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Relations

The invention of the symbol = by Gauss affords a striking example of the
advantage which may be derived from an appropriate notation, and
marks an epoch in the development of the science of arithmetic.

— G. B. MATHEWS

F unctions are a special case of relations, which are also used in everyday

life. Relations have applications to many disciplines, including biology,
computer science, psychology, and sociology. The EQUIVALENCE state-
ment in FORTRAN, for example, is based on the relation has the same
location as (see Example 7.42). Graphs, digraphs, formal languages, finite
state machines — all to be discussed in the next four chapters — are closely
related to the theory of relations.

In this chapter we will examine the concept of a relation, its com-
puter representations and properties, and different ways to construct new
relations from known ones.

We will deal with the following problems, as well as others:

¢ Is it possible to arrange all n-bit words around a circle in such a way
that any two adjacent words differ by exactly one bit?

* Can we determine the day corresponding to a given date m/d/y, where
y > 1582, the year the Gregorian calendar was adopted?

* Five sailors and a monkey are marooned on a desert island. During the
day they gather coconuts for food. They decide to divide them up in the
morning and retire for the night. While the others sleep, one sailor gets
up and divides them into equal piles, with one left over that he throws
out for the monkey. He hides his share, puts the remaining coconuts
together, and goes back to sleep. Later a second sailor gets up and
divides the pile into five equal shares with one coconut left over, which
he discards for the monkey. He also hides his share, puts the remaining
coconuts together, and goes back to sleep. Later the remaining sailors
repeat the process. Find the smallest possible number of coconuts in
the original pile.
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* The computer science courses required for a computer science major
at a college are given in Table 7.1. In which order can a student take

them?
Table 7.1 Number Course Prerequisite
CS 100 Computer Science I None
CS 150 Computer Science 11 CS 100
CS 200 Computer Organization CS 150
CS 250 Data Structures CS 150
CS 300 Computer Architecture CS 200
CS 350 Programming Languages CS 250
CS 400 Software Engineering CS 250
CS 450 Operating Systems CS 250, CS 300

A special class of matrices called boolean matrices is used to study
relations, so we begin with a brief discussion of such matrices.

(This section is closely related to Section 3.7 on matrices; you will probably
find that section useful to review before reading further.)
Aboolean matrix is a matrix with bits as its entries. Thus A = (a;;)m xn

is a boolean matrix if ¢;; = 0 or 1 for every i andj. For instance, |:(1) (1) (1)}

is a boolean matrix, whereas [(1) —g} is not.

Boolean Operations and and or

The boolean operations and (A) and or (v), defined by Table 2.1, signal
the combining of boolean matrices to construct new ones. Listed below are
several properties of these bit operations. They can be verified easily, so try

a few.
m Let a and & be arbitrary bits. Then:
*arna=a *anb=bnra
sava=a cavb=bva
canbre)=(anb)nec ceavbve)=@vbh ve
cavArc)=(avb)alave) sanbve=@rb)viare) N

Using the two bit-operations, we now define two operations on boolean
matrices.
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The join of the boolean matrices A = (a;))mxn and B = (b;j)mxn, denoted
by A v B, is defined by A v B = (a;; V b;})mxn. Each element of A v B
is obtained by oring the corresponding elements of A and B. The meet
of A and B, denoted by A A B, is defined by A A B = (a;; A bjj)mxn. Every
element of A A B is obtained by anding the corresponding elements of A
and B.

The following example illustrates these two definitions.

Let

Find Av Band A A B.
SOLUTION:
1vo O0v0O 1vl1 1 01
AVB:[Ovl 1voO Ov1:|=I:1 1 1}
1A0 0AO0 141 0 0 1
AAB:[OM 170 OAlJ:[O 0 o]
| |
The boolean product of the boolean matrices A = (a;)mxp and B =
(®jr)pxn, denoted by A © B, is the matrix C = (¢;j)mxn, Where ¢; =
(a;; A blj) Vv {ajo A bgj) VooV (aip A bpj). (See Figure 7.1).
a2 ... Qip b11 blj bln ‘i1 ... € ... Cip
az ... Qp (O b1 ... bij o b= e - Cj ... Cip
am2 ... Qmp bpl bpj bpn Cmti v+ Cmj -.- Cmn

Notice the similarity between this definition and that of the usual

product of matrices.
The next example clarifies this definition.

LEXAMPLE 72 R

11
A=[(1)(1’é] and B=|1 0
0 0

Find A ® B and B © A, if defined.
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SOLUTION:
(1) Since the number of columns in A equals the number of rows in B,
A © B is defined:

- 10
A@B:é (1) é}@ 11
- 00

_[AADVOADVAAD QAADVOALDVIAO
OADVAADVOAO OA0VAALVOAOD

10
Tl

(2) Number of columnsin B = 2 = Number of rows in A. Therefore, BOA
is also defined:

1 0
poa=|1 1lo[3 0]
10

[(IADVOAD (LAVOALD (1/\1)\/(0/\0)}

={(1ADVAADL 1A0)VIAL OQAALVIAD
L OADVOAD (OADVIOAL (OADVOAOD)

1 0

= 1

10 0
n

The fundamental properties of the boolean matrix operations are listed
in the following theorem. Their proofs being fairly straightforward, appear
as routine exercises (see Exercises 36-43).

@m Let A, B, and C be three boolean matrices. Then:

O
O

cs AVA=A e ANA=A
e« AVB=BVA « ANB=BAA
*s AV BVvC)=AvVB)VvC c ANBAC)=AAB)AC

*AVBAC)=AVBIAAVE)  « ANBVC)=(AABVAAC)
A0BOC)=A0BOC

The sizes of the matrices are assumed compatible for the corresponding
matrix operations. ]
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Boolean Power of a Boolean Matrix

Let A be an m x m boolean matrix and n any positive integer. The nth
boolean power of A, denoted by A", is defined recursively as follows:

A0 =1, (the identity matrix)
Al = Al A ifn>1

The following example illustrates this definition.

AEYNTIE Lot
1 1 0

A=1]1 1 0

0 0 O

1 0 110 1 10
1 0]l 1 O0|=]1 1 0
00 0 00 0 00

110 110 110
ABl ARl Aa=1]1 1 0|lol1l 1 0j=|1 1 0
0 0 0 0 0 0 0 0 0

(You can verify that in this case, A!*! = A for every n > 1.) [ |

Compute A2l and Al3!,
SOLUTION:

O ==

A12]=A[1l®A:A@A=l:

You will find boolean matrices and their properties useful in the next
few sections, so review them as needed.

Exerecises 7.1

Using the boolean matrices
11 01 00
A=I:O O:I, Bz[1 O}’ and(l’:[1 Ojl
find each.

1. AvB 2. AAB 3. AoC 4. CoA
5 Av(Bv(C) 6. ArNBACO) 7. A0B6C) 8. AoBOGC

Using the boolean matrices

1 01 0 01 0 0 O
A=]0 0 0(,B=|0 1 O0|,andC=1{0 0 1
1 10 1 00 0 10

find each.
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9. ANBVO) 10. AvBAO) 11. AAB)VAAC)
12. AvB)AAVC) 13. AAB)VAVC) 14. AGBOO)
15. AoB)oC 16. BOCOA 17. AGAGA

18. Using the boolean matrix

find APB! and Al5),

Let A and B be any two n x n boolean matrices. Find the number of boolean
operations needed to compute each.

19. AvB 20. AAB 21. AoB

22. Find the number of m x n boolean matrices that can be defined.

23. Let A be an m x p boolean matrix and B a p x n boolean matrix. Find
the number of boolean operations needed to compute A © B.

24. For the boolean matrix A in Example 7.3, prove that Al*! = A for every
n>1.

The complement of a boolean matrix A, denoted by A’, is obtained by
taking the one’s complement of each element in A, that is, by replacing 0’s
with 1’s and 1’s with 0’s. Use the boolean matrices A, B, and C in Exercises
1-8 to compute each.

25. A’ 26. B’ 27. (Av BY 28. A AP
29. (AABY 30. A'v DB 31. ANB'Vv(C) 32. AoB)oC

Let A and O be two m x n boolean matrices such that every entry of A is
1 and every entry of O is 0. Let B be any m x n boolean matrix. What can
you say about each?

33. AvB 34. AAB 35. A
Let A, B, and C be any n x n boolean matrices. Prove each.

36. AVA=A 37. ANA=A 38. AvB=BVvA 39. ANB=BAA
40. AVBvC)=AVvB)VvC 41. ANBAC)=AABIAC

42, AvBAC)=AVB)AAVC) 43. ANBVC)=AABYVAAC)
Write an algorithm to find each.

44. The join of two boolean matrices A and B.

45. The meet of two boolean matrices A and B.
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46. The complement of a boolean matrix A.
47. The boolean product of two boolean matrices A and B.

48. The nth boolean power of an m x m boolean matrix A.

7.2 Relations and Digraphs :

Binary Relation

Clearly many relationships exist in the world around us. On the human
level, they are parent—child, husband-wife, student-teacher, doctor—
patient, and so on. Relationships exist between numbers also; the equality
relation (=) and the less-than relation (<) are two such relationships. In
fact, relationships can exist between any two sets; they are known as
relations.

This section presents the concept of a relation and discusses how
relations can be represented using matrices and graphs.

Before formally defining a binary relation, let us study an example.

Consider the sets A = {Tom, Dick, Harry} and B = {Amy, Betsy, Carol,
Daisy}. Suppose Tom is married to Daisy, Dick to Carol, and Harry to Amy.
Let R = {{Tom, Daisy), (Dick, Carol), (Harry, Amy)}. Using the set-builder
notation, it can also be defined as

R = {{a,b) € A x Bja is married to b}

Notice that B € A x B. It is defined using the relation is married to. The
set R is a binary relation from A to B. n

More generally, we make the following definition.

Abinary relation R from a set A to aset B is a subset of AxB. The domain

of the relation consists of the first elements in R and the range con-

sists of the second elements; they are denoted by dom(R) and range(R),

respectively. A binary relation from A to itself is a binary relation on A.
The following example illustrates these terms.

Let A = {2,3,5} and B = {2, 3,4, 6, 7). Define a relation R from A to B as
follows:

R = {(a,b)|a is a factor of b}

Then R = {(2,2),(2,4),(2,6),(3,3), (3,6)}, dom(R) = {2, 3}, and range(R) =
{2, 3, 4, 6}. .
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Let R be a relation from A to B. If (a,b) € R, we say a is related to b
by the relation R; in symbols, we write aRb. If a is not related to b, we
write a Bb. For instance, 3 < 5, but 7 £ 6. (Here the relation is <.) The
next example illustrates this further.

[m Let A be the set of cities and B the countries in the world. Define a relation
R from A to B, using the phrase is the capital of. So R = {(a,b) € A x Bla
is the capital of b}. Then Paris R France, but Toronto B Canada. | |

Relations from a finite set to a finite set can be represented by boolean
matrices, as defined below.

Adjacency Matrix of a Relation

A relation R from a set {aj,as,...an} to a set {by,ba,...b,} can be
represented by the m x n boolean matrix Mg = (m;;), where

1 if ainj

m;; = A
v 0 otherwise

Mp is the adjacency matrix of the relation R.

m Define a relation R from A = {chicken, dog, cat} to B = {fish, rice, cotton}
by R = {(a,b)laeatsb}. Then R = {(chicken,fish), (chicken,rice),
(dog, fish), (dog, rice), {(cat, fish), (cat, rice)}. Its adjacency matrix is

fish rice cotton

chicken | 1 1 0
Mp = dog 1 1 0

cat 1 1 0

Figure 7.2

Relations can also be represented pictorially. For instance, the relation
in Example 7.4 is displayed in Figure 7.2; an arrow from an element ¢ in A
to an element b in B indicates that a is related to 6.
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The circle x% + y% = 9.

Digraphs

Figure 7.4
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Relations can be displayed using familiar graphs as well. For example,
the graph of the relation {(x,y) € R x R |x2 +y% = 9} is thecirclex?+y%2 =9
with center at the origin and radius 3 (see Figure 7.3).

Relations R on a finite set A can be represented pictorially in yet another
way. We denote every element of A by a point, called a vertex (or node),
and each ordered pair (a, b) in R by a directed arc or a directed line segment,
called an edge, from a to b. The resulting diagram is a directed graph or
simply a digraph. If an edge (a, b) exists, we say that vertex b is adjacent
to vertex a. (Notice the order of the vertices.)

The next two examples illustrate these definitions.

Represent the relation R defined on A = {2, 3, 4, 6} by the phrase is a factor
of in a digraph.

SOLUTION:
Notice that

R = {{a,b) € A x A|a is a factor of b}
= {(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(6,6)}

Figure 7.4 shows its digraph. It contains four vertices: 2, 3, 4, and 6.
Since 3R6, vertex 6 is adjacent to vertex 3.

>
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Notice that the digraph in Figure 7.4 contains an edge (x,x) leaving and
terminating at the same vertex x. Such an edge is a loop. The digraph in
Figure 7.4 contains four loops.

We now turn to the concept of a path in a relation, and hence in a
digraph.

Paths in Digraphs and Relations

LEXANPLE 79 ]

Figure 7.5

Let R be a relation on a set A, and let a,bcA. A path in R, that
is, in the digraph of R, from ¢ to & is a finite sequence of edges
(a,x1),(x1,%2),...,(x,_1,b); the vertices x;’s need not be distinct. The path
from a to b is also denoted by a-x1-x2- --- -x,_1-b. The number of edges
in the path is its length. A path that begins and terminates at the same
vertex is a cycle. A cycle of length one is a loop.

The next example clarifies these terms.

Notice that the relation in Figure 7.5 contains a path of length three from
a to b, namely, a-c-d-b. The path b-c-d-b is a cycle of length three. The cycle
b-b is a loop.

The next example presents an interesting relation in the language of
binary words.

(Gray Codes) Suppose a switching network is composed of n switches q;,

where 1 <1 < n. Letq; = 1 denote that switch q; is closed and a; = 0 denote
that it is open. Every state of the network can be denoted by the n-bit word
aias...a,. Let " denote the set of n-bit words, that is, the set of all states
of the network. For example, % = (000,001,010, 100,011, 101,110,111}.
Naturally, we are tempted to ask: Is it possible to test every state of the
circuit by changing the state of exactly one switch? That is, is it possible to
list every n-bit word by changing exactly one bit?

Another definition can lead to rewording the question. Two n-bit words
are adjacent if they differ in exactly one bit, that is, if the Hamming
distance between them is one. For example, 010 and 011 are adjacent,
whereas 001 and 110 are not.

Define arelation Ron " asoR g if @ and # are adjacent. We can rephrase
this: Is it possible to arrange the elements «; of " in such a way that
a;Ra; y where 1 <1 < m — 1,a,,Ray, and m = 2"? That is, is it possible
to arrange the n-bit words around a circle in such a way that any two
neighboring words are adjacent?
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110

011 101

001 100
000

Interestingly enough, the elements of £3 can be arranged in this fashion
(see Figure 7.6): 000, 001, 011, 010, 110, 111, 101, 100. Such an ordering
is called a Gray code for £3. More generally, a Gray code for £" is an
arrangement of its elements oy, a9,...,an such that o;Re; 1 and apRoaq,
where 1 <i <m — 1. Gray codes are named for Frank Gray, who invented
them in the 1940s at what was then AT&T Bell Labs.

