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Para el talud indicado en la figura (arcilla saturada), se pide:
1- determinar el !"# asociado al círculo de falla propuesto
2- el !"# calculado es !"# del talud ?
3- recalcule !"# considerando $ = 15()* actuando en DC

F ¼ cuLar

Wd

¼ 65" 18:9" 12:1

1330" 4:5
¼ 2:48

This is the factor of safety for the trial failure surface selected and is not necessarily the
minimum factor of safety.

The minimum factor of safety can be estimated by using Equation 9.2. From Figure
9.3, ! ¼ 45# and assuming that D is large, the value of Ns is 0.18. Then

F ¼ cu
Ns"H

¼ 65

0:18" 19" 8
¼ 2:37

Using the limit state method the characteristic value of undrained strength (cuk)
is divided by a partial factor of 1.40. Thus the design value of the parameter (cud) is
65/1.40 i.e. 46 kN/m2, hence

design disturbing moment per m ¼ Wd ¼ 1330" 4:5 ¼ 5985 kNm

design resisting moment per m ¼ cudLar ¼ 46" 18:9" 12:1 ¼ 10 520 kNm

The design disturbing moment is less than the design resisting moment, therefore the
overall stability limit state is satisfied.

9.3 THE METHOD OF SLICES

In this method the potential failure surface, in section, is again assumed to be a circular
arc with centre O and radius r. The soil mass (ABCD) above a trial failure surface

Figure 9.4 Example 9.1.
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1- determinar el !# asociado al círculo de falla propuesto.
Resolución por método Fellenius en términos de presiones 
totales (corto plazo)

Example 9.1

A 45! slope is excavated to a depth of 8m in a deep layer of saturated clay of unit
weight 19 kN/m3: the relevant shear strength parameters are cu ¼ 65 kN/m2 and
!u ¼ 0. Determine the factor of safety for the trial failure surface specified in Figure
9.4. Check that no loss of overall stability will occur according to the limit state
approach.

In Figure 9.4, the cross-sectional area ABCD is 70m2.

Weight of soil mass ¼ 70 # 19 ¼ 1330 kN=m

The centroid of ABCD is 4.5m from O. The angle AOC is 891⁄2
! and radius OC

is 12.1m. The arc length ABC is calculated as 18.9m. The factor of safety is
given by

Figure 9.3 Taylor’s stability coefficients for !u ¼ 0. (Reproduced by permission of the Boston
Society of Civil Engineers.)
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2- ¿El !"# calculado es !"# del talud ?
No, es necesario proponer otros mecanismos de falla
cinemáticamente admisibles y calcular muchos !"# hasta
obtener !"#7í9.

GEOSLOPE

Solución analítica: teorema 
cinemático

• Se postula un mecanismo
cinemáticamente admisible

• Se asume que las tensiones
de corte en la línea de potencial
deslizamiento son una
fracción de la resistencia al
corte ( es único)

• Se calcula el equilibrio entre
fuerzas equilibrantes y dese-
quilibrantes (se calcula )

• Se cambia el mecanismo y se 
itera hasta encontrar el mínimo 
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3- recalcule !"# considerando $ = 15()* actuando en DC.

F ¼ cuLar

Wd

¼ 65" 18:9" 12:1

1330" 4:5
¼ 2:48

This is the factor of safety for the trial failure surface selected and is not necessarily the
minimum factor of safety.

The minimum factor of safety can be estimated by using Equation 9.2. From Figure
9.3, ! ¼ 45# and assuming that D is large, the value of Ns is 0.18. Then

F ¼ cu
Ns"H

¼ 65

0:18" 19" 8
¼ 2:37

Using the limit state method the characteristic value of undrained strength (cuk)
is divided by a partial factor of 1.40. Thus the design value of the parameter (cud) is
65/1.40 i.e. 46 kN/m2, hence

design disturbing moment per m ¼ Wd ¼ 1330" 4:5 ¼ 5985 kNm

design resisting moment per m ¼ cudLar ¼ 46" 18:9" 12:1 ¼ 10 520 kNm

The design disturbing moment is less than the design resisting moment, therefore the
overall stability limit state is satisfied.

9.3 THE METHOD OF SLICES

In this method the potential failure surface, in section, is again assumed to be a circular
arc with centre O and radius r. The soil mass (ABCD) above a trial failure surface
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:

!"# =
;5<=>

?@ + $:(4.5 +
:
2)

!"# =
65 G 18.9 G 12.1

1330 G 4.5 + 15 G 6 G (4.5 + 3.0)
= 2.23

$ = 15()*
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Para el talud indicado en la figura determine el !"# por el
método de Fellenius en términos de presiones efectivas
(largo plazo).

