state- 
ment in FORTRAN, for example, is based on the relation has the same 
location as (see Example 7.42). Graphs, digraphs, formal languages, finite 
state m a c h i n e s -  all to be discussed in the next four chap te r s - - a re  closely 
related to the theory of relations. 

In this chapter we will examine the concept of a relation, its com- 
puter representations and properties, and different ways to construct new 
relations from known ones. 

We will deal with the following problems, as well as others: 

�9 Is it possible to arrange all n-bit words around a circle in such a way 
that any two adjacent words differ by exactly one bit? 

�9 Can we determine the day corresponding to a given date m/d/y,  where 
y > 1582, the year the Gregorian calendar was adopted? 

�9 Five sailors and a monkey are marooned on a desert island. During the 
day they gather coconuts for food. They decide to divide them up in the 
morning and retire for the night. While the others sleep, one sailor gets 
up and divides them into equal piles, with one left over that he throws 
out for the monkey. He hides his share, puts the remaining coconuts 
together, and goes back to sleep. Later a second sailor gets up and 
divides the pile into five equal shares with one coconut left over, which 
he discards for the monkey. He also hides his share, puts the remaining 
coconuts together, and goes back to sleep. Later the remaining sailors 
repeat the process. Find the smallest possible number of coconuts in 
the original pile. 

437 
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T a b l e  7.1 

�9 The computer  science courses required for a computer  science major  
at a college are given in Table 7.1. In which order can a s tudent  take  
them? 

Number  Course Prerequis i te  

CS 100 Computer Science I None 
CS 150 Computer Science II CS 100 
CS 200 Computer Organization CS 150 
CS 250 Data Structures CS 150 
CS 300 Computer Architecture CS 200 
CS 350 Programming Languages CS 250 
CS 400 Software Engineering CS 250 
CS 450 Operating Systems CS 250, CS 300 

A special class of matrices called boolean matrices is used to s tudy 
relations, so we begin with a brief discussion of such matrices.  

(This section is closely related to Section 3.7 on matrices; you will probably 
find tha t  section useful to review before reading further.)  

A b o o l e a n  m a t r i x  is a matr ix  with bits as its entries. Thus  A - ( a i j ) m  • 

[ 1 0 1 ]  
is a boolean matr ix  if a i j  - 0 or i for every i and j .  For instance, 0 1 0 

[1 
is a boolean matrix, whereas is n o t .  

Boolean Operations and and or 

The boolean operations a n d  (A) and o r  (v), defined by Table 2.1, signal 
the combining of boolean matrices to construct  new ones. Listed below are 
several properties of these bit operations. They can be verified easily, so t ry  
a few. 

Let a and b be arb i t rary  bits. Then: 

�9 a A a = a  

�9 a v a = a  

�9 a A ( b A c ) = ( a A b ) A c  

�9 a v ( b A c ) = ( a v b ) A ( a v c )  

�9 a A b  = b  A a  

�9 a v b = b v a  

�9 a v ( b v c ) = ( a v b ) v c  

�9 a A ( b v c ) = ( a A b ) v ( a A c )  n 

Using the two bit-operations, we now define two operations on boolean 
matrices. 
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Join and Meet 

The j o i n  of the boolean matrices A = ( a i j ) m x n  and B - ( b i j ) m x n ,  denoted 
by A v B, is defined by A v B = (aij  v b i j ) m x n .  Each element  of A v B 
is obtained by o r i n g  the corresponding elements  of A and B. The m e e t  
of A and B, denoted by A A B, is defined by A A B - (aij  A b i j )m • Every 
element  of A A B is obtained by a n d i n g  the corresponding elements of A 
and B. 

The following example i l lustrates these two definitions. 

~ Let 

Find A v B and A A B. 

o ,] Foo ,] 
1 0 and B = 0 1 

S O L U T I O N :  

[,v00v0 l v,] [ , 0 1 ]  
A v B =  O r 1  l v O  O r 1  - 1 1 1 

AA _[ A0 0AO 0 '] 
A1 1 A 0  0 A 1  0 0 

II 

Boolean Product  

The b o o l e a n  p r o d u c t  of the boolean matr ices A - ( a i j ) m x p  and B - 
( b j k ) p x n ,  denoted by A | B, is the matr ix  C - ( c i j )m•  where cij - 

( a l l  A b l j )  v (ai2 A b2j)  v . . .  v (aip A bpj) .  (See Figure 7.1). 

F i g u r e  7.1 

I 
a l l  a12 . . .  a l p  - b l l  . . .  b l j  . . .  b i n  1 Cll . . .  Clj . . .  Cln 

. . . . . . . . . . . . .  i ~  ~ . . . . . . . . .  
ai2 . . .  aip @ b i l  . . .  bij . . .  b n = Oil . . .  cij . . .  t i n  

. . . . .  b ;  . . . . . . . . . . . . . . . . .  am2  . . .  amp  1 . . .  bpj . . .  b p n J  LCml . . .  Cmj . . .  Cmn 

Notice the similarity between this definition and tha t  of the usual  
product of matrices. 

The next example clarifies this definition. 

Let 

A -  0 1 

Find A @ B and B | A, if defined. 

and B=[! i] 
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S O L U T I O N :  
(1) Since the n u m b e r  of columns in A equals the n u m b e r  of rows in B, 

A | B is defined: 

 101J [1!] 
A ( I ) B -  0 1 0 (D 1 

0 

_ r(1 A 1) v (o A 1) v (1 A 0) 
-- L(0A1) V ( 1 A 1 ) V ( 0 A 0 )  

Ol] 
(1 A O) v (0 A 1) v (1 A 0)] 
(0 A O) V (1 A 1) v (0 A O) J 

(2) N u m b e r  of columns i n B  - 2 - N u m b e r  of rows inA. Therefore,  B ( D A  

is also defined: 

B (i) A = 

(1 A 1) V (0 A 0) 
= (1A1)  V ( 1 A 0 )  

(0 A 1) V (0 A 0) 

1 0 1] 
= 1 1 1 

0 0 0 

(1 A 0) v (0 A 1) 
(1 A 0) V (1 A 1) 
(0 A 0) V (0 A 1) 

(1 A 1) v (0 A 0)~ 

J (1 A 1) v (1 A 0) 

(0 A 1) V (0 A 0) 

m 

The fundamenta l  propert ies  of the boolean matr ix  operat ions are listed 
in the following theorem. Their  proofs being fairly s t ra ightforward,  appear  
as rout ine exercises (see Exercises 36-43). 

Let A, B, and C be three boolean matrices. Then: 

�9 A v A  = A  

�9 A v B = B v A  

�9 A v ( B v C ) = ( A v B ) v C  

�9 A v ( B A C ) = ( A v B ) A ( A v C )  

�9 A ( i ) ( B ( D C ) = ( A ( D B ) ( D C  

�9 A A A = A  

�9 A A B  = B  A A  

�9 A A ( B A C ) : ( A A B ) A C  

�9 A A ( B v C ) = ( A A B ) v ( A A C )  

The sizes of the matrices are assumed compatible for the corresponding 
matr ix  operations,  m 
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Boolean Power of a Boolean Matrix 

Let A be an m x m boolean matrix and n any positive integer. The n th  
b o o l e a n  p o w e r  of A, denoted by A In], is defined recursively as follows" 

A [~ - Im (the identity matrix) 

A [nl - A [n-l] QA i fn  > 1 

Let 

The following example illustrates this definition. 

[ li] A -  1 
0 

Compute A [21 and A 131. 

S O L U T I O N :  

I1 1 i l  [ !  A 121 - A [11 (3A - A (3A - 1 1 @ 
0 0 

1!] [11!] 
1 - 1 1 
0 0 0 

Ill i] Ill i] Ill i] A TM - A  121 @A - 1 1 (3 1 1 - 1 1 
0 0 0 0 0 0 

(You can verify that  in this case, A Inl -- A for every n >_ 1.) m 

You will find boolean matrices and their  properties useful in the next 
few sections, so review them as needed. 

Exercises 7.1 

Using the boolean matrices 

~ [~ ~]~ [01 
find each. 

1. A v B  2. A A B  

5. A v ( B v C )  6. A / x ( B / x C )  

Using the boolean matrices 

I 
1 

A -  0 
1 

~ ] ' a n d C - I 0  ~] 

find each. 

3. A @ C  

7. A @ ( B @ C )  

4. C @ A  

8. (A@B) @ C 

01] [i01] [i0!] 0 0 , B =  1 0 , a n d C -  0 
1 0 0 0 1 



442 Chapter 7 Relations 

9. AA (BvC) 

12. (AvB) A(AvC) 

15. (A (i) B ) (!) C 

I0. Av(BAC) 

13. (A A B) v (A v C) 

16. B @ C (!)A 

11. (A A B ) v (A A C) 

14. A (3 (B (3 C) 

17. A @ A @ A  

18. Using the boolean matr ix 

[i0 1] A -  1 0 
0 1 

find A [31 and A I51. 

Let A and B be any two n x n boolean matrices. Find the number  of boolean 
operations needed to compute each. 

19. A v B  20. A A B  21. A @ B  

22. Find the number  of m x n boolean matrices that  can be defined. 

23. Let A be an m x p boolean matrix and B a p x n boolean matrix. Find 
the number  of boolean operations needed to compute A (3 B. 

24. For the boolean mat r ixA in Example 7.3, prove that  A Inl = A for every 
n > l .  

The c o m p l e m e n t  of a boolean matrix A, denoted by A', is obtained by 
taking the one's complement of each element in A, that  is, by replacing O's 
with l ' s  and l ' s  with 0's. Use the boolean matrices A, B, and C in Exercises 
1-8 to compute each. 

25. A' 26. B' 27. (A v B)' 28. A'A B' 

29. (A A B)' 30. A' v B' 31. A A (B' v C') 32. (A (3 B) (i) C' 

Let A and O be two m x n boolean matrices such that  every entry of A is 
1 and every entry of O is 0. Let B be any m x n boolean matrix. What  can 
you say about each? 

33. A v B  34. A A B  35. A' 

Let A, B, and C be any n x n boolean matrices. Prove each. 

36. A v A = A  37. A A A = A  38. A v B = B v A  39. A A B = B A A  

40. A v (B v C) = (A v B) v C 41. A A (B A C) = (A A B) A C 

42. A v ( B A C ) = ( A v B ) A ( A v C )  43. A A ( B v C ) = ( A A B ) v ( A A C )  

Write an algorithm to find each. 

44. The join of two boolean matrices A and B. 

45. The meet of two boolean matrices A and B. 



7.2 Relations and Digraphs 443 

46. The complement of a boolean matr ix  A. 

47. The boolean product of two boolean matrices A and B. 

48. The n th  boolean power of an m x m boolean matr ix A. 

Clearly many relationships exist in the world around us. On the h u m a n  
level, they are parent-child,  husband-wife,  s tudent- teacher ,  doctor-  
patient,  and so on. Relationships exist between numbers  also; the equality 
relation ( - )  and the less-than relation (<) are two such relationships. In 
fact, relationships can exist between any two sets; they are known as 
relations. 

This section presents the concept of a relation and discusses how 
relations can be represented using matrices and graphs. 

Before formally defining a binary relation, let us study an example. 

Consider the sets A - {Tom, Dick, Harry} and B - {Amy, Betsy, Carol, 
Daisy}. Suppose Tom is married to Daisy, Dick to Carol, and Harry  to Amy. 
Let R = { (Tom, Daisy), (Dick, Carol), (Harry, Amy)}. Using the set-builder 
notation, it can also be defined as 

R = {(a, b) E A x Bla is marr ied to b} 

Notice that  R c_ A x B. It is defined using the relation is married to. The 
set R is a b i n a r y  r e l a t i o n  from A to B. �9 

More generally, we make the following definition. 

Binary Relation 

A b i n a r y  r e l a t i o n  R from a setA to a set B is a subset ofA xB. The d o m a i n  
of the relation consists of the first elements in R and the r a n g e  con- 
sists of the second elements; they are denoted by dora (R)  and r a n g e ( R ) ,  
respectively. A binary relation from A to itself is a binary relation o n  A. 

The following example il lustrates these terms. 

~ Let A - {2, 3, 5} and B - {2, 3, 4, 6, 7}. Define a relation R from A to B as 

follows: 

R - {(a, b)la is a factor of b} 

Then R - {(2, 2), (2, 4), (2, 6), (3, 3), (3, 6)}, dom(R) = {2, 3}, and range(R) - 
{2,3,4,6}. m 
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Let R be a relation from A to B. If (a, b) e R, we say a is r e l a t e d  to  b I 
by the relation R; in symbols, we write aRb. If a is not related to b, we I 
write aRb.  For instance, 3 < 5, but  7 ~ 6. (Here the relation is <.) The I 
next example illustrates this further.  I 

Let A be the set of cities and B the countries in the world. Define relation a 

R from A to B, using the phrase is the capital of. So R - {(a, b) e A x BI a 
is the capital of b }. Then Paris R France, but  Toronto R Canada. I 

Relations from a finite set to a finite set can be represented by boolean 
matrices, as defined below. 

Adjacency Matrix of a Relation 

A relation R from a set {al ,a2, . . .  am} to a set {bl,b2,. . .  bn} can be 
represented by the m x n boolean matrix MR -- (mij), where 

1 if aiRbj 
m i j -  0 otherwise 

MR is the a d j a c e n c y  m a t r i x  of the relation R. 

Define a relation R from A - {chicken, dog, cat} to B - {fish, rice, cotton} 
by R = { (a ,b ) laea tsb} .  Then R = {(chicken, fish), (chicken, rice), 
(dog, fish), (dog, rice), (cat, fish), (cat, rice) }. Its adjacency matrix is 

fish rice cotton 

chicken [1 1 i ]  
MR -- dog 1 1 

cat 1 1 m 

F i g u r e  7.2 R 

A B 

Relations can also be represented pictorially. For instance, the relation 
in Example 7.4 is displayed in Figure 7.2; an arrow from an element a in A 
to an element b in B indicates that  a is related to b. 
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Figure  7.3 

The circle X 2 -+- y2 _ 9. 

y 

~, ~ ~X 

Relations can be displayed using familiar g r a p h s  as well. For example, 
the graph of the  relation {(x,y) s R • R Ix 2 +y2 : 9} is the c i rc lex2+y 2 - 9 
with center at the origin and radius 3 (see Figure 7.3). 

Digraphs 

Relations R on a finite set A can be represented pictorially in yet another  
way. We denote every element of A by a point, called a v e r t e x  (or n o d e ) ,  
and each ordered pair (a, b) in R by a directed arc or a directed line segment,  
called an edge ,  from a to b. The result ing diagram is a directed g r a p h  or 
simply a d i g r a p h .  If an edge (a, b) exists, we say that  vertex b is a d j a c e n t  
to  vertex a. (Notice the order of the vertices.) 

The next two examples i l lustrate these definitions. 

Represent the relation R defined on A - {2, 3, 4, 6} by the phrase is a factor 

of  in a digraph. 

S O L U T I O N :  
Notice that  

R - {(a, b) ~ A • A la is a factor of b} 

= {(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)} 

Figure 7.4 shows its digraph. It contains four vertices" 2, 3, 4, and 6. 
Since 3R6, vertex 6 is adjacent to vertex 3. 

Figure  7.4 

ll 
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Notice tha t  the digraph in Figure  7.4 contains an edge (x,x) leaving and 
t e rmina t ing  at the same vertex x. Such an edge is a loop. The digraph in 
Figure 7.4 contains four loops. 

We now tu rn  to the concept of a pa th  in a relation, and hence in a 
digraph. 

Paths in Digraphs and Relations 

Let R be a relat ion on a set A, and let a, b c A .  A p a t h  in R, tha t  
is, in the digraph of R, from a to b is a finite sequence of edges 
(a, xl) ,  ( x l , x 2 ) , . . . ,  (Xn-1, b); the vertices xi 's need not be distinct.  The pa th  
from a to b is also denoted by a-x l-X2 . . . . .  Xn-l-b. The n u m b e r  of edges 
in the path  is its length. A path  tha t  begins and t e rmina tes  at the same 
vertex is a cycle .  A cycle of length one is a loop. 

The next example clarifies these terms. 

Notice tha t  the relat ion in Figure 7.5 contains a pa th  of length three  from 
a to b, namely, a-c-d-b. The pa th  b-c-d-b is a cycle of length three.  The cycle 
b-b is a loop. 

Figure 7.5 a b) 

m 

The next example presents  an in teres t ing  relation in the language of 
binary words. 

( G r a y  C o d e s )  Suppose a switching ne twork  is composed of n switches ai, 
where I _< i < n. Let ai - i denote tha t  switch ai is closed and ai - 0 denote 
tha t  it is open. Every state of the ne twork  can be denoted by the n-bit word 
a l a 2 . . ,  a,,. Let Z '' denote the set of n-bit words, tha t  is, the set of all s tates  
of the network.  For  example, Z 3 _ { 000, 001, 010, 100, 011, 101, 110, 111 }. 
Natural ly,  we are tempted  to ask: Is it possible to test every state o f  the 
circuit by changing the state o f  exactly one switch ? That  is, is it possible to 
list every n-bit word by changing  exactly one bit ? 

Another  definition can lead to rewording the question. Two n-bit words 
are a d j a c e n t  if they differ in exactly one bit, tha t  is, if the H a m m i n g  
distance between them is one. For  example, 010 and 011 are adjacent, 
whereas  001 and 110 are not. 

Define a relation R on E n as aRfl  if~ and fl are adjacent. We can rephrase  
this: Is it possible to a r range  the elements  ~i of E '~ in such a way tha t  
o~iR(~i+l where 1 _< i < m - 1,(~mR(~l, and m - 2n? Tha t  is, is it possible 
to a r range  the n-bit words a round  a circle in such a way tha t  any two 
neighboring words are adjacent? 
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Figure 7.6 110 

011  )1 
0 0 1 ~ 1 0 0  

000 

01 

In teres t ingly  enough,  the  e lements  of ]E 3 c a n  be a r r anged  in this fashion 
(see Figure  7.6): 000, 001, 011, 010, 110, 111, 101, 100. Such an order ing  
is called a Gray code for E 3. More generally,  a Gray code  for E n is an 
a r r a n g e m e n t  of its e lements  a l , a 2 , . . .  ,am such tha t  aiRai+l and amRal ,  
where  1 < i < m - 1. Gray  codes are named  for F r a n k  Gray,  who invented  
them in the 1940s at  wha t  was then  AT&T Bell Labs. 

