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Abstract -  Based on approximative equations for single 
step calculation design procedures, a simple method 
useful to adopt the most suitable topology in low power 
DC to DC conversion is derived from the volume 
calculation of the magnetic cores needed. 
 
Index terms - Low power magnetic components, switching 
power converters, flyback and forward magnetics design. 
 

NOMENCLATURE 
 

Bmax  peak value of the induction 
Bmin  induction minimum value 

  D duty-cycle factor 
   f switching frequency 

FcP S/
 window filling factor of the primary/secondary 

coil (also known as copper factor) : 
 F n S Sc P S Cu WP S P S P S/ / //=  

f fV  voltage form factor 

FP  partition factor of the primary windings : 
 F S SP W WP

=  

f pr  power switch profit factor (or power device 
utilization factor) 

Fr  total winding eddy currents factor 
FW  window factor : F S SW W Fe=  
I Lav

 average value of the inductor current 

I Lef
 effective value of the inductor current 

I Lmax
 peak value of the inductor current 

I Pav
 average value of the primary current 

I Pef
 effective value of the primary current 

I Pmax
 peak value of the primary current 

kC  core sizing characteristic converter topology 
coefficient 

k ES  effective core shape factor 
krS  skin effect factor 
krX  proximity effect factor 
kS  geometrical core shape factor 
kuT

 transformer utilization factor 
  L inductance of the smoothing inductor 

la  air gap 
leav

 average mean turn length 

lem  mean turn length 
lFe  effective magnetic length 
nP  primary turns 
nS  secondary turns 
PCu  winding losses 
PD  device rated switching power 
PFe  core losses 
PO  converter output power 
Rac  a.c. resistance 
Rdc  d.c. resistance 
ℜVFW FB/  total forward core volume to flyback core 

volume ratio 
Rθ  thermal resistance 
SCuL

 inductor wire cross section 

SCuP
 primary wire cross section 

SCuS
 secondary wire cross section 

Sdis  heat dissipation surface 
SFe  minimum core section 
SFeef  effective core section 

SFeFB
 flyback core section required  

SFeL
 inductor core section required 

SFeTFW
 forward transformer core section required 

SW  window area 
SWP

 primary window area 

SWS
 secondary window area 

tC  power switch conduction time 
VFeFB

 core volume of the flyback coupled inductor 
(usually named flyback “transformer”) 

VFeFW
 total volume occupied by the cores of the 

forward converter 
VFeL

 core volume of the smoothing inductor 

VFeTFW
 core volume of the forward transformer 

  VP primary supply voltage 
 Δ  penetration depth 
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ΔB  maximum induction increment 
δ iL  normalized amplitude of the inductor ripple 

current 
δ i P  normalized primary current variation 
η  converter efficiency 

  Φ magnetic flux 
μ o  magnetic field constant 
μ rs  relative static permeability (derived from the 

static magnetization curve) 
ρ  conductor resistivity 
σ L  inductor current density 
σ P  primary current density 

 
I. INTRODUCTION 

 
 In DC to DC converters and off-line switching power 
supplies for low power applications, the most used 
topologies are the flyback and the forward converters [1]. 
 The flyback structure has the advantage of requiring only 
a single magnetic component. This one, if designed for 
minimum size, results smaller than the overall volume 
occupied by both the smoothing inductor plus the power 
transformer of the equivalent forward converter. However, 
when the flyback coupled inductor size is minimum, the 
profit factor of the power switch becomes poor [2][3]. If an 
improved profit of the flyback power device is required, it 
results mandatory to supersize the magnetic component . So, 
a trade-off arises between the core size and the rated 
switching power (maximum theoretical switching power) of 
the power transistor [4]. The better the profit factor, heavier 
the magnetic cores become and this apply to both topologies 
here compared. Nevertheless, the required core volumes 
result from different laws, so for a wanted profit factor, one 
topology will be the most suitable regarding the core weight. 
 In this work, the total magnetic material volume required 
for both alternatives are computed and related. The 
comparison criterion is stated as the ratio of core sizing 
approximative equations, which become justified by the 
closed matching with results obtained using manufacturer 
design data and recommended procedures. 
 Derivation of some equations involved on design 
procedures are presented in appendices (including some 
application examples agreeing with manufacturer data). 
 In order to compare topologies, first, the required core 
sections are obtained and then, the core volumes are 
computed assuming identical core shapes for all the magnetic 
components involved. 
 Finally, the volume rate is plotted to bring an easy method 
to know wich topology will be the lightest. 
 

II. FLYBACK CONVERTER 
 
A. Basic flyback circuit 
 Fig. 1.a depicts the basic circuit of a flyback converter and 
fig. 1.b shows the corresponding waveforms. From fig. 1.b it 
may be defined : 

ΔI I IP P Pmax min
= −       (2.1) 

δ i I IP P Pmax
= Δ       (2.2) 

D t TC=          (2.3) 
and from the current waveforms it follows : 

I D I
i

P P
P

av max
= −⎛

⎝⎜
⎞
⎠⎟

1
2

δ
       (2.4) 

I D I i iP P P Pef max
= − +1 1

3
2δ δ     (2.5) 

Then, the output power is :  

 P P V I D
i

V IO P P P
P

P Pav max
= = = −⎛

⎝⎜
⎞
⎠⎟

η η η
δ

1
2

  (2.6) 

nP nS

iP

iS
iO

 RL

 D

Vo

 + Vp

 
 (a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

(b) 
 

Figure 1 : Flyback converter, (a) basic circuit, (b) basic 
waveforms. 

