

Tesis de grado en ingeniería civil Área mecánica de suelos

charla informativa

Laboratorio de Materiales y Estructuras Laboratorio de Mecánica de Suelos y Geología $\beta = (\mu_R - \mu_Q) / \sqrt{\sigma_R^2 + \sigma_Q^2}$

Índice

- Plan de estudio ing. civil
- TP profesional + Tesis de grado en geotecnia
- Áreas de investigación
- Divulgación académica
- Plan 2022-2023

¿Qué se necesita para ser ingeniero/a?

- **41 materias obligatorias**. Se puede consultar en el <u>plan de estudios</u> o SIU.
- 34 créditos en materias optativas o tesis. Idem, <u>plan de estudios</u> o SIU.
- 12 créditos en Trabajo profesional. Realizado en área seleccionada.
- Prácticas Profesionales Supervisadas (PPS).
- Prueba de Suficiencia de Ingles (PSI).

Prueba de suficiencia de inglés

- Se debe acreditar conocimiento de inglés mediante un examen.
- En caso de dificultades, hay algunos cursos preparatorios.

Prácticas profesionales supervisadas

 Se deben acreditar un mínimo de 200 horas de trabajo supervisado en un ambiente privado, publico, ONG o laboratorios de la facultad.

En el LMS se pueden cumplir las PPS!!

Trabajo profesional y materias electivas

Trabajo profesional

- Suelen ser grupales (4 personas usualmente).
- Generalmente es un proyecto hidráulico, de transporte o de estructuras

También puede ser en geotecnia aplicada !! Materias electivas

- Se deben cumplir con al menos 34 créditos en materias electivas.
- No hay materias electivas de grado en geotecnia
 Existe la carrera de especialización !!

- Una tesis de grado consume 14 créditos de las materias electivas.
- El objetivo es investigar sobre un tema en particular, por ejemplo:
 - Caracterización físico-hidro-mecánica
 - Modelación numérica (mecánica computacional)
 - Estadística geotécnica
 - Una combinación de todas las anteriores
 - Otros..

Tesis de grado + TP profesional = 26 créditos !!

- El LMS invita a aquellos que quieran recibirse con un trabajo teórico – experimental – profesional en el área de geotecnia
- La "duración" promedio es de 1.0 1.5 años
- Informes de avance + documento final Tesis
- Requisitos (reales)
 - Terminar mecánica de suelos
 - Contar con un mínimo de 100 140 créditos

Se lleva a cabo en conjunto con el final de carrera, por eso promedia 1.0 – 1.5 año

 Cuando se realiza una tesis de grado, el TP profesional "es más pequeño", ya que el objetivo es complementar el proyecto de investigación realizado.

- 2007 (Sagués P.): Rigidez a baja deformación Pampeano
- 2008 (Quaglia G.): Cohesión efectiva en el Pampeano
- 2008 (Ledesma O.): Calibración Cam-Clay para el Pospampeano
- 2009 (Quintela M.): Compresión edométrica en el Pampeano
- 2009 (Czelada J.): Módulos de deformación mediante geofísica
- Más..
- 2013 (Laría T.): Rigidez a baja deformación en SC vs tiempo
- 2014 (Ficalora D.): Modelación numérica en fundaciones off-shore
- 2015 (Marti L.):. Interacción suelo-polímero
- 2017 (Fernandez M): Control de expansividad mediante polímeros
- 2017 (Santa Cruz J.): Estado del arte para anclajes CABA
- 2018 (Fernández G.): Fundaciones en suelos expansivos

>25 tesistas de grado a la fecha !!

Un ejemplo: el "derrotero" de Camilo

20 créditos optativos (3 materias)

∎ MSyG

CONGRESO ARGENTINO DE MECÁNICA DE SUELOS E INGENIERÍA GEOTÉCNICA - SALTA / ARGENTINA 17 - 18 - 19 de Octubre de 2018

Caracterización física y mecánica de mezclas de arena-arcilla modificadas con poliacrilamida aniónica (APAM) Tesis PPS + PSI + últimos finales

Áreas de investigación: modelación numérica

Localización deformaciones

Ataguía celular (Mendive et al 2012)

Excavaciones a cielo abierto (Brusa et al 2014)

Anclaje en excavaciones (Santa Cruz et al 2017)

LMS - tesis grado geotecnia

12 Gs

Áreas de investigación: Suelos no **UBA**fiuba saturados

Tiempo [días]

• Brusa & otros (2014): suelos de Bs As

Columna de infiltración

Muestreo in situ

14

Tesis N. Tasso (2020): estructuración del Pampeano

Modelo de infiltración 1D (advección + dispersión + difusión)