We can restate our original question again: Is there a Gray code for T"
for every n > 12 Induction leads to an affirmative answer.

PROOF (by induction):
Let P(n): There exists a Gray code for every £”,

Basis step When n = 1, {0, 1} is clearly a Gray code; so P(1) is true.

Induction step Assume P(k) is true; that is, there is a Gray code for k.
Suppose {a1,a2,...,a,} is a Gray code, where r = 2%,

To show that P(k+1) is true:

Consider the (k¢ + 1)-bit words Oay,0as,..., 00, lay, lay_1,. .., la;.
Clearly they form the 2r = 2*+1 elements of ©*+1. Call them g1, B2, . .. , Bor,
respectively, for convenience. Since «;Ra;;; and «rRay, BiRfi:1 and
BorRpB1, so {B1, B2,. .., Bart is a Gray code; that is, P(k + 1) is true.

Thus, by induction, a Gray code exists for every £”.

(Notice that the induction step provides a smooth method for construct-
ing a Gray code for £#*1 from that of £*. This example will be taken a bit
further in Chapter 8.) [ ]

Finally, we will see how relations and functions are closely related,
if we recall that a function f : A — B is a set of ordered pairs
{(a,b) € A x B such that every element a in A is assigned a unique element
b in B. Consequently, every function can be redefined as a relation, as
follows.
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An Alternate Definition of a Function
A function f : A — B is a relation from A to B such that:

¢ Dom(f) = A; and
e If(a,b) € f and (a,¢) € f, then b =c.
We close this section with an example that illustrates this definition.
m Which of the relations R, S, and T in Figure 7.7 are functions?

Figure 7.7 R S T

A B A B A B

SOLUTION:

The relation R is a function, whereas S is not since dom(S) # A. T is also
not a function since the same element & in A is paired with two distinct
elements in B, namely, 2 and 3. |

Exerecises 7.2

List the elements in each relation from A = {1,3,5} to B = {2,4,8]}.

1. {(a,b)}a < b} 2. {a,b)|b=a+1} 3. {{a,b)|a+b=25)

4. {(a,b) |ais afactorof b} 5. {(a,b)|a+b <3} 6. {{a,b) |a =05}
7-12. Find the domain and range of each relation in Exercises 1-6.

13-18. Find the adjacency matrix of each relation in Exercises 1-6.

Represent each relation R on the given set A in a digraph.

19. {(g,b)la < b}, {2,3,5} 20. {{a,b)la < b}, {2,3,5}

21. {(a,b)l|a is a factor of b}, {2,4,5,8}

22. {(a,b)lb=a+2}, {2,4,5,6}

Using the relation R = {(x,y)|2x + 3y = 12} on R, determine whether or not
each is true.

23. 3R2 24. 2R3 25. —3R5 26. —-5R6
Using the relation R = {(x,y)|x? +y? = 4} on R, determine if each is true.

27. 2R0 28. 2R2 29. -2R0 30. 4RO
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Define a relation R on Z by xRy if and only if x — y is divisible by 5.
Determine if:

31. 9R4 32. 13R6 33. 3R8 34. 23R3
List the elements in the relation R represented by each digraph.
35. b 36. b
//\ . .
a C
d

37-38. Find the adjacency matrix of each relation in Exercises 35 and 36.
89. Construct a Gray code for £4, where T = {0, 1}.

Using the relation in Figure 7.5, find each.

40. Paths of length one starting at a.

41. Paths of length two starting at b.

42. Number of paths of length one. 43. Number of paths of length two.

44. Number of cycles of length 45. Number of loops.
three.

Determine if each relation from {a, b,¢,d} to {0, 1, 2, 3,4} is a function.
46. {(a,0),(b,1),(c,0),(d,3)} 47. {(a,3),(b,3),(b,4),(c, 1),(d, 0)}
48. {(a,3),(b,3),(c,3),(d, 3)} 49. {(a,1),(b,2),(c,3)}

Let A and B be finite sets with |JA] = m and |B| = n. Find the number of
binary relations that can be defined:

50. From A to B. 51. OnA.

52. A relation R on the set {1,2,...,n} is given in terms of its elements.
Write an algorithm to find its adjacency matrix A.

53. Write an algorithm to print the elements of arelation R on {1,2,...,n}
using its adjacency matrix A.

*7.3 Computer Representations of Relations (optional)

Since relations from a finite set to a finite set can be represented by boolean
matrices, the most straightforward way of implementing a relation and its
digraph in a computer is by its adjacency matrix.

The second method involves linked lists. Since some programming lan-
guages such as FORTRAN do not support dynamic linked lists, the array
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Figure 7.8

Figure 7.9
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representation of linked lists serves well. (Note: Arrays are nothing but
matrices.) For example, the digraph in Figure 7.8 contains seven edges,
arbitrarily numbered 1 through 7. Store the tails and the corresponding
heads of each edge in two parallel one-dimensional arrays, T = (¢;) and
H = (h;), respectively (see Figure 7.9). Notice that 13 = 1 and k3 = 2, so
an edge exists from vertex 1 to vertex 2, namely, edge 1. Since 7 = 3 and
h7 = 2, there is also an edge from vertex 3 to vertex 2, namely, edge 5. The
other edges can be read similarly.

TAIL [HEAD
1 2 2
2 4 3
3 1 2
4 2 3
5 2 1
6 1 4
7 3 2

The enumeration of the edges need not begin with edge 1. In this exam-
ple, edge 1 is stored in ¢35 and k3. Accordingly, index 3 is stored in a variable
called START (see Figure 7.10). Further, the edges can be stored in any
order. To find the edge following each edge, an array N (for NEXT) is used.
The element n;, 1 locates the successor of edge n;, 1 <i < 6. We store 0 in
ng to indicate the end of the linked list representation of the digraph, as in
Figure 7.11.
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Figure 7.10
T | H
1 2 2
START
2 4 3
3 -4
3 1 2
4 2 3
5 2 1
6 1 4
7 3 2
Figure 7.11
T{ H| N
Static linked list
representation of the 1 9 2 1 4
relation. START
2 4 3 6
3 -
’_L>3 1 2 5
4 2 3 7
5 2 1 1
6 1 4 0
7 3 2 2

Most modern programming languages support dynamic data structures.
In this type of language, a linked list consists of a set of nodes and each
node contains (at least) two fields: a data field and a link field (or pointer
field) (see Figure 7.12). The data field contains a data item, whereas the link
field contains the address of the next node in the list. For instance, consider
the linked list in Figure 7.13. HEADER contains the address of the first
node in the list; it corresponds to START in the previous discussion. The
link field of the last node contains a special pointer called the nil pointer
that signals the end of the list. This pointer corresponds to 0 in the static
representation; a slash (/) in the field signifies it.
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Figure 7.12

A typical node.

Figure 7.13

Figure 7.14
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Data | Link
Field | Field

HEADER Link

e

a1 +—>»fa ———>'a3 ;

'\I/’

Data

The relation in Figure 7.13 illustrates the dynamic linked list representa-
tion. First, for each vertex, create a linked list of vertices adjacent to it. Then
store the header nodes in an array. The resulting linked representation
appears in Figure 7.14.

We can abbreviate this representation by storing the header nodes in
an array of pointers, as in Figure 7.15. This simplified version is the
adjacency list representation of the digraph and hence of the relation.

The next example shows how to find the adjacency matrix of a relation
from its adjacency list representation.

Using the adjacency list representation of the relation in Figure 7.15, find
its adjacency matrix.

SOLUTION:
The figure indicates vertex 1 is related to 2 and 4; vertex 2 is related to 1,
2, and 3; vertex 3 is related to 2; and vertex 4 is related to 3. Thus, the
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adjacency matrix of the relation is

1 2 3 4
110 1 0 1
2i1 1 1 0
Mr= 310 10 o0
4/0 0 1 0 -
1|4 |2]| 4> |4
2l 4+ |1| 4> [2] 4> (8
3]+ |2
Array of
pointers | {5
4 3 |
[

Exercise 7.3

Find the static linked list representation of each relation.

1. 1 2. 2
<5 >
5
3 ’ 2 3
7 1 3
3 42 1

6

4

3-4. Find the adjacency list representation of the relations in Exercises 1
and 2.

Find the adjacency matrix of the relation with each adjacency list
representation.

5. 1j—> 2
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1} 4+— (2| 4+ |4

/

3{—+—> |3
4:—»1--» 2 +—> |3

7-8. Draw the digraphs of the relations represented by the adjacency lists
in Exercises 5 and 6.

Find the adjacency list representation of the relation with the given
adjacency matrix.

1 2 8 4
123 11 01 1
170 1 0 0 2/01 10
9. 2|1 0 1 “3/0 0 1 1
310 1 1 411 0 0 1

Write an algorithm to find the adjacency list representation of a relation R
on the set {1,2,...,n} using:

11. The relation, given in terms of ordered pairs.
12. Its adjacency matrix A.

13. Write an algorithm to find the adjacency matrix A of a relation on the
set {1,2,...,n} from its adjacency list representation.

7.4 Properties of Relations

Since relations on finite sets can be represented by matrices, their prop-
erties can be identified from their adjacency matrices. In this section we
will study the properties of reflexivity, symmetry, antisymmetry, and
transitivity.

To begin with, consider the relation R, is logically equivalent to, on the
set of propositions. Since every proposition is logically equivalent to itselif,
it has the property that xRx for every proposition x. Such a relation is
reflexive.
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Reflexive Relation

Figure 7.16

A relation R on a set A is reflexive if xRx for every element x in A, that is,
if xRx for every x € A.

Since every set A is a subset of itself, the relation is a subset of on its
power set is reflexive. Similarly, the equality relation (=) is also reflexive;
it is denoted by A. Thus, a relation is reflexive if and only if A C R.

The next two examples illustrate additional reflexive relations.

Since x < x for every real number x, the relation < on R is reflexive. No
number is less than itself, so the less than relation is not reflexive. |

Which of the following relations on A = {x,y,z} are reflexive?

* Ry = {(x,x), (x,5), ,¥), (2,2)} * Ry = {(x,x), ,3), ,2), (z,5)}
* R3 = 0 [the empty relation] * Ry = {(x,x),(y,y), (2,2)}

SOLUTION:

For a relation R on A to be reflexive, every element in A must be related to
itself, that is, (a,a) € R for every a € A. The element a has three choices,
namely, x, ¥, and z; therefore, the ordered pairs (x,x), (y,y), and (z,z) must
be in the relation for it to be reflexive. Consequently, the relations R and
R4 are reflexive, whereas Ry and Rz are not. [ |

How can we characterize the adjacency matrix M = (m;;) of a reflexive
relation on the set A = {ay,as,...a,}?7 A relation R on A is reflexive if
and only if a;Ra; for every q; in A. Thus, R is reflexive if and only if
m;; = 1 for every ij that is, if and only if the main diagonal elements of
Mpg are all 1’s, as Figure 7.16 shows.

The digraph of a reflexive relation must contain a loop at each vertex,
since every element of A is related to itself; see Figure 7.16.
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Number of Reflexive Relations

LEXANPLE 7.15 ]

We can use the adjacency matrix Mg of a relation R on a set A to compute
the number of reflexive relations that can be defined on A, as the following
example demonstrates.

Find the number of reflexive relations R that can be defined on a set with
n elements.

SOLUTION:

Since R is reflexive, every element on the main diagonal of M is 1; there are
n such elements. Since Mg contains n? elements, therearen? —n = n(n—1)
elements that do not lie on the main diagonal; each can be a 0 or 1; so each
such element m;; has two choices. Thus, by the multiplication principle, we
can form 277~ 1 such adjacency matrices, that is, 2**~1 reflexive relations
on A. n

For an exploration of symmetric and antisymmetric relations, again let R
be the relation, is logically equivalent to, on the set of propositions. If x and
y are any two propositions such that xRy, then yRx. Thus xRy implies yRx.

On the other hand, let x and y be any two real numbers such that x < y
and y < x. Then x = y. Thus the relation R(<) has the property that if xRy
and yRx, thenx = y.

These two examples lead us to the next definitions.

Symmetrie and Antisymmetric Relations

A relation R on a set A is symmetric if aRb implies bRa; that is, if (a,b)
R, then (b,a) € R. It is antisymmetric if aRb and bRa imply a = b.

By the law of the contrapositive, the definition of antisymmetry can be
restated as follows: A relation R on A is antisymmetrie if whenever a # b,
either a Rb or b Ra, that is, ~(aRb A bRa). Thus R is antisymmetric if there
are no pairs of distinct elements a and b such that aRb and bRa.

The next three examples demonstrate symmetric and antisymmetric
relations.

Which of the following relations on {x,y, z} are symmetric? Antisymmetric?
* Ry = {(x,x), (y,3),(2,2)}
* Ry = {(x,y)}
* Rz = {{x,y), (y,x)}
¢ Ry = {(x,x),(x,2),(z,x), (y,2)}
SOLUTION:
The relations R; and R3 are symmetric. K2 is not symmetric, since (y,x)

is not in Ry. Similarly, R4 is not symmetric. B; and Ry are antisymmetric,
but R3 and R4 are not. ]
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m The relation is logically equivalent to on the set of propositions is symmet-
ric. Is it antisymmetric? Suppose p = g and ¢ = p; this does not imply that
D = g, so the relation is not antisymmetric. | |

&XAMPLE 7.18 The relation < on R is not symmetric, since x < y does not imply thaty < x.
If, however, x <y and y < x, then x = y, so the relation is antisymmetric.
|

These two examples demonstrate that a symmetric relation need not be
antisymmetric and vice versa.

As for the adjacency matrix of a symmetric relation, a relation R on
{a1,ag,...,ax} is symmetric only if a; Ra; implies a; Ra;; that is, only
if, m;; = mj;. Thus, R is symmetric if and only if M is symmetric; see
Figure 7.17.

Figure 7.17

Graphically, this means if a directed edge runs from a; to a;, then one
should run from a; to a;. In other words, every edge must be bidirectional.

For a relation R to be antisymmetric, if a; # a; either g; ARa; or a; Ra;.
In other words, if i #j and m;; = 1, then mj; = 0; that is, either m;; =0
or m;; = 0; see Figure 7.18.

Figure 7.18

Geometrically, if a directed edge runs from a; to q;, one should not run
from q; to a;; that is, no edges are bidirectional.

m Determine if the relation R on {a, b, ¢} defined by

110
Mp=10 0 O
0 11

is antisymmetric.
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SOLUTION:

Consider the cases i # j and m;; = 1, where 1 < i,j < 3. Clearly, m1z =
1 # 0 = mg; and m3g = 1 # 0 = mgg3. Thus, when i # j, either m;; = 0 or
mj; = 0. Therefore, the relation is antisymmetric; see Figure 7.19. (Notice
that m1; = mss = 1 and mag = 0, but this does not violate the condition
for antisymmetry.)