 
B. Core sizing 
 The primary current density is : 

σ P
P

Cu

I

S
ef

P

=         (2.7) 

where SCuP
 is the cross section of the primary wire that 

must verify : 
S F F S nCu P c W PP P

=       (2.8) 

m m f min. . .

m m f max. . .

iP

m m f. . .

m m f n i n iP P S S. . .= +

I S max

I S min

iS

 T

 T

 DT

 tc = DT  T  t

 t

 t

0

Ipmin

Ipmax

 T - tc tc

 T - tc tc

n iP P

n iS S

 magnetomotive force
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 In accordance with the Faraday law : 

V n B
t

SP P
C

Fe=
Δ          (2.9) 

where, ΔB B Bmax min= −  and  

B
l

l n I
l

n Imax
o

a
Fe

rs

P P
o

a
P Pmax max

=
+

≅
μ

μ

μ
  (2.10) 

because usually : 
l la Fe rs>> μ  

where μ rs  is the relative static permeability. 
By a similar way, 

 Δ ΔB
l

n Io

a
P P≅

μ
      (2.11) 

Relating 2.10 and 2.11 yields : 
Δ ΔB

B
I

I
i

max

P

P
P

max

= = δ      (2.12) 

using this equation (with the simplified notation 
B Bm max= )  the expression 2.9 yields : 

V n i B f
D

SP P P m Fe= δ      (2.13) 

 With eqs. 2.5 , 2.6 , 2.7 , 2.8 and 2.13 , using the window 
factor definition F S SW W Fe= / , it results : 

( )S G
D P

i B f F F FFe i
O

P m P c P W
FB p

P

=
δ η δ σ

     (2.14.a) 

where, 

 ( )G
i i

ii

P P

Ppδ

δ δ

δ
=

− +

−⎛
⎝⎜

⎞
⎠⎟

1 1
3

1
2

2

     (2.14.b) 

For all the possible values 0 1≤ ≤δ iP it results 

( )1 1075≤ <G ipδ
. , so the expression 2.14.a  may be 

simplified assuming ( )G ipδ
≅ 1 . 

To complete the design, it is necessary to adopt the 
partition factor of the primary windings (see section IV), the 
primary current density (section V) and the maximum value 
of the induction (Appendix I). 

 
III. FORWARD CONVERTER 

 
A. Basic circuit and transformer core sizing 
 The typical circuit of a forward converter is presented in 
fig. 2.a , while its waveforms are depicted in fig. 2.b .  The 
equation of the primary voltage becomes : 

V n
B
t

S
D

n B f SP P
m

C
Fe P m Fe= =

1    (3.1) 

from which, the sizing equation results : 

( )S G
D P

B f F F FFe i
O

m P c P W
TFW p

P

=
δ η σ

   (3.2) 

where it may be approximated 

( )G ipδ
≅ 1  

as it was done with flyback converters. 
 The equations 3.1 and 3.2 are particular cases of 
generalized expressions valid for many other converter 
topologies (Apendix II). 
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Figure 2 : Forward converter, (a) basic circuit, (b) basic 
waveforms. 

 
B. Inductor core sizing 

  The effective value of the inductor current can be 
expressed as : 

I S F
S

n
F F

S

nL L Cu L c
W

L
L c W

Fe

L
ef L

L L= = =σ σ σ   (3.3) 

 On the other hand, 

L
n

i
n B S

I
L

L

L m Fe

L

L

max

= =
Φ

    (3.4) 

 Using eqs. 3.3 and 3.4 : 

S
L I I

F F BFe
L L

L c W m
L

ef max=
σ

    (3.5) 

 From fig. 2.b it follows : 

Is Imax Lmax
=

I Lmin

iP

vCE

VCEmax vCE

m m f. . .

m m f. . .

iS

iL

iLiS

 tm
 T

 T

 DT

 DT

 DT  T0
 t

 t

Ipmin

 t

Ipmax

Vp

nS
nP

iP

iO

iL

vCE

 L

 RL

 DFW

 DL
Vo

 + Vp

Dm
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I I i iL L L Lef max
= − +1 1

3
2δ δ      (3.6) 

I I
i

L L
L

av max
= −⎛

⎝⎜
⎞
⎠⎟

1
2

δ
       (3.7) 

and then, the output power results : 

P V I
n
n

D
i

V IO O L
S

P

L
P Lav max

= = −⎛
⎝⎜

⎞
⎠⎟

1
2

δ
  (3.8) 

 During the interval 0 ≤ ≤t D T it must be 
n
n

V V L
I

D T
S

P
P O

L− =
Δ

 

that may be expressed as 

  ( )1− =D
n
n

L f
D V

I iS

P P
L Lmax

δ      (3.9) 

 Substituting eqs. 3.6 , 3.8 and 3.9 in 3.5 , yields : 

( )
( )

S G
D P

i B f F FFe i
O

L m L c W
L L
=

−
δ δ σ

1
   (3.10) 

where , as previously stated , it may be aproximated 
( )G iLδ ≅ 1 .  Also, it can be assumed that δ δi iL P≅  

provided that the magnetizing inductance be large enough. 
 In order to complete the design, the air-gap and the 
winding turns must be determined, which may be done by 
several graphical [5][6] or analytical methods [7]-[9][11]. 
 

IV. PARTITION FACTOR OF THE WINDING AREA 
 
Optimal partition factor : 
 The optimum is defined as that value which minimizes the 
winding losses, given by 

P P P I R I RCu Cu Cu P Cu S CuP S ef P ef S
= + = +2 2   (4.1) 

where, the winding resistances are  

R n
l
SCu eq P

em

Cu
P P

P

P

= ρ       (4.2.a) 

R n
l
SCu eq S

em

Cu
S S

S

S

= ρ       (4.2.b) 

and, lemP S/
 are the primary and secondary mean turn 

lengths, while ρ eqP S/
are the equivalent resistivities of the 

primary and secondary conductors, taken into account skin 
and proximity effects [7][8][12][13] : 

ρ ρeq r CuP S P S
F

/ /
=        (4.2.c) 

F k kr rS rXP S P S P S/ / /
= +      (4.2.d) 

being krSP S/
the primary and secondary skin effect factors 

and krX P S/
the proximity factors (Appendix III). 

