
Universidad de Buenos Aires – Facultad de Ingeniería

Departamento de Estabilidad

PREGUNTAS TEÓRICAS

- 1. Para las siguientes características geométricas de una superficie, definir, escribir las expresiones necesarias para su cálculo e indicar las unidades en que se miden:
 - Baricentro.
 - · Momento estático.
 - · Momento centrífugo.
 - · Momento de inercia.
 - Ejes conjugados de inercia.
 - Ejes principales de inercia.
 - Teorema de Steiner (aplicado a momentos de inercia y centrífugo).
 - Momento de inercia polar.
- 2. ¿Cuál es la razón del cálculo de las magnitudes mencionadas en la pregunta anterior?
- 3. Para un paralelogramo: ¿cuál es el conjugado del eje que contiene a un lado en el punto medio de éste? Justificar la respuesta.
- 4. Responder si la siguiente afirmación es verdadera o falsa y justificar la respuesta:
 - "El momento de inercia de una figura respecto de un eje que contiene a su baricentro tiene mayor valor que el correspondiente al momento de inercia de la figura respecto de cualquier otro eje de su plano, que tenga su misma dirección."
- 5. ¿Cuánto vale el momento estático de una superficie respecto de sus ejes baricéntricos?
- 6. ¿A qué se llama Ejes Conjugados de Inercia? ¿Cuántos pares de Ejes Conjugados de Inercia pasan por un punto?
- 7. Para toda línea pasante por Baricentro, el momento estático de una sección cualquiera puede ser positivo, negativo o nulo. ¿Es correcta la afirmación? Justificar.
- 8. Indique si las siguientes afirmaciones son correctas. Justificar la respuesta. En caso de no ser correctas plantee un contraejemplo que lo evidencie.
 - Un eje principal de inercia siempre es un eje de simetría.
 - El momento estático de una figura respecto de un eje se anula sólo si se trata de un eje de simetría.
 - Si para un punto de una figura se tienen más de dos pares de ejes principales de inercia, el valor de los momentos principales respecto de los mismos es nulo.

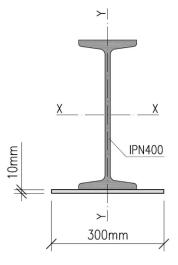
Versión1Q2021 Página 1 de 9

Service Control

Universidad de Buenos Aires – Facultad de Ingeniería

Departamento de Estabilidad

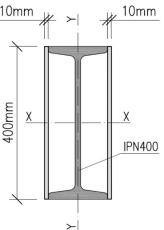
64.01 / 84.02 - Estabilidad I



Ejercicio 1

A un perfil IPN400 se le suelda una chapa en el ala inferior. Para la sección compuesta, determinar:

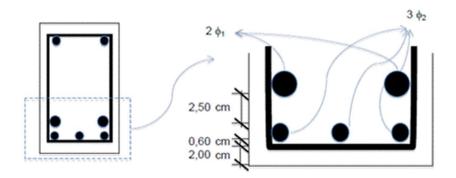
- a) Posición del baricentro G.
- b) Momento de inercia respecto del nuevo eje baricéntrico, paralelo al eje XX.



Ejercicio 2

A un perfil IPN400 se le sueldan 2 chapas, como indica la figura.

Para la sección compuesta, determinar:


- a) Posición del baricentro G.
- b) Momento de inercia respecto a los ejes baricéntricos, paralelos a los ejes XX e YY.

Ejercicio 3

Para la sección de la viga de Hormigón Armado de la figura, hallar la posición del baricentro de las armaduras inferiores.

φ₁=16mm φ₂=10mm

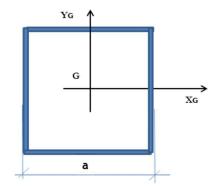
Versión1Q2021 Página **2** de **9**

Ser.

Universidad de Buenos Aires - Facultad de Ingeniería

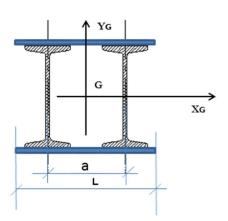
Departamento de Estabilidad

64.01 / 84.02 - Estabilidad I


Ejercicios Tema Nº 8: Geometría de las Superficies

Ejercicio 4

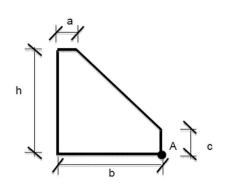
Para la sección compuesta, cuadrada, de lado a=200mm y espesor e=15mm, determinar:


- a) Posición del baricentro
 G.
- b) Momento de inercia respecto a los ejes baricéntricos.