We can res ta te  our  original quest ion again: Is there a Gray code for E n 
for every n > 1 ? Induct ion  leads to an affirmative answer.  

PROOF (by induction):  
Let P(n)" There  exists a Gray code for every E n. 

Basis  step When n - 1, {0, 1} is clearly a Gray code; so P(1) is t rue.  

Induct ion step Assume P(k) is t rue;  t ha t  is, there  is a Gray  code for Z k. 
Suppose {a l , a2 , . . .  ,ar} is a Gray code, where  r - 2 k. 

To show that P(k + 1) is true: 
Consider the (k + 1)-bit words 0 a l , 0 a 2 , . . . , 0 a r ,  l a r ,  l a r - l , . . . ,  l a l .  

Clearly they form the 2r = 2 k+l e lements  of E k+l. Call t hem ill, f12,. �9 �9 fl2r, 
respectively, for convenience. Since aiRai+l and arRal,fl jRflj+l and 
fl2rRfll, so {ill, f12,.-., fl2r} is a Gray code; tha t  is, P(k + 1) is t rue.  

Thus,  by induction, a Gray  code exists for every E n. 
(Notice tha t  the induct ion step provides a smooth method  for construct-  

ing a Gray code for E k+l from tha t  of E k. This example will be t aken  a bit 
fu r ther  in Chapter  8.) m 

Finally,  we will see how relat ions and functions are  closely related,  
if we recall t ha t  a funct ion f �9 A ~ B is a set of ordered pairs  
(a, b) e A x B such t ha t  every e lement  a i nA  is assigned a unique e lement  
b in B. Consequent ly,  every function can be redefined as a relat ion,  as 
follows. 
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An Alternate Definition of a Function 

A f u n c t i o n  f : A ~ B is a relation from A to B such that: 

�9 Dom(f) = A; and 

�9 If (a, b) e f and (a, c) e f,  then b = c. 

We close this section with an example that  i l lustrates this definition. 

~ Which of the relations R, S, and T in Figure 7.7 are functions? 

F i g u r e  7.7 R S T 

1 a ,~ 1 a ~  ~j~l a 

A B A B A B 

S O L U T I O N :  
The relation R is a function, whereas S is not since dom(S) r A. T is also 
not a function since the same element b in A is paired with two distinct 
elements in B, namely, 2 and 3. i 

Exercises 7.2 

List the elements in each relation from A = {1,3,5} to B = {2,4,8}. 

1. {(a,b) l a < b} 2. {(a,b) l b = a  + l} 3. {(a,b) i a + b = 5 }  

4. {(a,b) J a i s a f a c t o r o f b }  5. {(a,b) l a + b < 3 }  6. {(a,b) l a - b }  

7-12. Find the domain and range of each relation in Exercises 1-6. 

13-18. Find the adjacency matr ix of each relation in Exercises 1-6. 

Represent each relation R on the given set A in a digraph. 

19. {(a,b)la < b}, {2,3,5} 20. {(a,b)la < b}, {2,3,5} 

21. {(a,b)la is a factor ofb}, {2,4,5,8} 

22. { ( a , b ) i b = a + 2 } ,  {2,4,5,6} 

Using the re la t ionR - {(x,y)12x + 3y = 12} on R, determine whether  or not 
each is true. 

23. 3R2 24. 2R3 25. - 3 R 5  26. - 5 R 6  

Using the relation R = {(x,y)ix 2 + y2 = 4} on ]~, determine if each is true. 

27. 2R0 28. 2R2 29. - 2 R 0  30. 4R0 
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Define a relation R on Z by xRy if and only if x - y  is divisible by 5. 
Determine if: 

31. 9R4 32. 13R6 33. 3R8 34. 23R3 

List the elements in the relation R represented by each digraph. 

35. b 36. b 

a c 

d 

37-38.  Find the adjacency matr ix of each relation in Exercises 35 and 36. 

39. Construct  a Gray code for Z 4, where Z = {0, 1}. 

Using the relation in Figure 7.5, find each. 

40. Paths  of length one s tar t ing at a. 

41. Paths  of length two s tar t ing at b. 

42. Number  of paths of length one. 43. Number  of paths of length two. 

44. Number  of cycles of length 45. Number  of loops. 
three. 

Determine if each relation from {a,b,c,d} to {0, 1,2, 3, 4} is a function. 

46. {(a, 0), (b, 1), (c, 0), (d, 3)} 47. {(a, 3), (b, 3), (b, 4), (c, 1), (d, 0)} 

48. {(a, 3), (b, 3), (c, 3), (d, 3)} 49. {(a, 1), (b, 2), (c, 3)} 

Let A and B be finite sets with IAI = m and IBI = n. Find the number  of 
binary relations that  can be defined: 

50. From A to B. 51. On A. 

52. A relation R on the set {1, 2 , . . . ,  n} is given in terms of its elements. 
Write an algori thm to find its adjacency matr ix A. 

53. Write an algori thm to print  the elements of a relation R on { 1, 2 , . . . ,  n} 
using its adjacency matr ix A. 

Since relations from a finite set to a finite set can be represented by boolean 
matrices, the most s traightforward way of implement ing a relation and its 
digraph in a computer  is by its adjacency matrix. 

The second method involves l i n k e d  l ists .  Since some programming lan- 
guages such as FORTRAN do not support  dynamic linked lists, the array 
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representa t ion  of linked lists serves well. (Note:  Arrays are no th ing  but  
matrices.) For example, the digraph in Figure 7.8 contains seven edges, 
arbi t rar i ly  numbered  1 through 7. Store the tails and the corresponding 
heads of each edge in two parallel one-dimensional arrays,  T - (ti) and 
H = (hi), respectively (see Figure 7.9). Notice tha t  t3 - 1 and h3 - 2, so 
an edge exists from vertex 1 to vertex 2, namely, edge 1. Since t7 = 3 and 
h7 - 2, there  is also an edge from vertex 3 to vertex 2, namely,  edge 5. The 
other edges can be read similarly. 

Figure  7.8 3 

1 4 

1 3 

4 

Figure  7.9 
TAIL HEAD 

2 2 

4 3 

1 2 

2 3 

5 2 1 

6 1 4 

7 3 2 

The enumera t ion  of the edges need not begin with edge 1. In this exam- 
ple, edge 1 is stored in t3 and h3. Accordingly, index 3 is stored in a variable 
called START (see Figure 7.10). Fur ther ,  the edges can be stored in any 
order. To find the edge following each edge, an ar ray  N (for NEXT) is used. 
The element  ni+l  locates the successor of edge ni ,  1 < i _< 6. We store 0 in 
n6 to indicate the end of the linked list representa t ion of the digraph, as in 
Figure 7.11. 
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1 

START 
2 

>3 

T H 

2 2 

4 3 

1 2 

4 2 3 

5 2 1 

6 1 4 

7 3 2 
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F i g u r e  7.11 

Static linked list 
representa t ion  of the 
relation. 

T H N 

1 2 2 4 

START 
2 4 3 6 

3 1 2 5 

4 2 3 7 

5 2 1 1 

6 1 4 0 

7 3 2 2 

Most modern  p rog ramming  languages suppor t  dynamic data  s t ructures .  
In this type of language, a linked list consists of a set of n o d e s  and each 
node contains (at least) two fields: a d a t a  f ie ld  and a l i n k  f ie ld  (or p o i n t e r  
f ield) (see Figure 7.12). The data field contains a data  item, whereas  the link 
field contains the address  of the next node in the list. For  instance, consider 
the linked list in Figure 7.13. HEADER contains the address  of the first 
node in the list; it corresponds to START in the previous discussion. The 
link field of the last node contains a special pointer  called the ni l  p o i n t e r  
tha t  signals the end of the list. This pointer  corresponds to 0 in the static 
representat ion;  a slash (/) in the field signifies it. 
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F i g u r e  7 .12  

A typical node. 
Data 
Field 

Link 
Field 

F i g u r e  7 .13  HEADER 
I 

all 

Link 

, _1o .i , I " I "- 

Data 

The relation in Figure 7.13 illustrates the dynamic linked list representa- 
tion. First, for each vertex, create a linked list of vertices adjacent to it. Then 
store the header nodes in an array. The resulting linked representat ion 
appears in Figure 7.14. 

F i g u r e  7 .14  .... 

4 - - .  

We can abbreviate this representation by storing the header nodes in 
an array of pointers, as in Figure 7.15. This simplified version is the 
a d j a c e n c y  l ist  r e p r e s e n t a t i o n  of the digraph and hence of the relation. 

The next example shows how to find the adjacency matrix of a relation 
from its adjacency list representation. 

Using the adjacency list representation of the relation in Figure 7.15, find 
its adjacency matrix. 

SOLUTION:  
The figure indicates vertex 1 is related to 2 and 4; vertex 2 is related to 1, 
2, and 3; vertex 3 is related to 2; and vertex 4 is related to 3. Thus, the 
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F i g u r e  7.15 

adjacency matrix of the relation is 

M R -- 

1 2 3 4 

1 0 1 0 1 

11 i 3 1 0 

4 0 1 

Array of 
pointers 

I 

121 1 ~ 'Ld 

12H 

13H 

I 

II 

Exercise 7.3 

Find the static linked list representation of each relation. 

1. 1 2. 

2 

3 

2 

5 

4 

3-4. Find the adjacency list representation of the relations in Exercises 1 
and 2. 

Find the adjacency matrix of the relation with each adjacency list 
representation. 

0 

, ~i2H 

2 ~121 

3 ~111 

~i3H 

I~121 I~I3H 
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o 

u 

Y 

121 1 14H 

 I3H 
il]%1 ] 

7-8. Draw the digraphs of the relations represented by the adjacency lists 
in Exercises 5 and 6. 

Find the adjacency list representation of the relation with the given 
adjacency matrix. 

. 

1 2 3 4 

1 2 3 1 1 0 1 1 1 1 ~  
1 0 1 0 10. 3 0 1 1 
2 0 
:3 1 4 0 0 1 

Write an algorithm to find the adjacency list representation of a relation R 
on the set {1, 2 , . . . ,  n} using: 

11. The relation, given in terms of ordered pairs. 

12. Its adjacency matrix A. 

13. Write an algorithm to find the adjacency matrix A of a relation on the 
set { 1, 2 , . . . ,  n} from its adjacency list representation. 

Since relations on finite sets can be represented by matrices, their prop- 
erties can be identified from their adjacency matrices. In this section we 
will study the properties of reflexivity, symmetry, antisymmetry, and 
transitivity. 

To begin with, consider the relation R, is logically equivalent to, on the 
set of propositions. Since every proposition is logically equivalent to itself, 
it has the property that xRx for every proposition x. Such a relation is 
reflexive. 
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Ref lex ive  R e l a t i o n  

A relation R on a set A is r e f l e x i v e  if xRx  for every element  x in A, tha t  is, 
if xRx  for every x e A. 

Since every set A is a subset of itself, the relat ion is a subset o f  on its 
power set is reflexive. Similarly, the e q u a l i t y  r e l a t i o n  ( - )  is also reflexive; 
it is denoted by A. Thus, a relation is reflexive if and only if A _c R. 

The next two examples i l lustrate additional reflexive relations. 

Since x x for real number  the relat ion on I~ is reflexive. No < every x, < 

number  is less than  itself, so the less than  relat ion is not reflexive, m 

Which of the following relations on A -  {x,y,z} are reflexive? 

�9 R1 - {(x,x),  (x,y),  (y,y),  (z,z)} �9 R 2  - {(x,x),  (y,y),  (y,z) ,  (z,y)} 

�9 R3 - (~ [the e m p t y  r e l a t i o n ]  �9 R4 = {(x,x), (y,y), (z,z)} 

S O L U T I O N :  
For a relation R on A to be reflexive, every e lement  in A must  be related to 
itself, that  is, (a, a) c R for every a c A. The element  a has three  choices, 
namely, x, y, and z; therefore, the ordered pairs (x,x), (y,y), and (z,z) mus t  
be in the relation for it to be reflexive. Consequently,  the relations R1 and 
R4 are reflexive, whereas R2 and R3 are not. m 

How can we characterize the adjacency mat r ix  M = (mij) of a reflexive 
relation on the set A = {al, a2 , . . ,  an }? A relat ion R on A is reflexive if 
and only if aiRai for every ai in A. Thus,  R is reflexive if and only if 
mii = 1 for every ij tha t  is, if and only if the main diagonal elements  of 
MR are all l ' s ,  as Figure 7.16 shows. 

F i g u r e  7 . 1 6  

M R 

1 

1 

J,, 

The digraph of a reflexive relation must  contain a loop at  each vertex, 
since every element  of A is related to itself; see Figure 7.16. 
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N u m b e r  of Ref lexive  R e l a t i o n s  

We can use the adjacency matr ix  MR of a relat ion R on a set A to compute  
the number  of reflexive relations tha t  can be defined on A, as the following 
example demonstrates .  

~ ~ ~ ~ l  Find the number  of reflexive relations R tha t  can be defined on set wi th  a 

n elements.  

S O L U T I O N :  
Since R is reflexive, every element  on the main diagonal of MR is 1; there  are 
n such elements.  Since MR contains n 2 elements,  there  are n 2 - n - n(n - 1) 
elements tha t  do not lie on the main diagonal; each can be a 0 or 1; so each 
such element  mij has two choices. Thus, by the multiplication principle, we 
can form 2 n(n-1) such adjacency matrices,  tha t  is, 2 n(n-1) reflexive rela t ions 
onA. ll 

For an exploration of symmetr ic  and an t i symmetr ic  relations, again let R 
be the relation, is logically equivalent to, on the set of propositions. I fx  and 
y are any two propositions such that  xRy, then  yRx. Thus xRy implies yRx.  

On the other  hand, let x and y be any two real numbers  such tha t  x < y 
and y < x. Then x - y. Thus the relation R(_<) has the property tha t  if xRy 
and yRx, then x - y. 

These two examples lead us to the next definitions. 

S y m m e t r i c  and A n t i s y m m e t r i c  Re la t i ons  

A relation R on a set A is s y m m e t r i c  if aRb implies bRa; tha t  is, if (a, b) 
R, then (b,a) ~ R. It is a n t i s y m m e t r i c  if aRb and bRa imply a - b. 

By the law of the contrapositive, the definition of an t i symmet ry  can be 
restated as follows: A relation R on A is a n t i s y m m e t r i c  if whenever  a r b, 
ei ther a2~b or b~Ra, tha t  is, ~(aRb A bRa). Thus  R is an t i symmetr ic  if there  
are no pairs of distinct elements a and b such tha t  aRb and bRa. 

The next three  examples demonst ra te  symmetr ic  and an t i symmetr ic  
relations. 

~ Which of the following relations symmetric? Ant isymmetr ic?  o n  {x,y,z} are 

�9 R1 = {(x,x), (y,y), (z,z)} 

�9 R 2 -  {(x,y)} 

" R3 - {(x,y), (y,x)} 

�9 R4 = {(x,x), (x,z), (z,x), (y,z)} 

S O L U T I O N :  
The relations R1 and R3 are symmetric.  R2 is not symmetric,  since (y,x) 
is not in R2. Similarly, R4 is not symmetric.  R1 and R2 are ant isymmetr ic ,  
but  R3 and R4 are not. ll 
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~ The relation is logically equivalent to on the set of propositions is symmet-  
ric. Is it ant isymmetr ic?  Suppose p - q and q - p; this does not imply tha t  
p = q, so the relat ion is not ant isymmetr ic ,  m 

~ The relation < on I~ is not symmetric,  since x < y does not imply tha t  y < x. 
If, however, x _< y and y < x, then  x = y, so the relat ion is ant isymmetr ic .  

m 

These two examples demonst ra te  tha t  a symmetr ic  relation need not be 
ant i symmetr ic  and vice versa. 

As for the adjacency matr ix  of a symmetr ic  relation, a relat ion R on 
{a l ,a2 , . . .  ,an} is symmetr ic  only if ai~Raj implies aj~Rai; tha t  is, only 
if, mij = mji. Thus,  R is symmetr ic  if and only if MR is symmetric;  see 
Figure 7.17. 

F i g u r e  7.17 

M R = ~ o ~  

Graphically, this means if a directed edge runs  from ai to aN, then  one 
should run from aj to ai. In other words, every edge must  be bidirectional. 

For a relation R to be ant isymmetr ic ,  if ai ://: aj ei ther  aizRaj or ajzRai. 
In other words, if i r j and mij - 1, then  m j i  - -  0 ;  tha t  is, ei ther mij - 0 
o r  m j i  = 0; see Figure 7.18. 

F i g u r e  7.18 

M R = 
~ ~ 

Geometrically, if a directed edge runs  from ai to aj, one should not run  
from aj to ai; tha t  is, no edges are bidirectional. 

~ Determine if the relation R on {a, b, c} defined by 

El lil M R - -  0 0 
0 1 

is ant isymmetr ic .  
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SOLUTION:  
Consider  the  cases i r j and mij  - 1, where  1 < i , j  < 3. Clearly, m 1 2  - -  

1 ~: 0 - m21 and m32 : 1 ~: 0 - m23. Thus,  when  i ~: j ,  e i ther  mij  - 0 or 
mji  = 0. Therefore,  the  re la t ion is an t i symmet r i c ;  see Figure  7.19. (Notice 
tha t  m l l  = m33 : 1 and m22 -=- 0, bu t  this  does not violate the  condit ion 
for an t i symmet ry . )  

F i g u r e  7.19 -.b 

m 

Number of Symmetric Relations 

Again, the  adjacency mat r ix  of a re la t ion on a set A can be effectively used 
to de te rmine  the n u m b e r  of symmet r i c  re lat ions tha t  can be defined on A. 
The following example  demons t r a t e s  this. 

Find the  n u m b e r  of symmet r i c  re la t ions  t ha t  can be defined on a set wi th  

n elements .  