 The conductor sections are : 

S F F
S
nCu P c

W

P
P P
=        (4.3.a) 

S F F
S
nCu P c

W

S
S S
= −( )1      (4.3.b) 

where, FcP S/
are respectively, the fill factors of the primary 

and secondary coils, while FP is the partition factor of the 
primary windings defined as the ratio between the window 
area occupied by the primary winding and the total window 
area , F S SP W WP

= . 
 Substituting the eqs. 4.3 into eqs. 4.2 , then the result into 
4.1, and considering both 

n I n IP P S Sef ef
=  and  S F SW W Fe= , 

 yields : 

( )
P

I n

F S
l

F F

l F F

F FCu eq
P P

W Fe

em

c P

em r r

c P
P

ef P

P

S S P

S

= +
−

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ρ
2 2

1( )
  (4.4) 

On the other hand, the current densities in each winding 
are : 

σ P P CuI S
ef P

= and σ S S CuI S
ef S

= , 

that related give : 

    
σ
σ

P

S

c

c P

F
F F

S

P

= −
⎛

⎝
⎜

⎞

⎠
⎟

1 1     (4.5) 

 Considering the common winding techniques, two 
alternatives will be studied. 
 

1. Shared coil-former windings 
 In this case : l l lem em emP S

= =  so , the eq. 4.4 becomes : 

( )
P I n

l
F S F F

F F

F FCu eq P P
em

W Fe c P

r r

c P
P ef

P

S P

S

= +
−

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ρ 2 2 1
1( )

(4.6) 
The optimal partition factor will be the one which minimizes 
the copper losses given by eq. 4.6 . That is : 

F
F
F

F
F

P
c

c

r

r

opt
P

S

S

P

=

+

1

1

     (4.7) 

and from eq. 4.5 , the current densities become related by : 

σ
σ

P

S

c

c

r

r

F

F
F
F

S

P

S

P

=      (4.8) 

 For the particular case when F Fc cP S
= and F Fr rP S

=  

it results : 

FPopt
=

1
2

       (4.9.a) 

and  
σ σP S=        (4.9.b) 

 In such a case, the Joule losses result :  

P I n
l

F F SCu eq P P
em

c W Fe
P ef

P

= ρ 2 2 4
   (4.10) 

Defining the equivalent turn factor : 

    ( )F
F
F

F
F

F
Fle

c

c

P

P

r

r

P

S

S

P

= +
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

1
1

     (4.11) 

the eq. 4.6 may be rewritten as : 

 P I n
F l

F F F SCu eq P P
le em

P c W Fe
P ef

P

= 2 2 2ρ    (4.12) 
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where, according to eqs. 4.2.c and 4.2.d , it is 

( )ρ ρeq rS rX CuP P P
k k= +  

 
2. Stacked windings 

 In case of superposed winding sections (for example 
secondary over primary) the mean turn lengths become 
different and will depend on the the primary partition factor 
adopted. For the core of fig. 3.a , according to fig. 3.b , the 
sectional mean turn lengths will be : 

l A B Cem PP
= + +2( ) π       (4.13.a) 

l A B C
C

em
S

S
= + + −⎛

⎝⎜
⎞
⎠⎟

2 2
2

( ) π    (4.13.b) 

where : 
C C CP S= +         (4.13.c) 

 
 

 
 
 
 
 
 
 
 
 
 
 

 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 
 
 
 

(c) 
 

Figure 3 : E-type core, (a) dimensions, (b) mean turn lenghts, 
(c) dissipation surfaces. 

 
Defining the average mean turn length as : 

 ( )l l le em emav P S
= +

1
2

      (4.14) 

and using the eq. 4.13 , the definition 4.14 may be expressed 
as : 

( )l A B C C Ce P Sav
= + + + −2

2
( ) π π     (4.15) 

 For C CP S= the average mean turn length coincides 
with the single section mean turn length, defined by : 

 ]l l C C A B Cem eav P S
= = = + +2( ) π     (4.16) 

and from fig. 3.a , the following geometrical coefficients are 
defined : 

F H Ch =        (4.17.a) 
and 

F B As =        (4.17.b) 
The primary partition factor is : 

F
S

S
C
CP

W

W

PP= =       (4.18) 

where C may be expressed by , 

C
F
F

SW

h
Fe=       (4.19) 

 Using eqs. 4.13.c , 4.16 , 4.18 and 4.19 , the eqs. 4.13.a 
and 4.13.b may be expressed as : 

( )l l
F
F

F Sem em
W

h
P FeP

= − −π 1     (4.20.a) 

l l
F
F

F Sem em
W

h
P FeS

= + π       (4.20.b) 

 Substituting  4.20.a and b into 4.4 yields : 

( )

P I n
l

F S

M F
F F

M F
F F

F

F

Cu eq P P
em

W Fe

P

c P

P

c P

r

r

P ef

P S

S

P

= ⋅

⋅
− −

+
+

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ρ 2 2

1 1 1
1( )

     (4.21.a) 

where : 

M
l

F
F

S
em

W

h
Fe=

π         (4.21.b) 

 The expression 4.21.a  has a minimum for : 

  
( )
( )

F
F M
F M

F
F

P
c

c

r

r

opt

P

S

S

P

=

+
+

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1

1
1
1

    (4.22) 

therefore , from eq. 4.5 , the optimal current density ratio is : 
( )
( )

σ
σ

P

S

c

c

r

r

F M

F M
F
F

S

P

S

P

=
+

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1

1
      (4.23) 

 For square section scrapless lamination cores, with 
F Fc cS P

= and F Fr rS P
= the optimal values are : 

FPopt
= 0 43.    and     σ σP S = 134. . 

