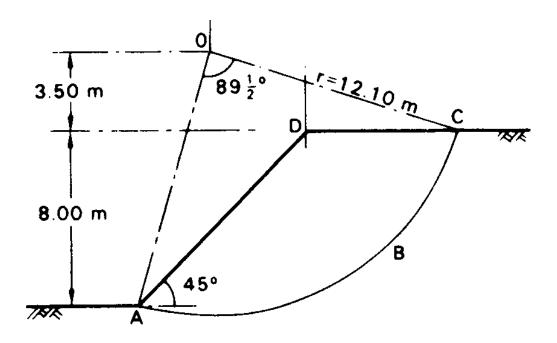


Ejercicios Estabilidad de taludes

(84.07) Mecánica de Suelos y Geología

Alejo O. Sfriso: asfriso@fi.uba.ar


M. Codevilla: mcodevilla@fi.uba.ar

Ejercicio 1

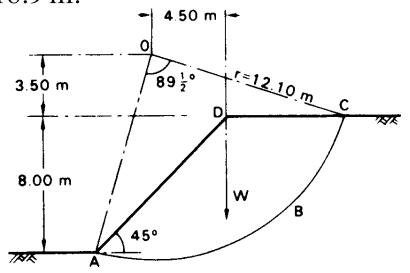
Para el talud indicado en la figura (arcilla saturada), se pide:

- 1- determinar el FoS asociado al círculo de falla propuesto
- 2- el *FoS* calculado es *FoS* del talud ?
- 3- recalcule FoS considerando q = 15kPa actuando en DC

$$\gamma = 19 \frac{kN}{m^3}$$

$$\phi = 0^{\circ}, s_u = 65kPa$$

Ejercicio 1: solución

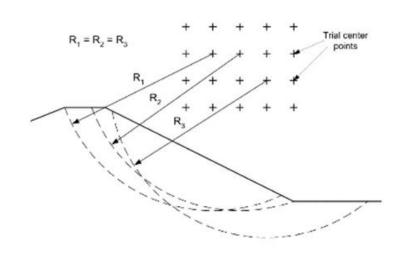

1- determinar el *FS* asociado al círculo de falla propuesto. Resolución por método Fellenius en términos de presiones totales (corto plazo)

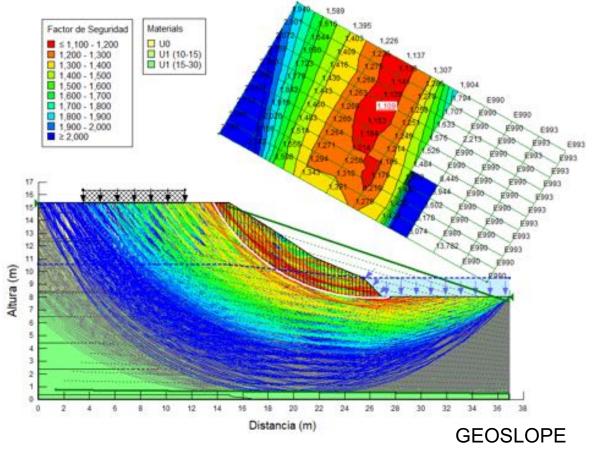
area ABCD is 70 m².

Weight of soil mass = $70 \times 19 = 1330 \,\text{kN/m}$

The arc length ABC is calculated as 18.9 m.

$$F = \frac{c_{\rm u}L_{\rm a}r}{Wd}$$
$$= \frac{65 \times 18.9 \times 12.1}{1330 \times 4.5} = 2.48$$

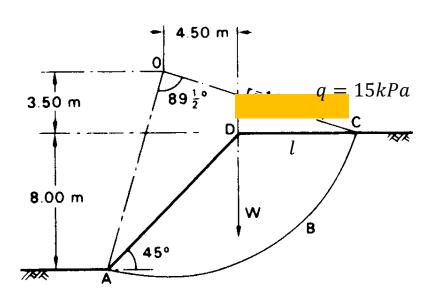

Ejercicio 1: solución



2-¿El FoS calculado es FoS del talud?

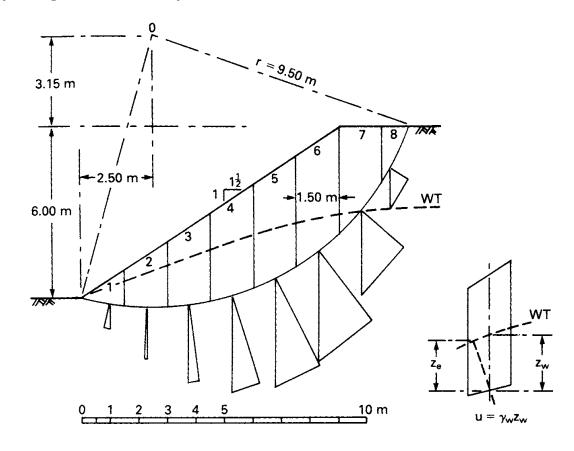
No, es necesario proponer otros mecanismos de falla cinemáticamente admisibles y calcular muchos FoS hasta

obtener FoS_{min} .