SOLUTION: 
Let R be a re la t ion on the set and let M R  -- (mij),z • Then mij  - 1 if and 
only if mji - 1 for every i and j .  So each e lement  mij  below the main  diag- 
onal de te rmines  uniquely  the corresponding e lement  mji above the  ma in  
diagonal; in o ther  words, each mji  has one choice (see Figure  7.20). 

Fi gur e  7.20 -1 1 . . .  1- 
1 

1 
1_ 

F i g u r e  7.21 

Each e lement  has two 
choices. 

- ~ 1  1 . . .  1- 

Now, each e lement  on or below the  main  diagonal  has two choices: 0 or 
1 (see Figure  7.21). There  are 1 + 2 + . . .  + n - n ( n  + 1)/2 such e lements .  
So, by the mul t ip l icat ion principle, the  n u m b e r  of such adjacency mat r ices  
equals 2n(n+l)/2; t ha t  is, we can define 2 n(n+l)/2 symmet r i c  re la t ions  on the  
set. ll 
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Notice t ha t  the less- than relat ion on IR has the proper ty  tha t  i fx < y and 
y < z, then  x < z. Accordingly, the  order  re la t ion < is said to be t ransi t ive .  

More generally,  we make  the following definition. 

Trans i t ive  Re la t ion  

A relat ion R on A is t r a n s i t i v e  if aRb and bRc imply aRc; t ha t  is, whenever  
a is re lated to b and b is related to c, a is re la ted to c. 

The next  th ree  examples  i l luminate  this definition. 

Once again, consider the  relat ion is logically equivalent to on the set of 
propositions. I fp  _= q and q - r, then  p = r, so the re la t ion = is t ransi t ive.  

m 

Let A be the set of courses offered by a ma thema t i c s  depar tmen t .  Define a 
relat ion R on A as follows: xRy if course x is a prerequis i te  for course y. The  
relat ion R is t rans i t ive  (Why?). (R is the  p r e c e d e n c e  r e l a t i o n . )  m 

Dete rmin ing  if a relat ion R is t rans i t ive  can be t ime-consuming,  espe-  
cially if the  re la t ion contains  many  elements .  We mus t  look at  all possible 
ordered pairs  of the form (a,b) and (b,c), t hen  ascer ta in  if the  e lement  
(a,c) is also in R, as the  next  example i l lustrates.  

~ Which of the following relat ions on {a, b,c} are t ransi t ive? 

�9 R1 = {(a,b),  (b,c),  (a,c)} �9 R3 = {(a ,a) ,  (b,b), (c,c)} 

�9 R2 = {(a ,a) ,  (a,b),  (a ,c) ,  (b,a) ,  (b,c)} �9 R4 = {(a,b)} 

S O L U T I O N :  
The relat ion R1 is t ransi t ive;  so are R3 and R4 by default.  In re la t ion R2, 
(b, a) e R2 and (a, b) c R2, but  (b, b) r R2. So, R2 is not t ransi t ive,  m 

As for the d igraph of a t rans i t ive  re la t ion R, whenever  the re  is a directed 
edge from a to b and one from b to c, one also runs  from a to c. 

Trans i t ive  relat ions are explored fu r the r  in Section 7.7. 

Exercises 7.4 

Determine  if the given relat ion on {a, b, c, d} is reflexive, symmetr ic ,  
an t i symmetr ic ,  or t ransi t ive.  

1. {(a,a), (b,b)} 2. {(a,a), (a,b), (b,b), (c,c), (d,d)} 

3. EJ 4. {(a,b), (a, c), (b, c)} 



460 Chapter 7 Relations 

Is the relation has the same color hair as on the set of people: 

5. Reflexive? 6. Symmetric? 

7. Antisymmetric? 8. Transitive? 

9-12.  Redo Exercises 5-8 using the relation lives within 5 miles o f  on the 
set of people. 

13-16. Let ]E n denote the set of n-bit words. Define a relation R on ~n as 
xRy if the Hamming  distance between x andy  is one. Redo Exercises 
5-8 using the relation R. 

In Exercises 17-19, the adjacency matrices of three relations on {a, b, c} are 
given. Determine if each relation is reflexive, symmetric,  or ant isymmetr ic .  

EI~ I!111 Ei~ 17. 0 1 18. 0 1 19. 1 
0 0 0 0 1 

When is a relation on a set A not: 

20. Reflexive? 21. Symmetric? 22. Transitive? 

Give an example of a relation on {a, b, c} that  is: 

23. Reflexive, symmetric,  and transitive. 

24. Reflexive, symmetric,  but  not transitive. 

25. Reflexive, transitive, but  not symmetric. 

26. Symmetric,  transitive, but  not reflexive. 

27. Reflexive, but  neither symmetric nor transitive. 

28. Symmetric,  but  neither transit ive nor reflexive. 

29. Transitive, but  neither reflexive nor symmetric.  

30. Neither reflexive, symmetric,  nor transitive. 

31. Symmetric,  but  not antisymmetric.  

32. Antisymmetric,  but  not symmetric. 

33. Symmetric and antisymmetric.  

34. Neither symmetric nor antisymmetric.  

In Exercise 35-38, complete each adjacency matr ix of a relation on {a, b, c} 
in such a way that  the relation has the given property. 

01 !1 35. - 1 , reflexive 36. 0 , symmetric  
0 ~ ~ 
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[ !  - ~ ]  [--1 1 ! 1  37. 1 , ant isymmetr ic  38. 1 , t ransi t ive 
1 

39. When will a relation R on a set A be both symmetric and anti- 
symmetric? 

A relation R on a set A is i r r e f l e x i v e  if no element of A is related to itself, 
tha t  is, if (a,a) r R for every a e A. Determine if each relation is irreflexive. 

40. The less-than relation on IR. 41. The relation is a factor of  on 1~. 

42. The relation is a parent of  on the set of people. 

Determine if each relation on {a, b, c} is irreflexive. 

43. {(a,a)} 44. {(a,b), (b,b), (a,c)} 

45. { (b, a), (c, a) } 46. 0 

Characterize each for an irreflexive relation on a finite set: 

47. Its adjacency matrix. 48. Its digraph. 

A relation R on a set A is a s y m m e t r i c  if whenever  aRb, b~a.  Determine 
if each relation is asymmetric.  

49-51.  The relations in Exercises 40-42. 

52. {(a,a), (b,b), (c,c)} on {a,b,c} 53. {(a,b), (a,c), (b,b)} on {a,b,c} 

54. {(a,b), (b,c), (c,a)} on {a,b,c} 

For an asymmetric  relation on a finite set, characterize: 

55. Its adjacency matrix. 56. Its digraph. 

Find the number  of binary relations that  can be defined on a set of two 
elements that  are: 

*57. Reflexive. 

*59. Reflexive and symmetric. 

"61. Irreflexive. 

*58. Symmetric. 

*60. Antisymmetric.  

*62. Asymmetric.  

*63. Prove: A relation R on a finite set is t ransit ive if M~ I < MR, where 
(aij) <_ (bij) means aij <_ bij for every i and j .  

Jus t  as sets can be combined to construct  new sets, relations can be com- 
bined to produce new relations. This section presents  five such operations, 
three of which are analogous to the set operations of union, intersection, 
and complementation.  
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Union and Intersection 

Let R and S be any two relat ions from A to B. Their  union  and intersec-  
tion, denoted by R u S and R n S, respectively, are defined as R u S - 
{(a, b) I aRb v aSb} and R n S = {(a, b) I aRb/x aSb}. Thus  a(R u S)b i faRb 
or aSb. Likewise, a(R n S)b if aRb and aSb. 

The next two examples i l lustrate  these definitions. 

Consider the relat ions R = {(a,a), (a,b), (b,c)} and S - {(a,a),  (a,c), (b,b), 
J | 

(b, c), (c, c)} on {a, b, c} (see Figures 7.22 and 7.23). Then  R U S = { (a, a), 
(a,b), (a,c), (b,b), (b,c), (c, c)} a n d R  AS = {(a, a), (b, c)}. 

Figure 7.22 

Digraph of R. 

b 

c 

Figure 7.23 

Digraph of S. 

G 
Figure 7.24 

Digraph of R u S. 

Figure 7.25 

Digraph of R N S. 

Graphically, R u S consists of all edges in R together  with those in 
S (see Figure 7.24), whereas  R n S consists of all common edges (see 
Figure 7.25). m 
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Let R and S be the relations < and > on IR, respectively. Then R u S consists 
of all possible ordered pairs IR x IR and R A S is the equality relation, m 

We can use the adjacency matrices of relations R and S to find those of 
their  union and intersection. By definition, an entry in MRuS is 1 if and 
only if the corresponding element of MR or M s  is 1; tha t  is, if and only if 
the corresponding element of their  join, MR v M s ,  is 1. Since MRuS and 
MR v M s  are of the same size, MRuS -- MR v Ms .  Similarly, an element 
of MRnS is 1 if and only if the corresponding element of MR A MS  is 1, so 
MRnS -- MR A MS.  

Theorem 7.3 summarizes  these conclusions. We leave a formal proof as 
an exercise (see Exercise 62). 

Let R and S be relations on a finite set. Then MRuS -~ MR v M s  and MRnS -- 

MR A MS.  m 

The following example i l lustrates this theorem. 

~ Using the adjacency matrices of the relations R and S in Example 7.24 find 

MRuS -- MR v M s  and MRnS -- MR A MS.  

S O L U T I O N :  
We have 

[ilZ] [i~ M R -  0 and M s -  1 
0 0 

By Theorem 7.3, 

[i' '] MRuS -- MR v MS - 1 1 
0 1 

['0Z] 
and MRnS -- MR A MS = 0 0 

0 0 

These matrices can recover the actual elements ofR u S and R A S obtained 
in Example 7.24. m 

Another  way to combine two relations is quite similar to the composition 
of functions we studied in Section 3.5. 

Composition of Relations 

Let R be a relation from A to B, and S a relation from B to C. The c o m p o -  
s i t i o n  of R and S, denoted by R | S, is defined as follows. Let a ~ A and 
c ~ C. Then a(R O S)c if there exists an element b in B such tha t  aRb and 
bSc, as in Figure 7.26. 
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F i g u r e  7.26 

Chapter 7 Relations 

R@S 

( .) 
A B C 

The next example illustrates this definition. 

Let A -  { a , b , c } , B -  {1,2,3,4}, and C -  {w,x,y,z}.  Using the relations 
R = {(a, 1), (a, 3), (b, 2)} fromA toB a n d S  = {(1,x), (1,y), (2, w), (2,z), (4,y)} 
from B to C (see Figure 7.27), find R | S. 

SOLUTION: 
Since aR1 and 1Sx, a(R@S)x. Similarly, a(R@S)y, b (R|  and b(R@S)z. 
Thus, R @ S = {(a,x), (a,y), (b, w), (b,z)}. 

Pictorially, all we need to do is simply follow the arrows from A to C in 
the figure. (Try this approach.) 

F i g u r e  7.27 ROs 

.i 
2 x 
.3 

A B C II 

Databases 

The next example gives an interesting application of the composition 
operation to the theory of databases. 

~ Suppose a database consists of two files F1 and F2, given by Tables 7.2 
and 7.3, respectively. File F1 can be considered a relation from the set 
of names to the set of telephone numbers and file F2 a relation from the 
set of telephone numbers to the set of telephone bills. Then F1 | F2 is 
a relation from the set of names to the set of telephone bills. In other 
words, F1 | F2 is a file of names and their corresponding telephone bills 
(see Table 7.4). 
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T a b l e  7.2 
Name Te lephone  number  

Hall 123-4567 
Berkowitz 225-5061 
Chand 124-3987 
Benson 239-3883 
Scott 534-3434 
Abrams 345-5678 

T a b l e  7.3 
Te lephone  number  Bill 

123-4567 39.45 
123-0011 25.00 
243-1111 47.50 
124-3987 23.35 
124-8958 73.30 
534-3434 95.65 
345-5678 51.95 
128-9876 64.85 

T a b l e  7.4 
Name Bill 

Hall 39.45 
Chand 23.15 
Scott 95.65 
Abrams 51.95 

The adjacency matr ices of the relat ions R, S, and R @ S display an 
in t r iguing connection. To see this, from Example  7.27, we have: 

i oli] ~176 i M R  -- 1 0 M s  - 0 0 
0 0 0 0 ' 

0 1 

and 

IZl l Z] M n e s  - 0 0 
0 0 
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Then  

[101 i] 0i11000 
MR Q M s  - 0 1 0 | 0 0 

0 0 0 0 1 

[!11 !] 
-- 0 0 -- MRQS 

0 0 
m 

More generally, we have the following result.  

LetA,  B, and Cbe  finite sets. Let R be a relation f romA to B, and S a relat ion 
from B to C. Then  MRQS = MR Q M s .  

P R O O F :  

Let A = {a l ,a2 , . . .  ,am}, B = {bl ,b2, . . .  ,bn}, and C = { c 1 , c 2 , . . .  ,Cp}. Then  
the matrices M R , M s , M R Q s ,  and MR Q M s  are of sizes m x n, n x p, m • p, 
and m x p, respectively. 

Let MRQS -- (xij) and MR Q M s  - (Yij). Then xij - 1 if and only if 
ai(R Q S)cj. But ai(R Q S)cj if and only if aiRbk and bkScj for some bk in B. 
Thus,  xij = 1 if and only ifYij - 1, so xij - Yij for every i andj .  Consequent ly ,  
MRQS = MR Q M s .  m 

The definition of composit ion can be extended to a finite n u m b e r  of 
relations. Accordingly, we now define the n th power of a re lat ion us ing  
recursion. 

R e c u r s i v e  D e f i n i t i o n  of R n 

Let R be a relat ion on a set A. The n t h  p o w e r  o f  R,  denoted by R n, is 
defined recursively as 

R n - I R  i f  n - 1 

I R n-1 G R otherwise 

Geometrically, R n consists of the endpoints  of all possible pa ths  of length 
n. Thus  aR  nb if a pa th  of length n exists from a to b. 

The next two examples i l luminate  this definition 
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Using the re la t ion R - {(a, b), (b, b), (c, a), (c, c)} on {a,b,c}, find R 2 and R 3. 

S O L U T I O N :  

�9 R 2 - R @ R - {(a, b), (b, b), (c, a) ,  (c, b), (c, c)} 

�9 R 3 - R 2 | R = {(a, b), (b, b), (c, a) ,  (c, b), (c ,c )}  - R 2 

The digraphs of the relat ions R and R 2 are displayed in Figures  7.28 and 
7.29, respectively. 

F i g u r e  7 . 2 8  

Digraph of R. 
a y  o 

v Q 

F i g u r e  7 . 2 9  

Digraph of R 2 - R 3. 

m 

Define a relat ion R on the set of all U.S. cities as follows- xRy if there  is 
a direct flight from city x to city y. Then  xR2y if there  is a direct  flight 
from city x to some city z and a direct flight from city z to city y. Thus  R 2 
consists of the endpoints  of all airl ine routes  in R passing th rough  exactly 
one city. More generally,  R n consists of the endpoints  of all air l ine routes  
in R passing th rough  exactly n - 1 cities, m 

Let R be a re la t ion on a finite set. Then,  by Theorem 7.4, MRQ R -- 
MR (5)MR; tha t  is, M R 2  - -  (MR) 121. 

More generally,  we have the following result .  

Let R be a relat ion on a finite set and n any positive integer.  Then  MR,, = 
(MR)[nl. m 

For the relat ion R in Example  7.29, find MR2 and MR3. 

S O L U T I O N :  
Notice tha t  

[ili] M R - -  1 
0 
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[ili] Iili] [il!] MR9 = (MR) 12I -- 1 (3 1 = 1 
0 0 1 

MR3 -- (MR) 131- MI l l (3  MR 

[ili] iilil [!1!] - -  1 @ i - -  1 

1 0 1 

Notice t h a t  MR2 and  MR3 are the  adjacency mat r ices  of the  r e l a t ions  R 2 
and R 3, obta ined  in Example  7.29. m 

The next  t h e o r e m  tells us more  abou t  powers  of t r ans i t ive  re la t ions ,  and  
we will use it in Section 7.7. 

Let  R be a t rans i t ive  re la t ion  on a set A. Then  R n c_ R for every  posi t ive 
in teger  n. 

P R O O F  (by  P M I ) :  
When  n - 1 ,R 1 c_ R, which is t rue.  Suppose R k c_ R for an  a r b i t r a r y  
positive in teger  k. 

To show that  R k+ l c R" 
Let (x,y) e R t~+l. Since R k+l - R k (3 R, (x,y) E R k Q R. Then ,  by defi- 

nit ion, the re  is a z in A such tha t  (x,z) ~ R ~ and (z,y) ~ R. But  R k _c R, 
by the  induct ive hypothesis .  Consequent ly ,  (x,z) ~ R. Thus  (x,z) E R and  
(z,y) ~ R, so (x,y) e R by t rans i t iv i ty .  Thus  R k+ 1 c__ R. 

Thus ,  by induct ion,  R n c_ R for every n > 1. m 

We conclude this section wi th  an example  to i l lus t ra te  th is  t heo rem.  

Notice t h a t  the re la t ion  R -  {(a,a), (a,b), (a, c), (b, c) } on {a,b,c} (see 
Figure  7.30) is t rans i t ive .  You may  verify that :  

R 2 - R (3 R - {(a, a), (a, b), (a,c)} c R 

R 3 - R 2 (3 R = {(a,a), (a, b), (a, c)} _c R 

R 4 - R 3 Q R - {(a,a), (a, b), (a,c)} c_V_ R 

(In fact, R n - R 2 for every in teger  n > 2, so R n c_ R for every n > 1. See 
Exercise 7.38.) 

F i g u r e  7.30 

Digraph of R. 

b 

m 
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Exercises 7.5 

1. Using the relat ions R = {(a,b), (a,c), (b, b), (b,c)} a n d S  = {(a,a),  (a, b), 
(b, b), (c, a) } on {a, b, c}, find R U S and R n S. 

2. Redo Exercise 1 us ing the relat ions R = {(a,a), (a,b), (b,c), (b,d)} and 
S = {(a, b), (b, b), (b, c), (c,a), (d, a)} on {a,b,c,d}. 