(&) ”
O .

Number of Symmetric Relations

LEXANPLE 720 ]

Figure 7.20

Figure 7.21

Each element has two
choices.

11 .. 17
1 ... 1
11

- 1_4

Again, the adjacency matrix of a relation on a set A can be effectively used
to determine the number of symmetric relations that can be defined on A.
The following example demonstrates this.

Find the number of symmetric relations that can be defined on a set with
n elements.

SOLUTION:

Let R be a relation on the set and let Mp = (m;;)yx,. Thenm;; = 1 if and
only if mj; = 1 for every i and j. So each element m;; below the main diag-
onal determines uniquely the corresponding element m;; above the main
diagonal; in other words, each m;; has one choice (see Figure 7.20).

Now, each element on or below the main diagonal has two choices: 0 or
1 (see Figure 7.21). There are 1 + 2 + --- + n = n{n + 1)/2 such elements.
So, by the multiplication principle, the number of such adjacency matrices
equals 2""+1/2; that is, we can define 2"**1/2 symmetric relations on the
set. |
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Notice that the less-than relation on R has the property that if x < y and
y < z,then x < 2. Accordingly, the order relation < is said to be transitive.
More generally, we make the following definition.

Transitive Relation

Arelation R on A is transitive if aRb and bRc imply aRc; that is, whenever
a is related to b and b is related to ¢, a is related to c.
The next three examples illuminate this definition.

M Once again, consider the relation is logically equivalent to on the set of
propositions. If p = ¢ and ¢ = r, then p = r, so the relation = is transitive.
n

M Let A be the set of courses offered by a mathematics department. Define a
relation R on A as follows: xRy if course x is a prerequisite for course y. The

relation R is transitive (Why?). (R is the precedence relation.) |

Determining if a relation R is transitive can be time-consuming, espe-
cially if the relation contains many elements. We must look at all possible
ordered pairs of the form (a,b) and (b,c), then ascertain if the element
(a,c) is also in R, as the next example illustrates.

m Which of the following relations on {a, b, ¢} are transitive?

¢ R1 = {(aab)7 (b,C), (a,c)} ® RS = {(a,a), (b,b), (C,C)}

* Ry = {(a,a),(a,b),(a,c),(b,a),b,c)) * R4 = {(a,b)}
SOLUTION:
The relation R is transitive; so are R3 and R4 by default. In relation R,
(b,a) € R and (a, b) € Rg, but (b,b) ¢ Ry. So, Ry is not transitive. [ ]

As for the digraph of a transitive relation R, whenever there is a directed
edge from a to b and one from b to ¢, one also runs from a to c.

Transitive relations are explored further in Section 7.7.

Exereises 7.4

Determine if the given relation on {a,b,c,d} is reflexive, symmetric,
antisymmetric, or transitive.

1. {(a,a),(b,b)} 2. {{a,a),(a,b),d,b),(c,0),(d,d)}
3. O 4. {(a,b),(a,c),(b,0)}
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Is the relation has the same color hair as on the set of people:
5. Reflexive? 6. Symmetric?

7. Antisymmetric? 8. Transitive?

9-12. Redo Exercises 5-8 using the relation lives within 5 miles of on the
set of people.

18-16. Let " denote the set of n-bit words. Define a relation R on X" as
xRy ifthe Hamming distance between x and y is one. Redo Exercises
5-8 using the relation R.

In Exercises 17-19, the adjacency matrices of three relations on {a, b, c} are
given. Determine if each relation is reflexive, symmetric, or antisymmetric.

1 00 011 1 0 0
17. (6 1 O 18. |1 0 1 19. 11 1 0
0 0 1 1 00 0 1 1

When is a relation on a set A not:

20. Refiexive? 21. Symmetric? 22, Transitive?
Give an example of a relation on {a, b, ¢} that is:

23. Reflexive, symmetric, and transitive.

24. Reflexive, symmetric, but not transitive.

25. Reflexive, transitive, but not symmetric.

26. Symmetric, transitive, but not reflexive.

27. Reflexive, but neither symmetric nor transitive.
28. Symmetric, but neither transitive nor reflexive.
29. Transitive, but neither reflexive nor symmetric.
30. Neither reflexive, symmetric, nor transitive.
31. Symmetric, but not antisymmetric.

32. Antisymmetric, but not symmetric.

33. Symmetric and antisymmetric.

34. Neither symmetric nor antisymmetric.

In Exercise 35-38, complete each adjacency matrix of a relation on {a, b, ¢}
in such a way that the relation has the given property.

- 1 0 1 -

0
35. [0 — 1 [, reflexive 36. |1 0O 1],symmetric
1 0 - - =1
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0 — 1 - 1 -
37. |1 1 - |, antisymmetric 38. | — 1 1 ],transitive
1 0 1 - -

39. When will a relation R on a set A be both symmetric and anti-
symmetric?

A relation R on a set A is irreflexive if no element of A is related to itself,
that is, if (a,a) ¢ R for every a € A. Determine if each relation is irreflexive.

40. The less-than relation on R. 41. The relation is a factor of on N.
42. The relation is a parent of on the set of people.

Determine if each relation on {a, b, ¢} is irreflexive.
43. {(a,a)) 44. {(a,d),(b,b),(a,c)}
45. {(b,a),(c,a)) 46. O

Characterize each for an irreflexive relation on a finite set:
47. Its adjacency matrix. 48. Its digraph.

A relation K on a set A is asymmetrie if whenever aRb, b Ra. Determine
if each relation is asymmetric.

49-51. The relations in Exercises 4042,
52. {(a,a),(b,b),(c,c)} on {a,b,c} 53. {(a,b),(a,c),(b,b)} on {a,b,c}
54. {(a,b),(b,c),(c,a)} on {a,b,c}

For an asymmetric relation on a finite set, characterize:
55. Its adjacency matrix. 56. Its digraph.

Find the number of binary relations that can be defined on a set of two
elements that are:

*57. Reflexive. *58. Symmetric.
*59. Reflexive and symmetric. *60. Antisymmetric.
*61. Irreflexive. *62. Asymmetric.

*63. Prove: A relation R on a finite set is transitive if M }[?2] < Mpg, where
(a;) < (bj;) means a;; < b;; for every i and j.

7.5 Operations on Relations

Just as sets can be combined to construct new sets, relations can be com-
bined to produce new relations. This section presents five such operations,
three of which are analogous to the set operations of union, intersection,
and complementation.
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Union and Intersection

Let R and S be any two relations from A to B. Their union and intersec-
tion, denoted by R U S and R N S, respectively, are defined as RU S =
{(a,b) |aRb Vv aSb}and R NS = {(a,b) | aRb A aSb}. Thus a(R U S)b if aRb
or aSbh. Likewise, a(R N S)b if aRb and aSbh.

The next two examples illustrate these definitions.

M Consider the relations R = {(a,a), (a,b), (b,c)} and S = {(a,a), {(a,c), (b,b),
(b,c),{c,c)} on {a,b,c} (see Figures 7.22 and 7.23). Then RU S = {(a,a),
(a,b),(a,c),b,b),b,c),(c,c) and RNS = {(a,a), (b,c)}].

Figure 7.22 b

Digraph of E.
¢

Figure 7.23

Digraph of S.

a — c

Figure 7.24

Digraph of RUS.

Figure 7.25

Digraph of RN S.

Graphically, R U S consists of all edges in R together with those in
S (see Figure 7.24), whereas R NS consists of all common edges (see
Figure 7.25). |

®
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Let R and S be the relations < and > on R, respectively. Then RUS consists
of all possible ordered pairs R x R and RN S is the equality relation. W

We can use the adjacency matrices of relations R and S to find those of
their union and intersection. By definition, an entry in Mg g is 1 if and
only if the corresponding element of Mr or Mg is 1; that is, if and only if
the corresponding element of their join, Mg v Mg, is 1. Since Mg g and
Mp v Mg are of the same size, Mp s = Mg v Mg. Similarly, an element
of Mpns is 1 if and only if the corresponding element of Mr A Mg is 1, so
Mpns = Mrp A Mg.

Theorem 7.3 summarizes these conclusions. We leave a formal proof as
an exercise (see Exercise 62).

Let R and S be relations on a finite set. Then Mp s = MpVv Mg and Mpng =
MR N Ms. n

The following example illustrates this theorem.

Using the adjacency matrices of the relations R and S in Example 7.24 find
MRUS :MR \/MS andMRmS IMR /\Ms.

SOLUTION:
1 0
MR =10 1 and MS =
0 0

We have
By Theorem 7.3,

OO =
OO -
OO

bk P
| E—

1 11 1 00
MRUSZMRVMS: 011 and MROSZMR/\Msz 0 01
0 01 0 00

These matrices can recover the actual elements of RUS and R NS obtained
in Example 7.24. ]

Another way to combine two relations is quite similar to the composition
of functions we studied in Section 3.5.

Composition of Relations

Let R be a relation from A to B, and S a relation from B to C. The ecompo-
sition of R and S, denoted by R © S, is defined as follows. Let ¢ € A and
¢ € C. Then a(R © S)c if there exists an element b in B such that aRb and
bSc, as in Figure 7.26.
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Figure 7.26

LEXAMPLE 7.27

Figure 7.27

Databases

LEXAMPLE 7.28 ]
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The next example illustrates this definition.

Let A = {a,b,c},B = {1,2,3,4}, and C = {w,x,y,2}. Using the relations
R ={(a,1),(a,3),b,2)} fromAtoBand S = {(1,x),(1,¥), (2,w), (2,2), 4, y)}
from B to C (see Figure 7.27), find R © S.

SOLUTION:
Since aR1 and 1Sx, a(R®S)x. Similarly, a(R®S)y, b5(R©S)w, and b(R© S)z.
Thus, R © S = {(q,x), (a,y), (b,w), (b,2)}.

Pictorially, all we need to do is simply follow the arrows from A to C in
the figure. (Try this approach.)

The next example gives an interesting application of the composition
operation to the theory of databases.

Suppose a database consists of two files F; and Fy, given by Tables 7.2
and 7.3, respectively. File F; can be considered a relation from the set
of names to the set of telephone numbers and file Fy a relation from the
set of telephone numbers to the set of telephone bills. Then Fi © Fy is
a relation from the set of names to the set of telephone bills. In other
words, F; © F is a file of names and their corresponding telephone bills
(see Table 7.4).
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Table 7.2
Name Telephone number
Hall 123-4567
Berkowitz 225-5061
Chand 124-3987
Benson 239-3883
Scott 534-3434
Abrams 345-5678

Table 7.3
Telephone number Bill
123-4567 39.45
123-0011 25.00
243-1111 47.50
124-3987 23.35
124-8958 73.30
534-3434 95.65
345-5678 51.95
128-9876 64.85

Table 7.4
Name Bill
Hall 39.45
Chand 23.15
Scott 95.65
Abrams 51.95

465

The adjacency matrices of the relations R, S, and B © S display an
intriguing connection. To see this, from Example 7.27, we have:

Mg =

Mpos =

oy

(el ol

SO
]

OO
P

Mg =

OO RO

OO O

O O

and

SO RO
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Then
foi 011
MpoMg=|(0 1 0 0]0

0 0 0 0 0000

- - 0 010

0 1 1 0]

=11 0 0 1| =Mges
_0 00 O_ m

More generally, we have the following result.

m Let A, B, and C be finite sets. Let R be a relation from A to B, and S a relation
from B to C. Then MROS =Mp ©Mg.

PROOF:

Let A = {aj,ag,...,an}, B = {b1,bg,...,by}, and C = {c1,cg,...,cp}. Then
the matrices Mg, Mg, Mros, and Mp © Mg are of sizesm x n,n xp, m x p,
and m x p, respectively.

Let Mros = (x;) and Mg © Mg = (y;). Then x;; = 1 if and only if
a;(R © S)c;. But a;(R © S)¢; if and only if a;Rby, and b;Sc; for some b, in B.
Thus, x;; = 1ifand onlyify;; = 1, sox;; = y;; for every i andj. Consequently,
Mgpos = Mp © Mg. |

The definition of composition can be extended to a finite number of
relations. Accordingly, we now define the nth power of a relation using
recursion.

Recursive Definition of R
Let R be a relation on a set A. The nth power of R, denoted by R”, is

defined recursively as
R ifn=1

R" =
R 1O R otherwise

Geometrically, R” consists of the endpoints of all possible paths of length
n. Thus aR"™b if a path of length n exists from a to b.

The next two examples illuminate this definition
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M Using the relation R = {(a, ), (b,b), (c,a), (c,c)} on {a,b,c}, find R? and R3.
SOLUTION:
« R2=ROR = {(a,b),b,b),(c,a),(c,b),(c,c)}
* R*=R?20OR = {(a,b), b,b),(c,a), (c,b),(c,c)} = R*

The digraphs of the relations R and R? are displayed in Figures 7.28 and
7.29, respectively.

Figure 7.28
Digraph of R.

: ©

Figure 7.29
Digraph of R? = R3.

M Define a relation R on the set of all U.S. cities as follows: xRy if there is
a direct flight from city x to city y. Then xR2y if there is a direct flight
from city x to some city z and a direct flight from city z to city y. Thus R?
consists of the endpoints of all airline routes in R passing through exactly
one city. More generally, R" consists of the endpoints of all airline routes
in R passing through exactly n — 1 cities.

Let R be a relation on a finite set. Then, by Theorem 7.4, Mrorp =
Mg © Mp; that is, Mg = (Mp)'2l.
More generally, we have the following result.

m Let R be a relation on a finite set and n any positive integer. Then Mp» =
(Mp)int, u

m For the relation R in Example 7.29, find M2 and Mps.

SOLUTION:
Notice that
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Figure 7.30

Digraph of R.
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oo
[u—

0 1 0
Mp: = Mp)2 =10 1 0
10 1

Jol

Mps = Mp)® = MY © Mg

010 01
=[({0 1 0|]©]|0
1 11 10

[wory

0 0
0]=140
1 1

1

[ -

1

0
0
1

]

|

Notice that Mp2 and Mps are the adjacency matrices of the relations R?

and R3, obtained in Example 7.29.

The next theorem tells us more about powers of transitive relations, and

we will use it in Section 7.7.

Let R be a transitive relation on a set A. Then R® C R for every positive

integer n.

PROOF (by PMI):

When n = 1,R! C R, which is true. Suppose R* C R for an arbitrary

positive integer k.
To show that R**1 C R:

Let (x,y) € R**1. Since R**! = R* ® R, (x,y) € R* ® R. Then, by defi-
nition, there is a z in A such that (x,2) € R* and (2,y) € R. But R* C R,
by the inductive hypothesis. Consequently, (x,2) € R. Thus (x,2z) € R and
(z,y) € R, so (x,y) € R by transitivity. Thus R**! C R.

Thus, by induction, R* € R for every n > 1.

We conclude this section with an example to illustrate this theorem.