 Adopting these values PCu becomes 28 %  lower with 
respect to the case corresponding to stacked windings 
with FP = 05. and σ σP S= . Nevertheless, adopting 

A A/2C
B

H

A/2

C

B

C

A

CS

CP

lemP

lemS

(primary)

(secondary)

SdisFe

( )( )[ ]SdisCu
C A H C C A= + + +2 π

( ) ( )[ ]{ }SdisFe
A B A C H A B= + + + +2 2SdisCu
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FP for minimal losses implies , as disadvantage, one 
higher current density in the inner winding , which has the 
worst heat transfer capability. By this reason , equal current 
densities are often adopted , even if this selection leads away 
of the optimum value from the winding losses point of view. 
 In a similar fashion as done with the shared coil-former 
case an equivalent turn factor ( Fle ) may be defined 
keeping the Joule losses still given by eq. 4.12 . For this 
purpose it must be : 

( ) ( )
( )F M F

F

F
F
F

F M F
Fle P

c

c

r

r

P P

P

P

S

S

P

= − − +
+

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

1 1
1
1

   (4.24) 

(where M is defined by 4.21.b). 
For the particular case with F Fc cS P

=  and F Fr rS P
= , 

adopting FP = 05. yields : 
  Fle = 1         (4.25) 

 For square section scrapless laminations with 
F FP Popt

=  it results : Fle = 0 84. . 

For E ferrite cores with the following typical dimensions : 
A C=  ; B A= 15.  ;  H A= 15.  

one obtains , 
FPopt

= 0 4.  and ]F Fle Popt
= 0 77.  

(always with F Fc cS P
=  and  F Fr rS P

= ). 

 
V. CURRENT DENSITY ADOPTION 

 
A. Thermal considerations. Dissipation of losses 
 For temperature rises ranging about 50 ºC , assuming an 
ambient temperature of 40 ºC , the power dissipated by 
radiation may be estimated as : 

[ ]

[ ]
[ ]

P

S
r

dis

W

m
C

2

= 7 08. ºΔθ        (5.1) 

(linear approximation obtained from the Stefan-Boltzmann 
[15] equation assuming an emissivity coefficient of 0.8). 

On the other hand , the power dissipated by natural 
convection may be approximated through [15] : 

[ ]

[ ]
[ ]

Pc

dis

W

m
CS 2

217 1 25= . º
.Δθ       (5.2) 

(valid for bodies with dimensions smaller than 0.5 m). 
 Therefore , the total dissipated power is : 

[ ]

[ ]
[ ][ ] [ ]

Pt

dis

W

m
C CS 2

7 08 2 17 0 25= +. . º
.

ºΔ Δθ θ  

and always assuming Δθ = 50 º C , the above equation leads 
to the estimative expression : 

[ ]
[ ]

[ ]
[ ]

[ ]
Δθ º .C

W

m

W

cm2 2

= ≅0 0778 780
P

S

P

S
t

dis

t

dis

   (5.3) 

(linear equation valid only in the near range of 
Δθ = 50 º C , rising over 40 ºC ambient temperature). 

 In case of  E  type cores the surface of  heat dissipation is 

composed by one part corresponding to the coil windings 
SdisCu

and other one SdisFe
concerning to the core. For 

example, for square section scrapless laminated cores , from 
fig. 3.a and c , one obtains : 

( )S AdisCu
= +5 2 2π  , S AdisFe

= 14 5 2.  
and the total dissipation surface becomes : 

( )S S S A Adis dis distot Cu Fe
= + = + =19 5 2 2582 2. .π  (5.4) 

 Defining the thermal resistance as : 

R
Pt

θ
θ

=
Δ          (5.5) 

from eqs. 5.3 and 5.4 it results : 

  
[ ]( )2cm

30
C/Wº A

R
tot

≅
⎥⎦
⎤

⎢⎣
⎡θ      (5.6) 

This expression may be used to estimate the transformer 
temperature rise when the copper and iron losses cause 
similar rises. Notice that SdisCu

and SdisFe
are similar areas. 

Therefore, when the core and winding losses are similar, the 
temperature rise will be comparable , and the approximation 
made will be acceptable. 

In other circumstances , it will be suitable to verify the 
coil and core temperature rise separately, assuming isolated 
dissipations paths and using each kind of loss with its own 
dissipation area. It should be ensured that the highest 
temperature rise computed be lower than the maximum 
specified. 

The thermal conduction resistance between coil and core 
is usually high because the coil former is plastic made and an 
air filled gap lies between the coil former and the core central 
leg. 

As usually PCu and PFe are similar, so they are SdisCu
 

and SdisFe
, the core and coil temperature rise become 

similar. Therefore, stated the thermal resistance is high, the 
heat conduction exchange between coil and core must be 
neglectible in a first trial approximation. 

 
Example : 
 From the transformer thermal model [16] depicted in fig. 
4 , one concludes : 

P
P R P R
R R RCu Fe

Cu FeCu Fe

Cu Fe Cu Fe

=
−

+ +
θ θ

θ θ θ/

    (5.7) 

 Utilizing a core E42-15 , with 230 turns of 0.60 mm wire 
the D.C. resistance results : RDC = 13. Ω . 
 Applying a direct current of 1.13 A the temperature rise 
measured was Δθ = 26 º C when vertical mounted, and 
33 ºC if horizontal mounted. Therefore, the average 
value Δθ = 29 5. º C  will be adopted for calculation 
purposes. 
 From equations deduced for SdisCu

and SdisFe
: 

R
Cuθ = 24 2. º C W    and   R

Feθ = 17 6. º C W . 

 From the model shown in fig. 4 (with PFe = 0 ) the total 
equivalent thermal resistance becomes : 
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R

R R R
I Req tot

Cu Cu Fe Fe

DC DC
θ

θ θ θ

θ
=

+
+

=
1

1 1 2

/

Δ   (5.8) 

from which : 

  R
I R

R

R
Cu Fe

Cu

Fe
DC DC

θ

θ

θ

θ

/
=

−

−
1

12

Δ

      (5.9) 

and using the above estimated values for R
Cuθ and R

Feθ ,  

this gives R
Cu Feθ /

.= 49 7 º C W . 