3. Let R and S be the relat ions < and - on R, respectively. Identify R u S 
a n d R  AS. 

4. With the adjacency matr ices  of the relat ions R and S in Exercise 1, find 
those of the relat ions R u S and R n S. 

5. Redo Exercise 4 us ing the relat ions in Exercise 2. 

U s i n g t h e  re la t ionsR = {(a, a), (a, b), (b, c), (c, c)} a n d S  = {(a, a), (b, b), (b, c), 
(c, a) } on {a, b, c}, find each. 

6. R Q S  7. S Q R  8. R 2 9. R 3 

Let R be a relat ion from {a, b, c} to { 1, 2, 3, 4} and S a relat ion from { 1, 2, 3, 4} 
to {x,y,z}. Find R Q S in each case. 

10. R - {(a, 2),(a, 3),(b, 1),(c, 4)} a n d S  - {(1,x) ,(2,y) ,(4,y) ,(3,z)} 

11. R - {(a, 1), (b, 2), (c, 1)} and S - {(3,x), (3,y), (4,z)} 

Using the following adjacency matrices of relat ions R and S on {a, b, c}, find 
the adjacency matr ices  in Exercises 12-19. 

E J J 
1 0 1 0 1 1 

MR = 0 1 0 Ms  - 0 0 
0 1 1 0 1 

12. MR| S 13. MS| 14. MR4 15. (MR) [41 

16. Define a relat ion R on the set of U.S. cities as follows: xRy if a 
direct communica t ion  link exists from city x to city y. How would you 
in terpre t  R27 Rn? 

17. Redo Exercise 16 using the relat ion R on the set of all countries in 
the world, defined as follows: xRy if country  x can communica te  with 
country  y directly. 

The c o m p l e m e n t  and i n v e r s e  of a relat ion R from a set A to a set 
B, denoted by R' and R -1 respectively, are defined as follows: R' - 
{(a, b) I aRb} and R -  1 _ {(a, b) I bRa}. So R' consists of all e lements  in 
A x B tha t  are not  in R, whereas  R -1 consists of all e lements  (a,b), 
where (b,a) e R. Using the relat ions R = {(a,a), (a,b), (b,c), (c,c)} and 
S - {(a, a), (b, b), (b, c), (c, a)} on {a,b,c}, find each. 
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18. R' 19. R -1 20.  MR1 21.  ( M R ) '  

22. MR-1 23. (MR) T 24. Ms1 25. ( M s )  T 

Using the relat ions R - {(a, 1), (b, 2), (b, 3)} and S - {(a, 2), (b, 1), (b, 2)} 
from {a, b} to { 1, 2, 3}, find each. 

26. R' 27. R -1 

30. R' N S' 31. (R N S)' 

34. ( R U S )  -1 35. R -1 U S  -1 

28.  (R')' 29.  ( R - 1 ) - I  

32.  R' u S' 33.  (R u S)' 

36.  R -1 n S -1  37.  (R n S )  -1  

38. For  the relat ion R in Example 7.32, prove tha t  R n - R 2 for every n > 2. 

Let R and S be relat ions on a finite set. Prove each. 

39. M R  -- ( M  R 1 ) 40. M R_ 1 --  ( M R  ) T 

Let R and S be relat ions from A to B. Prove each. 

41. (R -1)-1 __ R 

43. I f R  c_ S, then  R -1 c_ S -1 

45. (R n S)' - R' u S' 

47. (R 5 S )  -1 - R - 1 N S  -1 

42. If R _c S, then  S' _ R'  

44. (R u S)' - R' n S' 

46. (R U S )  - 1  - R -1 u S - 1  

Let R and S be relat ions on a set. Prove each. 

48. R is reflexive if and only if R-1 is reflexive. 

49. R is symmetr ic  if and only if R' is symmetric.  

50. R is symmetr ic  if and only if R-1  is symmetric .  

51. R is symmetr ic  if and only if R-1  = R. 

52. If R and S are symmetric,  R u S is symmetric.  

53. If R and S are symmetric,  R N S is symmetric.  

54. If R and S are transit ive,  R n S is transit ive.  

55. Disprove: The union of two t ransi t ive relat ions on a set is t ransi t ive.  

56. LetA, B, C, a n d D  be any sets, R a relat ion f romA to B, S a relat ion from 
B toC,  and T a relation from C t o D .  Prove t h a t R @ ( S Q T )  = ( R @ S ) @ T .  
( a s s o c i a t i v e  p r o p e r t y )  

Let R and S be two relations from A to B, where IAI = m and IBI = n. Using 
their  adjacency matrices, write an a lgor i thm to find the adjacency mat r ix  
of each relation. 

57. R u S  58. R N S  59. R' 60. R -~ 

61. Let X = (xij) be the adjacency matr ix  of a relation R from A to B 
and Y = (Yij) tha t  of a relat ion S from B to C, where IAI = m, IBI = n, 
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and ICI = p. Write  an a lgor i thm to find the adjacency mat r ix  Z = (z i j )  

of the relat ion R | S. 

*62. Prove Theorem 7.3. 

We can use the various powers R n of a relat ion R to const ruct  a new relation,  
called the connectivity relation. This section defines tha t  new relat ion and 
then  shows how to compute  it. 

Connectivity Relation 

Let R be a relat ion on a set A. The c o n n e c t i v i t y  r e l a t i o n  of R, denoted 
by R ~ ,  is the union of all powers of R: 

R ~ --- R u R 2 u R 3 U R 4 u . . .  u R n u . . .  

(:X$ 

= U R n  

n--1 

So MR.. .  --- M R  v M R 2  v M R S  v . . . 

Geometrically,  a R a b  if there  is a pa th  of some length n from a to b. The 
connectivity relat ion consists of the endpoints  of all possible pa ths  in R. 

. . . . . . . . . . . . . . . . . . .  

The next two examples show how to find R ~ .  

Find the connectivity relat ion R ~ of the relat ion R - { (a, a), (a, b), (a, c), 
(b,c)} on { a , b , c } .  

S O L U T I O N :  
From Example 7.32, R n - R 2 for every integer  n > 2. So 

R ~ - R u R 2 u R 3 U R 4 u . . .  

= R U R  2 

- {(a, a), (a, b), (a, c), (b, c)} m 

Find the connectivity relat ion R ~ of the relat ion R - { (a, b), (b, a), (b, b), 
(c,b)} on { a , b , c } .  
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a 

Dig raph  of  R. 

S O L U T I O N :  
R 2 = R | R - {(a,a),  (a,b),  (b,a),  (b,b), (c,a), (c,b)} (see F i g u r e s  7.31 
a nd  7.32.). 
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F i g u r e  7.32 

Digraph  of  R 2. 

R 3 - R 2 Q R - {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)} - R 2 

R 4 - R 3 Q R - {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)} - R 2 

In fact R ~ - R 2 for every  n > 2. Thus ,  

R ~ - R u R 2 - {(a, a), (a, b), (b, a), (b, b), (c,a),  (c, b)} m 

We can also d e t e r m i n e  connec t iv i ty  u s i n g  the  ad jacency  m a t r i x  of  a 
re la t ion .  

U s i n g  the  ad jacency  m a t r i x  of  the  re la t ion  R in E x a m p l e  7.34, find its 
connec t iv i ty  re la t ion.  

S O L U T I O N :  
Since R = {(a, b), (b, a), (b, b), (c, b)}, 

[Zii] M R - -  1 
1 

[11i] 
MR3 -- MR2 @ MR -- 1 1 

1 1 

[11i] MRe -- MR G MR -- 1 1 
1 1 

[11i] MR4 -- MR3 @ MR -- 1 1 
1 1 
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Then 

MR~ -- MR V MR2 V MR3 V . . . 

= MR V MR2 

[lli] -- 1 1 
1 1 

(Verify this.) 

Thus R ~ = {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)}, as in Example 7.34. II 

Theorem 7.7 comes in handy when comput ing R ~.  With the theorem,  
only the first n powers of R are needed to compute it, where n - IAI. 

Let R be a relation on a set with size n. Then 

R ~ - R u R 2 u R 3 u . . .  u R n 

MR~ -- MR v MR2 v MR3 v . . .  v MR,, 

= MR v (MR)I21 v (MR)I31 v . . .  v (MR) Inl II 

The next example i l lustrates this theorem. 

Find R ~ of the relation R on {a, b, c, d} defined by 

M R - -  

0 1 0 0 

i 0 1 ! 0 0 
0 0 

S O L U T I O N :  

MR2 = MR G MR -- 

MR4 = MR3 (~ MR -- 

1 

i 
1 
0 
1 
0 

0 0 1 

i M R a - - M R 2 @ M R - -  i O1 

0 

0 

0 1 
1 0 
0 0 
1 0 
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By Theo rem 7.7, 

1 1 1 1 

MR~ - -  MR v MR2 v MR3 v MR4 = 1 1 1 1 
1 1 1 1 
1 1 1 1 

Thus  R ~ - {(a,a),  (a,b), (a,c), (a ,d) ,  (b,a), (b,b), (b,c), (b,d), (c,a), (c,b), 
(c, c), (c, d), (d, a), (d, b), (d, c), (d, d) }. (You may  verify this us ing  the d igraph  
of R.) I 

We can use Theorem 7.7 to develop an a lgor i thm for comput ing  M R S ,  
which yields the connectivi ty re la t ion of a relat ion R. It is given in 
Algori thm 7.1. 

Algorithm Connectivity Relation (MR,MR~) 
(* This algori thm uses the adjacency matr ix MR of a re la t ion  R on a set 

with size n and computes that of i t s  connect iv i ty  re la t i on ,  using 
Theorem 7.7. *) 

O. Begin (* algori thm *) 
(* I n i t i a l i z e  MR~ and B, where B denotes the i th  boolean 

power of MR. *) 
I .  MR~ <-- MR 

B *--MR 
for  i - 2 to n do (* f ind the i th  boolean power of MR*) 

begin (* for  *) 
B ~-- B (Z) M R 
MR~ ~-- MR~ v B (* update M R *) 

endfor (* for  *) 
End (* algori thm *) 

. 

3. 
4. 
5. 
6. 
7. 

Algorithm 7.1 

We close this section with an analysis  of the  complexity of this a lgor i thm.  
Let bn denote the n u m b e r  of boolean operat ions  needed to compute  R ~ .  
Each e lement  in line 4 takes  n meets  and n - 1 joins, a total  of 2n - 1 
operations.  Since the product  contains n 2 e lements ,  the total  n u m b e r  of 
bi t -operat ions in line 4 is (2n - 1)n 2. The  join of the  two n • n mat r ices  
in line 5 takes  n 2 boolean operations.  Since the  f o r  loop is executed n - 1 
times, the total  n u m b e r  of boolean operat ions  is given by 

bn -- (n - 1)[(2n - 1)n 2 + n 2] 

= 2 ( n -  1)n 3 

-- (~)(n 4) 

Thus  the  connectivi ty a lgor i thm takes  | 4) - bit operat ions.  
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Exercises 7.6 

Find the connectivity relation of each relation on {a, b, c}. 

1. {(a, a)} 

4. {(a,a), (a,b), (c,a)} 

2. {(a,a), (b,b)} 

5 . 0  

3. {(a,a), (b,b), (c,c)} 

6. {(a,b), (a,c), (b,a), (c,a)} 

Find the connectivity relation of the relation on {a, b, c} with each adjacency 
matrix. 

0 Ii~ Ell i] II~ 0 1 8. 0 1 9. 1 1 
0 0 1 0 1 1 

Find the connectivity relation of the relation on {a,b,c,d} with each 
adjacency matrix. 

10. 

0 1 1 0 0 1 0 1 1 0 0 0 

i 0 0 i l l  ! 0 1 0 12. 0 1 1 ! 
0 0 " 0 0 0 0 0 1 
0 1 1 0 0 1 0 0 

The connectivity relation of a relation R is closely associated with its 
transitive closure. First, we define the closure of R. 

A relation R may not have a desired property, such as reflexivity, sym- 
metry, or transitivity. Suppose it is possible to find a relation containing R 
and having the desired property. The smallest such relation is the c l o s u r e  
of R with respect to the property. Accordingly, we make the next definition. 

Transitive Closure 

Suppose a relation R on A is not transitive. The smallest transitive relation 
that contains R is the t r a n s i t i v e  c losure  of R, denoted by R*. 

How do we find R*? If R is not transitive, it should have ordered pairs ! 
(a, b) and (b, c) such that (a, c) r R; so add (a, c) to R. We can continue I 
this with every such pair in the new relation. The resulting relation is I 
transitive, the transitive closure of R. I 

The next example illustrates this method. 
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Find the t ransi t ive  closures of the relat ions R - {(a,b), (b,a), (b,c)}, S 

{(a, a), (b, b), (c,c)}, and T = 0 on {a,b,c}. 

�9 The relat ion S is t ransi t ive,  by default, so S* - S. 

�9 R - {(a,b), (b,c), (b,a)}. Since ( a , b ) e R  and ( b , c ) e R ,  it needs (a,c) 
to be transi t ive.  So add (a,c) to R. The new relat ion is R1 = 
{(a, b), (a, c), (b,c), (b,a)}. It contains  both (a,b) and (b, a), bu t  not  (a ,a)  
or (b,b). Add them to Rl" R2 - {(a,a), (a,b), (a,c), (b,a), (b,b), (b,c)}. 
It is t ransi t ive  and contains R, so it is the t ransi t ive  closure of R. 

�9 The t ransi t ive  closure of 0 is itself. m 

F i g u r e  7.33 

The t ransi t ive  closure R* of the relat ion R in Example  7.37 has practi-  
cal applications. Suppose the relat ion indicates the communica t ion  l inks 
in a ne twork  of computers  a, b, and c, as in Figure  7.33. The t rans i t ive  
closure R* shows the possible ways one computer  can communica te  wi th  
another ,  perhaps  th rough  intermediar ies .  For  instance,  computer  a cannot  
communica te  directly with c, but  it can th rough  b. Figure 7.34 displays the  
t ransi t ive closure R*. 

Digraph of R. 

F i g u r e  7.34 

b 

a c 

Digraph of R.* 

C 
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The close link between the t ransi t ive  closure of a relat ion and its 
connectivity relat ion can be i l lustrated as follows. 

The connectivity relat ion R ~ of a relat ion R is its t ransi t ive  closure R*. 

PROOF:  
The proof unfolds in two parts.  First ,  we mus t  show tha t  R ~ is t ransi t ive  
and then  show it is the smallest  t ransi t ive  relat ion containing R. 

�9 To prove that  R ~ i s  transitive: Let (a,b) ~ R ~176 and (b,c) e R ~ .  Since 
(a, b) e R ~ ,  a pa th  runs  from a to b. Similarly, one runs  from b to c. 
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Combining these two paths  produces a pa th  from a to c. So (a, c) ~ R ~ 
and R ~ is transit ive.  

�9 To prove  t ha t  R c~ is the s m a l l e s t  t rans i t i ve  re la t ion  c o n t a i n i n g  R" 

Suppose there  is a t ransi t ive relat ion S such tha t  R _c S _c R ~ .  We 
will show tha t  S = R ~.  Since S is transit ive,  by Theorem 7.6, S n c_ S 

for every n >_ 1. So 

(X2 

S ~ - U S n C S 
m 

n=l 

Thus  

S ~ c S  

By assumption,  R c S; so R ~ c S ~ ,  since every pa th  in R is also a pa th  
in S. Therefore,  R ~ _ S. 

Consequently,  S c R ~ and R ~ __ S. Therefore,  S = R ~ .  In o ther  
words, there  are no t ransi t ive relat ions in between R and R ~.  So R ~ is the 
smallest  t ransi t ive relat ion containing R. m 

It follows by Theorems 7.7 and 7.8 tha t  

R* - R U R 2 u . . .  u R" 
and hence 

M R ~  -- MR v MR.2 v . . .  v MR,, 

To i l lustrate this, us ing Example 7.36, the t ransi t ive closure of the rela- 
tion R = {(a,b), (b,a) ,  (b,c),  (c ,d) ,  (d,a)} on { a , b , c , d }  is R* = R ~ = {(a,a),  
(a, b), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, a), (c, b), (c, c), (c, d), (d, a), (d, b), 
( d , c ) , ( d , d ) } .  

Since R ~ = R*, the connectivity relat ion a lgor i thm can be used to com- 
pute M R , ,  but  it is not efficient, especially when MR.  is fairly large. A be t te r  
method to find R* is W a r s h a l l ' s  a l g o r i t h m ,  named in honor  of S tephen 
Warshall ,  who invented it in 1962. 

Warshall's Algorithm 

Let a-xl -x2 . . . . .  xm-b be a pa th  in a relat ion R on a set A - {a l , a2 , . . .  ,an}.  

The vert icesxl ,  x2, . . .  ,Xm are the in t er ior  p o i n t s  of the path. For  instance,  
vertices c and d are the interior  points on the pa th  a-c-d-b of the digraph 
in Figure 7.5. 

The essence of Warshal l ' s  a lgor i thm lies in cons t ruc t ing  a sequence of 
n boolean matrices W1, . . . ,  Wn, beginning with Wo - MR.  Let Wk -- (w/j), 
where 1 < k < n. Define wij - 1 if a pa th  runs  from ai to aj in R whose 
inter ior  vertices, if any, belong to the set {al, a 2 , . . . ,  ak}. Since the i j t h  
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Figure 7.35 

element of Wn equals 1 if and only if a path exists from ai to a N whose 
interior points belong to the set {a l, a 2 , . . . ,  an }, Wn = WR*. 

In fact, the matr ix  Wk = (WIN) can be constructed from its predecessor 
Wk-1  = (vij) as follows. When can wij = 1? For WiN = 1, there  mus t  be a 
path from ai to aj whose interior vertices belong to the set {a l, a 2 , . . . ,  ak }. 

Case 1 If ak is not  an interior vertex, all interior  vertices mus t  belong to 
the set {hi, a 2 , . . . ,  ak-1  }, so vij : 1. 

