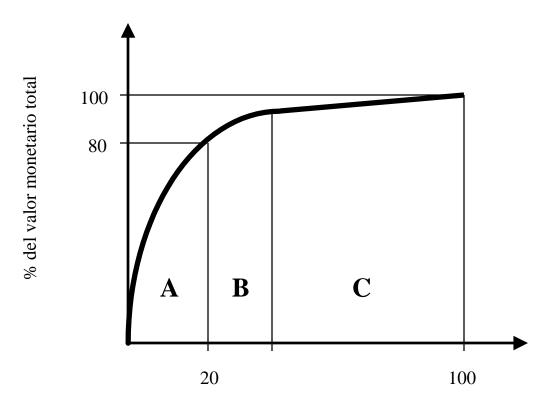
Modelos de Stock


- Introducción
- Curva ABC
- Modelo Generalizado de Stock
 - Naturaleza de la demanda
 - Objetivos de un modelo de stock
 - Componentes del costo total
- Modelos Deterministas
 - Modelo Básico
 - Stock de Protección
 - Reposición no instantánea
 - Precios Divididos
 - Con costo de agotamiento
- Restricciones en modelos multiproducto

Introducción

- Un problema de Stocks (Inventarios-Bienes de Cambio) existe cuando es necesario guardar bienes físicos con el propósito de satisfacer la demanda durante un horizonte de tiempo.
- Los bienes en stock representan un costo a ser optimizado.
- El problema tiene dimensiones importantes en la economía:
 - En Argentina: Una muestra de 65 empresas cotizantes acumula bienes de cambio por 2.500 MMUS\$, 20 de ellas concentran 2.000 MMUS\$.
 - En Brasil: Una muestra de 65 empresas cotizantes acumula bienes de cambio por 20.000 MMUS\$, 20 de ellas concentran 17.000 MMUS\$.
 - En el Mundo: Existen stocks de petróleo crudo de 5.800 MM de barriles (solo el 17% son estratégicos o no comerciales), unos 116.000 MMUS\$

Curva ABC

• Sólo un número relativamente pequeño de artículos de stock suele generar la parte más importante del costo de capital.

Porcentaje de los artículos totales

Complejidad Creciente de los modelos

Modelo Generalizado de Stocks: Naturaleza de la Demanda

- <u>Determinista</u>: Se conoce con certeza.
 - Estática: Se conoce con certeza y se mantiene constante durante el tiempo.
 - Dinámica: Se conoce con certeza pero varía de un período al siguiente.
- <u>Probabilista</u>: Está descripta por una función de densidad de probabilidad.
 - Estacionaria: La función de densidad se mantiene sin cambios a través del tiempo
 - No Estacionario: La Función de densidad varía con el tiempo

Modelo Generalizado de Stocks: Objetivos de un modelo de Stock

Un modelo de stocks apunta a responder dos preguntas básicas:

- ¿ Qué cantidad de artículos deben pedirse ?
 - Determinar la "cantidad del pedido"
- ¿ Cuándo deben pedirse?
 - Revisión Periódica: Recepción de un nuevo pedido de la cantidad especificada por la "cantidad del pedido" en intervalos de tiempo iguales
 - Revisión Contínua: Cuando el nivel de inventario llega al "punto de pedido", se coloca un nuevo pedido cuyo tamaño sea igual a la "cantidad del pedido".

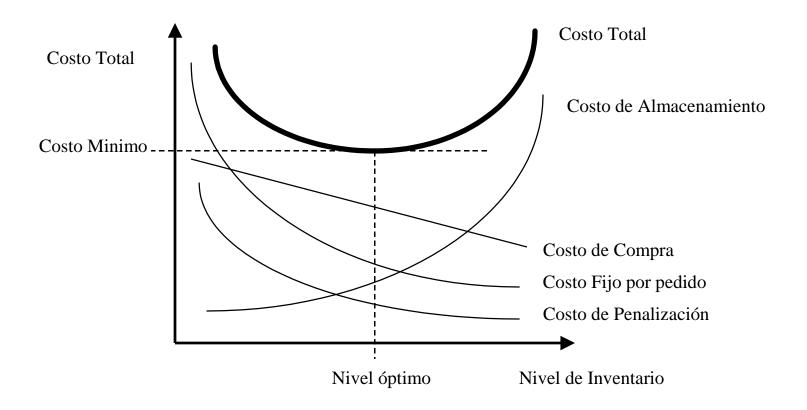
Modelo Generalizado de Stocks: Componentes del Costo Total

• Costo de Compra (b \$/unidad):