Notice that the relation R ={(a,a),(a,bd),{a,c),(b,c)} on {a,b,c} (see

Figure 7.30) is transitive. You may verify that:

R2=ROR ={(a,a),(a,b),(@c)} R

R*=R?20OR = {(a,a),(a,b),(a,c)} CR

R*=R30OR = {(a,a),(a,b),(a,c) SR

(In fact, R" = R? for every integer n > 2, so R” C R for everyn > 1. See

Exercise 7.38.)

b

=
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Exercises 7.5

1. Using the relations R = {(a, b), (a,¢), (b,b), (b,¢)} and S = {(a,a), (a,b),
b,b),(c,a)} on {a,b,c},find RUS and RN S.

2. Redo Exercise 1 using the relations R = {(a,a), {a, b), (b,¢), (b,d)} and
S = {(a,b), (b,b), (b,¢),(c,a),(d,a)} on {a,b,c,d}.

3. Let R and S be the relations < and = on R, respectively. Identify RUS
and RnS.

4. With the adjacency matrices of the relations R and S in Exercise 1, find
those of the relations RUS and RN S.

5. Redo Exercise 4 using the relations in Exercise 2.
Using therelations R = {(a, a), (a,b), (b,¢), (¢,c)} and S = {(qa,a), (b,b), (b,¢),
(c,a)} on {a,b,c}, find each.

6. RoS 7. SOR 8. R? 9. R?
Let R be arelation from {a, b,c} to (1,2, 3,4} and S a relation from {1, 2, 3,4}
to {x,y,z}. Find R © S in each case.
10. R = {(a,2),(a,3),(,1),(c,d} and S = {(1,%),(2,y), (4,¥), (3,2)}
11. R = {{a, 1),(5,2),(c, 1)} and S = {(3,x), (3,¥), (4, 2)}

Using the following adjacency matrices of relations R and S on {a, b, ¢}, find
the adjacency matrices in Exercises 12-19.

101 01 1
Mg=|0 1 0 Mg=1{0 0 0
01 1 101

12. Mgos 13. Msor 14. My, 15. (Mp)4

16. Define a relation R on the set of U.S. cities as follows: xRy if a
direct communication link exists from city x to city y. How would you
interpret R2? R"?

17. Redo Exercise 16 using the relation R on the set of all countries in
the world, defined as follows: xRy if country x can communicate with
country y directly.

The complement and inverse of a relation R from a set A to a set
B, denoted by R’ and R~! respectively, are defined as follows: R’ =
{(a,b) | aRb} and R~! = {(a,b) | bRa}. So R’ consists of all elements in
A x B that are not in R, whereas R~! consists of all elements (a,b),
where (b,a) € R. Using the relations B = {{(a,a),(a,b),(b,c),(c,c)} and
S = {(a,a), (b,b),(b,c), (c,a)} on {a,b,c}, find each.
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18. R’ 19. R71 20. Mg 21. (Mg)
22. Mg 23. (Mp)T 24. Mg 25. (Mg)T

Using the relations R = {{(a,1),(b,2),(6,3)} and S = {(a,2), (b, 1), (b, 2)}
from {a, b} to {1, 2, 3}, find each.

26. R’ 27. R°! 28. (R 29. (R-H)!

30. R'n S 31. (RNSY 32. R'US 33. (RUSY

34. (RuS)! 35. R-1uS! 386 R InS! 387. (RNS!
38. Fortherelation R in Example 7.32, prove that R” = R? for everyn > 2.

Let R and S be relations on a finite set. Prove each.

39. Mg = (Mp) 40. Mp.1 = Mp)T

Let R and S be relations from A to B. Prove each.

41. (R"H 1 =R 42. IfRC S, thenS' C R’
43. IfRC S,thenR~ ! c §~! 44. (RUS)Y =R'NnS’

45. (RnS)Y =R US’ 46. (RUS) ' =R 1uS~!

47. RNS) '=R1nS!

Let R and S be relations on a set. Prove each.

48. R is reflexive if and only if R~! is reflexive.

49. R is symmetric if and only if R’ is symmetric.

50. R is symmetric if and only if R~! is symmetric.

51. R is symmetricifand only if R™! = R.

52. If R and S are symmetric, R U S is symmetric.

53. If R and S are symmetric, R N S is symmetric.

54. If R and S are transitive, R N S is transitive.

55. Disprove: The union of two transitive relations on a set is transitive.

56. LetA B,C,and D beany sets, R arelation from A to B, S arelation from
BtoC,and T arelation from Cto D. Provethat RO(SOT) = (ROS)OT.
(associative property)

Let R and S be two relations from A to B, where |A| = m and |B}| = n. Using
their adjacency matrices, write an algorithm to find the adjacency matrix
of each relation.

57. RUS 58. RNS 59. R’ 60. R™!

61. Let X = (x;;) be the adjacency matrix of a relation R from A to B
and Y = (y;;) that of a relation S from B to C, where |A| = m, |B| = n,
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and |C| = p. Write an algorithm to find the adjacency matrix Z = (z;)
of the relation R © S.

*62. Prove Theorem 7.3.

7.6 The Connectivity Relation (optional)

We can use the various powers R" of arelation R to construct a new relation,
called the connectivity relation. This section defines that new relation and
then shows how to compute it.

Connectivity Relation

Let R be a relation on a set A. The connectivity relation of R, denoted
by R*, is the union of all powers of R:

R® =RUR?UR3UR*U...UR"U...
o
:URn
n=1

SOMRx :MR VMRz VMRa V...

Geometrically, aR*b if there is a path of some length n from a to b. The
connectivity relation consists of the endpoints of all possible paths in R.

The next two examples show how to find B*.

m Find the connectivity relation R of the relation R = {{(a,a), (g, b), (a,c),
(b,c)} on {a,b,c}.

SOLUTION:
From Example 7.32, R* = R? for every integer n > 2. So

R®=RUR?UR3URYU. ..
=RUR?
= {(a,a), (a,b),(a,c),(b,c)} |

[m Find the connectivity relation B> of the relation R = {(a,b), (b,0a), (b,5),
(c,b)} on {a,b,c}.
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SOLUTION:
R2 = ROR = {(a,a), (a,b), (b,a),(b,b),{c,a),(c,b)} (see Figures 7.31
and 7.32.).
Figure 7.31 a
Digraph of R.
c
Figure 7.32 eoe

Digraph of R2.

R®=R20R = {(a,a),(a,b), (b,a),b,b),(c,a), (c,b)} = R

R*=R?OR = {(a,a),(a,b), (b,a),b,b),(c,a), (c,b)} = R?
In fact R” = R? for every n > 2. Thus,
R™ = RUR? = {(a,0), (a,b), (b,a), (b,b), (c,a), (¢, b)} n

We can also determine connectivity using the adjacency matrix of a
relation.

[M Using the adjacency matrix of the relation R in Example 7.34, find its

connectivity relation.

SOLUTION:
Since R = {(a,b), (b,a), (b, d), (c,b)},

[0 1 0] 110

Mp={1 1 0 Mp,=MpOMgp=|1 1 0

0 1 0 L 1 0}

1 1 07 1 10
MR3=MR2@MR= 1 1 0 MR4=MR3®MR={1 1 0}
|1 1 0] 1 10
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Then

MRoo :MR VMRz VMRa V...
:MR VMRZ

1 10
={1 1 0 (Verify this.)

110

Thus R*® = {(a,a), (a,b), (b,a), (b,b), (c,a), (c,b)}, as in Example 7.34. [ ]

Theorem 7.7 comes in handy when computing R*. With the theorem,
only the first n powers of R are needed to compute it, where n = |A|.

m Let R be a relation on a set with size n. Then

R®=RUR?UR3U...UR"
Mp~=MrVvMpvMpsv...VMpgn

= Mp v (Mp)2 v (Mp)3 v .. v (Mp)™! u

The next example illustrates this theorem.

M Find R™ of the relation R on {a,b,¢,d} defined by

01 0 O
1 01 0
Me=14 0 0 1
1 0 0 O
SOLUTION:
1 0 1 0] 01 01
01 0 1 1 01 0
M32=MR®MR= 100 0 MR3:MRz®MR= 010 0
_0 1 O O_ 1 01 0
1T 0 1 0]
0101
MR4=MR3@MR= 101 0
_0 1 0 1_
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By Theorem 7.7,

MRoo :MR \/MRZ \/MRS VMR4 =

bt e
[ ST
[ S
=t e

Thus R* = {(a,a),(a,bd),(a,c),(a,d),(d,a),b,b),b,c),®,d),(c,a),c,b),
{c,c),{c,d),d,a),(d,b),d,c),(d,d)}. (You may verify this using the digraph
of R.) a

We can use Theorem 7.7 to develop an algorithm for computing Mg,
which yields the connectivity relation of a relation R. It is given in
Algorithm 7.1.

Algorithm Connectivity Relation (Mg,Mp~)

(* This algorithm uses the adjacency matrix Mz of a relation R on a set
with size n and computes that of its connectivity relation, using
Theorem 7.7. *)

0. Begin (* algorithm *)

(* Initialize Mg~ and B, where B denotes the ith boolean
power of Mg. *)

1. Mr~ <« My

B «— Mg
for i = 2 to n do (* find the ith boolean power of Mg*)
begin (* for *)
B « B O M
Mp~ <« Mp~ Vv B (* update My *)
endfor (* for *)
End (* algorithm *)

NOY VAW N
PN

Algorithm 7.1

We close this section with an analysis of the complexity of this algorithm.
Let b,, denote the number of boolean operations needed to compute R,
Each element in line 4 takes n meets and n — 1 joins, a total of 2n — 1
operations. Since the product contains n2 elements, the total number of
bit-operations in line 4 is (2n — 1)n2. The join of the two n x n matrices
in line 5 takes n? boolean operations. Since the for loop is executed n — 1
times, the total number of boolean operations is given by

by = (n — 1[(2n — Dn? + n?]
=2(n — nd

=00

Thus the connectivity algorithm takes ®(n*) = bit operations.
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Exereises 7.6

Find the connectivity relation of each relation on {a, b, c}.

1. {(@,a)} 2. {(a,a),(b,b)} 3. {(a,a),(b,b),(c,0)}
4. {(a,a),(a,b),{c,a)] 5.0 6. {(a,b),(a,c),(b,a),(c,a)}

Find the connectivity relation of the relation on {a, b, ¢} with each adjacency

matrix.

1 00 1 10 1 0

7. 10 1 0 8 10 11 9. [1 1
0 01 1 01 11

d

[em R

Find the connectivity relation of the relation on {a,b,c¢,d} with each
adjacency matrix.
0110 01 01 10 00
0 0 01 0 010 0110
10- 11 90 0 - 19 0 0 o0 1210 0 1 1
0 010 01 00 1 0 00

*7.7 Transitive Closure (optional)

The connectivity relation of a relation R is closely associated with its
transitive closure. First, we define the closure of R.

A relation R may not have a desired property, such as reflexivity, sym-
metry, or transitivity. Suppose it is possible to find a relation containing R
and having the desired property. The smallest such relation is the closure
of R with respect to the property. Accordingly, we make the next definition.

Transitive Closure

Suppose a relation R on A is not transitive. The smallest transitive relation
that contains R is the transitive closure of R, denoted by R*.

How do we find R*? If R is not transitive, it should have ordered pairs
(a,b) and (b, c) such that (a,c) ¢ R; so add (a,c) to R. We can continue
this with every such pair in the new relation. The resulting relation is
transitive, the transitive closure of R.

The next example illustrates this method.
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Figure 7.33

Digraph of K.

Figure 7.34

Digraph of R.*

Chapter 7 Relations

Find the transitive closures of the relations R = {(a,b), (b,a),(b,0)}, S =
{(a,a),b,b),(c,c)},and T = @ on {a, b,c}.

SOLUTION:

* R = {(a,b),(b,0),(b,a)}. Since (a,b)eR and (b,c) €R, it needs (a,c)
to be transitive. So add (a,c) to R. The new relation is B; =
{(a,b),(a,c), (b,c), (b,a)}. It contains both (a, b) and (b, a), but not (a,a)
or (b,6). Add them to R;: Ry = {(a,a),(a,bd),(a,c), b,a),b,b), b,c)}.
It is transitive and contains R, so it is the transitive closure of R.

» The relation S is transitive, by default, so S* = S.

¢ The transitive closure of @ is itself. n

The transitive closure R* of the relation R in Example 7.37 has practi-
cal applications. Suppose the relation indicates the communication links
in a network of computers a, b, and ¢, as in Figure 7.33. The transitive
closure R* shows the possible ways one computer can communicate with
another, perhaps through intermediaries. For instance, computer a cannot
communicate directly with ¢, but it can through b. Figure 7.34 displays the
transitive closure R*.

b

The close link between the transitive closure of a relation and its
connectivity relation can be illustrated as follows.

The connectivity relation R* of a relation R is its transitive closure R*,

PROOF:
The proof unfolds in two parts. First, we must show that R* is transitive
and then show it is the smallest transitive relation containing R.

* To prove that R™is transitive: Let (a,b) € R® and (b,c) € R*. Since
(a,b) € R*°, a path runs from a to b. Similarly, one runs from b to c.
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Combining these two paths produces a path from a toc. So (a,¢) € R®
and R is transitive.

e To prove that R* is the smallest transitive relation containing R:
Suppose there is a transitive relation S such that B € S € R*. We
will show that S = R*. Since S is transitive, by Theorem 7.6, S® € S
for every n > 1. So

S® =0 8" cS

n=1
Thus
S*cS

By assumption, B C S; so R C 8, since every path in R is also a path
in S. Therefore, R C S.

Consequently, S € R* and R® C S. Therefore, S = R*. In other
words, there are no transitive relations in between R and R>°. So R™ is the
smallest transitive relation containing R. |

It follows by Theorems 7.7 and 7.8 that

R*=RUR?U...UR"
and hence

MRx ZMR VMRZV"'VMR"

To illustrate this, using Example 7.36, the transitive closure of the rela-
tion R = {(a,b),(b,a),(b,c), (c,d),(d,a)} on {a,b,c,d} is R* = R™® = {(a,a),
(a,b),(a,0),{a,d),b,a),b,b),b,c),b,d),c,a),(c,b),(c,c),lc,d),d,a),(d,b),
d,c), (d,d)}.

Since R™ = R*, the connectivity relation algorithm can be used to com-
pute Mp-, but it is not efficient, especially when Mg is fairly large. A better
method to find R* is Warshall’s algorithm, named in honor of Stephen
Warshall, who invented it in 1962.

Warshall’s Algorithm

Let a-x1-x9-- - - - Xn-b be a path in a relation R on a set A = {aj,aq,...,a,).
The verticesx,x2,...,x, are the interior points of the path. For instance,
vertices ¢ and d are the interior points on the path a-c-d-b of the digraph
in Figure 7.5.

The essence of Warshall’s algorithm lies in constructing a sequence of
n boolean matrices W1y,..., W,, beginning with Wy = Mg. Let W;, = (w;;),
where 1 < k < n. Define w;; = 1 if a path runs from q; to a; in R whose
interior vertices, if any, belong to the set {a1,a9,...,ax}. Since the ijth
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Figure 7.35
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element of W, equals 1 if and only if a path exists from a; to a; whose
interior points belong to the set {ay,as,...,a,}, W, = Wgx.