+ = 20
(-
./

0 = 29º , ;´ = 10()*

The height hfor each slice is set off below the centre of the base, and the normal and
tangential componentshcos ! andhsin !, respectively, are determined graphically, as
shown in Figure 9.6. Then

W cos! ¼ 30hcos!

W sin! ¼ 30hsin!

The pore water pressure at the centre of the base of each slice is taken to be "wzw,
where zw is the vertical distance of the centre point below the water table (as shown in
the figure). This procedure slightly overestimates the pore water pressure which strictly
should be "wze, where ze is the vertical distance below the point of intersection of the
water table and the equipotential through the centre of the slice base. The error
involved is on the safe side.

The arc length (La) is calculated as 14.35m. The results are given in Table 9.1.

!W cos! ¼ 30" 17:50 ¼ 525 kN=m

!W sin! ¼ 30" 8:45 ¼ 254 kN=m

!ðW cos! $ ulÞ ¼ 525 $ 132 ¼ 393 kN=m

Figure 9.6 Example 9.2.

356 Stability of slopes
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Aplicamos el método de las fajas
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!W sin! ¼ 30" 8:45 ¼ 254 kN=m

!ðW cos! $ ulÞ ¼ 525 $ 132 ¼ 393 kN=m

Figure 9.6 Example 9.2.

356 Stability of slopes

(!sat where appropriate). For any slice,

ru ¼
u

W=b

Hence Equation 9.7 can be written as

F ¼ 1

!W sin"! fc0bþWð1 $ ruÞ tan#0g
sec"

1þ ðtan" tan#0=FÞ

! "

ð9:9Þ

As the factor of safety occurs on both sides of Equation 9.9, a process of successive
approximation must be used to obtain a solution but convergence is rapid.

Due to the repetitive nature of the calculations and the need to select an adequate
number of trial failure surfaces, the method of slices is particularly suitable for solution
by computer. More complex slope geometry and different soil strata can be introduced.

In most problems the value of the pore pressure ratio ru is not constant over the
whole failure surface but, unless there are isolated regions of high pore pressure, an
average value (weighted on an area basis) is normally used in design. Again, the factor
of safety determined by this method is an underestimate but the error is unlikely to
exceed 7% and in most cases is less than 2%.

Spencer [18] proposed a method of analysis in which the resultant interslice forces
are parallel and in which both force and moment equilibrium are satisfied. Spencer
showed that the accuracy of the Bishop routine method, in which only moment
equilibrium is satisfied, is due to the insensitivity of the moment equation to the slope
of the interslice forces.

Dimensionless stability coefficients for homogeneous slopes, based on Equation 9.9,
have been published by Bishop and Morgenstern [4]. It can be shown that for a given
slope angle and given soil properties the factor of safety varies linearly with ru and can
thus be expressed as

F ¼ m $ nru ð9:10Þ

wherem and n are the stability coefficients. The coefficients m and n are functions of $,
#0, depth factor D and the dimensionless factor c0/!H (which is zero if the critical-state
strength is used).

Example 9.2

Using the Fellenius method of slices, determine the factor of safety, in terms of effective
stress, of the slope shown in Figure 9.6 for the given failure surface (a) using peak
strength parameters c0 ¼ 10kN/m2 and #0 ¼ 29& and (b) using critical-state parameter
#0cv ¼ 31&. The unit weight of the soil both above and below the water table is 20kN/m3.

(a) The factor of safety is given by Equation 9.4. The soil mass is divided into slices
1.5m wide. The weight (W ) of each slice is given by

W ¼ !bh ¼ 20 ' 1:5 ' h ¼ 30h kN=m

The method of slices 355
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Aplicamos el método de las fajas

The height hfor each slice is set off below the centre of the base, and the normal and
tangential componentshcos ! andhsin !, respectively, are determined graphically, as
shown in Figure 9.6. Then

W cos! ¼ 30hcos!

W sin! ¼ 30hsin!

The pore water pressure at the centre of the base of each slice is taken to be "wzw,
where zw is the vertical distance of the centre point below the water table (as shown in
the figure). This procedure slightly overestimates the pore water pressure which strictly
should be "wze, where ze is the vertical distance below the point of intersection of the
water table and the equipotential through the centre of the slice base. The error
involved is on the safe side.

The arc length (La) is calculated as 14.35m. The results are given in Table 9.1.

!W cos! ¼ 30" 17:50 ¼ 525 kN=m

!W sin! ¼ 30" 8:45 ¼ 254 kN=m

!ðW cos! $ ulÞ ¼ 525 $ 132 ¼ 393 kN=m

Figure 9.6 Example 9.2.