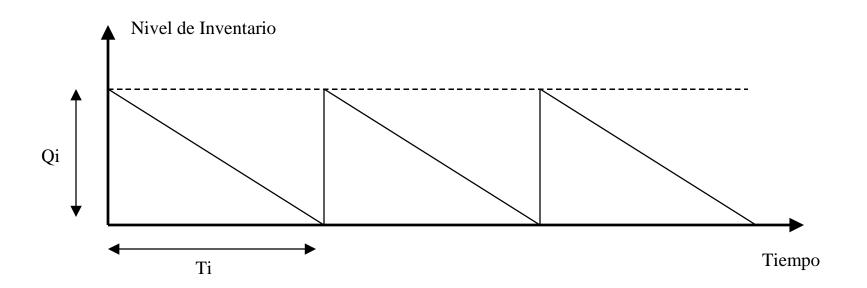
 Puede ser función del tamaño del pedido cuando se hacen descuentos por cantidad.

• Costo Fijo del Pedido (k \$):

- Representa el gasto fijo en que se incurre cuendo se hace un pedido.


• Costo de Almacenamiento (c1 \$/unidad. t):

 Es el costo de mantener almacenado el producto. Por ejemplo: interés sobre el capital invertido, gastos de almacén, gastos de mantenimineto...


• Costo de Escasez (c2 \$/unidad. t):

 Penalización por no poder satisfacer la demanda. Ingresos potenciales perdidos, deterioro en la relación comercial, penalidades contractuales....

Modelo Generalizado de Stocks: Componentes del Costo Total

Modelo Básico

- 1- Demanda Constante y Conocida.
- 2-Resposición Instantánea.
- 3-Costo unitario de almacenamiento por unidad de tiempo c1, constante.
- 4-Costo de Reposición k, constante.
- 5-Costo unitario de producto b, constante.
- 6-No existen otros costos.
- 7-no existen restricciones.
- 8-Al comienzo de cada período no hay stock ni pedidos insatisfechos.

Modelo Básico

• CTi=(1/2).c1.Qi.Ti + k + b.Qi CTi:Costo Total del período Ti

En el período total T, que contiene n ciclos de reaprovisionamiento se tendrá en Costo Total:

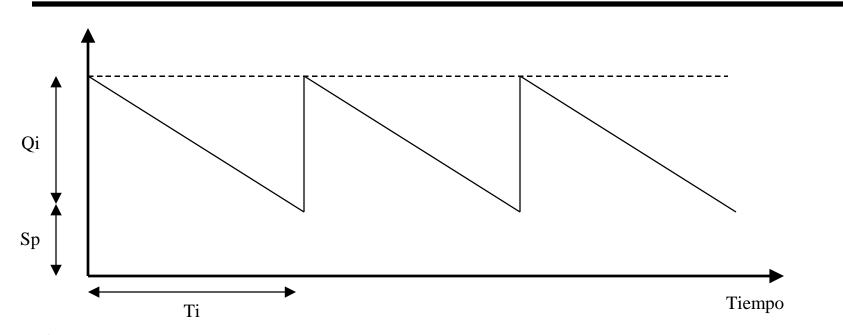
• CT=((1/2).c1.Qi.Ti + k + b.Qi).n CT:Costo Total del período T

y como n= T/Ti = D/Di = D/Qi se podrá expresar el Costo Total en función de una única variable Qi.

• CT=(1/2).c1.Qi.T + k.D/Qi + b.D

Modelo Básico

El objetivo es hallar el valor de Qi que hace mínimo el Costo Total en el período T.


•
$$CT=(1/2).c1.Qi.T + k.D/Qi + b.D$$
 MIN

- dCT(Qi)/dQi=0 o sea:
- $(1/2).c1.T k.D/Qi^2 = 0$ de donde:

•
$$Q^* = \sqrt{\frac{2.k.D}{c_1.T}}$$
 $T^* = \sqrt{\frac{2.k.T}{c_1.D}}$

•
$$CT^* = \sqrt{2.k.D.c_1.T} + D.b$$

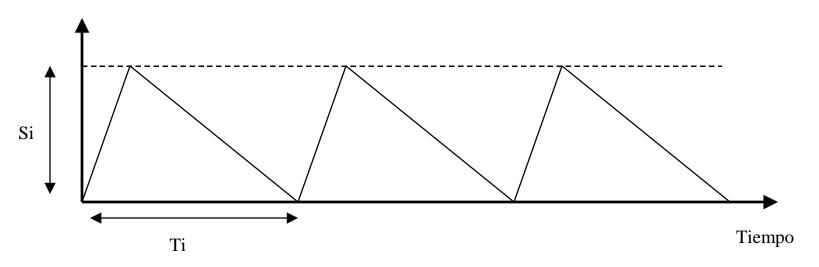
Stock de Protección

- 1- Demanda Constante y Conocida.
- 2-Resposición Instantánea.
- 3-Costo unitario de almacenamiento por unidad de tiempo c1, constante.
- 4-Costo de Reposición k, constante.
- 5-Costo unitario de producto b, constante.
- 6-No existen otros costos.
- 7-no existen restricciones.
- 8-Se mantiene permanentemente almacenada una cantidad Sp, no hay pedidos insatisfechos.

Stock de Protección

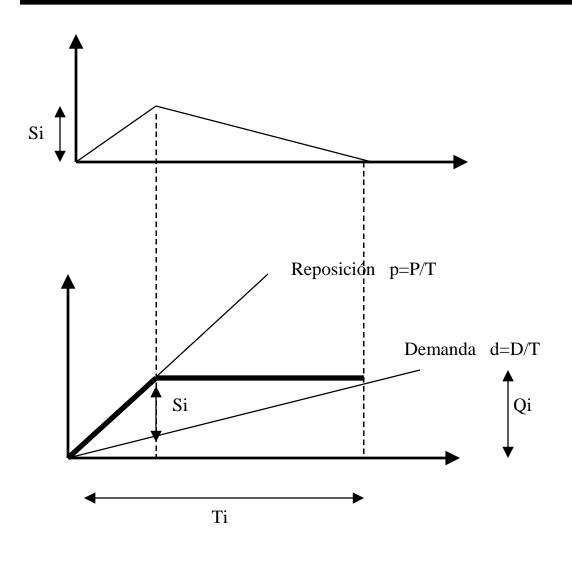
El costo total resulta:

• CT=(1/2).c1.Qi.T + c1.Sp.T + k.D/Qi + b.D


El óptimo se encuentra como en el modelo básico

• dCT(Qi)/dQi=0 o sea:

• $(1/2).c1.T - k.D/Qi^2 = 0$ de donde:

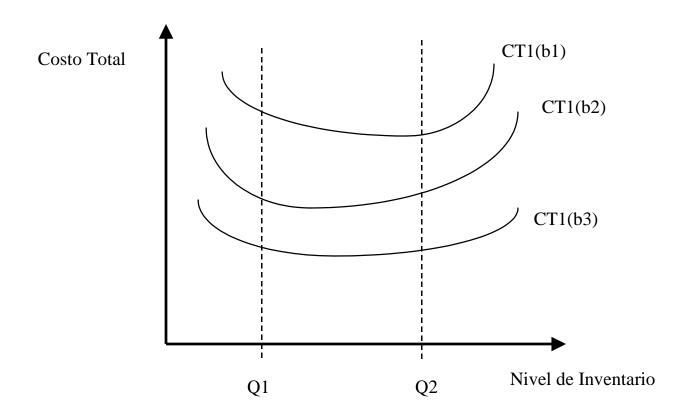

•
$$Q^* = \sqrt{\frac{2.k.D}{c_1.T}}$$

Reposición no Instantánea

- 1- Demanda Constante y Conocida.
- 2-Reposición de cantidades Qi iguales en períodos Ti, que cubren exactamente la demanda Di en ese período. La reposición se hace a una velocidad constante p=P/T mayor que d=D/T
- 3-Costo unitario de almacenamiento por unidad de tiempo c1, constante.
- 4-Costo de Reposición k, constante.
- 5-Costo unitario de producto b, constante.
- 6-No existen otros costos.
- 7-no existen restricciones.
- 8-Al comienzo de cada período no hay stock ni pedidos insatisfechos.