Ejercicio 1: solución

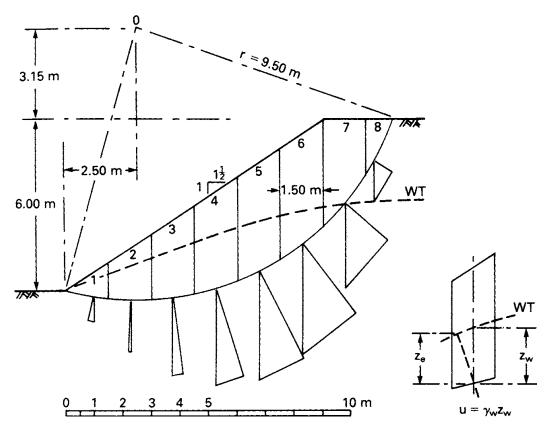
3- recalcule FoS considerando q = 15kPa actuando en DC.

$$FoS = \frac{c_u L_a r}{Wd + ql(4.5 + \frac{l}{2})}$$


$$FoS = \frac{65 \cdot 18.9 \cdot 12.1}{1330 \cdot 4.5 + 15 \cdot 6 \cdot (4.5 + 3.0)} = 2.23$$

Ejercicio 2

Para el talud indicado en la figura determine el FoS por el método de Fellenius en términos de presiones efectivas (largo plazo).



$$\gamma=20rac{kN}{m^3}$$
 $\phi=29^{\circ}$, $c'=10kPa$

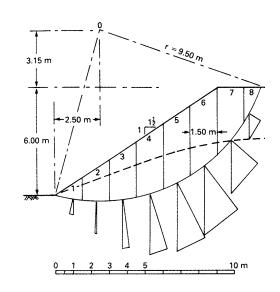
Ejercicio 2:solución

Aplicamos el método de las fajas

$$W = \gamma bh = 20 \times 1.5 \times h = 30h \,\mathrm{kN/m}$$

$$W\cos\alpha = 30h\cos\alpha$$

$$W \sin \alpha = 30h \sin \alpha$$


The arc length (L_a) is calculated as 14.35 m.

Ejercicio 2:solución

Aplicamos el método de las fajas

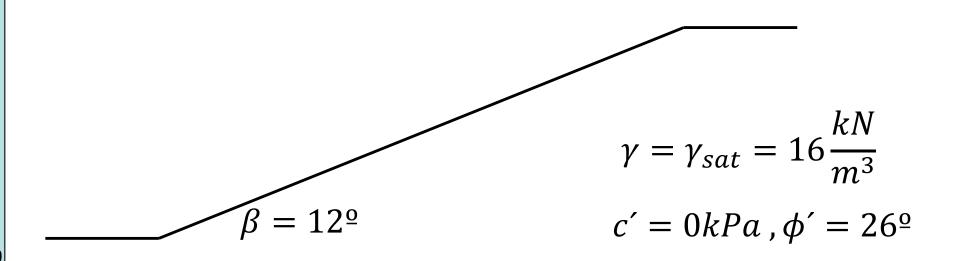
Slice No.	$h\coslpha$ (m)	$h \sin lpha$ (m)	u (kN/m²)	I (m)	ul (kN/m)
I 2 3 4 5	0.75 1.80 2.70 3.25 3.45	-0.15 -0.10 0.40 1.00 1.75	5.9 11.8 16.2 18.1 17.1	1.55 1.50 1.55 1.60 1.70	9.1 17.7 25.1 29.0 29.1
6 7 8	3.10 1.90 <u>0.55</u> 17.50	2.35 2.25 0.95 8.45	11.3 0 0	1.95 2.35 2.15 14.35	22.0 0 0 132.0

$$F = \frac{c'L_a + \tan\phi' \Sigma (W\cos\alpha - ul)}{\Sigma W\sin\alpha}$$
$$= \frac{(10 \times 14.35) + (0.554 \times 393)}{254}$$
$$= \frac{143.5 + 218}{254} = 1.42$$

$$\Sigma W \cos \alpha = 30 \times 17.50 = 525 \,\mathrm{kN/m}$$

$$\Sigma W \sin \alpha = 30 \times 8.45 = 254 \,\mathrm{kN/m}$$

$$\Sigma(W\cos\alpha - ul) = 525 - 132 = 393 \,\text{kN/m}$$

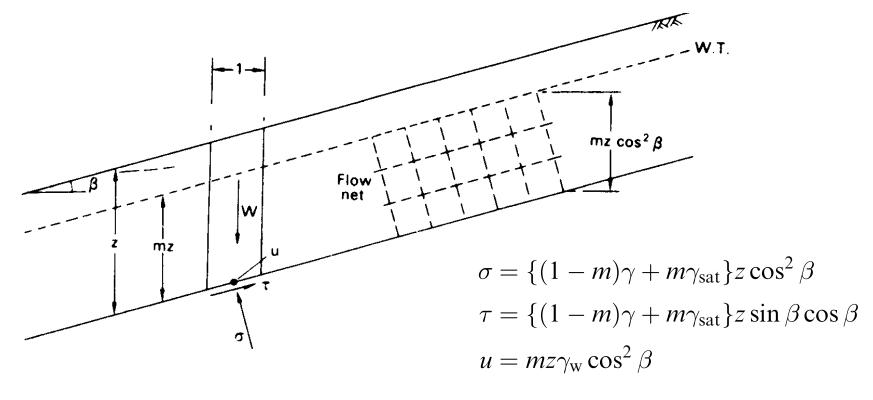

Ejercicio 3

Para un talud de gran extensión con una pendiente media de 12° se pide :

1- determinar el *FoS* asociado a un plano de falla ubicado a 5m de profundidad en condición no saturada.


2- recalcule *FoS* en condición saturada.

Ejercicio 3: solución


1- determinar el *FoS* asociado a un plano de falla ubicado a 5m de profundidad en condición no saturada.

Ejercicio 3: solución

1 y 2- se asume una condición de falla tipo plana (talud infinito) a z=5m profundidad y se calcula $FS=\frac{\tau_f}{\tau}$

$$FS_{unsat} = \frac{\sigma \cdot tan\phi'}{\tau} = \dots = \frac{tan\phi'}{tan\beta}$$
 $FS_{sat} = \frac{\gamma' \cdot tan\phi'}{\gamma_{sat} \cdot tan\beta} \sim \frac{1}{2} FS_{unsat}$