356 Stability of slopes

F ¼ c0La þ tan!0!ðW cos" $ ulÞ
!W sin"

¼ ð10 & 14:35Þ þ ð0:554 & 393Þ
254

¼ 143:5þ 218

254
¼ 1:42

(b) In terms of critical-state strength

F ¼ tan 31' & 393

254
¼ 0:93

Deformation is likely to result in strains along a potential failure surface exceeding the
value corresponding to peak strength. Therefore the strength mobilized for stability is
likely to fall below the peak value and to approach the critical-state value. Therefore
the slope is unsafe. It should be noted that in case (a), the proportion of shear strength
represented by c0, generally a parameter of uncertain value, is 40%.

9.4 ANALYSIS OF A PLANE TRANSLATIONAL SLIP

It is assumed that the potential failure surface is parallel to the surface of the slope and
is at a depth that is small compared with the length of the slope. The slope can then be
considered as being of infinite length, with end effects being ignored. The slope is
inclined at angle # to the horizontal and the depth of the failure plane is z, as shown in
section in Figure 9.7. The water table is taken to be parallel to the slope at a height of
mz(0 < m < 1) above the failure plane. Steady seepage is assumed to be taking place in
a direction parallel to the slope. The forces on the sides of any vertical slice are equal
and opposite, and the stress conditions are the same at every point on the failure plane.

In terms of effective stress, the shear strength of the soil along the failure plane
(using the critical-state strength) is

$f ¼ ð% $ uÞ tan!0cv

Table 9.1

Slice No. h cos" (m) h sin" (m) u (kN/m2) l (m) ul (kN/m)

1 0.75 $ 0:15 5.9 1.55 9.1
2 1.80 $ 0:10 11.8 1.50 17.7
3 2.70 0.40 16.2 1.55 25.1
4 3.25 1.00 18.1 1.60 29.0
5 3.45 1.75 17.1 1.70 29.1
6 3.10 2.35 11.3 1.95 22.0
7 1.90 2.25 0 2.35 0
8 0.55 0.95 0 2.15 0

17.50 8.45 14.35 132.0

Analysis of a plane translational slip 357
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Para un talud de gran extensión con una pendiente media 
de 12º se pide :
1- determinar el !"# asociado a un plano de falla ubicado a 
5m de profundidad en condición no saturada.
2- recalcule !"# en condición saturada.

+ = +K=L = 16
(-
./

M = 12º ;´ = 0()* , 0´ = 26º
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1- determinar el !"# asociado a un plano de falla ubicado a 
5m de profundidad en condición no saturada.

design resisting moment. Characteristic values of shear strength parameters c0 and
tan!0 should be divided by factors 1.60 and 1.25, respectively. (However, the value of
c0 is zero if the critical-state strength is used.) The characteristic value of parameter
cu should be divided by 1.40. A factor of unity is appropriate for the self-weight of the
soil and for pore water pressures. However, variable loads on the soil surface adjacent
to the slope should be multiplied by a factor of 1.30.

The following limit states should be considered as appropriate:

1 Loss of overall stability due to slip failure.
2 Bearing resistance failure below embankments.
3 Internal erosion due to high hydraulic gradients and/or poor compaction.
4 Failure as a result of surface erosion.
5 Failure due to hydraulic uplift.
6 Excessive soil deformation resulting in structural damage to, or loss of service-

ability of, adjacent structures, highways or services.

9.2 ANALYSIS FOR THE CASE OF fu¼ 0

This analysis, in terms of total stress, covers the case of a fully saturated clay under
undrained conditions, i.e. for the condition immediately after construction. Only
moment equilibrium is considered in the analysis. In section, the potential failure
surface is assumed to be a circular arc. A trial failure surface (centre O, radius r and
length La) is shown in Figure 9.2. Potential instability is due to the total weight of the
soil mass (W per unit length) above the failure surface. For equilibrium the shear
strength which must be mobilized along the failure surface is expressed as

"m ¼ "f
F

¼ cu
F

Figure 9.1 Types of slope failure.

348 Stability of slopes
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1 y 2- se asume una condición de falla tipo plana (talud 
infinito) a z = 5. profundidad y se calcula !# = OP

O

and the factor of safety is

F ¼ !f
!

The expressions for ", ! and u are

" ¼ fð1 # mÞ# þ m#satgz cos2 $
! ¼ fð1 # mÞ# þ m#satgz sin $ cos$

u ¼ mz#w cos2 $

If the soil between the surface and the failure plane is not fully saturated (i.e. m ¼ 0)
then

F ¼ tan%0cv
tan $

ð9 :11Þ

If the water table coincides with the surface of the slope (i.e. m ¼ 1) then

F ¼ #0 tan%0cv
#sat tan $

ð9 :12Þ

For a total stress analysis the shear strength parameter cu is used (with %u ¼ 0) and
the value of u is zero.

Example 9.3

A long natural slope in an overconsolidated fissured clay of saturated unit weight
20 kN/m3 is inclined at 12& to the horizontal. The water table is at the surface and

Figure 9.7 Plane translational slip.
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