Reposición no Instantánea

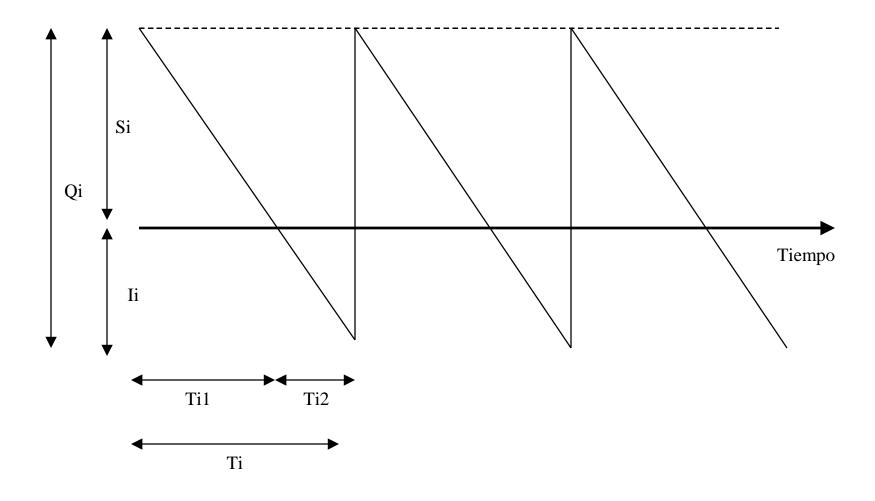
La única variante respecto del modelo básico es la modificación de la cantidad promedio almacenada:

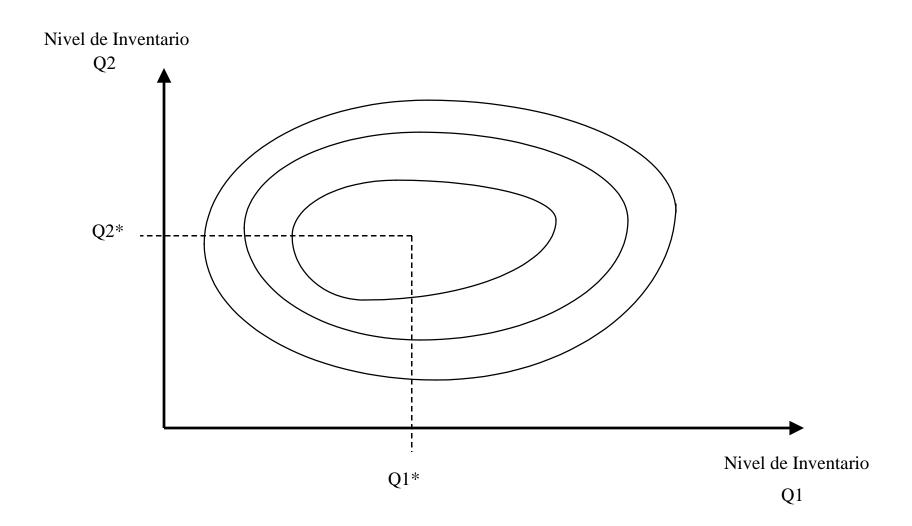

Si = Qi.(1-D/P)

Precios Divididos

- 1- Demanda Constante y Conocida.
- 2-Resposición Instantánea.
- 3-Costo unitario de almacenamiento por unidad de tiempo c1, constante.
- 4-Costo de Reposición k, constante.
- 5-El costo unitario del producto novaría en el tiempo pero es función de la cantidad ordenada: b1 si Qi < Q1

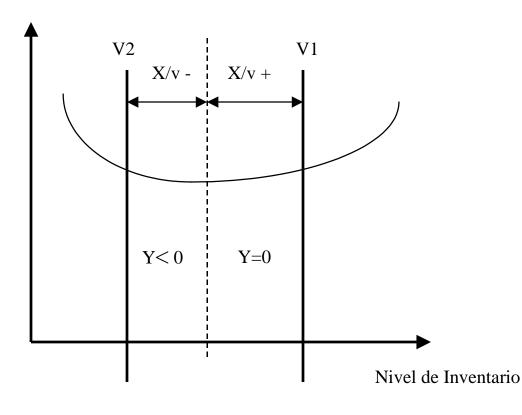
- 6-No existen otros costos.
- 7-no existen restricciones.
- 8-Al comienzo de cada período no hay stock ni pedidos insatisfechos.


Precios Divididos


Con costo de agotamiento

- 1- Demanda Constante y Conocida.
- 2-Resposición Instantánea.
- 3-Costo unitario de almacenamiento por unidad de tiempo c1, constante.
- 4-Costo de Reposición k, constante.
- 5-Costo unitario de producto b, constante.
- 6-No existen otros costos.
- 7-no existen restricciones.
- 8: Al comenzar cada período existe una demanda insatisfecha que se cumplirá con parte de las Qi unidades adquiridas.
- 9: Existe un "costo de agotamiento" c2 por cada unidad demandada no entregada de inmediato y por cada día de demora.

Con costo de agotamiento



Modelos Multiproducto

Restricciones: Condiciones de Kuhn y Tucker

Costo Total

Restricción de espacio ocupado:

$$\text{Qi.v} < V$$

$$Qi.v + X = V$$

$$Qi.v + X - V = 0$$