C a s e  2 Suppose ak is an interior vertex (see Figure 7.35). If a cycle exists 
at ak, eliminate it to yield a shorter  path. (This guarantees  tha t  the vertex 
ak occurs exactly once in the path.) Therefore, all interior  vertices of the 
paths  ai . . . . .  ak and ak . . . . .  aj belong to the set {a l, a2 , . . ,  ak-1} .  In other  
words, Vik = 1 and Vkj = 1. 

ai 
/ 

/ 
ak 

a/ 

Consequently, WiN = 1 only if v,i i = 1, or vik = 1 and vkj = 1. This is the 
crux of Warshal l ' s  algorithm. Thus the i j t h  element  of Wk is 1 if: 

�9 The corresponding element of Wt,._ 1 is 1 or 

�9 Both the i k t h  element and the k j t h  element  of Wk-1 are 1; tha t  is, the 
ith element in column k of Wk-1 and t h e j t h  element  in row k of Wk-1 
are 1. 

Use this property to construct  W1 from W0 = MR,  W2 from W1,. . . ,  and 
Wn from Wn-1. Since Wn = MR*, the actual e lements  of R* can be read 
from Wn. 

The next two examples clarify this algorithm. 

Using Warshall ' s  find the transi t ive closure of the algorithm, relation 
R = {(a, b), (b, a), (b,c)} o n A  = {a,b,c} .  

S O L U T I O N :  
S t e p  1 Find W0. 

[il!] Wo - - M R  -- 0 
0 

S t e p 2  Find W1. 
If the i j t h  element  of W0 is 1, the i j t h  element  of W1 is also 1. In other  
words, every 1 in W0 stays in W1. To find the remaining  l ' s  in W1, locate 



7.7 Transitive Closure (optional) 479 

the l ' s  in column 1 ( -  k); there is just  one 1; it occurs in position i - 2. Now 
locate the l ' s  in row 1 ( -  k). Again, there is just  one 1, namely, in position 
j - 2. Therefore, the i j th  entry in W1 should be 1, where i - 2 a n d j  - 2. 
Thus 

EoI!I 
W 1 -  1 1 

0 0 

S t e p  3 Find W2. 
Again, all the l ' s  in W1 stay in W2. To find the other l 's,  if any, locate the 
l ' s  in column 2(-- k) and row 2 ( -  k). They occur in positions 1 and 2 of 
column 2 and in positions 1, 2, and 3 of row 2, so the i j th  entry of W2 must  
be 1, where i = 1, 2 and j = 1, 2, 3. So change the O's in such locations of 
W1 to l 's. Thus 

Ei x 1] W 2 -  1 1 
0 0 

S t e p  4 Find W3. 
All the l ' s  in W2 remain in W3. To find the remaining l 's, if any, locate the 
l ' s  in column 3 - -  namely, positions 1 and 2 m and the l ' s  in row 3. Because 
no l ' s  appear in row 3, we get no new l 's,  so W3 - W2. 

Since A contains three elements, WR. = W3. Thus, 

I 1 1 11 WR,-- 1 1 1 
0 0 0 

which agrees with the transitive closure obtained in Example 7.37. II 

Using Warshall 's algorithm, find the transitive closure of the relation 
R = {(a, a), (a, b), (a, d), (b, a), (c, b), (c, c), (d, b), (d, c), (d, d)} on {a,b,c ,d}.  

SOLUTION:  
S t e p  1 Find W0. 

Wo = MR - 

1 1 0 1 
1 0 0 0 
0 1 1 0 
0 1 1 1 
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Step 2 Find W1. 
Locate the l ' s  in column 1 and row 1; positions 1 and 2 in column 1; and 
positions 1, 2, and 4 in row 1. Therefore, W1 should contain a 1 in locations 
(1,1), (1,2), (1,4), (2,1), (2,2), and (2,4): 

W1 ~'- 

1 1 0 1 
1 1 0 1 
0 1 1 0 
0 1 1 1 

(All the l ' s  in W0 remain in W1.) 

Step 3 Find W2. 
Locate the l ' s  in column 2 and in row 2; positions 1, 2, 3, and 4 in column 
2, and positions 1, 2, and 4 in row 2. So W2 should contain a 1 in locations 
(1,1), (1,2), (1,4), (2,1), (2,2), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), and (4,4). 
Again, since all the l ' s  in W1 stay in W2, 

W2 

1 1 0 1 
1 1 0 1 
1 1 1 1 
1 1 1 1 

Step 4 Find W3. 
The l ' s  of column 3 occur in positions 3 and 4; those of row 3 in positions 
1, 2, 3, and 4. Consequently, W3 should contain a 1 in locations (i,j) where 
i = 3,4 a n d j  - 1,2, 3,4: 

W3 

1 1 0 1 
1 1 0 1 
1 1 1 1 
1 1 1 1 

Step 5 Find W4. 
The l ' s  of column 4 appear  in positions 1, 2, 3, and 4; the l ' s  of row 4 in 
positions 1, 2, 3, and 4. So W4 should contain a 1 in locations (i,j) where 
i = 1, 2, 3, 4 a n d j  = 1, 2, 3, 4: 

1 1 1 1 

i 1 1 1 
1 1 1 
1 1 1 

Since MR. -- W4, this is the adjacency matrix of the transi t ive closure. 
(Finding the connectivity relation of R will verify this.) m 
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Warshall 's algorithm is presented in Algorithm 7.2. It is based on the 
discussion preceding Example 7.38. 

Algorithm Warshal] (MR,W) 
(* This algorithm employs the adjacency matrix of a relat ion R on 

f i n i t e  set with n elements to find the adjacency matrix MR* of i ts  
t ransi t ive closure. *) 

O. Begin (* algorithm *) 
(* I n i t i a l i ze  W = (wij) *) 

I. W +-MR 
2. for k = i to n do (* compute W k *) 
3. for i = i to n do 
4. for j = I to n do 
5. Wij +- Wij V (Wik A Wkj ) (*compute the i j - t h  element *) 
6. MR +-W 
7. End (* algori thm *) 

Algorithm 7.2 

A Comparison of Warshall's Algorithm with the Connectivity Algorithm 

Why is this algorithm far more efficient than the connectivity relation algo- 
rithm? Notice that  the number  of boolean operations in line 5 is 2, so the 
total number of boolean operations in lines 2 through 5 (and hence in the 
algorithm) is 2. n.  n.  n - 2n 3 -- (-)(n3), whereas the connectivity algorithm 
takes (-)(n4) bit operations. 

Exercises 7.7 

Find the transitive closure of each relation on A = {a, b, c}. 

1. {(a,b), (b,a)} 2. {(a,b), (b,c), (c,a)} 

3. {(b,a), (b,c), (c,b)} 4. {(a,a), (a,c), (b,c), (c,a)} 

Find the transitive closure of each relation on A = {a, b, c, d}. 

5. {(a,a), (a,b)} 6. {(a,b), (b,c), (c,a)} 

In Exercises 7-9, find the adjacency matrix of the transitive closure of each 
relation R on {a, b, c} with the given adjacency matrix. 

[i0 ] [!IZ] 7. 0 1 8. 1 0 9. 1 
0 0 1 1 0 

10-12. Using the connectivity relation algorithm, find the transitive 
closure R* of each relation in Exercises 7-9. 
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13-15. For the relation R on {a,b,c} with each adjacency matr ix  in 
Exercises 7-9, compute the boolean matrix W1 in Warshall 's  
algorithm. 

In Exercises 16-18, the adjacency matr ix of a relation R on {a, b, c, d} is 
given. In each case, compute the boolean matrices W1 and W2 in Warshall 's  
algorithm. 

0 1 0 0 1 0 0 0 0 1 0 1 Z0 i i i010 0 1 0 1 0 18. 0 0 1 

1 0 0 1 0 0 0 1 

19-24. Using Warshall 's  algorithm, find the transit ive closure of each 
relation in Exercises 7-9 and 16-18. 

25-33.  The r e f l e x i v e  c l o s u r e  of a relation on a set is the smallest reflexive 
relation that  contains it. Find the reflexive closures of the relations 
in Exercises 1-9. 

Find the reflexive closure of each relation on IR. 

34. The less-than relation. 35. The greater- than relation. 

36-44.  The s y m m e t r i c  c l o s u r e  of a relation on a set is the smallest sym- 
metric relation that  contains it. Find the symmetric closures of the 
relations in Exercises 1-9. 

Let R be any relation on a set A. Prove each. 

45. R is reflexive if and only if A ___ R. 

46. R U A is reflexive. 

*47. R u A is the smallest reflexive relation containing R .  
(Hint: Assume there is a reflexive relation S such that  R c S c R u A. 
Prove that  S - R or S - R u A.) 

*48. R U R -1 is symmetric. 
[Hint: Consider (R u R -  1)- 1.] 

*49. R u R -1 is the smallest symmetric relation that  contains R. 
(Hint: Suppose there is a symmetric relation S such tha t  R __ S c_ 
RuR-1 . )  

Section 7.4 introduced relations that  are reflexive, symmetric,  and 
transitive. Natural ly we can now ask: Are there relations tha t  
simultaneously manifest  all three properties? The answer is yes; 
for instance, the relation is logically equivalent to on the set of 
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proposit ions has all these  propert ies.  Such a re la t ion is an equivalence 
relation. 

Equiva l ence  Re la t ion  

A relat ion on a set is an e q u i v a l e n c e  r e l a t i o n  if it is reflexive, symmetr ic ,  
and transi t ive.  

Examples  7.40-7.42 explore equivalence relat ions.  

~ The relat ion has the same  color ha i r  as on the set of people is reflexive, 
symmetr ic ,  and t ransi t ive .  So it is an equivalence relat ion,  m 

Let Z denote an a lphabet .  Define a re la t ion R on E* by x R y  if Ilxli - liYll, 
where  Ilwll denotes  the  length of the  word w. Is R an equivalence relat ion? 

S O L U T I O N :  
�9 Since every word has the same length as itself, R is reflexive. 

�9 Suppose tha t  xRy .  Then IIxll = Ilyll, so Ilyll = IIxll. Consequent ly ,  yRx .  
Thus  R is symmetr ic .  

�9 I f  x R y 4  and yRz ,  then  Ilxli = IlYl] and Ilyli = ilzil. Therefore ,  lixll = Ilzli 
and hence xRy.  In o ther  words, R is t ransi t ive.  

Thus,  R is an equivalence relation, m 

(optional) Is the re la t ion has the same  location as on the set of m e m o r y  

variables in a p rogram an equivalence relation? 

S O L U T I O N :  
�9 Since every variable has the same location as itself, the relat ion is 

reflexive. 

�9 If a variable x has the same location as a variable y, then  y has the same 
location as x, so the  relat ion is symmetr ic .  

�9 Suppose x has the  same location as y and y has the  same location as z. 
Then  x has the same location as z, so the relat ion is t ransi t ive.  

Thus  the relat ion is an equivalence relation, m 

FORTRAN provides an e q u i v a l e n c e  s t a t e m e n t ,  so called since the  
relat ion has the same  location as is an equivalence relat ion.  We can see this  
in the following FORTRAN s ta tement :  

EQUIVALENCE (A,B),(C,D,E),(F,G,H) 

It means  the variables  A and B share  the same m e m o r y  location; the  vari- 
ables C, D, and E share  the same memory  location; and so do the variables 
F, G, and H. 

The congruence relat ion,  an impor t an t  re lat ion in ma themat i c s ,  is a 
classic example of an equivalence relation. It is closely re la ted to the 
equal i ty  relat ion and par t i t ions  of a finite set, as will be seen shortly.  
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K a r l  Fr iedr ich  Gauss  (1777-1855), son of a laborer, was born in 
Brunswick, Germany. A child prodigy, he detected an error in his father's 
bookkeeping when he was 3. The Duke of Brunswick, recognizing his 
remarkable talents, sponsored his education. Gauss received his doctorate 
in 1799 from the University of  Helmstedt. In his doctoral dissertation, he 
gave the first rigorous proof of the fundamental theorem of algebra, which 
states, "Every polynomial of degree n (> 1) with real coefficients has at least 
one zero." Newton and Euler, among other brilliant minds, had attempted 
to prove it, but failed. 

He made significant contributions to algebra, number theory, geome- 
try, analysis, physics, and astronomy. His impressive work Disquisitiones 
Arithmeticae of 1801 laid the foundation for modern number theory. 

From 1807 until his death, he was the director of the observatory and 
professor of mathematics at the University of GSttingen. 

Called the "prince of mathematics" by his contemporary mathematicians, Gauss made the 
famous statement, "Mathematics is the queen of the sciences and the theory of numbers the queen of 
mathematics. " 

The congruence symbol -_ was invented a round 1800 by Karl  Fr iedrich 
Gauss, the greates t  ma themat ic i an  of the 19th century.  

Congruence Relation 
L e t a ,  b ,m ~ Z, where m > 2. T h e n a  is c o n g r u e n t  to  b m o d u l o m ,  
denoted by a = b(mod m), if a - b is divisible by m. The integer  m is the 
m o d u l u s  of the c o n g r u e n c e  r e l a t i o n .  (This definition provides the basis 
of the rood  opera tor  we studied in Chapter  3.) If a is not congruen t  to b 
modulo m, we wri te  a ~ b (mod m). 

For example, since 51(13-  3), 13 = 3 (mod 5). Also, - 5  ~ 3 (mod 4) since 
41(-5 - 3). But 17 ~ 4 (mod 6), since 6 ~ (17 - 4). 

The congruence relat ion has several useful properties,  some of which are 
given below. 

Let b, d , m ~ Z w i t h m  2. Then: a, c, > 

(1) a = a (mod m). ( re f l ex ive  p r o p e r t y )  
(2) I f a  - b (mod m), then  b = a (mod m). ( s y m m e t r i c  p r o p e r t y )  
(3) I f a  = b (mod m) and b _= c (mod m), then  a _ c (mod m). ( t r a n s i t i v e  

p r o p e r t y )  
(4) Let r be the r emainder  when a is divided by m. Then a ~ r (mod m). 

P R O O F :  
We shall prove par t  3 and leave the other  par ts  as exercises. 

(3) Suppose a _= b (mod m) and b =_ c (mod m). Then mi(a  - b) and 
m l ( b -  c). Consequently,  a -  b - m q l  and b -  c - mq2 for some 
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in tegers  q l and q2. Then  

a -  c -  ( a -  b) + ( b -  c) 

= m q l  + m q 2  

= m ( q l  + q2) 

Therefore,  m l ( a  - c) and a - c (mod m). m 

It follows by the  theo rem tha t  the  congruence re la t ion is an equivalence 
relation. 

The Congruence Relation and the Mod Operator 

Suppose a - r (mod b), where  0 < r < b. Then  it can be shown tha t  r - a 
mod b. Conversely, if r - a mod b, then  a - r (mod b). Thus  a - r (mod b) 
if and only if r - a mod b, where  0 < r < b. See exercises 49 and 50. 

For  example,  43 - 3 (mod 5) and 0 _< 3 < 5; clearly, 3 - 43 mod 5. Let 
us digress briefly to look at  an in te res t ing  applicat ion of congruences*. 

Friday-the-13th 

Congruences  can be employed to find the n u m b e r  of Fr iday- the-13ths  in 
a given year.  Whe the r  or not Fr iday- the-13th  occurs in a given mon th  
depends on two factors: the  day on which the 13th fell in the previous 
mon th  and the n u m b e r  of days in the previous month.  

Suppose tha t  this is a non- leap  year  and tha t  we would like to find 
the n u m b e r  of Fr iday- the-13ths  in this year.  Suppose also tha t  we know 
the day the 13th occurred in December  of last year.  Let  Mi denote 
each of the  mon ths  December  th rough  November  in t ha t  order  and 
Di the n u m b e r  of days in mon th  Mi. The various values of Di a r e  
31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, and 30, respectively. 

We label the  days Sunday  th rough  Sa tu rday  by 0 th rough  6 respectively; 
so day 5 is a Friday.  

Let Di -- di (mod 7), where  0 _< di < 7. The  corresponding values of di 
are 3, 3, 0, 3, 2, 3, 2, 3, 3, 2, 3, and 2, respectively. Each value of di indicates 
the n u m b e r  of days the day of the 13th in mon th  Mi mus t  be advanced to 
find the day the 13th falls in mon th  Mi+l. 

For  example,  December  13, 2000, was a Wednesday.  So J a n u a r y  13, 
2001, fell on day (3 + 3) - day 6, which was a Saturday.  

*T. Koshy, Elementary Number Theory with Applications, Harcourt/Academic Press, Boston, 
MA, 2002. 
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i 
Let ti =- ~ dj (mod 7), where  1 < i < 12. Then  ti r ep resen t s  the 

j=l  
total  numbe r  of days the day of December  13 mus t  be moved forward  to 
de termine  the day of the th i r t een th  in mon th  Mi. 

For  example, t3 - d l + d2 + d3 = 3 + 3 + 0 - 6 (mod 7). So, the  day of 
December  13, 2000 (Wednesday) mus t  be advanced by six days to de te rmine  
the day of March 13, 2001; it is given by day (3 + 6) = day 2 - Tuesday.  

Notice tha t  the various values of ti modulo 7 are 3, 6, 6, 2, 4, 0, 2, 5, 1, 3, 6, 
and 1, respectively; they include all the least residues modulo 7. Given the 
day of December 13, they can be used to de termine  the day of the  t h i r t e e n t h  
of each mon th  Mi in a non- leap  year.  

Table 7.5 summar izes  the day of the 13th of each mon th  in a non-leap 
year,  corresponding to every choice of the day of December  13 of the  pre- 
vious year. You may verify this. Notice from the table tha t  there  can be at 
most  three  Fr iday- the-13ths  in a non- leap  year. 

T a b l e  7.5 

Day of the 13th in Each 
Month  in a Non- leap  
Year. 

~ 1 1  Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. 
Dec. 13 il 3 6 6 2 4 0 2 5 1 3 6 1 

Sun II 3 6 6 2 4 0 2 5 1 3 6 1 
Mon II 4 0 0 3 5 1 3 6 2 4 0 2 
Tue II 5 1 1 4 6 2 4 0 3 5 1 3 
Wed II 6 2 2 5 0 3 5 1 4 6 2 4 
Thu I t 0  a a 6 1 4 6 2 5 0 3 5 

II 4 4 0 0 1 4 
Sat II 2 5 5 1 3 6 1 4 0 2 5 0 

For  a leap year, the various values of di are 3, 3, 1, 3, 2, 3, 2, 3, 3, 2, 3, 
and 2; and the corresponding values of ti are 3, 6, 0, 3, 5, 1, 3, 6, 2, 4, 0, and 
2. Using these, we can construct  a similar table for a leap year. 