Ejercicio 5

A dos perfiles IPN400 se le sueldan 2 chapas, como indica la figura. Para la sección compuesta, determinar:

- a) Posición del baricentro
 - G.
- b) Momento de inercia respecto a los ejes baricéntricos. Datos: Espesor de chapa 10mm, a=bf+100mm, L=a+bf+40mm, siendo bf el ancho del ala del perfil.



Ejercicio 6

Para la siguiente presa de hormigón:

- a) Calcular la posición del baricentro.
- b) Calcular los momentos de inercia del par de ejes horizontal y vertical pasantes por el punto A.
- c) Calcular los momentos de inercia principales baricéntricos.

Datos: a=2m, b=8m, c=2m, h=6m.

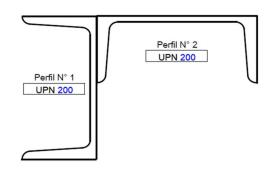
Versión1Q2021 Página 3 de 9

Service Control

Universidad de Buenos Aires - Facultad de Ingeniería

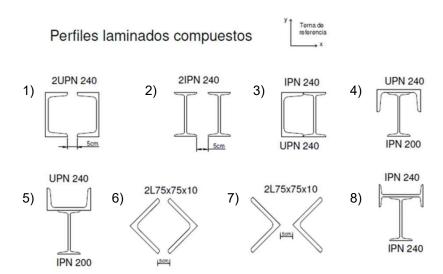
Departamento de Estabilidad

64.01 / 84.02 - Estabilidad I



Ejercicio 7

Dada la sección compuesta de la figura, formada por dos perfiles UPN, determinar:


- a) Posición del baricentro.
- b) Dirección de los ejes principales de inercia baricéntricos.
- c) Momentos principales de inercia baricéntricos.
- d) El ángulo entre el eje horizontal baricéntrico y su conjugado.

Ejercicio 8

Para la unión de perfiles laminados que a continuación se indican, se pide:

- a) Determinar analíticamente el baricentro.
- b) Determinar los momentos de inercia y centrífugos Jxg, Jyg y Jxyg.
- c) Determinar la dirección de los ejes principales de inercia baricéntricos y sus momentos de inercia.
- d) Determinar el eje conjugado de inercia de un eje "u", que se encuentra girado 35° horario respecto del eje Xg.

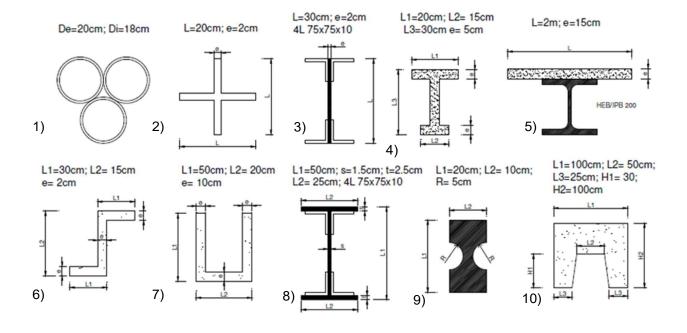
Versión1Q2021 Página 4 de 9

Ser.

Universidad de Buenos Aires - Facultad de Ingeniería

Departamento de Estabilidad

64.01 / 84.02 - Estabilidad I



Ejercicio 9

Para los perfiles armados compuestos que a continuación se indican, se pide:

- a) Determinar analíticamente el baricentro.
- b) Determinar los momentos de inercia y centrífugos Jxg, Jyg y Jxyg.
- c) Determinar ejes principales de inercia baricéntricos y sus momentos de inercia J1 y J2.
- d) Determinar el eje conjugado de inercia de un eje "u", que se encuentra girado 35° horario respecto del eje Xg.

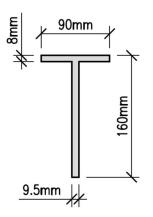
Perfiles armados compuestos

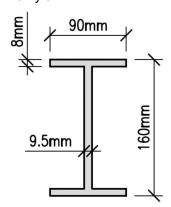
Versión1Q2021 Página 5 de 9

Service Control

Universidad de Buenos Aires – Facultad de Ingeniería

Departamento de Estabilidad


64.01 / 84.02 - Estabilidad I

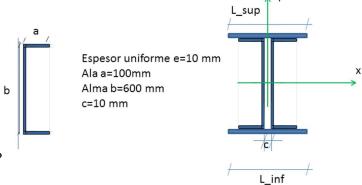


Ejercicio 10

Para el perfil T de la figura se pide.