In fact, the matrix W, = (w;;) can be constructed from its predecessor
Wr_1 = (uv;;) as follows. When can w;; = 1? For w;; = 1, there must be a
path from a; to a; whose interior vertices belong to the set {a1,as,...,a;).

Case 1 Ifay is not an interior vertex, all interior vertices must belong to
the set {a1,as,...,a,_1}, s0v;; = 1.

Case 2 Suppose ay, is an interior vertex (see Figure 7.35). If a cycle exists
at ay, eliminate it to yield a shorter path. (This guarantees that the vertex
ay, occurs exactly once in the path.) Therefore, all interior vertices of the
paths q;-- - - - ap and ap-- - - a; belong to the set {a1,as,...a;_1}. In other
words, v;; = 1 and vy = 1.

7 /\\..
e N

a; a;

Consequently, w;; = 1 only if v;; = 1, or v;;, = 1 and vy; = 1. This is the
crux of Warshall’s algorithm. Thus the ijth element of W}, is 1 if:

* The corresponding element of W;,_; is 1 or

* Both the ikth element and the kjth element of W,_; are 1; that is, the
ith element in column % of W;,_; and the jth element in row k& of W,_;
are 1.

Use this property to construct W from Wy = M, Wy from Wi, ..., and
W, from W,_;. Since W, = Mpg., the actual elements of R* can be read
from W,,.

The next two examples clarify this algorithm.

Using Warshall’s algorithm, find the transitive closure of the relation
R ={(a,b),(b,a),(b,c)}on A = {a,b,c}.

SOLUTION:
Step 1 Find W,.

=

1

=

el

I
O = O
O O
O O

Step 2 Find W;.
If the 4th element of Wy is 1, the ijth element of W; is also 1. In other
words, every 1 in Wy stays in Wy, To find the remaining 1’s in Wy, locate
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the 1’s in column 1(= &); there is just one 1; it occurs in position i = 2. Now
locate the 1’s in row 1(= k). Again, there is just one 1, namely, in position
J = 2. Therefore, the ijth entry in Wi should be 1, where i = 2 andj = 2.

Thus
0 10
Wi=11 11
0 00
Step 3 Find Wa.

Again, all the 1’s in W7 stay in Ws. To find the other 1’s, if any, locate the
I’s in column 2(== %) and row 2(= k). They occur in positions 1 and 2 of
column 2 and in positions 1, 2, and 3 of row 2, so the ijth entry of Wy must
be 1, wherei = 1,2 andj = 1,2, 3. So change the 0’s in such locations of
Wi to 1’s. Thus
W {

Step 4 Find W3.

All the 1’s in Wy remain in W3, To find the remaining 1’s, if any, locate the
1’s in column 3 —namely, positions 1 and 2—and the 1’s in row 3. Because

no 1’s appear in row 3, we get no new 1’s, so W3 = Wo.
Since A contains three elements, Wg: = W3. Thus,

111
0 0 O

which agrees with the transitive closure obtained in Example 7.37. |

O o
O et

[ R e
|

Using Warshall’s algorithm, find the transitive closure of the relation
R ={(a,a),(a,b),(a,d),b,a),(c,b),(cc),d,b),d,c),(d,d)}on {a,b,c,d).

SOLUTION:
Step 1 Find Wy.

[l =
o OO
0O
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Step 2 Find W;.

Locate the 1’s in column 1 and row 1; positions 1 and 2 in column 1; and
positions 1, 2, and 4 in row 1. Therefore, W; should contain a 1 in locations
(1,1), (1,2), (1,4), (2,1), (2,2), and (2,4):

Wy =

OO =
b
RO O
O R

(All the 1’s in W remain in W1.)

Step 3 Find Wo.

Locate the 1’s in column 2 and in row 2; positions 1, 2, 3, and 4 in column
2, and positions 1, 2, and 4 in row 2. So Wz should contain a 1 in locations
(1,1, (1,2), (1,4), (2,1), (2,2), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), and (4,4).
Again, since all the 1’s in W, stay in Wa,

Wy =

= b e et
e
-0 O
bt bt e

Step4 Find Ws.

The 1’s of column 3 occur in positions 3 and 4; those of row 3 in positions
1, 2, 3, and 4. Consequently, W3 should contain a 1 in locations (i,j) where
1=3,4and;j =1,2,3,4:

W3 =

b b e
el
e =]
el

Step 5 Find Wy.

The 1’s of column 4 appear in positions 1, 2, 3, and 4; the 1’s of row 4 in
positions 1, 2, 3, and 4. So Wy should contain a 1 in locations (i,j) where
i=1,2,3,4andj = 1,2,3,4:

Wy =

Pt e et
[
Pt b
Y

Since Mg+« = Wy, this is the adjacency matrix of the transitive closure.
(Finding the connectivity relation of R will verify this.) [ ]
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Warshall’s algorithm is presented in Algorithm 7.2. It is based on the
discussion preceding Example 7.38.

Algorithm Warshall(Mg,W)

(* This algorithm employs the adjacency matrix of a relation R on
finite set with n elements to find the adjacency matrix Mg* of its
transitive closure. *)

0. Begin (* algorithm *)

(* Initialize W = (wjj) *)

1 W« M

2 for k = 1 to n do (* compute Wy, *)

3 for i =1 ton do

4. for j =1 ton do

5 wij < Wij Vv (Wi A wgg) (*compute the ij-th element *)

6. MR « W

7. End (* algorithm *)

Algorithm 7.2

A Comparison of Warshall’s Algorithm with the Connectivity Algorithm

Why is this algorithm far more efficient than the connectivity relation algo-
rithm? Notice that the number of boolean operations in line 5 is 2, so the
total number of boolean operations in lines 2 through 5 (and hence in the
algorithm) is 2-n-n-n = 2n® = ©(n3), whereas the connectivity algorithm
takes @(n*) bit operations.

Exereises 7.7

Find the transitive closure of each relation on A = {a, b, c}.

1. {(a,bd),(b,a)} 2. {{a,b),(b,0),{c,a)}

3. {(b,a),(b,c),(c,b)} 4, {(a,a),(a,c),b,c),(c,a)}
Find the transitive closure of each relation on A = {a, b, ¢, d}.

5. {{a,a),(a,b)} 6. {(a,b),(b,c),(c,a)}

In Exercises 7-9, find the adjacency matrix of the transitive closure of each
relation R on {a, b, c} with the given adjacency matrix.

0 11 1 01 010
7. {0 0 1 8. |0 1 0 9. 10 1 1
0 0O 011 1 00

10-12. Using the connectivity relation algorithm, find the transitive
closure R* of each relation in Exercises 7-9.
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13-15. For the relation R on {a,b,c} with each adjacency matrix in
Exercises 7-9, compute the boolean matrix W; in Warshall’s
algorithm.

In Exercises 16-18, the adjacency matrix of a relation R on {a,b,c,d} is
given. In each case, compute the boolean matrices W1 and Ws in Warshall’s
algorithm.

186.

— O

0
0
1
0

= O
O = O
-0 OO
OO
s O
SO0 O
= e O
O - O
OO O
SO = O
—

19-24. Using Warshall’s algorithm, find the transitive closure of each
relation in Exercises 7-9 and 16-18.

25-33. Thereflexive closure of arelation on a set is the smallest reflexive
relation that contains it. Find the reflexive closures of the relations
in Exercises 1-9.

Find the refiexive closure of each relation on R.
34. The less-than relation. 35. The greater-than relation.
36-44. The symmetric closure of a relation on a set is the smallest sym-

metric relation that contains it. Find the symmetric closures of the
relations in Exercises 1-9.

Let R be any relation on a set A. Prove each.
45. R is reflexive if and only if A C R.
46. R U A is reflexive.

*47. R U A is the smallest reflexive relation containing R .
(Hint: Assume there is a reflexive relation Ssuch that R € § € RUA.
Provethat S=RorS=RUA.)

*48. R UR™! is symmetric.
[Hint: Consider (RUR™1)"1]

*49, R U R™!is the smallest symmetric relation that contains R.
(Hint: Suppose there is a symmetric relation S such that R € S C
RUR™L)

Section 7.4 introduced relations that are reflexive, symmetric, and
transitive. Naturally we can now ask: Are there relations that
simultaneously manifest all three properties? The answer is yes;
for instance, the relation is logically equivalent to on the set of
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propositions has all these properties. Such a relation is an equivalence
relation.

Equivalenee Relation

Arelation on a set is an equivalence relation if it is reflexive, symmetric,
and transitive.
Examples 7.40-7.42 explore equivalence relations.

M The relation has the same color hair as on the set of people is reflexive,
symmetric, and transitive. So it is an equivalence relation. ||

m Let ¥ denote an alphabet. Define a relation R on ©* by xRy if ||x|| = |yl,

where |w]| denotes the length of the word w. Is R an equivalence relation?

SOLUTION:
* Since every word has the same length as itself, R is reflexive.

» Suppose that xRy. Then |lx|| = |ly|l, so Iyl = lix]|. Consequently, yRx.
Thus R is symmetric.

* If xRy4 and yRz, then ||x]| = |yl and |y| = |z]. Therefore, |x| = |z
and hence xRy. In other words, R is transitive.

Thus, R is an equivalence relation. |

m (optional) Is the relation has the same memory location as on the set of

variables in a program an equivalence relation?

SOLUTION:
* Since every variable has the same location as itself, the relation is
reflexive.

¢ If a variable x has the same location as a variable y, then y has the same
location as x, so the relation is symmetric.

* Suppose x has the same location as y and y has the same location as z.
Then x has the same location as z, so the relation is transitive.

Thus the relation is an equivalence relation. ]

FORTRAN provides an equivalence statement, so called since the
relation has the same location as is an equivalence relation. We can see this
in the following FORTRAN statement:

EQUIVALENCE (A,B),(C,D,E),(F,G,H)

It means the variables A and B share the same memory location; the vari-
ables C, D, and E share the same memory location; and so do the variables
F, G, and H.

The congruence relation, an important relation in mathematics, is a
classic example of an equivalence relation. It is closely related to the
equality relation and partitions of a finite set, as will be seen shortly.
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professor of mathematics at the University of Gottingen.
Called the “prince of mathematics” by his contemporary mathematicians, Gauss made the
famous statement, “Mathematics is the queen of the sciences and the theory of numbers the queen of

mathematics.”

Karl Friedrich Gauss (1777-1855), son of a laborer, was born in
Brunswick, Germany. A child prodigy, he detected an error in his father’s
bookkeeping when he was 3. The Duke of Brunswick, recognizing his
remarkable talents, sponsored his education. Gauss received his doctorate
in 1799 from the University of Helmstedt. In his doctoral dissertation, he
gave the first rigorous proof of the fundamental theorem of algebra, which
states, “Every polynomial of degree n (> 1) with real coefficients has at least
one zero.” Newton and Euler, among other brilliant minds, had attempted
to prove it, but failed.

He made significant contributions to algebra, number theory, geome-
try, analysis, physics, and astronomy. His impressive work Disquisitiones
Arithmeticae of 1801 laid the foundation for modern number theory.

From 1807 until his death, he was the director of the observatory and

The congruence symbol = was invented around 1800 by Karl Friedrich
Gauss, the greatest mathematician of the 19th century.

Congruence Relation

Let a,b,m € Z, where m > 2. Then a is congruent to b modulo m,
denoted by a = b(mod m), if a — b is divisible by m. The integer m is the
modulus of the congruence relation. (This definition provides the basis
of the mod operator we studied in Chapter 3.) If a is not congruent to b
modulo m, we write a # b (mod m).

For example, since 5/(13 — 3), 13 = 3 (mod 5). Also, —5 = 3 (mod 4) since
4](—=5 — 3). But 17 # 4 (mod 6), since 6 { (17 — 4).

The congruence relation has several useful properties, some of which are
given below.

Leta,b,e,d,m € Z with m > 2. Then:

(1) a = a (mod m). (reflexive property)

(2) If a = b (mod m), then b = a (mod m). (symmetric property)

(3) Ifa=b(modm)andb = c (mod m), then a = ¢ (mod m). (transitive
property)

(4) Let r be the remainder when a is divided by m. Then a = r(mod m).

PROOF:
We shall prove part 3 and leave the other parts as exercises.

(3) Suppose @ = b (mod m) and b = ¢ (mod m). Then ml|(a — b) and
m|(b — ¢). Consequently, a — b = mqy and b — ¢ = mqs for some
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integers g1 and go. Then

a—c=@a-b)+bB-0)
=mq1 +mqz
=mlq1 +q2)

Therefore, m|(a — ¢) and a = ¢ (mod m). u

It follows by the theorem that the congruence relation is an equivalence
relation.

The Congruence Relation and the Mod Operator

Suppose a = r (mod b), where 0 < r < b. Then it can be shown that r = «a
mod b. Conversely, if r = @ mod b, then a = r (mod b). Thus a = r (mod b)
if and only if r = @ mod b, where 0 < r < b. See exercises 49 and 50.

For example, 43 = 3 (mod 5) and 0 < 3 < 5; clearly, 3 = 43 mod 5. Let
us digress briefly to look at an interesting application of congruences*.

Friday-the-13th
Congruences can be employed to find the number of Friday-the-13ths in
a given year. Whether or not Friday-the-13th occurs in a given month
depends on two factors: the day on which the 13th fell in the previous
month and the number of days in the previous month.

Suppose that this is a non-leap year and that we would like to find
the number of Friday-the-13ths in this year. Suppose also that we know
the day the 13th occurred in December of last year. Let M; denote
each of the months December through November in that order and
D; the number of days in month M,;. The various values of D; are
31, 31,28, 31, 30, 31, 30, 31, 31, 30, 31, and 30, respectively.

We label the days Sunday through Saturday by 0 through 6 respectively;
so day 5 is a Friday.

Let D; = d; (mod 7), where 0 < d; < 7. The corresponding values of d;
are 3,3,0,3,2,3,2,3,3,2, 3, and 2, respectively. Each value of d; indicates
the number of days the day of the 13th in month M; must be advanced to
find the day the 13th falls in month M; ;.

For example, December 13, 2000, was a Wednesday. So January 13,
2001, fell on day (3 + 3) = day 6, which was a Saturday.

*T. Koshy, Elementary Number Theory with Applications, Harcourt/Academic Press, Boston,
MA, 2002.
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Table 7.5

Day of the 13th in Each
Month in a Non-leap
Year.
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i
Let t; = ) d; (mod 7), where 1 < i < 12. Then ¢; represents the

J=1
total number of days the day of December 13 must be moved forward to
determine the day of the thirteenth in month M;.

For example, t3 =d; +do + dg = 3+ 3+ 0 = 6 (mod 7). So, the day of
December 13, 2000 (Wednesday) must be advanced by six days to determine
the day of March 13, 2001, it is given by day (3 + 6) = day 2 = Tuesday.