"zona óptima" de mezclas arena-arcilla-APAM

arcilla

Excesiva expansión

Excesivo aporte de finos

40

↑ UCS ↑ ΔΗ/Η

10¹¹, 99, 32

-, 89,

10⁻¹¹, 83, 14

10⁻¹⁰, 36, 4

 $(\hat{})$

30

Tesis M. Biedma (2021): diseño ^{.u} de fundaciones basado en LRFD

Determinación límites supetrior e inferior término N γ para ϕ =25° (software OPTUM)

 $(\mathrm{RF})R_n \ge \sum (\mathrm{LF})_i Q_i$

Análisis asociado a parámetros	geotécnicos mec	lios ϕ'_{mean}, c_m	nean	
	Método de calibración			
Caso analizado	RF_{FOSM}	RF_{FORM}	RF_{MCS}	
Condición de carga drenada $(c = 0)$	0.36	0.38	0.37	
Condición de carga drenada $(c \neq 0)$	0.31	0.33	0.32	
Condición de carga no drenada	0.79	0.69	0.73	
Análisis asociado a parámetros geotéci	nicos característi	$\cos \phi'_{P_{exc}=0,80}$	$, c_{P_{exc}=0,80}$	
	Mé	Método de calibración		
Caso analizado	RF_{FOSM}	RF_{FORM}	RF_{MCS}	
Condición de carga drenada $(c = 0)$	0.8	0.77	0.77	
Condición de carga drenada $(c \neq 0)$	0.56	0.57	0.55	

Factores de Resistencia RFi obtenidos

0.86

0.75

0.8

- 3.4. Códigos desarrollados para uso público
- 3.4.1. Código principal

from functions import *
from pandas import *
from numpy import *

Condición de carga no drenada

nsim = 2 * 10**6 condition = ['drained', 'undrained'] method = ['trx', 'cpt', 'spt'] load_variables = ['dead load', 'live load'] load_ratios = np.append(np.arange(0, 1, 0.05), np.arange(1, 1.5, 0.10)) load_ratios = np.append(load_ratios, np.arange(1.5, 3, 0.25)) load_ratios = np.append(load_ratios, np.arange(3, 11, 1)) beta_target = np.append(np.arange(2, 3, 0.25), np.arange(3, 11, 1)) load_factors = [1.2, 1.6]

Código Python

Divulgación académica

Divulgación académica: primer journal paper LMS

Cite this article

Piqué TM, Manzanal D, Codevilla M and Orlandi S Polymer-enhanced soil mixtures for potential use as covers or liners in landfill systems. *Environmental Geotechnics*, https://doi.org/10.1680/jenge.18.00174

Research Article Paper 1800174 Received 31/10/2018; Accepted 21/08/2019

ICE Publishing: All rights reserved

Keywords: fabric/structure of soils/ landfills/strength & testing of materials

Environmental Geotechnics

Polymer-enhanced soil mixtures for potential use as covers or liners in landfill systems

Teresa M. Piqué MEng, PhD

Assistant Professor, Faculty of Engineering, Universidad de Buenos Aires, Buenos Aires, Argentina; Researcher, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina (Orcid:0000-0001-8840-2183)

Diego Manzanal MEng, PhD

Assistant Professor, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain; Visiting Professor, Faculty of Engineering, Universidad Nacional de la Patagonia, Comodoro Rivadavia, Argentina; Researcher, CONICET, Comodoro Rivadavia, Argentina (corresponding author: d.manzanal@upm.es) (Orcid:0000-0002-6087-3255)

Mauro Codevilla MEng

Assistant Professor, Faculty of Engineering, Universidad de Buenos Aires, Buenos Aires, Argentina

Sandra Orlandi MEng, MSc

Assistant Professor, Faculty of Engineering, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina

Divulgación académica: segundo .ubafiuba journal paper LMS

20

Formación académica: carrera de especialización en geotecnia

Materias obligatorias

- Laboratorio de suelos
- Comportamiento de suelos

• Materias optativas (cant: 2)

- Interacción terreno-estructura
- Fundaciones especiales
- Geotecnia numérica I y II
- Diseño y construcción de túneles
- Ensayos geotécnicos in situ
- Trabajo final integrador
- Mas info en https://campus.fi.uba.ar/course/view.php?id=3350

LMS: plan 2022-2023

 Matías Mogni : construcción de obras de arquitectura a base de tierra portante

LMS: plan 2022-2023

 Gianfranco Dacci: estabilidad de taludes en rellenos sanitarios con reinyección de líquido lixiviado

LMS: plan 2022-2023

 A. Lacoya – L. Carrizo:
 Determinación de línea de estado crítico (CSL) en suelos granulares reconstituídos