Re tu rn ing  to the congruence relation, we now explore a close relation- 
ship between equivalence relat ions and part i t ions;  but  first we make  the 
following definition. 

Equivalence  Class  

Let R be an equivalence relat ion on a set A and let a ~ A. The e q u i v a l e n c e  
c l a s s  of a, denoted by [a], is defined as [a] = {x ~ A I xRa}.  It consists of all 
e lements  in A tha t  are linked to a by the relation R. If x ~ [a], then  x is a 
r e p r e s e n t a t i v e  of the class [a]. 

The next two examples explore equivalence relations. 

The relation R - {(a, a), (a, b), (b, a), (b, b), (c, c)} on A - {a, b, c} is an 
I ! 

equivalence relation. Find the equivalence class of each e lement  in A. 
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S O L U T I O N :  
(1) [ a ] -  {x e AlxRa} (2) [b] = {x e AlxRb} (3) [c] = {x e AixRc} 

= {a,b} = {a,b} = {c} 
= [a] 

Two dist inct  equivalence classes exist, [a] and [c]. Class [a] has  two 
representa t ives  and class [c] one representa t ive .  I 

The relat ion R on the set of words over the a lphabe t  {a, b}, defined by xRy 
if ]]xli - Ilyli, is an equivalence rela t ion (see Example  7.41). Infinitely m a n y  
equivalence classes exist for R, such as {~ }, {a, b }, and {aa, ab, ba, bb}. l 

Find all equivalence classes of the  re la t ion mod 5 on the set of congruence 
integers.  

S O L U T I O N :  
Let r be the r ema inde r  when an in teger  a is divided by 5. Then  a - r (mod 5). 
Since the possible values of r, by the  division algori thm, are 0, 1, 2, 3, and  
4, there  are five dist inct  equivalence classes: 

[0] = { . . . , - 1 0 , - 5 , 0 , 5 ,  10,. . .} 

[1] = { . . . , - 9 , - 4 ,  1,6, 11 , . . . }  

[2] = { . . . , - 8 , - 3 , 2 ,  7, 12,. . .} 

[31 = { . . . , - 7 , - 2 , 3 , 8 ,  13,. . .} 

[4] = { . . . , - 6 , - 1 , 4 , 9 , 1 4 , . . . }  I 

These th ree  examples  lead us to the  following observations:  

�9 Every e lement  belongs to an equivalence class. 

�9 Any two dist inct  equivalence classes are disjoint. 

These resul ts  can be s ta ted more formally as follows. 

Let  R be an equivalence relat ion on a set A, with a and b two e lements  any 

in A. Then the following proper t ies  hold: 

(1) a ~ [a]. (2) [a] = [bl if and only i faRb.  
(3) If [a] r [bl, then  [a ]n  [b] = 0 .  

P R O O F :  
(1) Since R is reflexive, aRa for every a ~ A, so a e [a]. 
(2) Suppose [a] - [b]. Since a ~ [a] by par t  (1), a ~ [b]. Therefore,  by 

definition, aRb. 



488 Chapter 7 Relations 

Conversely, let aRb. To show that  [a] c_ [b]: 
Let x e [a]. Then xRa.  Since x R a  and aRb, xRb by transitivity. Therefore, 
x e [b] by definition. Thus [a] __ [b]. 
Similarly, [b] __ [a]. Thus, [a] = [b]. 

(3) We will prove the contrapositive of the given statement: If[a]u[b] r ~, 
then [a] - [b]. Suppose [a] u [b] r ~. Then an element x should be 
in [a] A [b]. Then x e [a] and x e [b]. Since x e [a], x R a  and hence 
aRx  by symmetry. In addition, since x e [b], xRb.  Thus a R x  and xRb.  
Therefore, aRb by transitivity. Thus [a] = [b], by part  2. 

This concludes the proof. m 

It follows by Theorem 7.10 that  any two equivalence classes are either 
identical or disjoint, but not both. 

Notice that  Example 7.43 has two disjoint equivalence classes, la] and 
[c]; their union is the whole set A. Therefore, {la], [c]} is a parti t ion of A. 
In fact, every equivalence relation on a set induces a partition of the set, as 
given by the next theorem. 

~ Let R be an equivalence relation on a set A. Then the set of distinct 
equivalence classes forms a partition of A. m 

The next four examples illuminate this theorem. 

~ The relation belongs to the same div is ion as is an equivalence relation on the 
set of teams in the American (National) League of major-league baseball. 
Let x denote a certain team in the American League. Then the class [x l 
consists of all teams that  belong to the same division as x. By Theorem 7.11, 
the set of teams in the league can be partitioned as { IYankees ], [White Sox], 
[Marinersl }. m 

• By Example 7.41, the relation has the same length as on the set of 
words Z* over the alphabet E = {a, b} is an equivalence relation. Then the 
set of equivalence classes formed is {lZ 1, I a 1, laa !, l aaa 1,... }; it is a partit ion 
of E*. m 

• (optional) Suppose a FORTRAN contains the variables A through program 

J and the equivalence statement: 

EQUIVALENCE (A,B),(C,D),(F,A,G),(C,J),(E,H) 

By Example 7.42 the relation shares the same memory  location as is 
an equivalence relation on the set of variables V. Let V1 = {A,B,F,G}, 
V2 = {C,D,J}, V3 = {E,H}, and V4 = {I}. The partition of V induced by 
this relation is {V1, V2, V3, V4 }. See Figure 7.36. 
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Figure  7.36 

Set of variables V. 

m 

By Example 7.45, the distinct equivalence classes formed by the congruence 
relat ion modulo 5 on Z are [0], [1], [2], [3], and [4]. They form a par t i t ion  
of the set of integers,  as shown in Figure 7.37. 

F i g u r e  7.37 

A part i t ion of the set of 
integers Z. 

m 

Conversely, does every part i t ion yield an equivalence relation? The next  
theorem shows tha t  every par t i t ion does. 

Every part i t ion a an equivalence on of set induces relat ion it. 

PROOF: 
Let P = {A1,A2,... } be a part i t ion of a set A. Define a relation R on A as: 
aRb if a belongs to the same block as b. We shall show tha t  R is indeed an 
equivalence relation. 

�9 Since every e lement  in A belongs to the same block as itself, R is 
reflexive. 

�9 Let aRb. Then  a belongs to the same block as b. So b belongs to the 
same block as a. Thus  R is symmetric.  

�9 Let aRb and bRc. Then a belongs to the same block as b and b to the 
same block as c. So a belongs to the same block as c. Therefore,  R is 
transit ive.  

Thus  R is an equivalence relation, m 

How can we find the equivalence relat ion corresponding to a par t i t ion of 
a set? The next example demons t ra tes  how to accomplish this. 

Find the equivalence relation onA  the {a,b,c} corresponding to par t i t ion  
{{a,b},{c}}. 
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S O L U T I O N :  
Define a relat ion R onA as follows (see the above proof): xRy i fx belongs to 
the same block as y. Since a and b belong to the same block, aRa, aRb, bRa, 
and bRb. Similarly, cRc. Thus  R = {(a, a), (a,b,), (b, a), (b, b), (c, c)}. I 

Example 7.50 can serve to develop an algori thm for finding the equiva- 
lence relation corresponding to a par t i t ion P of a finite set A. It is given in 
Algorithm 7.3. 

Algorithm Equivalence Relation (P,A,R) 
(* This algori thm determines the equivalence re la t ion  R 

corresponding to a p a r t i t i o n  P of a f i n i t e  set A. *) 
Begin (* algori thm *) 

while P # ~  do 
begin (* while *) 
ext ract  a block B 
pai r  each element in B with every element in B 
P <-- P - B (* update P *) 
endwh i 1 e 

End (* algorithm *) 

A]gorithm 7.3 

Theorems 7.11 and 7.12 indicate a bijection between the family of 
part i t ions of a set and the family of equivalence relations on it. 

Number of Partit ions of a Finite Set 

There is a delightful formula for computing the number  of par t i t ions  (and 
hence the number  of equivalence relations) of a set with size n. It is given 

n 
by ~ S(n, r), where S(n, r) denotes a Stirling number of the second kind, 

r=l 
defined by 

S(n, 1) = 1 = S(n, n) 

S(n,r)  = S ( n -  1, r -  1 ) +  r S ( n -  1, r), 1 < r < n 

See Exercises 33-40. 

Exercises 7.8 

Determine if each is an equivalence relation. 

1. The relation < on R. 

2. The relation is congruent to on the set of tr iangles in a plane. 

3. The relation is similar to on the set of tr iangles in a plane. 
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4. The relation lives within 5 miles of  on the set of people. 

5. The relation takes a course with on the set of students on campus. 

Determine if each is an equivalence relation on {a, b, c}. 

6. {(a,a), (b,b), (c,c)} 7. {(a,a), (a,c), (b,b), (c,a), (c,c)} 

8. 0 9. {(a,a), (b,b), (b,c), (c,b)} 

Using the equivalence relation {(a,a), (a,b), (b,a), (b,b), (c,c), (d,d)} on 
{a, b, c, d}, find each equivalence class. 

10. [a] 11. [b] 12. [c] 13. [d] 

A FORTRAN program contains 10 variables, A through J, and the following 
equivalence statement: EQUIVALENCE (A,B,C),(D,E),(F,B),(C,H). Find 
each class. 

14. [A] 15. [B] 16. [E] 17. [J] 

Using the equivalence relation in Example 7.47, find the equivalence class 
represented by: 

18. a 19. b 20. aa 21. aaa 

Using the relation has the same length as on the set of words over the 
alphabet {a, b, c}, find the equivalence class with each representative. 

22. )~ 23. a 24. ab 25. bc 

26. Find the set of equivalence classes formed by the congruence relation 
modulo 4 on the set of integers. 

Find the partition of the set {a, b, c} induced by each equivalence relation. 

27. {(a,a), (b,b), (c,c)} 28. {(a,a), (a,c), (b,b), (c,a), (c,c)} 

A FORTRAN program contains the variables A through J. Find the 
partition of the set of variables induced by each equivalence statement. 

29. EQUIVALENCE (A,B,C),(D,E),(F,B),(C,H) 

30. EQUIVALENCE (A,B),(B,J),(C,J),(D,E,H) 

Find the equivalence relation corresponding to each partition of the set 
{a,b,c,d}. 

31. {{a}, {b,c}, {d}} 32. {{a,b}, {c,d}} 

n 

The number of partitions of a set with size n is given by ~ S(n, r), where 
r = l  

S(n, r) denotes a Stifling number of the second kind. Compute the number 
of partitions of a set with the given size. 

33. Two 34. Three 35. Four 36. Five 
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37-40 .  The n u m b e r  of par t i t ions  of a set with size n is also given by the  
Be l l  n u m b e r  Bn. Using Bell numbers ,  compute  the  n u m b e r  of 
par t i t ions  of a set with each of the  sizes in Exercises 33-36.  

Give a counterexample  to disprove each. 

41. The union of two equivalence relat ions is an equivalence relat ion.  

42. The composit ion of two equivalence relat ions is an equivalence 
relation. 

We can compute  the day of the week corresponding to any date since 1582, 
the year  the Gregorian calendar was adopted. The day d of the week for 
the r th  day of mon th  m in year  y (> 1582) is given by 

d = r + [2.6m - 0.2J - 2C + D + [C/4J + [D/4J (mod 7) 

where C = [y/100J and D = y mod 100; d = 0 denotes Sunday;  and m - 1 
denotes March, m -- 11 January ,  and m -- 12 February .  This  fo rmula  
is called Z e l l e r ' s  f o r m u l a ,  after  Chris t ian Jul ius  J oha nne s  Zeller (1849-  
1899). Find the Chr is tmas  day of each year.  

43. 2000 44. 2020 45. 2345 46. 3000 

Let a, b, c, d, m ~ Z with m > 2. Prove each. 

47. If a _= b (mod m) and c _= d (mod m), then  a § c =- b § d (mod m). 

48. If a - b (mod m) and c _-- d (mod m), then  ac =_ bd (mod m). 

49. Let r be the remainder  when a is divided by m. Then  a ~ r (mod m). 

50. If a - r (mod m) and 0 < r < m, r is the remainder  when a is divided 
by m. 

51. Let r l  and r2 be the remainders  when a and b are divided by m, 
respectively. Then  a - b (mod m) if and only if r l  - r2 (mod m). 

52. A positive integer N is divisible by 3 if and only if the sum of its digits 
is divisible by 3. [Hint" 10 -- 1 (mod 3).] 

53. A positive integer N is divisible by 9 if and only if the sum of its digits 
is divisible by 9. [Hint: 10 -- 1 (mod 9).] 

Using the congruence relation, find the remainder  when the first in teger  is 
divided by the second. 

54. 256, 3 55. 657, 3 56. 1976, 9 57. 389, 276, 9 

(Hint" Use Exercise 52 or 53.) 

58. The Uni ted  Parcel Service assigns to each parcel an identification 
n u m b e r  of nine digits and a check digit. The check digit is the 
remainder  mod 9 of the 9-digit number .  Compute  the check digit for 
359,876,015. 
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59. Every bank  check has an 8-digit identification n u m b e r  d i d 2 . . ,  d8 
followed by a check digit d given by d -- ( d l d 2 , . . . , d s )  
(7, 3, 9, 7, 3, 9, 7, 3) mod 10, where  (Xl,X2,... ,Xn) �9 (Yl,Y2,..-,Yn) -- 
n 

xiYi. (It is the dot  p r o d u c t  of the two n-tuples.) Compute  the 
i=1 
check digit for 17,761,976. 

60. Libraries use a sophist icated c o d e - a - b a r  s y s t e m  to assign each 
book a 13-digit identification n u m b e r  dl ,  d 2 . . .  d13 and a check digit 
d. Let k denote the n u m b e r  of digits among  d l , d 3 ,  d5, d7, d9, 
d11, and d13 greater  than  or equal to 5. Then  d is computed  as 
d -- [ - ( d l , d 2 , . . .  ,d13) �9 (2, 1,2, 1,2, 1,2, 1,2, 1,2, 1,2) - k] mod 10, 
where the dot indicates the dot product.  Compute  the check digit for 
2,035,798,008,938. 

"61. (The  c o c o n u t s  and  m o n k e y  problem)*  Five sailors and a monkey  
are marooned  on a desert  island. Dur ing  the day they ga ther  coconuts  
for food. They decide to divide them up in the morn ing  and ret i re  for 
the night. While the others  are asleep, one sailor gets up and divides 
them into equal piles, with one left over tha t  he throws out for the 
monkey.  He hides his share, puts  the remain ing  coconuts together ,  
and goes back to sleep. Later  a second sailor gets up and divides the 
pile into five equal shares with one coconut left over, which he discards 
for the monkey.  Later  the remain ing  sailors repeat  the process. Find 
the smallest  possible n u m b e r  of coconuts in the original pile. 

Jus t  as we used the concepts of reflexivity, symmetry ,  and t rans i t iv i ty  to 
define equivalence relations, we can use reflexivity, an t i symmet ry ,  and 
t ransi t iv i ty  to introduce a new class of relations: partial  orders. We begin 
this section with an example. 

Building a house can be broken down into several tasks, as Table 7.6 
shows. Define a relation R on the set of tasks  as follows: Let x and y be 
any two tasks; then  xRy  if x = y or mus t  be done before y. This re lat ion is 
reflexive, ant isymmetr ic ,  and t ransi t ive  (verify). Such a relat ion is a par t ia l  
order. 

*Writer Ben Ames Williams used this problem in a short story titled "Coconuts," which 
appeared in the October 9, 1926, issue of The Saturday Evening Post. The story concerned a 
contractor who wanted to bid on a large contract. Knowing of their competitor's strong passion 
for recreational mathematics, one of his employees gave him this problem. The competitor 
became so obsessed with solving the puzzle that he forgot to enter his bid before the deadline. 



494 Chapter 7 Relations 

Table  7.6 Task Requires the 
completion of 

(1) Building the foundation (t 1) 
(2) Framing (t 2) 
(3) Subflooring (t 3) 
(4) Partitioning into rooms (t 4) 

None 
tl 
t l , t 2  
t l , t 2 , t 3  

(5) Roofing (t 5) 
(6) Plumbing (t6) 
(7) Wiring (t 7) 
(8) Siding (t8) 
(9) Flooring (t 9) 

(10) Interior painting (tlo) 
(11) Exterior painting (tll) 
(12) Carpeting (t12) 
( 13 ) Installing fixtures (t 13 ) 

t l , t2 
t l , t2 
t l , t2 
t l , t 2 , t 5 , t 9  
t l , t 2 , t 6  
tl through t5, t 7 
t l , t 2 , t 8 , t 9  
t 1 through t 7 , t 9 , t l o  
t I through t 11 

Partial Order 

A re la t ion  R on a set A is a part ia l  order  if it is reflexive, a n t i s y m m e t r i c ,  
and t rans i t ive .  The  set  A wi th  its par t ia l  order  R is a part ia l ly  o r d e r e d  
set  (or poset) ,  denoted  by (A, R). W h e n  the  par t ia l  order  is clear  f rom the  
context ,  call the  poset  A. 

The  next  t h ree  examples  i l lus t ra te  these  definit ions.  

The  re la t ion  < on R is reflexive, a n t i s y m m e t r i c ,  and  t rans i t ive ,  so < is a 

par t ia l  order  on R and (R, _<) a poset.  Similar ly ,  the  divisibil i ty r e la t ion  I 
on 1~ is a par t ia l  order,  so (1~, I) is also a poset,  m 

Let  Z - {a,b}. Define a re la t ion  R on E* as" x R y  i fx  is a prefix ofy .  Is R a 
par t ia l  order? 

�9 Every  word is a prefix of itself, so R is reflexive. 

�9 Let  x R y  and y R x .  T h e n  y - s x  and x - ty  for some s , t  E E*, so x -- 
t ( sx )  = (ts )x. 