 Assuming a typical case where P P
P

Cu Fe
tot= =
2

, eq. 5.7 

yields : 
P

P
R R

R R R
Cu Fe

tot

Cu Fe

Cu Fe Cu Fe

=
−

+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
2

θ θ

θ θ θ/

    (5.10) 

thus, for  the above experimental values, eq. 5.10 gives : 
P PCu Fe tot= 0 036. which allows, in first instance, to 

neglect the thermal exchange between the core and the coil. 
 

PCu Fe/

R
Cu Feθ /

R
Cuθ R

Feθ
PFe

PCu

 
Figure 4 : Thermal model of  an open-core transformer 

(C , E , EC or RM type cores). 
 
B. Loss balance between core and coil  [3] [7] [8] [14] 
 The iron losses may be estimated by [6][12][18] : 

P k f BFe Fe m Fe= ξ β V       (5.11) 

where for most ferrites : ξ = 13.  and 2 2 7≤ ≤β .  being 
β ≅ 2  for high permeability materials aimed for switching 

frequencies ranging from 20 to 40 kHz , and β ≅ 2 5. for low 
permeability ferrites suitable for higher frequencies. 

Depending on the switching frequency the material choice 
should be done using the loss charts available from ferrite 
manufacturers [6][9][10]. 
  The copper losses may be expressed by eq. 4.12 
(with Fle defined by eq. 4.11 or 4.24 , depending on the 
winding structure). 
 Obtaining nP from eq. AII.2 (see Appendix II) and 
substituting into eq. 4.12 , yields: 

P
V I

k f f
F l

F F F S B
K
B

Cu eq
P P

C f

le em

P c W Fe m

Cu

m
P

ef ef

V P

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ =2 1

2

3 2 2ρ

(5.12) 
 The total losses are the sum of the core losses plus the 
windings ones , becoming a function of Bm which should be 
adopted looking for minimal total losses [14]. 
 According to eqs. 5.11 and 5.12 : 

 P P P K B
K
Btot Fe Cu Fe m

Cu

m
= + = +β

2     (5.13) 

expression that has a minimum for : 
2 2K B K BCu m Fe m= β β      (5.14) 

which leads to the optimal condition : 

  P PCu Fe=
β
2

        (5.15) 

 Notice that only if β = 2 then P PCu Fe= which is the 
optimal condition. However, even if β = 2 6. , the optimal 
values of PCu and PFe are not quite different. 
 
C. Current density adoption as function of temperature rise  

1. Transformers: General expression 
 Assuming winding and core losses of the same order , and 
provided similar dissipation surfaces , the final temperatures 
will resemble. 
 Therefore, given a high winding-core thermal resistance , 
the heat exchange will be small enough to assume that the 
windings will dissipate only through the air-exposed coil 
surface , this should be the area used for calculations 
( SdisCu

). According to the nomenclature of fig. 3.a : 

 ( )S C A H C A CdisCu
= + + +⎛

⎝⎜
⎞
⎠⎟

2 4
2

2π π    (5.16) 

With definitions 4.17 and eq. 4.19 : 
S
S

F
F

F
F F F

dis

Fe
W

h

h

W s h

Cu = + +
+⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 1 1 2
π

π
  (5.17) 

 The effective value of the primary current may be 
expressed as function of the current density by eqs. 2.7 and 
2.8 as : 

     I S F F F
S
nP P Cu P c P W

Fe

P
ef P P
= =σ σ    (5.18) 

that substituted into eq. 4.12 gives : 
P F F F F l SCu eq P c P W le em FeP P

= 2 2ρ σ    (5.19) 

where Fle depends on the the winding structure (given by 
eqs. 4.11 or 4.24) , but in most cases adopting Fle ≅ 1 may 
be an acceptable first trial approximation. 
 From fig. 3.b , using eq. 4.16 yields lem , and utilizing the 
definitions 4.17 and eq. 4.19 it results : 

  
( )

l
F

F
F
F

Sem
s

s

W

h
Fe=

+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
1

π     (5.20) 

 Substituting eq. 5.20 into 5.19 : 

( )
P F F F F

F

F
F
F

S

Cu eq P c P W le

s

s

W

h
Fe

P P
= ⋅

⋅
+

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

2
1

2

3 2

ρ σ

π /
    (5.21) 

 Substituting eqs. 5.21 and 5.17  into 5.3 yields : 
( )

Δθ ρ σ
π

π

=

+
+

+ +
+

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

0 078

1 1
2

1 1 2
2, eq P c P le

s

s

W

h

h

h

W s h

FeP P
F F F

F

F
F
F

F
F

F F F

S
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   (5.22) 
from which one obtains : 

[ ]

[ ]
σ

θ

ρ
μ

P eq

gm

P c le FeP P

F

F F F SA
mm

ºC

cm cm2 2
⎡
⎣⎢

⎤
⎦⎥ ⎡

⎣⎢
⎤
⎦⎥

= 0 358 1

4
,

Δ

Ω

    (5.23.a) 
where Fgm is a core geometry dependent factor : 

( )
F

F
F

F F F
F

F
F
F

gm
h

h

W s h

s

s

W

h

=

+ +
+

+
+

1 1 2

1 1
2

π

π

    (5.23.b) 

 For example, for square section scrapless lamination 
cores, assuming a temperature rise of 50 ºC and 
ρ μeqP

= 20 Ω cm , the following estimative expression is 
obtained : 

[ ]
σ

P AA
mm cm2

⎡
⎣⎢

⎤
⎦⎥
≅

5  

classical empirical formula well known by craftsmen, where 
A is the central leg width. 
 