Notice that the various values of ¢; modulo 7 are 3, 6,6,2,4,0,2,5,1, 3,6,
and 1, respectively; they include all the least residues modulo 7. Given the
day of December 13, they can be used to determine the day of the thirteenth
of each month M; in a non-leap year.

Table 7.5 summarizes the day of the 13th of each month in a non-leap
year, corresponding to every choice of the day of December 13 of the pre-
vious year. You may verify this. Notice from the table that there can be at
most three Friday-the-13ths in a non-leap year.

i 11 Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.
Dec.13]l 3 6 6 2 4 0 2 5 1 3 6 1
Sun 3 6 6 2 4 0 2 5 1 3 6 1
Mon 4 0 0 3 5 1 3 6 2 4 0 2
Tue 5 1 1 4 6 2 4 0 3 5 1 3
Wed 6 2 2 5 0 3 5 1 4 6 2 4
Thu 0 3 3 6 1 4 6 2 5 0 3 5
Fri 1 4 4 0 2 5 0 3 6 1 4 6
Sat 2 5 5 1 3 6 1 4 0 2 5 0

For a leap year, the various values of d; are 3, 3, 1, 3, 2, 3, 2, 3, 3, 2, 3,
and 2; and the corresponding values of ¢; are 3, 6, 0, 3, 5, 1, 3, 6, 2, 4, 0, and
2. Using these, we can construct a similar table for a leap year.

Returning to the congruence relation, we now explore a close relation-
ship between equivalence relations and partitions; but first we make the
following definition.

Equivalence Class

Let R be an equivalence relation on a set A and let @ € A. The equivalence
class of a, denoted by [al, is defined as [a] = {x € A | xRa}. It consists of all
elements in A that are linked to a by the relation R. If x € [a], thenx is a
representative of the class [a].

The next two examples explore equivalence relations.

The relation B = {(a,a),(a,b),(b,a),(b,b),(c,c)} on A = {a,b,c} is an
equivalence relation. Find the equivalence class of each element in A.
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SOLUTION:
(1) [a] = {x € A|lxRa) (2) [b] = {x € A|xRb} (3) [e]l = {x € AlxRc}
= {a,b} = {a, b} = {c}
= [a]

Two distinct equivalence classes exist, [a] and [¢]. Class [a] has two
representatives and class [c] one representative. |
m The relation R on the set of words over the alphabet {a, b}, defined by xRy
if lx|| = |lyll, is an equivalence relation (see Example 7.41). Infinitely many

equivalence classes exist for R, such as {1}, {a, b}, and {aa,ab,ba,bb}. ®

M Find all equivalence classes of the congruence relation mod 5 on the set of
integers.

SOLUTION:

Let r be the remainder when an integer a is divided by 5. Then a = r(mod 5).
Since the possible values of r, by the division algorithm, are 0, 1,2, 3, and
4, there are five distinct equivalence classes:

{...,—10,-5,0,5,10,...}
{..,—9,-4,1,6,11,...}
2]=4{..,-8,-3,2,7,12,. .}
{..,—7,-2,3,8,13,...}
{ }

These three examples lead us to the following observations:
* Every element belongs to an equivalence class.

* Any two distinct equivalence classes are disjoint.

These results can be stated more formally as follows.

m Let R be an equivalence relation on a set A, with @ and b any two elements
in A. Then the following properties hold:

(1) a € lal. (2) la] = [b] if and only if aRb.
(3) Ifa] # [b], then [a] N [b] = .

PROOF:
(1) Since R is reflexive, aRa for every a € A, so a € [a].
(2) Suppose [a] = [b]. Since a € [a] by part (1), a € [b]. Therefore, by
definition, aRb.
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Conversely, let aRb. To show that [a] C [b]:

Letx € [a]. ThenxRa. Since xRa and aRb, xRb by transitivity. Therefore,
x € [b] by definition. Thus [a] < [b].

Similarly, (6] C [a]. Thus, [a] = [b].

(3) We will prove the contrapositive of the given statement: If [a]U[6] # @,
then [a] = [b]. Suppose [a] U [b] # ¢. Then an element x should be
in [a] N [b]. Then x € [a] and x € [b]. Since x € [a], xRa and hence
aRx by symmetry. In addition, since x € [b], xRb. Thus aRx and xRb.
Therefore, aRb by transitivity. Thus [a] = [b], by part 2.

This concludes the proof. [ |

It follows by Theorem 7.10 that any two equivalence classes are either
identical or disjoint, but not both.

Notice that Example 7.43 has two disjoint equivalence classes, [a] and
[c]; their union is the whole set A. Therefore, {[a], [c]} is a partition of A.
In fact, every equivalence relation on a set induces a partition of the set, as
given by the next theorem.

lm Let R be an equivalence relation on a set A. Then the set of distinct

equivalence classes forms a partition of A. [ |

The next four examples illuminate this theorem.

M The relation belongs to the same division as is an equivalence relation on the
set of teams in the American (National) League of major-league baseball.
Let x denote a certain team in the American League. Then the class [x]
consists of all teams that belong to the same division as x. By Theorem 7.11,
the set of teams in the league can be partitioned as {| Yankees], [ White Sox],
[Mariners]}. [ |

M By Example 7.41, the relation has the same length as on the set of
words ©* over the alphabet © = {a, b} is an equivalence relation. Then the

set of equivalence classes formed is {[A], |a], [aa], [aaa],...}; it is a partition
of T*. ||

(optional) Suppose a FORTRAN program contains the variables A through
J and the equivalence statement:

EQUIVALENCE (A,B),(C,D),{F,A,G),(C,J),(E,H)

By Example 7.42 the relation shares the same memory location as is
an equivalence relation on the set of variables V. Let Vi ={AB,F,G},
Vo={C,D,d}, V3= {E,H}, and V4 ={I}. The partition of V induced by
this relation is {V1, Vo, V3, V4}. See Figure 7.36.
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Figure 7.36

Set of variables V.

|
M By Example 7.45, the distinct equivalence classes formed by the congruence

relation modulo 5 on Z are {0], [1], [2], [3], and [4]. They form a partition
of the set of integers, as shown in Figure 7.37.

Figure 7.37
A partition of the set of @

integers Z.

Conversely, does every partition yield an equivalence relation? The next
theorem shows that every partition does.

m Every partition of a set induces an equivalence relation on it.

PROOF:

Let P = {A1,49,...} be a partition of a set A. Define a relation R on A as:
aRb if a belongs to the same block as 5. We shall show that R is indeed an
equivalence relation.

* Since every element in A belongs to the same block as itself, R is
reflexive.

* Let aRb. Then a belongs to the same block as b. So b belongs to the
same block as a. Thus R is symmetric.

* Let aRb and bRc. Then a belongs to the same block as b and b to the
same block as c¢. So a belongs to the same block as c. Therefore, R is
transitive.

Thus R is an equivalence relation. [ ]

How can we find the equivalence relation corresponding to a partition of
a set? The next example demonstrates how to accomplish this.

M Find the equivalence relation on A = {a, b, ¢} corresponding to the partition
{{a, b}, {c}}.
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SOLUTION:

Define a relation R on A as follows (see the above proof): xRy if x belongs to
the same block as y. Since a and b belong to the same block, aRa, aRb, bRa,
and bRb. Similarly, cRc. Thus R = {(a,a),(a,b,), (b,a), (b, b), (c,c)}. n

Example 7.50 can serve to develop an algorithm for finding the equiva-
lence relation corresponding to a partition P of a finite set A. It is given in
Algorithm 7.3.

Algorithm Equivalence Relation (P,A,R)
(* This algorithm determines the equivalence relation R
corresponding to a partition P of a finite set A. *)
Begin (* algorithm *)
while P #¢ do
begin (* while *)
extract a block B
pair each element in B with every element in B
P « P — B (* update P *)
endwhile
End (* algorithm *)

Algorithm 7.3

Theorems 7.11 and 7.12 indicate a bijection between the family of
partitions of a set and the family of equivalence relations on it.

Number of Partitions of a Finite Set

There is a delightful formula for computing the number of partitions (and
hence the number of equivalence relations) of a set with size n. It is given

by i S(n,r), where S(n,r) denotes a Stirling number of the second kind,
deﬁr:éd by
S(n,1) =1=S8(n,n)
Sn,r)=Sn-1,r-1)+rSn-1,r,1<r<n
See Exercises 33-40.

Exercises 7.8

Determine if each is an equivalence relation.
1. The relation < on R.
2. The relation is congruent to on the set of triangles in a plane.

3. The relation is similar to on the set of triangles in a plane.
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4. The relation lives within 5 miles of on the set of people.

5. The relation takes a course with on the set of students on campus.
Determine if each is an equivalence relation on {a, b, c}.

6. {(a,a),(b,b),(c,0)} 7. {(a,a),(a,c),(b,b),{c,a),(c,c)}

8. 0 9. {(a,a),(b,b),b,c),(c, b))

Using the equivalence relation {(a,a),(a,b),b,a),(b,b), (c,c),(d,d)} on
{a,b,c,d}, find each equivalence class.

10. [a] 11. [b] 12. [c] 13. [d]

ATFORTRAN program contains 10 variables, A through J, and the following
equivalence statement: EQUIVALENCE (A,B,C),(D,E),(F,B),(C,H). Find
each class.

14. [A) 15. [B] 16. [E] 17. [J]

Using the equivalence relation in Example 7.47, find the equivalence class
represented by:

18. a 19. b 20. aa 21. aaa

Using the relation has the same length as on the set of words over the
alphabet {a, b, ¢}, find the equivalence class with each representative.

22. X 23. a 24. ab 25. be

26. Find the set of equivalence classes formed by the congruence relation
modulo 4 on the set of integers.

Find the partition of the set {a, b, ¢} induced by each equivalence relation.
27. {(a,a),(b,b),(c,c)} 28. {(a,a),(a,c),b,b),(c,a),(c,c)}

A FORTRAN program contains the variables A through J. Find the
partition of the set of variables induced by each equivalence statement.

29. EQUIVALENCE (A,B,C),(D,E),(F,B),(C,H)
30. EQUIVALENCE (A,B),(B,J),(C,J),(D,E,H)

Find the equivalence relation corresponding to each partition of the set
{a7 b? c? d}'
31. {{a},{b,c}, {d}} 32. {{a,b},{c,d}}
n
The number of partitions of a set with size n is given by 3 S(n,r), where
r=1

S(n,r) denotes a Stirling number of the second kind. Compute the number
of partitions of a set with the given size.

33. Two 34. Three 35. Four 36. Five
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37-40. The number of partitions of a set with size n is also given by the
Bell number B,. Using Bell numbers, compute the number of
partitions of a set with each of the sizes in Exercises 33-36.

Give a counterexample to disprove each.
41. The union of two equivalence relations is an equivalence relation.

42. The composition of two equivalence relations is an equivalence
relation.

We can compute the day of the week corresponding to any date since 1582,
the year the Gregorian calendar was adopted. The day d of the week for
the rth day of month m in year y (> 1582) is given by

d=r+12.6m—-0.2] —2C+ D+ |C/4] + | D/4](mod 7)

where C = |y/100] and D = y mod 100; d = 0 denotes Sunday; and m =1
denotes March, m = 11 January, and m = 12 February. This formula
is called Zeller’s formula, after Christian Julius Johannes Zeller (1849-
1899). Find the Christmas day of each year.

43. 2000 44. 2020 45. 2345 46. 3000

Leta,b,c,d,m € Z with m > 2. Prove each.
47, Ifa=b (mod m)andc =d (mod m), thena +c¢c=b +d (mod m).
48. If a = b (mod m) and ¢ = d {mod m), then ac = bd (mod m).
49. Let r be the remainder when « is divided by m. Then a = r (mod m).

50. Ifa =r (mod m) and 0 < r < m, r is the remainder when a is divided
by m.

51. Let r; and ro be the remainders when a and b are divided by m,
respectively. Then a = b (mod m) if and only if r; = ro (mod m).

52. A positive integer N is divisible by 3 if and only if the sum of its digits
is divisible by 3. [Hint¢: 10 = 1 (mod 3).]

53. A positive integer N is divisible by 9 if and only if the sum of its digits
is divisible by 9. [Hint: 10 =1 (mod 9).]

Using the congruence relation, find the remainder when the first integer is
divided by the second.

54. 256, 3 55. 657, 3 56. 1976, 9 57. 389, 276, 9
(Hint: Use Exercise 52 or 53.)

58. The United Parcel Service assigns to each parcel an identification
number of nine digits and a check digit. The check digit is the
remainder mod 9 of the 9-digit number. Compute the check digit for
359,876,015.



7.9 Partial and Total Orderings 493

59. Every bank check has an 8-digit identification number dids...dg
followed by a check digit d given by d = (dids,...,ds)
(7,8,9,7,3,9,7,3) mod 10, where (x1,x2,...,%,) - ¥1,¥2,...,¥n) =

n

> x;v;. (It is the dot product of the two n-tuples.) Compute the
i=1
check digit for 17,761,976.

60. Libraries use a sophisticated code-a-bar system to assign each
book a 13-digit identification number di,ds...d13 and a check digit
d. Let k denote the number of digits among di,ds, ds, d7, dg,
di11, and di3 greater than or equal to 5. Then d is computed as
d = [-(dy,de,...,d13) - (2,1,2,1,2,1,2,1,2,1,2,1,2) — k] mod 10,
where the dot indicates the dot product. Compute the check digit for
2,035,798,008,938.

*61. (The coconuts and monkey problem)* Five sailors and a monkey
are marooned on a desert island. During the day they gather coconuts
for food. They decide to divide them up in the morning and retire for
the night. While the others are asleep, one sailor gets up and divides
them into equal piles, with one left over that he throws out for the
monkey. He hides his share, puts the remaining coconuts together,
and goes back to sleep. Later a second sailor gets up and divides the
pile into five equal shares with one coconut left over, which he discards
for the monkey. Later the remaining sailors repeat the process. Find
the smallest possible number of coconuts in the original pile.

7.9 Partial and Tetal Orderings

Just as we used the concepts of reflexivity, symmetry, and transitivity to
define equivalence relations, we can use reflexivity, antisymmetry, and
transitivity to infroduce a new class of relations: partial orders. We begin
this section with an example.

Building a house can be broken down into several tasks, as Table 7.6
shows. Define a relation R on the set of tasks as follows: Let x and y be
any two tasks; then xRy if x = y or must be done before y. This relation is
reflexive, antisymmetric, and transitive (verify). Such a relation is a partial
order.

