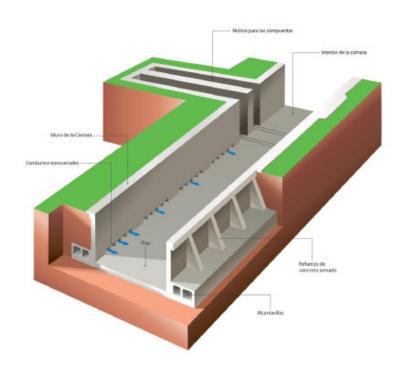
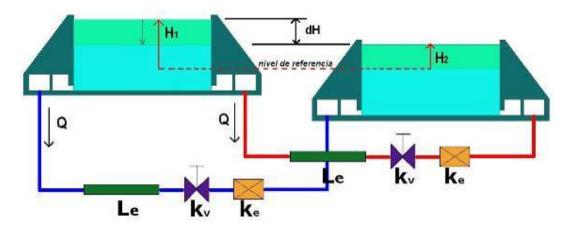
CB051/95.10/95.04/75.12/95.13 ANÁLISIS NUMÉRICO I

FACULTAD DE INGENIERÍA UNIVERSIDAD DE BUENOS AIRES


TRABAJO PRÁCTICO Nº 2

2do. Cuatrimestre 2025

Sistema hidráulico de llenado y vaciado del proyecto del tercer juego de esclusas del Canal de Panamá



Re-García Pág. 1/6

Descripción del problema

El sistema de llenado/vaciado entre dos esclusas sucesivas puede ser esquematizado como dos reservorios conectados por dos conductos, cada uno con una válvula de regulación y una pérdida localizada que representa todas las singularidades del sistema.

El sistema de ecuaciones diferenciales que representa este problema es el siguiente:

$$\frac{dH_1}{dt} = -2\frac{Q}{\Omega_1} \tag{1}$$

$$\frac{dH_2}{dt} = 2\frac{Q}{\Omega_2} \tag{2}$$

$$\begin{split} \frac{dQ}{dt} &= \left(\frac{g \cdot A}{L}\right) \cdot \left(H_2 - H_1\right) - \left(\frac{f}{2 \cdot D_e \cdot A}\right) \cdot Q \cdot |Q| \\ &- \left(\frac{k_e}{2 \cdot A \cdot L}\right) \cdot Q \cdot |Q| - \left(\frac{k_v}{2 \cdot A \cdot L}\right) \cdot Q \cdot |Q| \end{split} \tag{3}$$

donde

 H_1 : nivel de agua del primer reservorio

 H_2 : nivel de agua del segundo reservorio

 Ω_l : área superficial del primer reservorio

 Ω_2 : área superficial del segundo reservorio

Q: caudal por cada conducto, positivo si se dirige desde el primer al segundo reservorio

g: aceleración de la gravedad

A: área de la sección transversal de cada conducto

L: longitud del conducto

f: factor de fricción de Darcy-Weisbach

 $D_a \equiv \sqrt{4A/\pi}$: diámetro equivalente de la sección transversal

 k_{ν} : coeficiente de pérdida de energía de la válvula

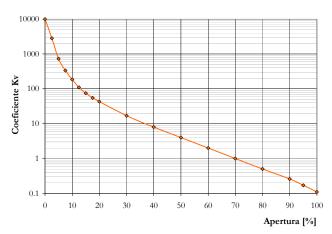
ke: coeficiente de pérdida de energía equivalente de todo el sistema

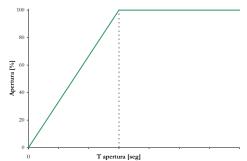
Re-García Pág. 2/6

Las ecuaciones (1) y (2) representan la conservación de la masa en cada uno de los dos reservorios, mientras que (3) representa el balance de energía mecánica. Los niveles de agua de los reservorios se corresponden al mismo nivel de referencia.

Datos del problema

o Conductos: Ancho = 8,30 m; Altura = 6,50 m; Longitud (L) = 800 m


o Material: Hormigón (f = 0.02)


o Tamaño de las esclusas: Ancho = 55 m; Largo = 490 m

O Estructuras de control: Se dispone de una relación entre el grado de apertura de la válvula y el coeficiente de pérdida k_v

O La válvula se abre en forma lineal durante un lapso de tiempo T_{ap} .

Apertura	Kv	
[%]	[-]	
0	10000	
2.5	2840	
5	730	
7.5	335	
10	185	
12.5	110	
15	75	
17.5	55	
20	43	
30	17	
40	8	
50	4	
60	2	
70	1	
80	0.5	
90	0.26	
95	0.17	
100	0.11	

Descripción de tareas:

- a) Plantear el problema numérico, discretizando el sistema (1)-(3) con un esquema numérico de orden 2.
- b) Considerando que $k_e = 0$ y $T_{ap} = 180$ seg, resolver el problema numérico para H_I (t = 0) = 20.20 m y H_2 (t = 0) = 0 m, planteando un valor inicial del paso temporal Δt , y ajustando el paso hasta lograr que el error de truncamiento sea menor a 0.01 m.
- c) Con el paso de tiempo establecido, calibrar el modelo, es decir, ajustar el coeficiente de pérdida k_e de modo que se verifiquen los resultados obtenidos en un modelo físico (de escala 1:30).