- a) Determinar analíticamente el baricentro
- b) Determinar los momentos de inercia y centrífugos Jxg, Jyg y Jxyg.
- c) Determinar la dirección de los ejes principales de inercia baricéntricos y sus momentos de inercia J1 y J2.
- d) ¿Qué sucede si se le suelda un ala inferior al perfil T? Calcular las magnitudes de los puntos a, b, c y comparar los resultados.

Ejercicio 11


Determine la distancia horizontal entre los baricentros de dos perfiles IPN200 de modo tal que, en el perfil compuesto por los mismos, se cumpla que Jx=Jy. ("x" e "y" son los ejes baricéntricos principales del perfil compuesto).

Ejercicio 12

Ubicar el baricentro de la sección compuesta de la figura.

- a) Siendo Linf=Lsup=400 mm.
- b) Siendo L_{inf} =400 mm y L_{sup} =500mm.
- c) Si se amplía la separación "c",¿cambia la posición del baricentro?

Espesor de las platabandas superior e inferior e=10 mm.

Versión1Q2021 Página **6** de **9**

Universidad de Buenos Aires – Facultad de Ingeniería

Departamento de Estabilidad

64.01 / 84.02 - Estabilidad I

Ejercicio 13

Siendo b=42mm y h=22mm, hallar la posición del centro de gravedad, el momento de inercia respecto al eje X indicado y a otro paralelo a él, pero pasante por el baricentro.

Ejercicio 14

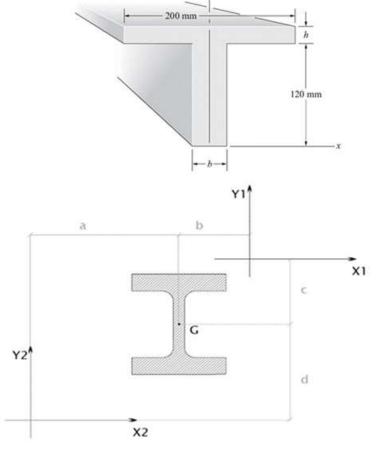
Conociendo los momentos de inercia y el momento centrífugo de la sección indicada en la figura respecto de los ejes X1 e Y1, se pide determinar:

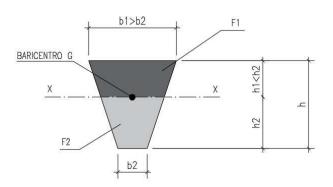
- a) Los momentos de inercia de la misma sección con respecto a los ejes X2 e Y2.
- b) El momento centrífugo con respecto a dichos ejes.

Datos:

JX1 = 6460 cm4

JY1 = 5719 cm4

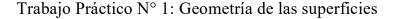

JX1Y1 = 5320 cm4


Área = 53.2 cm2

a = 30cm, b = 10cm, c = b, d = a

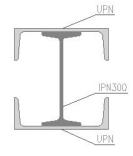
Ejercicio 15

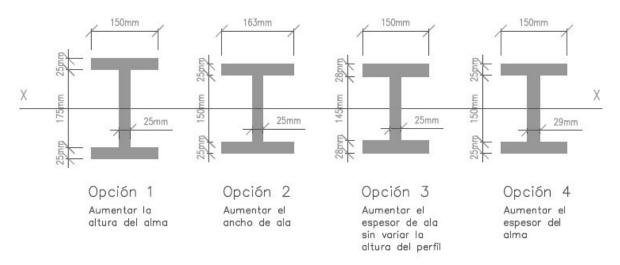
¿Cuál de las dos superficies (F1 y F2) presenta mayor momento estático con respecto al eje XX? Justificar.


Versión1Q2021 Página **7** de **9**

Universidad de Buenos Aires – Facultad de Ingeniería

Departamento de Estabilidad


64.01 / 84.02 - Estabilidad I


Ejercicio 16

Dada una viga formada por un perfil IPN300, se requiere aumentar por lo menos al doble el momento principal de inercia con respecto al eje baricéntrico horizontal, agregando dos perfiles UPN iguales sobre ambas alas del perfil tal como se muestra en la figura. ¿Cuáles son los perfiles UPN mínimos que cumplen esta condición?

Ejercicio 17

Dadas las 4 figuras que se indican en la imagen, las cuales poseen la misma área, aunque distribuida de forma diferente, ¿cuál es la forma más eficiente para aumentar el momento principal de inercia respecto al eje X?

Versión1Q2021 Página 8 de 9