2. Ferrite made chokes 
 In this particular case, it is possible to find from 
manufacturer tables AR  such as : 

R A nCu R= 2         (5.24) 
 Usually ]AR 05. is specified as the AR value 

corresponding to Fc = 05. [6]. Therefore : 

 
]

A
A

FR
R

c
= 0 5

2
.         (5.25) 

 The copper losses may be estimated by : 
P I R S A nCu ef Cu Cu R= =2 2 2 2σ    (5.26) 

where : 

 S F
S
n

F F
S
nCu c

W
c W

Fe= =     (5.27) 

 Substituting 5.25 and 5.27 into 5.26 yields : 

]P S F
F

ACu Fe W
c

R= σ 2 2 2

2 05.    (5.28) 

Neglecting the iron losses (respect to the copper ones) it  
may be assumed that : 

P RCu tot
= Δθ θ          (5.29) 

Equating expressions 5.28 and 5.29 yields : 

[ ]

[ ] [ ]

σ
θ

μθ

A
mm cm

ºC

ºC W2 2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ⎡

⎣⎢
⎤
⎦⎥

=
⎤
⎦⎥

10 2

05
F S R F AW Fe c Rtot

Δ

Ω.

   

(5.30) 
 Notice that eq. 5.30 do not consider the resistance rise due 
to both the skin and proximity effects. In most choke 
application cases, this is not important because the D.C. 
component is the main harmonic current component. 
 

VI. VOLUMETRIC CORE COMPARISON BETWEEN 
FLYBACK AND FORWARD CONVERTERS 

 
A. Volumetric ratio 
 The volume of a magnetic core is related to the effective 
length by , 

VFe Fe Fe
Fe

Fe
Fe Fe E Fe FeS l

S

S
S l k S l

ef
ef= =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =  (6.1) 

and the magnetic length is related to the geometric minimal 
core section by, 

l k SFe S Fe=        (6.2) 
which yields : 

  VFe E S Fe SE Fek k S k S= =3 2 3 2    (6.3) 
where : 

3
FeFeFeSESE SlSkkk

ef
==  

 For scrapless laminations k E = 1 and kS = 6  so 
kSE = 6 , while for ferrite E cores kSE usually lies 

between 5 and 7  [6][10] (as it may be calculated from core 
manufacturer data). 
 The required core volumes will be compared assuming 
equal shapes and proportions, so with the same kSE . 
 The total volume occupied by the cores of the magnetic 
components of a forward converter is : 

V V VFe Fe FeFW TFW L
= +  

 Then, the volumetric ratio for converter comparison may 
be defined as : 

ℜ = =
+

V
V
V

V V
VFW FB

Fe

Fe

Fe Fe

Fe

FW

FB

TFW L

FB
/     (6.4) 

 Substituting the aproximative form of the sizing equations 
2.14 , 3.2 and 3.10 in the expression 6.3 and replacing the 
results in 6.4 yields : 

( )
ℜ = = +

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

V
V
VFW FB

Fe

Fe
P P

I

I

FW

FB

P

L

i
D

D
F/ δ η

σ

σ
3 4

3 4
1

 (6.5) 

 The most commonly partition factor adopted is 
FP = 05. . Assuming this partition value and σ σP L= , 

the volumetric ratio is shown in figs. 5.a and 5.b with 
parameters D and δ iP for η = 1 . Obviously, when 
ℜ <VFW FB/ 1  the forward topology must be preferred. 
 
B. Power switch sizing considerations 
 The profit factor (or power utilization ratio) of the power 
device is defined as : 

f
P
Ppr

O

D
=  

where PO is the maximum available output power of the 
converter and PD is the rated switching power for the 
power device. The profit factor becomes better in continuous 
operation mode and it may be easily demonstrated that for 
both topologies it results : 

( )f D D
i

pr
P= − −⎛

⎝⎜
⎞
⎠⎟

η
δ

1 1
2

     (6.6) 
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 The profit factor becomes maximum when D = 05. . In 
this case, if η = 1 the former expression yields : 

 f
i

pr
P= −⎛

⎝⎜
⎞
⎠⎟

1
4

1
2

δ
        (6.7) 

 Substituting 6.7 in 6.5 , for FP = 05. : 

( )[ ]ℜ = − + −VFW FB prf/ 2 1 4 2
3 4 9 8   (6.8) 

 In accordance with 6.6 it must be : 

 1
8

1
4

≤ ≤f pr        (6.9) 

so from 6.8 it results : 
 0 458 146. ./< ℜ <VFW FB      (6.10) 

 The boundary value for the profit factor is 
f prlim

= ≅0195 0 2. . . 

 Actually, the adoption σ σP L=  may be too 
conservative, because the core for the inductor usually results 
smaller than the one required for the transformer. Therefore, 
the inductor can dissipate heat better than the transformer 
due to its higher surface/volume ratio. Also, the inductor core 
power losses are lower, since the hysteresis loop there is 
smaller than the one performed in the transformer. 
Consequently, higher copper losses (per volume) should be 
admissible, allowing higher current density on inductor 
windings (according to eq. 5.30). 
 The inductor current density is usually adopted between 
σ σ σP L P≤ ≤ 15. . A higher current density reduces the 

inductor volume but degrades the efficiency and complicates 
the close loop converter operation making the voltage 
transfer ratio a function of the output load. 
 Using σ σL P= 15. and recalculating the boundary value 
for the profit factor yields, f prlim

= 0 209. , so the 

aproximative value 0.2 is again valid. 
 

VII. CONCLUSIONS 
 
 The widely used stacked winding technique allows 
partition factors others than 1/2 if required , but usually , the 
inner winding density current has to be limited to values such 
as the optimal efficiency cannot be achieved. However, these 
kind of windings have smaller leakage inductance than 
shared coil-former made, but they present a bigger 
interwinding capacity and poorer isolation features. 
 Therefore, even if the secondary was allocated in a 
separated coil-section, the demagnetizing coil should be 
placed over the primary winding to ensure a good magnetic 
coupling. In battery powered converters, bifilar winding will 
improve the magnetic coupling. In off-line SMPS bifilar 
windings are not reliable enough [7] and a good practice 
should be to interpose the primary between both the halved 
demagnetizing winding sections . This increases the parasite 
interwinding capacity [12] but an appropriate connection of 
the demagnetizing diode may overcome this drawback [7]. 
 For f fpr prlim

> the forward topology requires small 

core volume than the flyback one and vice versa, so for 
f fpr prlim

< a flyback implementation should be preferred. 