Consequent ly ,  ts  = ~ and  hence  t = s = ~. So x = y and  the  re la t ion  is 
a n t i s y m m e t r i c .  

�9 S u p p o s e x R y a n d y R z .  T h e n y  = s x a n d z  = ty for some s , t  ~ E*. 
Therefore ,  z = t ( sx )  = ( ts )x .  Consequen t ly  x R z ,  and the  re la t ion  is 
t rans i t ive .  

Thus ,  R is a par t ia l  order  on E* and  (E*, R) is a poset,  m 

The  re la t ion  h a s  the  s a m e  co lor  h a i r  as  on the  set  of people is reflexive, bu t  
not  a n t i s y m m e t r i c .  There fo re  it is not  a par t i a l  order,  m 
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Jus t  as an equivalence relat ion generalizes the equali ty relation, a par t ia l  
order  generalizes the relat ion <. Accordingly, a part ia l  order  is denoted 
by _~. x -< y means  x precedes  or equals  y. If x _~ y and x V= y, we wri te  
x -< y, mean ing  x p r e c e d e s  y. 

Comparable Elements 

Two elements  x and y in a poset are comparable  if e i ther  x __ y or y _< x; 
otherwise,  they are noncomparable .  

x y any x < y or y < x. any  Let and be two real numbers .  Then  ei ther  So two 
real number s  can be compared us ing  the relat ion <" they are comparable.  

Using the divisibility relat ion [ on N, the positive integers 3 and 6 are 
comparable,  since 3 I 6. But  3 and 8 are not comparable,  since 3 { 8 and 
8~3.  m 

Example  7.54 indicates tha t  a poset may contain noncomparable  ele- 
ments ,  which justifies the word partial in partial order. This leads us  to 
the next definitiori. 

Total Order 

If any two elements  in a poset are comparable,  such a part ial  order  is a 
total  order or a l inear order. The poset is then  a total ly ordered  set 
or a l inearly ordered set. 

Notice tha t  < is a total order on I~, whereas  the divisibility relat ion is 
not a total order on N. 

Ju s t  as sets can be used to const ruct  new sets, posets can be combined to 
construct  new posets. In order  to do this, we first define a relat ion on the 
car tesian product  of two posets. 

Lexicographic Order 

Let(A, ~1) and (B, -<2) be two posets. Define a re la t ion  • o n A •  as (a,b) • 
(a' b') if a < 1 a', or a = a' and b <2 b'. The relat ion < an extension of the 
alphabetic order, is the l ex ieographie  order. 

The lexieographic order  is a part ial  order  on A x B. I fA and B are totally 
ordered sets, so is A x B. The lexieographie order  can be extended to the 
car tesian product  A1 x A2 • . . .  • An of n posets and n totally ordered sets. 
The next two examples i l lustrate this. 

Consider the cartesian product  N x N x N, where the part ial  order  is the 
usual  _<. Then  (2, 5, 3) _< (3, 2, 1) since the first e lement  in the tr iplet  (2, 5, 3) 
is less than  tha t  in the second tr iplet  (3, 2, 1). Also, (2, 4, 5) _< (2, 4, 7). This  
order ing mir rors  the familiar sequencing of three-digit  numbers .  B 
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Let E be a par t ia l ly  ordered a lphabet  wi th  the  par t ia l  order  and  F~ n -<_ 

denote the set of words of length n over Z. Since every word in E n can be 
considered an n-tuple,  the lexicographic order  on the  car tes ian  produc t  on 
n posets can be applied to E n also. 

Let x = a l a 2 . . . a n  and y = b i b 2 . . ,  bn be any two e lements  in E n. T h e n  
x -< y if: 

�9 E i the r  a l  _~ bl, or 

�9 An integer  i exists such tha t  a l  = b l ,a2  - b2 , . . .  ,ai = bi, and ai+l -< 

bi+l. 

In par t icular ,  let E denote the  English alphabet ,  a total ly ordered set: 
a -< b -< c -< . . .  -< z. Clearly, computer-< demol i sh ,  compress  -< computer ,  
contend  -< content ,  and content-< context. 

This lexicographic order  can work for E* in a famil iar  way. Let  x and y 
be any two words over Z. Then  x -< y in lexicographic order  if one of two 
conditions holds: 

�9 x - k, the empty  word. 

�9 If x = su and y = sv, where  s denotes the longest  common prefix of x 
and y, the first symbol in u precedes tha t  in v in a lphabet ic  order.  

For  example, m a r a t h o n  -< marble ,  m a r g i n  -< marke t ,  l imber  -< t imber ,  
and creation -< discret ion,  i 

Hasse Diagrams 

We can simplify the digraph of a finite poset by omi t t ing  many  of its edges. 
For  instance,  since a part ia l  order  is reflexive, each vertex has a loop, which 
we can delete. In addition, drop all edges implied by t ransi t ivi ty .  For  exam- 
ple, if the digraph contains the  edges (a, b) and (b, c), it has the edge (a, c), 
which we can omit. Finally,  draw the r ema in ing  edges upward  and drop 
all arrows. The resu l t ing  is the I-Iasse d i a g r a m ,  named  for the G e r m a n  
ma themat i c i an  He lmu t  Hasse. 

Examples  7.57-7.60 genera te  Hasse diagrams.  

Const ruct  the Hasse  d iagram for the poset (A, I), where  A = { 1, 2, 3, 6, 8, 12} 
and I denotes the  divisibility relation. 

SOLUTION: 
The digraph of the  poset is F igure  7.38. 

S t e p  I Delete the  loop at each vertex. The resul t  is F igure  7.39. 

S t e p  2 Delete all edges implied by t ransi t ivi ty .  F igure  7.40 shows the 
ensuing diagram. 

S t e p  3 Omit  all ar rows and draw the edges "upward ."  The Hasse  d iagram 
appears  in F igure  7.41. 
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H e l m u t  Hasse  (1898-1979), a celebrated number theorist and dedicated 
' :,::~,:~,;~, teacher, was born in Kassel, Germany. His father was a judge. While study- 
' ~  ing at the gymnasiums in Kassel and later Berlin, he decided on a career in 

, . 

i . . . .  ~ mathematics. After the gymnasiums,  he entered the navy. While in the navy 
~~ t .  , "' ~: ~ in the Baltic he studied number theory and then mathematics at the Univer- 

" . . . .  . '[ sity of Kiel. Leaving the navy in December 1918, Hasse went to GSttingen to 
pursue his mathematical interest and then to Marburg, receiving his Ph.D. 
in 1921. 

His teaching career began in Kiel in 1922. Three years later, he became 
a professor at Halle, then moved to Marburg, GSttingen, Berlin, and finally 
Hamburg in 1950, where he remained until his retirement in 1966. Earlier 
he had been director of  the Mathematics Institute at GSttingen. But  he was 
dismissed by the British occupation authorities in September 1945. 

Hasse was a member of several academies of science and author of numerous articles and books. Hasse 
received a number of awards including the German National prize for Science and Technology (1953) and 
the Cothenius Medal of  the Academia Leopoldina (1968). 

. i 

F i g u r e  7.38 

F i g u r e  7.39 6 

3 8 

2 12 
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F i g u r e  7.40 6 

3 8 

2 12 

1 

F i g u r e  7.41 

Hasse diagram for the 
poset. 

12 

8 

1 

m 

~ Draw the Hasse diagram for the (A, where A denotes the poset c_), power 
set of the set {a, b, c}. 

SOLUTION:  
The set {a,b,c} has eight subsets: 0, {a}, {b}, {c}, {a,b}, {b,c}, {c,a}, and 
{a,b,c}. Following steps 1-3, as in Example 7.57, produces the Hasse 
diagram in Figure 7.42. 

F i g u r e  7.42 {a,b,c} 

{a,b} b,c} 

{ a ~  {c} 

m 

The relationR = {(a, a), (a, c), (a, e), (b, b), (b, c), (b, d), (b, e), (c,c), (c,e), (d,d), 
(d, e), (e, e)} is a partial order on {a, b, c, d, e}. Figure 7.43 displays its Hasse 
diagram. 
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F i g u r e  7.43 e 

d 

II 

Consider the a lphabet  E - {a,b}. The relat ion ~ on E*, defined by x _ y 
if x is a prefix of y, is a part ial  order. The Hasse d iagram for all words of 
max imum length two appears  in Figure  7.44. 

F i g u r e  7.44 aa ab ba bb 

k II 

Extremal  e lements  in a poset are important ,  especially in l inear ordering. 

Ext remal  Elements  

An element  a in a poset (A, • is a m a x i m a l  e l e m e n t  i fA has no element  
b such tha t  a -< b. Similarly, an element  a in A is a m i n i m a l  e l e m e n t  if A 
has no element  b -< a. 

The maximal and minimal  e lements  in a finite poset can easily be read 
from its Hasse diagram, like the ones in Figures  7.41 and 7.42. 

The poset in Figure  7.41 has two maximal  elements,  8 and 12, and one 
minimal  element,  1. 

Figure 7.43 has one maximal  element,  e; it has two minimal  elements,  
a and b. m 

A poset may exhibit the following properties: 

�9 A poset may have more than  one maximal  e lement  and more than  
one minimal  e lement  (see Example 7.61). 

�9 A poset need not  have any maximal  or minimal  elements.  For  
instance, the poset (Z,<) has no maximal  or minimal  elements.  

�9 A poset may have a maximal  e lement  but  no minimal  elements,  or a 
minimal  e lement  but  no maximal  elements.  For  example, the poset 
(Z-,  <) has a maximal  e lement  but  no minimal  elements,  whereas  
the poset (Z +, <) has a minimal  e lement  but  no maximal  elements.  

Two special extremal  e lements  are the greates t  and the least. 
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Greatest and Least Elements 

If a poset  A contains  an e lement  a such tha t  b _~ a for every e l emen t  b in 
A, a is the  greatest  e l ement  of the  poset. If it contains  an e l emen t  a such 
tha t  a ~ b for every b in A, a is the  least  e lement .  

The grea tes t  e l ement  of a poset, if it exists, is unique;  likewise, the  
least  e lement .  They are the  topmos t  and the  b o t t o m m o s t  e l emen t s  in 
the Hasse  diagram. 

For example,  the  poset in Figure  7.41 has no grea tes t  e lement ,  but  has 
a least  e lement ,  1. Figure  7.43, on the o ther  hand,  has a g rea tes t  e lement ,  
e, but  no least  e lement .  

Al though an a rb i t r a ry  poset need not have a min ima l  e lement ,  every 
nonempty  finite poset has a min imal  e lement ,  as Theo rem 7.13 shows. 

Every finite nonempty  poset (A, _<_) has a min imal  e lement .  

PROOF: 
Let a l  be any e lement  in A. If a l  is not minimal ,  there  mus t  be an e lement  
a2 in A such tha t  a2 -< a l. If a2 is minimal ,  then  we have finished. If a2 
is not minimal ,  A mus t  have an e lement  a3 such tha t  a3 < a2. If a3 is not 
minimal ,  cont inue this  procedure.  Since A contains  only a finite n u m b e r  of 
e lements ,  it mus t  t e r m i n a t e  with some e lement  an. Thus  an < an-  1 < " " " 
a3 -< a2 ~ a l. Consequent ly ,  an is a min imal  e lement ,  m 

This resul t  forms the corners tone  of the  topological sor t ing technique.  

Topological Sorting 

Study the tasks  tl t h rough  t13 for bui lding a house, given in Table 7.6. 
(Recall tha t  the relat ion precedes  or is the  s a m e  as is a par t ia l  order  on A). 
For these  tasks  to be en tered  in a computer ,  the  e lements  of the  poset mus t  
be a r ranged  in a l inear  order consis tent  wi th  the  par t ia l  order.  If a _< b, 
then  en te r  task  a before task  b in l inear  order. This  t echnique  is called 
topological  sorting. 

To topologically sort  a finite n o n e m p t y  poset (A,-<) wi th  n e lements ,  
proceed as follows. By Theorem 7.13, the  poset contains  a min imal  ele- 
ment ,  say, a l. Exclude it from A. Then  A - {a l} is also a finite poset. If  it 
is nonempty ,  it contains  a min imal  e lement  a2. Delete a2 from A - {a 1}. 
Then  A - {al, a2} is a finite poset wi th  min imal  e lement  a3. Cont inue  this  
procedure  unt i l  the  poset becomes null. This procedure  yields the  desired 
l inear  order, a l -< a2 < a3 -< . . .  -< an. 

A simple a lgor i thm can handle  this  organizing (see Algor i thm 7.4). 
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Algorithm Topological Sort (S) 
(* This algorithm sorts a f i n i te  nonempty poset S into a l inear order 

using topological sorting. *) 
Begin (* algorithm *) 

while S ~=~ do 
begin (* while *) 

find a minimal element a in S 
S <-- S - {a} (* delete a from S *) 

endwh i I e 
End (* algorithm *) 

Algorithm 7.4 

We can establish the validity of this algorithm using induction and 
Theorem 7.13. We leave its verification as an exercise. 

Topologically sort the elements of the poset in Example 7.57. 

SOLUTION:  
The poset given by the Hasse diagram in Figure 7.41 has one minimal 

element, 1. Delete it from the poset and hence from the Hasse diagram. The 
diagram turns into Figure 7.45 with a poset of two minimal elements, 2 and 
3. Delete one of them, say, 3. The resulting poset appears in Figure 7.46; 
it has two minimal elements, 2 and 6. Delete one of them, say, 2. The 
new poset in Figure 7.47 also has two minimal elements, 6 and 8. Extract, 
say, 8. The resulting poset is shown in Figure 7.48. Extract its minimal 
element, 6; this leaves just one element, 12 (see Figure 7.49). Deleting it 
yields the empty set, and the procedure terminates. Thus, we can sort the 
elements of the poset in a linear order compatible with the partial order: 
1 -<3~<2-<8~<6-<12 .  

8 F i g u r e  7.45 12 

F i g u r e  7.46 8 .12 

6 
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F i g u r e  7.47 o 12 

Figure 7.48 12 

F i g u r e  7.49 o12 

In this example, we could have chosen a minimal  e lement  in more 
than  one way on three occasions; in other words, the ou tpu t  from the 
topological sorting need not be unique. 

We close this section with another  sorting example. 

Topologically sort the elements of the poset in Example 7.59. 

S O L U T I O N :  
Figures 7.50-7.54 track the steps of the sorting algorithm. The resultin~ 
output  is a < b < d -< c -< e. 

Figure 7.50 

Extract a. 

e 

c d 

a 

F i g u r e  7.51 

Extract b. 

e 

c 
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F i g u r e  7.52 

Ext rac t  c. 

e 

F i g u r e  7.53 

Extrac t  d. 

e 

c~ 
F i g u r e  7.54 

Extrac t  e. 

e 

II 

Exercises 7.9 

Determine  if each is a part ial  order. 

1. The relat ion < on R 2. The relat ion > on R 

3. The relat ion > on Z 4. The relat ion ion  Z 

Determine  if each is a part ial  order  on {a, b, c}. 

5. {(a,a), (b,b), (c,c)} 

7. {(a,a), (b,b), (b,c), (c,c)} 

Determine  if each is a part ial  order. 

9. b 

Q 
11" 

6. {(a,a), (a,b), (b,a), (b,b), (c,c)} 

8. {(a,a), (a,b), (b,b), (b,c), (c,c)} 

10. 

Determine  if the  given e lements  are comparable  in the poset (A, I), where  
A - { 1, 2, 3, 6, 9, 18} and I denotes the divisibility relation. 

12. 2,3 13. 2,6 14. 2,9 15. 3,18 
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Determine if the given elements are comparable in the poset (A, __), where 
A denotes the power set of {a, b, c} (see Example 7.58). 

16. {a,b}, {b,c} 17. {a,b}, {b} 

Arrange the following pairs from the poset N • l~ in lexicographic order. 

18. (3, 5), (2, 3) 19. (3, 5), (2, 6) 

20. Find three ordered pairs of positive integers that precede the pair (2, 3) 
in lexicographic order. 

21. Find three triplets of positive integers that precede the triplet (2, 3, 5). 

Arrange the following words over the English alphabet in lexicographic 
order. 

22. mat, rat, bat, cat, eat, fat 

23. neighbor, neophyte, neglect, moment, luxury, maximum 

24. custom, custody, custard, cushion, curtain, culvert 

25. discreet, discrete, discount, discourse, diskette, discretion 

26. Arrange all words of length _< 2 over the alphabet {a, b} in lexicographic 
order. Construct a Hasse diagram for each poset. 

27. (A, f), where A - {1, 2, 3, 6, 9, 18} and I denotes the divisibility relation. 

28. (A, J), where A = {1, 2, 3, 6, 8, 24} and I is the divisibility relation. 

29. (A,R), where A = {a,b,c} and R - {(a,a), (a,b), (b,b), (b,c), (c,c)}. 

30. (A, __), where A denotes the power set of the set {a, b }. 

31. Let A denote the set of words of length _< 3 over the binary alphabet. 
The relation R, defined on A by xRy if x is a prefix of y, is a partial 
order. Draw a Hasse diagram for the poset (A, R). 

Find the maximal and minimal elements in the poset with each Hasse 
diagram. 

32. f_ 33. c s d  34. dl 

a 

Find the maximal and minimal elements, if they exist, in each poset. 

35. (A, _<), where A denotes the set of positive even integers. 

36. (A, _<), where A denotes the set of negative even integers. 
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37. ( A , I ) , w h e r e A -  {1,2,3,6,9,18} 38. (A,I),whereA = {1,2,3,6,8,24} 

39-42. Find the greatest and least elements, if they exist, in the posets of 
Exercises 35-38. 

Mark each statement as true or false. 

43. Every poset has a maximal element. 

44. Every poset has a minimal element. 

45. The maximal element in a poset, if it exists, is unique. 

46. The minimal element in a poset, if it exists, is unique. 

47. Every poser has a greatest element. 

48. Every poset has a least element. 

Give a counterexample to disprove each statement. 

49. Every poset has a maximal element. 

50. Every poset has a minimal element. 

51. Every poset has a greatest element. 

52. Every poset has a least element. 

Topologically sort the elements of each poset. 