*Writer Ben Ames Williams used this problem in a short story titled “Coconuts,” which
appeared in the October 9, 1926, issue of The Saturday Evening Post. The story concerned a
contractor who wanted to bid on a large contract. Knowing of their competitor’s strong passion
for recreational mathematics, one of his employees gave him this problem. The competitor
became so obsessed with solving the puzzle that he forgot to enter his bid before the deadline.
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Table 7.6 Task Requires the
completion of
(1) Building the foundation (¢;) None
(2) Framing (¢9) t
(3) Subflooring (t3) ty,tg
(4) Partitioning into rooms (¢4) t1,t9,13
(5) Roofing (¢5) t1,%2
(6) Plumbing (¢g) 1,12
(7) Wiring (¢7) t1,t9
(8) Siding (tg) t1,t9,t5,t9
(9) Flooring (tg) 1,12, 8
(10) Interior painting (¢1g) t1 through t5,¢7
(11) Exterior painting (¢;1) t1,t9,18,1%9
(12) Carpeting (¢19) t1 through ¢7, 19, t10
(13) Installing fixtures (¢13) ¢ty through #1;

Partial Order
A relation R on a set A is a partial order if it is reflexive, antisymmetric,
and transitive. The set A with its partial order R is a partially ordered
set (or poset), denoted by (A, R). When the partial order is clear from the

context, call the poset A.
The next three examples illustrate these definitions.

m The relation < on R is reflexive, antisymmetric, and transitive, so < is a

partial order on R and (R, <) a poset. Similarly, the divisibility relation |
on N is a partial order, so (N, |) is also a poset. [ |

M Let ¥ = {a,b}. Define a relation R on ©* as: xRy if x is a prefixof y. Is R a

partial order?
+ Every word is a prefix of itself, so R is reflexive.

* Let xRy and yRx. Then y = sx and x = ¢y for some s,f € £* sox =
t(sx) = (£s)x.
Consequently, ts = A and hence t = s = A. So x = y and the relation is
antisymmetric.

* Suppose xRy and yRz. Then y = sxandz = ¢y for some s,t € T*.
Therefore, z = t(sx) = (ts)x. Consequently xRz, and the relation is
transitive.

Thus, R is a partial order on ©* and (£*, R) is a poset. [ ]

M The relation has the same color hair as on the set of people is reflexive, but

not antisymmetric. Therefore it is not a partial order. [ ]
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Just as an equivalence relation generalizes the equality relation, a partial
order generalizes the relation <. Accordingly, a partial order is denoted
by <. x < y means x precedes or equals y. If x < y and x # y, we write
x <y, meaning x precedes y.

Comparable Elements

PLE 7.54

Loy

Total Order

Two elements x and y in a poset are comparable if either x < yory < x;
otherwise, they are noncomparable.

Let x and y be any two real numbers. Then either x < y ory < x. So any two
real numbers can be compared using the relation <: they are comparable.

Using the divisibility relation | on N, the positive integers 3 and 6 are
comparable, since 3 | 6. But 3 and 8 are not comparable, since 3 { 8 and
813. |

Example 7.54 indicates that a poset may contain noncomparable ele-
ments, which justifies the word partial in partial order. This leads us to
the next definitiod.

If any two elements in a poset are comparable, such a partial order is a
total order or a linear order. The poset is then a totally ordered set
or a linearly ordered set.

Notice that < is a total order on R, whereas the divisibility relation is
not a total order on N.

Just as sets can be used to construct new sets, posets can be combined to
construct new posets. In order to do this, we first define a relation on the
cartesian product of two posets.

Lexicographie Order

Let (A, <1) and (B, <2) be two posets. Definearelation < on AxB as (a,b) <
(@,b)ifa <1 d, ora =a’ and b <9 b'. The relation <, an extension of the
alphabetic order, is the lexicographic order.

The lexicographic order is a partial order on A x B. If A and B are totally
ordered sets, so is A x B. The lexicographic order can be extended to the
cartesian product A; x Ag x --- x A, of n posets and n totally ordered sets.
The next two examples illustrate this.

Consider the cartesian product N x N x N, where the partial order is the
usual <. Then (2,5,3) < (3,2, 1) since the first element in the triplet (2, 5, 3)
is less than that in the second triplet (3,2, 1). Also, (2,4,5) < (2,4, 7). This
ordering mirrors the familiar sequencing of three-digit numbers. ]
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Let T be a partially ordered alphabet with the partial order < and =”
denote the set of words of length n over X. Since every word in X" can be
considered an n-tuple, the lexicographic order on the cartesian product on
n posets can be applied to " also.

Let x = a1a9...a, and y = b1bg...b, be any two elements in £". Then
x < yif:

* Eithera; < by, or

* An integer i exists such that a; = b1,a2 = bg,...,q; = b;, and a; ;1 <
bi+1-

In particular, let £ denote the English alphabet, a totally ordered set:
a <b <c <. <z Clearly, computer< demolish, compress < computer,
contend < content, and content< context.

This lexicographic order can work for £* in a familiar way. Let x and y
be any two words over £. Then x < y in lexicographic order if one of two
conditions holds:

* x = ), the empty word.

* Ifx = su and ¥y = sv, where s denotes the longest common prefix of x
and y, the first symbol in u precedes that in v in alphabetic order.

For example, marathon < marble, margin < market, limber < timber,
and creation < discretion. ]

We can simplify the digraph of a finite poset by omitting many of its edges.
For instance, since a partial order is reflexive, each vertex has a loop, which
we can delete. In addition, drop all edges implied by transitivity. For exam-
ple, if the digraph contains the edges (a,b) and (b, ¢), it has the edge (a,c),
which we can omit. Finally, draw the remaining edges upward and drop
all arrows. The resulting is the Hasse diagram, named for the German
mathematician Helmut Hasse.
Examples 7.57-7.60 generate Hasse diagrams.

Construct the Hasse diagram for the poset (4,]), where A = {1,2,3,6,8,12)
and | denotes the divisibility relation.

SOLUTION:
The digraph of the poset is Figure 7.38.

Step 1 Delete the loop at each vertex. The result is Figure 7.39.

Step 2 Delete all edges implied by transitivity. Figure 7.40 shows the
ensuing diagram.

Step3 Omit all arrows and draw the edges “upward.” The Hasse diagram
appears in Figure 7.41.
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Helmut Hasse (1898-1979), a celebrated number theorist and dedicated
teacher, was born in Kassel, Germany. His father was a judge. While study-
ing at the gymnasiums in Kassel and later Berlin, he decided on a career in
mathematics. After the gymnasiums, he entered the navy. While in the navy
in the Baltic he studied number theory and then mathematics at the Univer-
sity of Kiel. Leaving the navy in December 1918, Hasse went to Géttingen to
pursue his mathematical interest and then to Marburg, receiving his Ph.D.
in 1921.

His teaching career began in Kiel in 1922. Three years later, he became
a professor at Halle, then moved to Marburg, Gottingen, Berlin, and finally
Hamburg in 1950, where he remained until his retirement in 1966. Earlier
he had been director of the Mathematics Institute at Gottingen. But he was
dismissed by the British occupation authorities in September 1945.

Hasse was a member of several academies of science and author of numerous articles and books. Hasse
received a number of awards including the German National prize for Science and Technology (1953) and
the Cothenius Medal of the Academia Leopoldina (1968).

Figure 7.38

Figure 7.39
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Figure 7.40 6
3 8
2 12
1
Figure 7.41 12
Hasse diagram for the 6
poset. 8
3
2
1

m Draw the Hasse diagram for the poset (A, €), where A denotes the power
set of the set {a,b,c}.

SOLUTION:

The set {a,b,c} has eight subsets: g,{a},{b},{c],{a,bd},{b,c},{c,a}, and
{a,b,c}. Following steps 1-3, as in Example 7.57, produces the Hasse
diagram in Figure 7.42,

Figure 7.42 {a,b,c}

{a,b} b,c}

<

{c}

{a

¢ [

m Therelation R = {(a, a), (a,c¢), (a,e), (b,b), (b,¢), (b,d), (b, e), (c,¢), (c,e), (d,d),
(d,e),(e,e)} is a partial order on {a,b,c,d,e}. Figure 7.43 displays its Hasse
diagram.
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Figure 7.43 e

Ii].XAMl’LE 7.60 Consider the alphabet % = {a,b}. The relation < on T*, defined by x < ¥
if x is a prefix of v, is a partial order. The Hasse diagram for all words of
maximum length two appears in Figure 7.44.

Figure 7.44 aa  ab ba  bb

\V4

a b

A ||

Extremal elements in a poset are important, especially in linear ordering.

Extremal Elements

An element a in a poset (A, <) is a maximal element if A has no element
b such that a < b. Similarly, an element ¢ in A is a minimal element if A
has no element b < a.

The maximal and minimal elements in a finite poset can easily be read
from its Hasse diagram, like the ones in Figures 7.41 and 7.42.

M The poset in Figure 7.41 has two maximal elements, 8 and 12, and one

minimal element, 1.
Figure 7.43 has one maximal element, e; it has two minimal elements,
a and b. [ |

A poset may exhibit the following properties:

* A poset may have more than one maximal element and more than
one minimal element (see Example 7.61).

* A poset need not have any maximal or minimal elements. For
instance, the poset (Z,<) has no maximal or minimal elements.

« A poset may have a maximal element but no minimal elements, or a
minimal element but no maximal elements. For example, the poset
(Z~, <) has a maximal element but no minimal elements, whereas
the poset (Z*, <) has a minimal element but no maximal elements.

Two special extremal elements are the greatest and the least.
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Greatest and Least Elements

If a poset A contains an element ¢ such that & < a for every element b in
A, a is the greatest element of the poset. If it contains an element a such
that a < b for every b in A, a is the least element.

The greatest element of a poset, if it exists, is unique; likewise, the
least element. They are the topmost and the bottommost elements in
the Hasse diagram.

For example, the poset in Figure 7.41 has no greatest element, but has
a least element, 1. Figure 7.43, on the other hand, has a greatest element,
e, but no least element.

Although an arbitrary poset need not have a minimal element, every
nonempty finite poset has a minimal element, as Theorem 7.13 shows.

Every finite nonempty poset (A, <) has a minimal element.

PROOF:

Let aj be any element in A. If a1 is not minimal, there must be an element
a2 in A such that ay < a;. If a2 is minimal, then we have finished. If as
is not minimal, A must have an element a3 such that ag < ag. If a3 is not
minimal, continue this procedure. Since A contains only a finite number of
elements, it must terminate with some element a,,. Thusa, <a,_1 < --- <
ag < ag < a1. Consequently, a, is a minimal element. n

This result forms the cornerstone of the topological sorting technique.

Topologieal Sorting

Study the tasks #; through ¢35 for building a house, given in Table 7.6.
(Recall that the relation precedes or is the same as is a partial order on A).
For these tasks to be entered in a computer, the elements of the poset must
be arranged in a linear order consistent with the partial order. If a < b,
then enter task a before task b in linear order. This technique is called
topological sorting.

To topologically sort a finite nonempty poset (A, <) with n elements,
proceed as follows. By Theorem 7.13, the poset contains a minimal ele-
ment, say, a¢;. Exclude it from A. Then A — {a;} is also a finite poset. If it
is nonempty, it contains a minimal element ay. Delete ay from A — {a1}).
Then A — {a1, a9} is a finite poset with minimal element a3. Continue this
procedure until the poset becomes null. This procedure yields the desired
linear order,ay < ag <ag < --- < ay.

A simple algorithm can handle this organizing (see Algorithm 7.4).
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Algorithm Topological Sort (S)
(* This algorithm sorts a finite nonempty poset S into a linear order
using topological sorting. *)
Begin (* algorithm *)
while S #¢g do
begin (* while *)
find a minimal element a in S
S « S — {a} (* delete a from S *)
endwhile
End (* algorithm *)

Algorithm 7.4

We can establish the validity of this algorithm using induction and
Theorem 7.13. We leave its verification as an exercise.

M Topologically sort the elements of the poset in Example 7.57.

SOLUTION:

The poset given by the Hasse diagram in Figure 7.41 has one minimal
element, 1. Delete it from the poset and hence from the Hasse diagram. The
diagram turns into Figure 7.45 with a poset of two minimal elements, 2 and
3. Delete one of them, say, 3. The resulting poset appears in Figure 7.46;
it has two minimal elements, 2 and 6. Delete one of them, say, 2. The
new poset in Figure 7.47 also has two minimal elements, 6 and 8. Extract,
say, 8. The resulting poset is shown in Figure 7.48. Extract its minimal
element, 6; this leaves just one element, 12 (see Figure 7.49). Deleting it
yields the empty set, and the procedure terminates. Thus, we can sort the
elements of the poset in a linear order compatible with the partial order:
1<3<2<8<6<12.

Figure 7.45 8 W12
2 ¥6
3

Figure 7.46 8 12
6
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Figure 7.47 8 12
6
Figure 7.48 12
6
Figure 7.49 ol2

In this example, we could have chosen a minimal element in more
than one way on three occasions; in other words, the output from the
topological sorting need not be unique.

We close this section with another sorting example.

[m Topologically sort the elements of the poset in Example 7.59.

SOLUTION:
Figures 7.50-7.54 track the steps of the sorting algorithm. The resulting
outputisa <b <d <c¢ <e.

Figure 7.50 e
Extract a.
c d
a b
Figure 7.51 e
Extract b.
¢ d



Figure 7.52

Extract c.

Figure 7.53

Extract d.

Figure 7.54

Extract e.
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Exercises 7.9

Determine if each is a partial order.
1. The relation < on R 2. The relation > on R
3. The relation > on Z 4. The relation | on Z

Determine if each is a partial order on {a, b, c}.

5. {(a, a), (b, b), (C, C)} 6. {(a, a)7 (a’b)a (b,a), (b,b)> (C, C)}

7. {(a,a),(b,b),b,c),(c,c)} 8. {(a,a),(q,d),(b,b),b,c),(c,c)}
Determine if each is a partial order.

9.

10 eva
(D ()

1 Oy =(b)
(" Xc)

Determine if the given elements are comparable in the poset (4, |), where
A={1,2,3,6,9, 18} and | denotes the divisibility relation.

12, 2,3 13. 2,6 14. 2,9 15. 3,18
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Determine if the given elements are comparable in the poset (4, <), where
A denotes the power set of {a, b, ¢} (see Example 7.58).

16. {a,b},{b,c} 17. {a,b},{b}
Arrange the following pairs from the poset N x N in lexicographic order.

18. (3,5),(2,3) 19. (3,5),(2,6)

20. Find three ordered pairs of positive integers that precede the pair (2, 3)
in lexicographic order.

21. Find three triplets of positive integers that precede the triplet (2, 3, 5).

Arrange the following words over the English alphabet in lexicographic
order.

22, mat, rat, bat, cat, eat, fat

23. neighbor, neophyte, neglect, moment, luxury, maximum
24. custom, custody, custard, cushion, curtain, culvert

25. discreet, discrete, discount, discourse, diskette, discretion

26. Arrange all words of length < 2 over the alphabet {a, b} in lexicographic
order. Construct a Hasse diagram for each poset.

27. (A,]), where A = {1,2,3,6,9, 18} and | denotes the divisibility relation.
28. (A,]), where A = {1,2, 3,6, 8,24} and | is the divisibility relation.

29. (A,R), where A = {a,b,c} and R = {(a,a),(a,b), (b,b),(b,c), (c,c)}.

30. (A, C), where A denotes the power set of the set {a, b}.