When the selected operation duty cycle is near the optimal 
value 0.5 , adopting σ L higher than σ P does not change 
the boundary value obtained. 
 Assuming D  as the maximum duty cycle for nominal 
output power, the maximum voltage over the power switch 
will be : ( )V V DCE Pmax

= −1 expression valable for both 
topologies here involved. Using this equations with 6.5 and 
6.6 , ℜVFW FB/ is plotted in fig. 5.c , as function of 

f pr with the parameter V VCE Pmax
. There, the most 

suitable operation area for each topology are marked. 

0

0,5
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 fpr
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forward
area
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Figure 5 : Volume ratio as function of  (a) duty-cycle, 

(b) primary current increment and (c) device profit factor. 
 

APPENDIX  I : Magnetic flux density adoption 
 
A. Maximum efficiency selection 
 For the optimal condition stated by eq. 5.15 the total 
losses become : 
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P P P P k f Btot Cu Fe Fe Fe m Fe= + = +⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

1
2

1
2

β βξ β V

(AI.1) 
and the temperature rise may be estimated through : 

 Δθ θ= P Rtot tot
       (AI.2) 

 From eqs. AI.1 and AI.2 it results : 

  ]B
R

k f
m opt

Fe

Fe

tot=
+⎛

⎝⎜
⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Δθ

β

β

θ

ξ

V

1
2

1

    (AI.3) 

 For most ferrite cores , this value is smaller than the 
maximum allowable (which depends on the switching 
frequency adopted). Therefore, a higher flux density might 
be adopted to increase the available output power at price of 
an efficiency degradation. 
 
B. Maximum output power selection 
 In this case, the current density will be adopted as function 
of the temperature rise (see section V - C ). 
 For a given core, once the current density was 
adopted, PCu becomes determinated from eq. 5.19 . For 
these copper losses , it should be avoided that the core 
temperature rise surpasses the maximum specified for the 
coil , in order to prevent an additional heat transfer to the 
windings. Consequently , it must be : 

P
S

P
S

Cu

dis

Fe

disCu Fe

=         (AI.4) 

 Being both temperature rises identical : 
( )Δθ θ= +P P RCu Fe tot

      (AI.5) 
 From eqs. AI.4 and AI.5 it results : 

  P
R

S
SFe

dis

distot

Fe

tot

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Δθ

θ
       (AI.6) 

 Using eqs. 5.11 and AI.6 , one obtains : 

]B P
R

S
S

k fm max

dis

dis

Fe Fe
o

tot

Fe

tot=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Δθ β

θ

ξ V

1

   (AI.7) 

 Relating the expressions AI.3 and AI.7 : 

]
]

B P
B

S
S

m max

m opt

dis

dis

o Fe

tot

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

1
β β

   (AI.8) 

 For example, for a core E55-21 made with a material such 
as β = 2 5. , ]B Pm maxo  becomes approximately 14 % 

greater than ]Bm opt . 

 Using the Bm adoption criteria stated by eqs. AI.3 or 
AI.7 requires a previously made core selection, but it is just 
for selecting the core (as output power function) that Bm is 
first needed. To overcome this obstacle , one estimation a 
priori of Bm can be made based upon known reference 

values , through the equation deduced keeping constant the 
core density losses : 

( )B
f
f

Bm f
ref

ref=
⎛

⎝
⎜

⎞

⎠
⎟

ξ
β

     (AI.9) 

 For high permeability ferrites used from 10 to 50 kHz , the 
references may be B Bref sat=  and f fref min= , where 

fmin is the minimum recommendable operating frequency, 
that is, the maximal switching frequency which allows using 

B Bm sat= . Under fmin it should be preferable to adopt 
other material , while for f f min>  it is necessary to reduce 

Bm according to eq. AI.9 . 
 Usually ξ β ≅ 05.  so, the eq. AI.9 may be approximated 
as : 

( )B
f
f

Bm f
ref

ref=      (AI.10) 

 For low permeability ferrites suitable for high frequency 
switching , the reference values may be determined as 
function of temperature rise from manufacturer issued curves 
(or tables). 

For example, suitable reference values for N27 and N47 
materials are : 

N27 : f ref =  20 kHz    ; Bref = 0.2 T 

N47 : f ref = 100 kHz     ; Bref = 0.1 T  . 
 
APPENDIX  II : Transformer core sizing equation 

 
 The Faraday law applied to a transformer magnetic circuit 
yields : 

V n S B
tP P Fe=

Δ
Δ

       (AII.1) 

 For symmetrical converters ΔB Bmax= 2 and 
Δt D T= 2 , while for continuous operating mode forward 

converters ΔB B B Bmax r max= − ≅ and Δt D T=  , where 
Br is the residual flux density (assumed that 
B Br max<< in soft magnetic materials). 

 On the other hand , in flyback converters : 
ΔB B B B imax min max P= − = δ   and TDt =Δ . 

In symmetrical converters operating in continuous mode : 
 V D VP Pef

=   and  V D VP Pav
=   , 

 so the voltage form factor results : 
f Df V

= 1  . 