53. The poset in Figure 7.43. 54. The poset in Figure 7.44. 

55. The poset in Exercise 32. 56. The poset in Exercise 33. 

57. (A,I),whereA = {1,2,3,6,9,18} 58. (A,I),whereA = {1,2,3,6,8,24} 

59. Topologically sort the tasks t l through t13 in building a house, given 
by Table 7.6. 

60. A project contains six subprojects, A through F. Results from some 
of the subprojects are needed by others, as Table 7.7 shows. Find the 
ways the subprojects can be sequentially arranged. 

T a b l e  7.7 
Subproject  Requires  results  from 

A B,D 
B C 
C None 
D C,E 
E None 
F A 
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61. Seven tasks, A through G, comprise a project. Some of t hem can only 
be star ted after others are completed, as indicated by Table 7.8. How 
many ways can the tasks be arranged sequentially, so the prerequi- 
sites of each task will be completed before it is s tarted? List one of 
them. 

Table  7.8 
Task Requires the completion of 

A B,C 
B G 
C None 
D A,F 
E None 
F B,E 
G None 

*62. Let(A, ___1) and (B, <2) be two posets. Define a relation ___3 on A x B 
a I b I" _ as follows: ( a , b )  <__3 ( a ' , b ' )  i f a  -<1 and b _<2 Prove tha t  <3 is a 

partial order. 

Prove each. 

*63. The greatest  element of a poset (A, _<), if it exists, is unique. 

*64. The least element of a poset (A, _<), if it exists, is unique. 

*65. Every finite nonempty poset (A, _<) contains a maximal element.  

*66. Establish the correctness of Algorithm 7.4. 

We studied the fundamentals  of the theory of relations and explored how 
relations on finite sets can be represented by graphs and boolean matrices. 

Boolean Matrix 

�9 A b o o l e a n  m a t r i x  has bits for entries (page 438). 

�9 The j o i n  A v B and m e e t  A v B of two boolean matrices A and B 
are obtained by o r i n g  and a n d i n g  the corresponding bits, respectively 

(page 439). 

�9 The b o o l e a n  p r o d u c t  A | B of two boolean matrices A = (a i j )m x p  and 
B = (b jk )pxn  is the matr ix C - (c i j )m• where cij = (a l l  A b V)  v (ai2 A 
b2j) v . . . v (alp A bpj) (page 439). 
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�9 The complement A' of a boolean mat r ix  A resul ts  from swapping O's 
and l ' s  (page 442). 

Binary Relation 
�9 A b i n a r y  r e l a t i o n  R from A to B is a subset  o fA x B. If (a, b) ~ R, we 

wri te  aRb; otherwise,  we wri te  ab (page 443). 

�9 A relat ion R from a finite set to a finite set can be represen ted  by its 
a d j a c e n c y  m a t r i x ,  MR (page 444). 

�9 A relat ion on a finite set can be represen ted  by a d i g r a p h  (page 445). 

�9 Every function f :A -~ B is a b inary  relat ion from A to B such tha t  (1) 
d o m ( f  ) = A; and (2) if (a, b) E f and (a, c) ~ f ,  t hen  b = c (page 448). 

Properties of Relations 
�9 A relat ion R on A is r e f l e x i v e  if a R a  for every a e A (page 455). 

�9 A relat ion R on A is s y m m e t r i c  if aRb  implies bRa  (page 456). 

�9 A relat ion R on A is a n t i s y m m e t r i c  if aRb  A b Ra  implies a - b 
(page 456). 

�9 A relat ion R on A is t r a n s i t i v e  if a Rb  A bRc implies aRc  (page 459). 

Constructing New Relations 
�9 The u n i o n  and intersection of two relat ions R and S from A to B are 

R U S - { (a, b) laRb v aSb  }; R A S - { (a, b)[aRb v aSb  } (page 462). 

�9 If R and S are relat ions on a finite set, MR u s -- MR v M S and MR n S -- 
MR A MS (page 463). 

�9 Let R be a relat ion from A to B and S a relat ion from B to C. Thei r  
composition is R | S - {(a, c) ~ A x C laRb  A bRc for some b in B} 

(page 463). 

�9 In part icular ,  if A, B, and C are finite sets, then  MRoS  -- MR Q M S  
(page 466). 

�9 For a relat ion R on a finite set, MR,, -- (MR)[hi (page 467). 

�9 For a t ransi t ive  relat ion R, R n c_ R for every n >_ 1 (page 468). 

�9 The c o n n e c t i v i t y  r e l a t i o n  R ~ is the union of all powers of R" 

cx~ 

R ~  - U Rn; MR~  = MR V MR2 V MR3 v . . .  
n - 1  

(page 471). 
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�9 In part icular ,  let R be a relat ion on a set with size n. Then  

n 

R ~ = O R  i and MR -- MR v MR2 v . . .  v MRn (page 473). 
i=l 

Transitive Closure 

�9 The transi t ive  closure R* of a relat ion R is the smallest  t rans i t ive  
relat ion containing it (page 475). 

�9 R* - R ~ (page 477). 

�9 W a r s h a l l ' s  a l g o r i t h m  systematical ly finds M R .  (page 477). 

Equivalence Relations and Partitions 

�9 An equivalence  re lat ion is reflexive, symmetric ,  and t rans i t ive  
(page 483). 

�9 An equivalence relation on a set induces a part i t ion of the set and vice 
versa (page 488). 

Partial and Total Orders 

�9 A partial  order • is reflexive, ant isymmetr ic ,  and transi t ive.  A set 
together  with a partial  order  is a p o s e t  (page 494). 

�9 Two elements,  x and y, in a poset are c o m p a r a b l e  if e i ther  x _< y or 
y • x (page 495). 

�9 If any two elements  in a poset are comparable,  the part ial  order  is a 
t o t a l  o r d e r  or l inear order (page 495). 

�9 The lex icographic  order is an extension of the alphabetical  order  to 
posets (page 495). 

�9 The Hasse diagram of a finite poset contains no loops, edges implied 
by transi t ivi ty,  or arrows; its edges are drawn upward  (page 496). 

�9 The elements  of a finite nonempty  poset can be s o r t e d  t o p o l o g i c a l l y  
(page 500). 

Review Exercises 

Determine  if each relat ion on {a, b, c} is reflexive, symmetric ,  an t i symmet -  
ric, or transit ive.  

1. {(a,a), (b,c), (c,b), (c,c)} 2. {(a,b), (b,a), (b,c), (c,b)} 
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Using the relations R = { (1, 1), (1, 2), (2, 2), (3, 2) } and S - { (1, 1), (2, 2), 
(2,3), (3,2)} on {1,2,3}, find each. 

3. (R u S)' 4. R' n S' 5. (R N S)' 6. R' u S' 

7. ( R U S )  -1 8. R - l u S  -1 9. ( R N S )  -1 10. R - 1 A S  -1 

11. R G S  12. R 2 13. R 3 14. R ~ 

With the adjacency matrices of the relations R -- {(1, 1), (1,2), (2,2), (3,2)} 
and S - {(1, 1), (2, 2), (2, 3), (3, 2)} on { 1, 2, 3}, find each. 

15. (MR)' 16. (MR) T 17. MRoS 18. MR2 

19. R Q S 20.  R 2 21.  MR, 22.  R* 

Find the transit ive closure of the relation on A = {a,b,c} with each 
adjacency matrix. 

[0 J [ 
0 0 1 1 0 0 

23.  0 0 24.  0 1 
1 1 1 0 

Since 1972 every book published commercially has a 10-digit identification 
number,  its International Standard Book Number (ISBN). The ISBN con- 
sists of four parts: a group code (one digit), a publisher code (two digits), 
a book code (six digits), and a check digit. For instance, the ISBN of an 
earlier text by this author  is 0-12-421171-2. The group code 0 indicates 
that  the book was published in an English-speaking country. The pub- 
lisher code (12) identifies the publisher, Academic Press, and the book code 
(421171) is assigned by the publisher to the book. The check digit d, where 
0 _< d _< 10 and 10 is denoted by X, is used to detect errors and is computed 
as follows" Let xl ,x2 , . . .  ,x9 denote the first nine digits in the ISBN. Let 
s denote the dot product of the 9-tuples (Xl,X2,xa,x4,xs,x6,x7,xa,x9) and 
(10,9,8,7,6,5,4,3,2) .  Then d - - s  (mod 11). Compute the check digit if 
the first 9 digits of the ISBN are: 

25. 0-12-421171 26. 0-87-620321 

Determine if each is an equivalence relation on {a, b, c}. 

27.  {(a,a), (a,b), (b,a), (c,c)} 28. {(a,a), (a,c), (b, b), (c,a), (c,c)} 

Using the equivalence relation { (a, a), (a, c), (b, b), (b, d), (c, a), (c, c), (d, b), 
(d, d) } on A = {a, b, c, d}, find each equivalence class. 

29. [a] 30.  [b] 31.  [c] 32.  [d] 

33.  Find the parti t ion of A induced by the above relation. 

Find the equivalence relation corresponding to each parti t ion of the set 
{2,3,4,7}. 

34. {{2, 4, 7}, {3}} 35. {{2, 4}, {3}, {7}} 
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Find the number  of part i t ions of a set with the given size. 

36. Two 37. Seven 

Mark  each s ta tement  as t rue or false, where A is an a rb i t ra ry  set, R an 
arb i t ra ry  relation, and A the equality relation. 

38. The null relation is reflexive. 

39. The null relation is symmetric.  

40. The null relation is transitive. 

41. A relation R on A is reflexive if and only if A c_ R. 

42. The less-than relation on R is irreflexive. 

43. The less-than relation on R is ant isymmetr ic .  

44. If R is transitive, R* - R. 

45. If R* - R, R is transitive. 

46. The less-than relation on R is a part ial  order. 

47. The less-than relation on R is a total order. 

48. Arrange all binary words of length 3 in lexicographic order, where  
0-<1.  

49. Arrange all binary words of length _< 3 in lexicographic order, where  
0-<1.  

The relation _<_ on the set A of required courses given in Table 7.1 by x _<_ y 
ifx is a prerequisi te  of or the same as y is a partial  order on A. 

50. Draw the Hasse diagram for the poset. 

51. Topologically sort the required computer  science courses. 

Use the poset in Figure 7.55 to find the following. 

F i g u r e  7.55 d e / /  

a 

52. The maximal and minimal elements,  if they exist. 

53. The greatest  and least elements,  if they exist. 

54. Topologically sort the elements in the poset. 
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Let R and S be any two relations on a set A. Prove each. 

55. (R n S)  2 C__ R 2 n S 2 56. (R n S )  n C R n n S n, n > 1 

57. R is ant isymmetr ic  if and only if R N R -1 __c A. 

58. The intersection of two equivalence relations is an equivalence 
relation. 

Supplementary Exercises 

Let D denote any day of the week, where 0 < D _< 6 and D - 0 denotes 
Sunday. The day of the week corresponding to any day ( m / d / y )  in the 
Gregorian calendar is given by 

D-- 

23m - 1 - 

L 
k-5-o 

if m < 3  

otherwise 

(M. Keith and T. Carver, 1990) 
Compute the day of each date. 

1. July 4, 1776 2. December 25, 2076 

Prove each. 

3. Let p be a prime. Then PI(~) for 0 < k < p. 

4. ( F e r m a t ' s  t h e o r e m )  Let a e N and p a prime. Then a p - a (modp). 
( H i n t :  Use induction.) 

Let a ,b e I~ a n d p  a prime. Prove tha t  (a + b) p - a  p + b p (modp)  using: 

5. The binomial theorem and Exercise 3. 

6. Fermat ' s  theorem. 

Evaluate each. 

7. 51~176176 (mod 7) 8. 124000 (mod 5) 

9. Prove that  the product of any three consecutive integers is divisible 
by 3. 

10. Let n e W. Prove that  the number  formed by concatenating the deci- 
mal values of 2 n and 2 n+l is divisible by 3. (For example, when n - 5, 
both 3264 and 6432 are divisible by 3.) (D. Burns, 1977) 
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11. Around 1760, John  Wilson (1741-1793), an English mathemat ic ian ,  
proved tha t  (p - 1)! _= - 1  (modp;  tha t  is, the quotient  

W ( p )  - 
(p- i)! + 1 

is an integer. This is known as W i l s o n ' s  t h e o r e m . )  p is a W i l s o n  
p r i m e  if W(p) -= 0 (mod p); tha t  is, if ( p -  1)! -- - 1  (mod p2). Find 
the two Wilson's primes < 20. (The third  and largest known Wilson 
prime is 563. It is not known whether  or not there  are infinitely many  
Wilson primes.) 

12. ( L u c a s '  T h e o r e m )  Let p be a prime, n = (a ta t -1 . . .  ao)p and k - 
(btbt-1 bo)p. Then ( k ) -  (~i) [at-l~ ao . . .  n ~ , b t _ l ] . . .  (b0)(mod p). Using Lucas '  the- 
orem, find the remainders  when the binomial coefficients C(234,19) 
and C(3456,297) are divided by 5. 

"13. Let a and b be relatively prime integers. Prove tha t  a ~(b) 4- b v~(a) =- 1 
(mod ab ). 
(Hint: Let n c N and a an integer relatively prime to n. Then a ~(n) =_ 1 
(mod fi). This is E u l e r ' s  t h e o r e m . )  (M. Charosh, 1983) 

"14. Show that  a set with n elements must  have at least 2 rZ relations with 
the same reflexive closure. 
(Hint: Use the pigeonhole principle.) 

"15. Show that  a set with size n must  have at least 2 n(n-l//2 relations with 
the same symmetric  closure. 
(Hint: Use the pigeonhole principle.) 

Computer Exercises 

Write a program to perform each task, where n denotes a positive integer  
< 20 a n d A -  {1 ,2 , . . . ,n} .  

1. Read in two boolean matrices. Pr in t  their  join, meet, complement,  and 
boolean product, if defined. 

2. Read in the elements of a relation R on A. Pr in t  its adjacency matr ix  
MR. Use MR to enumera te  the elements in the relation. 

3. Read in the adjacency matr ix  of a relation on A. Determine if the relat ion 
is reflexive, symmetric,  ant isymmetr ic ,  or transitive. 

4. Read in the adjacency matrices of two relations on A. Pr in t  the adjacency 
matrices of their  union, intersection, complements,  and inverses. 

5. Read in the adjacency matr ix  of a relation R from A to B and tha t  of a 
relation S from B to C. Pr in t  MRoS. 
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6. Read in the adjacency matrix of a relation R on A. Print  MR., using 
the connectivity relation algorithm and Warshall 's algorithm, and 
compare the number of bit operations required by them. 

7. Read in the adjacency matrix of a relation on A. Determine if the 
relation is an equivalence relation. 

8. Read in two positive integers r and n, where r < n < 10. Pr int  the 
number of equivalence relations that  can be defined on a set of size n, 
using Stirling numbers of the second kind and Bell numbers. 

9. Read in the adjacency matrix of a partial order on a poset A. 

�9 Determine if it is a partial order. 
�9 Print  the boolean matrix corresponding to its Hasse diagram. 
�9 Topologically sort the elements of the poset. 

10. Determine the most likely day on which the 13th of a month will fall 
in the Gregorian calendar. Since the Gregorian calendar repeats every 
400 years, you need only consider a period of 400 years. 

11. Read in a positive integer n < 1000 and print all Wilson primes < n. 

Exploratory Writing Projects 

Using library and Internet  resources, write a team report on each of the 
following in your own words. Provide a well-documented bibliography. 

1. Explain and illustrate the various relational operations in the theory of 
databases. 

2. Describe the algorithm employed by the United States Postal Service to 
encode the nine-digit zip code into barcodes, and decode the barcodes 
(62 bars) into zip codes. 

3. Describe how modular arithmetic can be used to construct m-pointed 
stars. 

4. Explain the coding scheme for creating European Article Numbering 
(EAN) barcodes to uniquely identify books. Extend it to include the 
five-digit add-on code to provide price information. 

5. Describe the origins of the Julian and Gregorian calendars. 

6. Develop a formula to determine the day d of the week for the r th day in 
a given month m of any given year y in the Gregorian calendar, where 
y > 1600. 

7. Study the algorithms of assigning driver's license numbers in various 
states. 



514 Chapter 7 Relations 

8. State and prove the Chinese Remainder Theorem. Illustrate it using 
ancient examples from China and India. 

9. Write an essay on the various cryptosystems. 

Enrichment Readings 

0 

0 

0 

0 

0 

0 

0 

Q 

0 

10. 

11. 

12. 

A. V. Aho et al., Data Structures and Algorithms, Addison-Wesley, 
Reading, MA, 1983. 

W. T. Bailey, "Friday-the-Thirteenth,"Mathematics Teacher, Vol. 62 
(May 1969), pp. 363-364. 

J. A. Gallian, "Assigning Driver's License Numbers," Mathematics 
Magazine, Vol. 64 (Feb. 1991), pp. 13-22. 

J. A. Gallian, "The Mathematics of Identification Numbers," The 
College Mathematics Journal, Vol. 22 (May 1991), pp. 194-202. 

J. A. Gallian and S. Winters, "Modular Arithmetic in the Market- 
place," The American Mathematical Monthly, Vol. 95 (June--July 
1988), pp. 548-551. 

D. W. Hardy and C. L. Walker, Applied Algebra: Codes, Ciphers, and 
Discrete Algorithms, Prentice-Hall, Upper Saddle River, NJ, 2003. 

T. Koshy, Elementary Number Theory with Applications, Harcourt/ 
Academic Press, Boston, MA, 2002, pp. 210-436. 

P. Lefton, "Number Theory and Public-Key Cryptology," Mathematics 
Teacher, Vol. 84 (Jan. 1991), pp. 54-62. 

R. E. Lewand, Cryptological Mathematics, 
America, Washington, D.C., 2000. 

Math. Association of 

J. E. Shockley, Introduction to Number Theory, Holt, Rinehart and 
Winston, New York, 1967, pp. 36-69. 

J. R. Snow, "An Application of Number Theory to Cryptology," 
Mathematics Teacher, Vol. 82 (Jan. 1989), pp. 18-26. 

P. M. Tuchinsky, "International Standard Book Number, 
Journal, Vol. 5 (1985), pp. 41-54. 

" The UMAP 


	sdarticle9