31. Let A denote the set of words of length < 3 over the binary alphabet.
The relation R, defined on A by xRy if x is a prefix of y, is a partial
order. Draw a Hasse diagram for the poset (A, R).

Find the maximal and minimal elements in the poset with each Hasse
diagram.

32. f 33. . d 34 4
b
b
b a
a.

Find the maximal and minimal elements, if they exist, in each poset.
35. (A, <), where A denotes the set of positive even integers.

36. (A, <), where A denotes the set of negative even integers.
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37. (A,]),whereA =1{1,2,3,6,9,18} 38. (4,]),whereA ={1,2,3,6,8, 24}

39-42. Find the greatest and least elements, if they exist, in the posets of
Exercises 35-38.

Mark each statement as true or false.

43. Every poset has a maximal element.

44. Every poset has a minimal element.

45. The maximal element in a poset, if it exists, is unique.

46. The minimal element in a poset, if it exists, is unique.

47. Every poset has a greatest element.

48. Every poset has a least element.

Give a counterexample to disprove each statement.

49. Every poset has a maximal element.

50. Every poset has a minimal element.

51. Every poset has a greatest element.

52. Every poset has a least element.

Topologically sort the elements of each poset.

53. The poset in Figure 7.43. 54. The poset in Figure 7.44.
55. The poset in Exercise 32. 56. The poset in Exercise 33.
57. (A,]),whereA = {1,2,3,6,9,18} 58. (A,}),whereA = {1,2,3,6,8,24}

59. Topologically sort the tasks ¢; through #,3 in building a house, given
by Table 7.6.

60. A project contains six subprojects, A through F. Results from some
of the subprojects are needed by others, as Table 7.7 shows. Find the
ways the subprojects can be sequentially arranged.

Table 7.7

Subpraoject Requires results from

B,D
C
None
C,E
None

A

OEO O
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61. Seven tasks, A through G, comprise a project. Some of them can only
be started after others are completed, as indicated by Table 7.8. How
many ways can the tasks be arranged sequentially, so the prerequi-
sites of each task will be completed before it is started? List one of

them.
Table 7.8 .
Task Requires the completion of

A B,C

B G

C None

D AF

E None

F B,E

G None

*62. Let(A, <) and (B, <2) be two posets. Define a relation <3 on A x B
as follows: (a,b) <3 (@/,b') ifa <1 @’ and b <3 &'. Prove that <3 is a
partial order.

Prove each.

*63. The greatest element of a poset (A, <), if it exists, is unique.
*64. The least element of a poset (A, <), if it exists, is unique.

*65. Every finite nonempty poset (A, <) contains a maximal element.

*66. Establish the correctness of Algorithm 7.4,

We studied the fundamentals of the theory of relations and explored how
relations on finite sets can be represented by graphs and boolean matrices.

Boolean Matrix
* A boolean matrix has bits for entries (page 438).

* The join A v B and meet A v B of two boolean matrices A and B
are obtained by oring and anding the corresponding bits, respectively
(page 439).

* The boolean product A © B of two boolean matrices A = (@) xp and
B = (bji)pxn is the matrix C = (¢;j)mxn, Where ¢;; = (a;1 A by;) Vv (a2 A
bgj) V-V ap Aby) (page 439).
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Binary Relation

The complement A’ of a boolean matrix A results from swapping 0’s
and 1’s (page 442).

A binary relation R from A to B is a subset of A x B. If (a,b) € R, we
write aRb; otherwise, we write ab (page 443).

A relation R from a finite set to a finite set can be represented by its
adjacency matrix, Mg (page 444).

A relation on a finite set can be represented by a digraph (page 445).

Every function f : A — B is a binary relation from A to B such that (1)
dom(f) = A; and (2) if (a,b) € f and (a,c) € f,then b =¢ (page 448).

Properties of Relations

A relation R on A is reflexive if aRa for every a € A (page 455).
A relation R on A is symmetric if aRb implies bRa (page 456).

A relation R on A is antisymmetric if aRb A bRa implies a = b
{page 456).

A relation R on A is transitive if aRb A bRc implies aRc  (page 459).

Constructing New Relations

.

The union and intersection of two relations R and S from A to B are

RUS = {(a,b)laRb v aSb};R A S = {(a,b}|laRb v aSb}) (page 462).
If R and S are relations on a finite set, Mp s = Mg v Mg and Mg =
Mg AMs (page 463).

Let R be a relation from A to B and S a relation from B to C. Their
composition is R © S = {(a,c) € A x C|aRb A bRc for some b in B}

(page 463).
In particular, if A, B, and C are finite sets, then Mpos = Mp © Mg
(page 466).
For a relation R on a finite set, M. = (Mp)!") (page 467).
For a transitive relation R, R* C R for everyn > 1 (page 468).

The connectivity relation R™ is the union of all powers of R:

o0
R™ = URn;MRoo =Mp Vv Mgz Vv Mgsv... (page47l).

n=1
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¢ In particular, let R be a relation on a set with size n. Then

n
R*=| JR and Mp =Mp v Mp: v ---v Mg~ (page 473).

i=1

Transitive Closure

¢ The transitive closure R* of a relation R is the smallest transitive

relation containing it (page 475).
* R* = R>® (page 477).
¢ Warshall’s algorithm systematically finds Mpx* (page 477).

Equivalenece Relations and Partitions

* An equivalence relation is reflexive, symmetric, and transitive

(page 483).
» An equivalence relation on a set induces a partition of the set and vice
versa (page 488).

Partial and Total Orders

¢ A partial order < is reflexive, antisymmetric, and transitive. A set
together with a partial order is a poset (page 494).

* Two elements, x and y, in a poset are comparable if either x < y or
y=x (page 495).

» If any two elements in a poset are comparable, the partial order is a
total order or linear order (page 495).

¢ The lexicographic order is an extension of the alphabetical order to
posets (page 495).

¢ The Hasse diagram of a finite poset contains no loops, edges implied
by transitivity, or arrows; its edges are drawn upward (page 496).

* The elements of a finite nonempty poset can be sorted topologically
(page 500).

Review Exercises

Determine if each relation on {a, b, ¢} is reflexive, symmetric, antisymmet-
ric, or transitive.

1. {(a,@),(,0),(c,b),(c,c)} 2. {(@,0),(b,a),(b,c),(c,b))
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Using the relations B = {(1,1),(1,2),(2,2),(3,2)} and S = {(1,1),(2,2),
(2,8),(3,2)} on {1, 2, 3}, find each.

3. (RUSY 4. R'n S’ 5. (RnS)Y 6. RFus
7. (RUS)1 8. R-1us-1 9. (RnS)~! 10. R-1nS-t
11. Ro S 12. R? 13. RS 14, R

With the adjacency matrices of the relations R = {(1,1),(1,2),(2,2),(3,2)}
and S = {(1,1),(2,2),(2,3),(3,2)} on {1, 2, 3}, find each.

15. (Mg)' 16. (Mp)T 17. Mgos 18. Mpg:
19. RGOS 20. R? 21. Mp- 22, R*
Find the transitive closure of the relation on A = {a,b,c} with each

adjacency matrix.

0 0 1 1 00
23. {1 0 O 24. {0 1 1
011 1 01

Since 1972 every book published commercially has a 10-digit identification
number, its International Standard Book Number (ISBN). The ISBN con-
sists of four parts: a group code (one digit), a publisher code (two digits),
a book code (six digits), and a check digit. For instance, the ISBN of an
earlier text by this author is 0-12-421171-2. The group code 0 indicates
that the book was published in an English-speaking country. The pub-
lisher code (12) identifies the publisher, Academic Press, and the book code
(421171) is assigned by the publisher to the book. The check digit d, where
0 <d < 10 and 10 is denoted by X, is used to detect errors and is computed
as follows: Let x1,x9,...,xg denote the first nine digits in the ISBN. Let
s denote the dot product of the 9-tuples (x1,x9,x3,x4, %5, %6, x7,%8,%9) and
(10,9,8,7,6,5,4,3,2). Then d = —s (mod 11). Compute the check digit if
the first 9 digits of the ISBN are:

25. 0-12-421171 26. 0-87-620321

Determine if each is an equivalence relation on {a, b, c}.
27. {{a,a),(a,b),(b,a),lc,c)} 28. {(a,a),{a,c),(b,b),(c,a),(c,c)}

Using the equivalence relation {(a,a), (a,c¢), (b,b), (b,d), (c,a), (c,c), (d,b),
(d,d)} on A = {a,b,c,d}, find each equivalence class.

29. [a] 30. ‘&] 31. [c] 32. [d]
33. Find the partition of A induced by the above relation.

Find the equivalence relation corresponding to each partition of the set
{2,3,4,7}

34. {{2,4,7},{3}} 35. {{2,4}, {3},{7}}
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Figure 7.55
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Find the number of partitions of a set with the given size.

36. Two 37. Seven

Mark each statement as true or false, where A is an arbitrary set, R an
arbitrary relation, and A the equality relation.

38. The null relation is reflexive.

39. The null relation is symmetric.

40. The null relation is transitive.

41. A relation R on A is reflexive if and only if A C R.
42, The less-than relation on R is irreflexive.

43. The less-than relation on R is antisymmetric.

44, If R is transitive, R* = R.

45. If R* = R, R is transitive.

46. The less-than relation on R is a partial order.

47. The less-than relation on R is a total order.

48. Arrange all binary words of length 3 in lexicographic order, where
0<1.

49. Arrange all binary words of length < 3 in lexicographic order, where
0<1.

The relation < on the set A of required courses given in Table 7.1 by x <y
if x is a prerequisite of or the same as y is a partial order on A.

50. Draw the Hasse diagram for the poset.
51. Topologically sort the required computer science courses.

Use the poset in Figure 7.55 to find the following.

52. The maximal and minimal elements, if they exist.
53. The greatest and least elements, if they exist.
54. Topologically sort the elements in the poset.
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Let R and S be any two relations on a set A. Prove each.

55. (RNS)2 CcR?2NS2 56. (RNS*"CR"NS", n>1

57. R is antisymmetric if and only if R N R-1cA.

58. The intersection of two equivalence relations is an equivalence
relation.

Supplementary Exereises

Let D denote any day of the week, where 0 < D < 6 and D = 0 denotes
Sunday. The day of the week corresponding to any day (m/d/y) in the
Gregorian calendar is given by

23m +d+4+y+{y_1"—Ly_lJ+[y_1J(m0d7) if m<3

9 4 100 400
D=
23m y Yy Yy ;
[—Q—J +d+4+y+ LzJ - LWJ + LZ@BJ — 2 (mod7) otherwise
(M. Keith and T. Carver, 1990)
Compute the day of each date.
1. July 4, 1776 2. December 25, 2076

Prove each.
3. Let p be a prime. Then p|(}) for 0 < k < p.

4. (Fermat’s theorem) Let a € N and p a prime. Then a? = a (modp).
(Hint: Use induction.)

Let a,b € R and p a prime. Prove that (a + b)? = a? + b” (mod p) using:
5. The binomial theorem and Exercise 3.
6. Fermat’s theorem.

Evaluate each.
7. 5190 (mod 7) 8. 124000 (mod 5)

9. Prove that the product of any three consecutive integers is divisible
by 3.

10. Let n € W. Prove that the number formed by concatenating the deci-
mal values of 27 and 27*! is divisible by 3. (For example, when n = 5,
both 3264 and 6432 are divisible by 3.) (D. Burns, 1977)
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11. Around 1760, John Wilson (1741-1793), an English mathematician,

12,

*13.

*14.

*15.

proved that (p — 1)! = —1 (mod p; that is, the quotient

- +1
W(p)z(p_i

is an integer. This is known as Wilson’s theorem.) p is a Wilson
prime if W(p) = 0 (mod p); that is, if (p — 1)! = —1 (mod p?). Find
the two Wilson’s primes < 20. (The third and largest known Wilson
prime is 563. It is not known whether or not there are infinitely many
Wilson primes.)

(Lucas’ Theorem) Let p be a prime, n = (a;a;-1...a0)p and k& =
(btbs_1...bo)p. Then (}) = (gj)(gj:i) ... (Zg)(mod p). Using Lucas’ the-
orem, find the remainders when the binomial coefficients C(234,19)

and C(3456,297) are divided by 5.

Let a and b be relatively prime integers. Prove that a?® + p¢@ = 1
(mod ab).

(Hint: Let n € Nand a an integer relatively prime to n. Then a¥™ = 1
{mod n). This is Euler’s theorem.) (M. Charosh, 1983)

Show that a set with n elements must have at least 2" relations with
the same reflexive closure.
(Hint: Use the pigeonhole principle.)

Show that a set with size n must have at least 2"~ /2 relations with
the same symmetric closure.
(Hint: Use the pigeonhole principle.)

Computer Exereises

Write a program to perform each task, where n denotes a positive integer
<20and A ={1,2,...,n}.

1. Read in two boolean matrices. Print their join, meet, complement, and
boolean product, if defined.

2. Read in the elements of a relation R on A. Print its adjacency matrix
Mpg. Use MR to enumerate the elements in the relation.

3. Readin the adjacency matrix of a relation on A. Determine if the relation
is reflexive, symmetric, antisymmetric, or transitive.

4. Read in the adjacency matrices of two relations on A. Print the adjacency
matrices of their union, intersection, complements, and inverses.

5. Read in the adjacency matrix of a relation R from A to B and that of a
relation S from B to C. Print Mps.
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6. Read in the adjacency matrix of a relation R on A. Print Mg+, using

10.

11.

the connectivity relation algorithm and Warshall’s algorithm, and
compare the number of bit operations required by them.

Read in the adjacency matrix of a relation on A. Determine if the
relation is an equivalence relation.

Read in two positive integers r and n, where r < n < 10. Print the
number of equivalence relations that can be defined on a set of size n,
using Stirling numbers of the second kind and Bell numbers.

Read in the adjacency matrix of a partial order on a poset A.

* Determine if it is a partial order.
» Print the boolean matrix corresponding to its Hasse diagram.
+ Topologically sort the elements of the poset.

Determine the most likely day on which the 13th of a month will fall
in the Gregorian calendar. Since the Gregorian calendar repeats every
400 years, you need only consider a period of 400 years.

Read in a positive integer n < 1000 and print all Wilson primes < n.

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1.

Explain and illustrate the various relational operations in the theory of
databases.

Describe the algorithm employed by the United States Postal Service to
encode the nine-digit zip code into barcodes, and decode the barcodes
(62 bars) into zip codes.

Describe how modular arithmetic can be used to construct m-pointed
stars.

Explain the coding scheme for creating European Article Numbering
(EAN) barcodes to uniquely identify books. Extend it to include the
five-digit add-on code to provide price information.

5. Describe the origins of the Julian and Gregorian calendars.

6. Develop a formula to determine the day d of the week for the rth day in

a given month m of any given year y in the Gregorian calendar, where
y > 1600.

. Study the algorithms of assigning driver’s license numbers in various

states.
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8. State and prove the Chinese Remainder Theorem. Illustrate it using
ancient examples from China and India.
9. Write an essay on the various cryptosystems.
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