For asymmetrical converters operating in continuous 
mode : 

V D
D

VP Pef
=

−1
 and  V D VP Pav

= 2  

therefore , 

( )
f

D D
f V

=
−

1

2 1
 

which allows expressing the eq. AII.1 as : 
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    V k f n S B fP C f P Fe mef V
=      (AII.2) 

where : 
kC = 4    for symmetrical converters 
kC = 2    for forward converters 
k iC P= 2 δ   for flyback converters 

and the notation was simplified writing B Bm max= . 
 Using eq. 5.18 the primary current may be expressed as 
density current function. Then , using eqs. AII.2 and 5.18 the 
primary apparent power is obtained : 

V I k f B f F F F SP P C f m P c P W Feef ef V P
= σ 2   (AII.3) 

from which the minimal required core section ( SFe ) may 
be found. 
 The output power may be expressed as function of the 
apparent primary power, yielding : 

P k V IO u P PT ef ef
= η        (AII.4) 

where kuT
is the transformer utilization factor , defined as 

the ratio between the active primary power (or D.C. primary 
supply power) and the apparent primary power adopted for 
transformer design. Suitables design values are : 
 k DuT

= −1 for asymmetrical converters and 

 kuT
= 1     for symmetrical ones. 

 Substituting AII.4 into AII.3 and rearranging , the required 
minimal core section is obtained as output power function : 

S
P

k k f B f F F FFe
O

u C f m P c P WT V P

=
η σ

  (AII.5) 

 
Examples: 
 For a ferrite core E42-15 made with material N27 , 
assuming Δθ = 30 º C yields σ P = 31. /A mm2  (see 
section 4). Adopting the typical values :  D = 0.4  , 

Fb = 0 36. , FP = 0 5.  , η = 0 9.  , f = 20 kHz  and 
Bm = 0 2. T  , for the forward topology , from eqs. AII.4 

and AII.5 , it results : PO = 100 W , while the empirical 
manufacturer graphic [6] yields PO = 110 W . 
 For an E55-21 core with the same material , adopting the 
same topology and working conditions, for equal 
temperature rise it should be σ P = 2 7. /A mm2 , which 
yields PO = 272 W , while from manufacturer data , 

PO = 275 W . 
 

APPENDIX  III : Skin and proximity effects 
 
 For a single foil conductor subjected only to the skin 
effect, the increase of resistance is given by [20] : 

k
R
RrS

ac

dc
= =

+
−

ξ ξ ξ
ξ ξ2

sinh sin
cosh cos

    (AIII.1) 

where: 
ξ = h Δ  

Δ  : penetration depth , Δ = ρ π μf o  
h  : foil thickness 

 If the foil conductor is immersed into the magnetic field 
due to other conductors (proximity field) the resistance will 
rise even more [12][13]. 
 Assuming the proximity field uniform over the conductor 
cross section, orthogonality appears between skin and 
proximity effects [20]. This decouples both effects and 
simplifies calculations [21]. 
 For the foil conductor of the m layer the increase of 
resistance is given by : 

( )R
R

mac

dc
=

+
−

+ −
−
+

⎡

⎣
⎢

⎤

⎦
⎥

ξ ξ ξ
ξ ξ

ξ ξ
ξ ξ2

2 1 2sinh sin
cosh cos

sinh sin
cosh cos

 (AIII.2) 

 The first term in eq. AIII.2 is identical to eq. AIII.1 and 
describes the skin effect. 
 For multilayer windings : 

F
R
R

p
r

ac

dc
= =

+
−

+
−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ξ ξ ξ
ξ ξ

ξ ξ
ξ ξ2

4 1
3

2sinh sin
cosh cos

sinh sin
cosh cos

    (AIII.3) 
where p is the number of layers. 
 Therefore Fr may be expressed as : 

F k kr rS rX= +        (AIII.4) 
where krS is given by eq. AIII.1 and krX results : 

k
p

rX =
−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−
+

ξ ξ ξ
ξ ξ2

4 1
3

2 sinh sin
cosh cos

   (AIII.5) 

 For ξ ≤ 2 the following approximations apply [12] : 
krS ≅ 1          (AIII.6.a) 

and , 

k
p

rX ≅
−5 1

45

2
4ξ      (AIII.6.b) 

 In order to extend this one-dimensional approach to round 
wire windings, Dowell [13] introduces an equivalent square 
conductor thickness from : 

S h d
Cu = = ⎛

⎝⎜
⎞
⎠⎟

2
2

2
π  therefore , h d=

π
2

  (AIII.7) 

 Each layer is supposed formed by nl turns of square 
section equivalent conductors (fig. A3). 
 Since the square section conductors are separated by a gap 
s , a one-dimensional layer copper factor has to be defined 
as: 

F
n
b

hl
l

W
=         (AIII.8) 

where, 
  bW  : overall winding breadth 
  h  : equivalent conductor thickness 
  nl  : number of turns per layer 

 In order to adjust this model to the one-dimensional 
approach of the single-foil winding , the penetration depth 
must be modified due to the porosity of the winding layer 
which increases the effective resistivity. 
 Therefore, defining : 

ρ ρef lF=         (AIII.9) 
it yields, 
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Δ
Δ

ef ef o
l

f
F

= =ρ π μ     (AIII.10) 

which leads to the effective value of ξ to be applied in 
Fr estimations in case of round wire windings : 

ξ π
= =

F h
F dl

lΔ Δ2
      (AIII.11) 

 If the increase in resistance due to eddy currents is 
excessive, one alternative is to use bunched conductors or litz 
wires. Then : 

h Dst=
π
2

 

(where Dst is the strand diameter)  and F Fl W≅ . 
However, when the number of turns is small, the adoption of 
foil windings usually gives lower ac resistances. The use of 
litz wire may be considered for multilayer winding 
applications ranging over 500 kHz . 
 For inductors carrying DC (choke applications) 
adopting d Δ ≤ 2 is suitable enough in discontinuous mode 
operating converters, while d Δ ≤ 4 is acceptable in 
continuous mode operation. 

1 2 3 4 nl

s

h

d

h

bW

layer  m

 
Figure A3 : A layer of square section conductors equivalent to 

one of round section conductors. 
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