Re-García Pág. 3/6

Se disponen las mediciones de las series de niveles en ambas cámaras, H1(t) y H2(t), y la serie de caudal por uno de los conductos Q(t) para cuatro ensayos con valores de niveles iniciales de agua y tiempos de apertura de válvulas diferentes que se presentan en el Anexo.

Ensayos:

Ensayo	$H_{I}(t=0) [m]$	$H_2(t=0)$ [m]	T_{ap} [seg]
I	20,20	0	180
II	20,26	0	300
III	7,92	0	180
IV	7,88	0	90

- d) Calcular el tiempo de ecualización, que se define como aquél para el que se alcanza por primera vez la igualdad de los niveles de agua de los dos reservorios, para valores del salto de entre 7 y 21 m, con intervalos de 1 metro, para un tiempo de apertura de 180 seg y trazar una curva de ajuste con los resultados obtenidos.
- e) Repetir el punto b) pero utilizando un esquema de orden 4.

Más información sobre el proyecto en http://www.pancanal.com/

Re-García Pág. 4/6

Análisis Numérico I Facultad de Ingeniería-UBA

Anexo

F	Ensayo I		
Tiempo (seg)	H1 Observado (m)	H2 Observado (m)	Caudal Observado (m³/s)
0	20.22	0	0
22	20.16	0.21	78
40	20	0.41	157
60	19.64	0.69	227
80	19.23	1.04	298
100	18.78	1.56	348
120	18.25	2.12	385
140	17.69	2.61	411
160	17.12	3.21	419
180	16.52	3.82	420
200	15.92	4.38	406
220	15.32	5.06	391
240	14.79	5.51	375
260	14.35	5.96	355
280	13.85	6.45	337
300	13.35	6.97	320
320	12.91	7.31	300
340	12.5	7.76	281
360	12.09	8.1	264
380	11.82	8.48	246
400	11.41	8.78	228
420	11.15	9.08	210
440	10.88	9.35	193
460	10.66	9.61	174
480	10.4	9.83	158
500	10.24	9.98	139
520	10.02	10.13	124
540	9.87	10.24	107
560	9.76	10.35	86
580	9.64	10.51	70
600	9.57	10.58	51

E	nsayo II		
Tiempo (seg)	H1 Observado (m)	H2 Observado (m)	Caudal Observado (m³/s)
0	20.26	0	0
20	20.16	0.07	50
40	20.03	0.23	114
60	19.82	0.43	160
80	19.53	0.74	208
100	19.19	1.07	257
120	18.85	1.44	277
140	18.34	1.84	311
160	17.92	2.31	340
180	17.38	2.82	358
200	16.91	3.32	370
220	16.31	3.79	375
240	15.77	4.39	380
260	15.28	4.86	377
280	14.76	5.47	367
300	14.28	5.97	353
320	13.79	6.37	336
340	13.32	6.84	316
360	12.85	7.25	297
380	12.48	7.65	281
400	12.15	7.95	261
420	11.78	8.39	241
440	11.47	8.69	222
460	11.21	8.96	202
480	10.87	9.26	186
500	10.67	9.39	172
520	10.47	9.73	152
540	10.28	9.96	132
560	10.07	10.17	115
580	9.93	10.28	98
600	9.8	10.3	83

Pág. 5/6

Análisis Numérico I Facultad de Ingeniería-UBA

Ensayo III			
Tiempo (seg)	H1 Observado (m)	H2 Observado (m)	Caudal Observado (m³/s)
0	7.92	0	0
20	7.83	0.04	46.8
40	7.71	0.1	82.7
60	7.52	0.32	125.3
80	7.34	0.53	164.6
100	7.06	0.79	198.1
120	6.75	1.1	220
140	6.46	1.41	231.5
160	6.16	1.74	238.2
180	5.82	2.09	234.8
200	5.45	2.32	226.5
220	5.19	2.62	212.3
240	4.88	2.89	195.5
260	4.64	3.12	180.5
280	4.37	3.34	156.3
300	4.17	3.55	142.9
320	4	3.71	127.9
340	3.88	3.82	109.5
360	3.73	3.94	90
380	3.63	4.04	75.2
400	3.53	4.11	56.8
420	3.49	4.19	38.4

E	nsayo IV		
Tiempo (seg)	H1 Observado (m)	H2 Observado (m)	Caudal Observado (m³/s)
0	7.88	0	0
20	7.81	0.09	87.7
40	7.57	0.25	165.7
60	7.29	0.57	229.1
80	6.94	0.94	270
100	6.55	1.25	282.7
120	6.17	1.61	278.8
140	5.85	1.89	268.1
160	5.52	2.27	252.5
180	5.21	2.54	234.8
200	4.9	2.77	216.4
220	4.67	3.06	200
240	4.4	3.23	182.3
260	4.19	3.4	161.8
280	4	3.59	143.3
300	3.82	3.76	127.7
320	3.69	3.83	109.2
340	3.57	3.94	88.7
360	3.49	4.05	71.2

Pág. 6/6