

Ejercicios Consolidación unidimensional y resistencia al corte

(84.07) Mecánica de Suelos y GeologíaM. Codevilla: <u>mcodevilla@fi.uba.ar</u>

The time factor corresponding to every 10% of average degree of consolidation for double drain-En un depósitor de training states and the telefores between the states of the factor score between the states of the factor of t

shown in the insertable in Figure 9.9 The time factors for tespending to extensive compuesta por un terraplén (y=19 kN/m³, ce often used in intersioning respectively and the transferres or the tensive compuesta por un terraplén (y=19 kN/m³, consolidation, and T_y = 0.197 for 50% consolidation. pavimento estructural de la plava para recibir la carga de diseño

Computer Program Utility

Access www.wiley.com/college/budhu and click on Chapter 9 for a spreadsheet solution of the finite difference equation of the one-dimensional consolidation equation. You can modify the copy of this spreadsheet to solve other problems. Read this section before accessing the spreadsheet.

ter Program Utility

Difference Solution of

a) El ϵ

where to solve other problems. Read this section before accessing the spreadsheet. $\frac{60}{125}$ $\frac{60}{125}$ $\frac{60}{125}$ $\frac{60}{125}$ $\frac{60}{125}$ $\frac{60}{125}$ $\frac{60}{125}$ $\frac{60}{125}$ $\frac{100}{125}$ $\frac{100}{12$

ods (find the difference, finite element, and boundary element) provide approximate erential and integral equations for $U \ge 60\%$ of d_{1} of d_{2} of d_{2} of d_{3} of d_{4} of d_{5} o

Pensemos antes de resolver

- ¿Se entiende el proceso de carga-descarga?
- ¿Cómo cambian las presiones efectivas durante el proceso?

Solución ejercicio 1

datos			
H_terreno	12 m	LL	63
g_terraplen	19 kN/m3	LP	30
H_terraplén	4 m	Сс	0,48
t_ terraplén	200 días	Cr	0,04
Gs	2,7	Calfa	0,03
q_diseño	50 kPa	Cv	1,00E-06 m2/seg
q_terraplen	76 kPa		
w	63%		
gd_suelo	9,8 kN/m3		
g_suelo	16,0 kN/m3		

resolución a)

resolucion a)		
e0	1,70	
s´v0	35,9 kPa	
Tv_terraplén	0,48	
U_200d	75,2%	
As_cons prim	1,05 m	
As_200d	0,79 m	asentamiento a 200 días al retirar precarga q_terr=76kPa

resolución b)		
s´v0 max_200d	93 kPa	se asume a mitad de estrato
H_terreno	11,21 m	nueva altura de terreno descontado asentamiento 200d
As_cons prim	0,06 m	asentamiento total por consolid. 1º para q_diseño=50kPa

0.2 9 Relationship bet effet a distribution and a triangular distribution of a mount of consolidation of a soll fayer at any given time. The average degree of consolidation for a whole average degree of consolidation of a soll fayer at any given time. The average degree of consolidation of a soll fayer at any given time. The average degree of consolidation of a soll fayer at any given time. The average degree of consolidation of a soll fayer at any given time. The average degree of consolidation of a soll fayer at any given time. The average degree of consolidation of a soll fayer at any given time. The average degree of consolidation of a soll fayer at any given time. The average degree of consolidation of a soll fayer at any given time. The average degree of consolidation of a soll fayer at any given time. The average degree of consolidation of a soll fayer at any given time. The average degree of consolidation of a soll fayer at any given time.

can be expressed mathematically from the solution of the one-dimensional consolidation equation as ical engineer is often concerned with the average degree of consolidation, U, of a whole

ar time rather than the consolidation at a particular depth. The shaded area in Figure 9.8 repnt of consolidation of a soil layer at any given time. The average degree $\overline{o}f$ consolidation $(-M^2T_v)$ (9.35)

mathematically Enoline the position of the blas distributed as densine at the transformed besor (OCR=1.0, Cv= 10⁻⁶ m²/seg, drenaje libre por ambas carreguse installar and transformed and a sugarea of Sobre Kilderposite some black up to a carga uniformed to the transformed as pistallar and the second a

ITAS Hailan Bulte angetriangular distribution of Faites Excessible Andter pres201.7

shows the variation of the average degree of consolidation with time factor IT_{ν} for a angular shows the variation of the average degree of consolidation with time factor IT_{ν} for a angular shows of the variation of the average degree of consolidation with time factor IT_{ν} for a angular shows of the variation of the average degree of consolidation with time factor IT_{ν} for a angular shows of the variation of the average degree of consolidation with time factor IT_{ν} for a angular shows a state of the variation of the variati

$$T_{\nu} = \frac{\pi}{4} \left(\frac{U}{100}\right)^2 \quad \text{for } U < 60\% \qquad \qquad T_{\nu} = 1.781 - 0.933 \log^{(9.36)}(100) - U) \quad \text{for } U \ge 60\% \qquad (9.37)$$

 $T_{\nu} = 1.781 - 0.933 \log(100^{7} - U) \text{ for } U \ge 60\%$ (9.37) The time factor corresponding to every 10% of average degree of consolidation for double drainage conditions is shown in the inset table in Figure 9.9. The time factors corresponding to 50% and 90% $T_{\nu} = 1.781 - 0.933 \log 6100 \text{idat} \text{ don afer bit enformed at the interpreting consolidation test results. You should remember that}$ ctor corresponding to every 10% of average degree of consolidation for double drain-

shown in the inset table in Figure 9.9. The time factors corresponding to 50% and 90%

The one of the interpreting c_{r} and c_{r} and

Computer Program Utility

Difference Solution of

Access www.wiley.com/college/budhu and click on Chapter 9 for a spreadsheet solution of the finite difference equation of the one-dimensional consolidation equation. You can modify the copy of this spreadsheet to solve other problems. Read this section before accessing the spreadsheet.

ter Program Utility

COD

viley.com/college/budhu and click on Chapter 9 for a spreadsheet solution of the finite nation of the one-dimensional consolidation equation. You can modify the copy of solutions to differential and integral equations for boundary conditions in which closed-form solutions

Solución ejercicio 2

datos	
H_terreno	5 m
q	50 kPa
t	196 días
Cv	1,00E-06 m2/seg

resolución

Tv_196d	2,71				
U_196d	99,9%				
Como en 1	Como en 196d se alcanza la consolidación primaria sin drenes verticales,				
es de esperar menor tiempo instalando drenes					

 Calcular el asentamiento que experimentará un perfil geotécnico bajo una carga uniforme de 50kPa con las siguientes características:

NF = *NTN*, *USCS* = *CH*, *H* = 9.0*m*, $\omega \sim 59\%$

Ejercicio 5 (ejercicio 3.7 M2)

& resist. corte

М2

Bardet J. Experimental soil mechanics

Solución ejercicio 5 (ejercicio 3.7 M2)

Etapas del ensayo R´

- 1º montaje muestra \bullet
- 2º saturación
- 3° consolidación isotróp.
- 4^o ruptura (falla) en condición no drenada

10

Solución ejercicio 5 (ejercicio 3.7 M2)

OCR=3.0

Ensayo A:

- 1° montaje
- 2º saturación
- 3º consolidación
- 4° ruptura (falla)

	σ'_1	σ'_3	σ_1	σ_3	u
1°	10	10	0	0 CB=5.0	-10
2°	20	20	220	220	200
3°	120	120	320	320	200
4°	450	170	600	320	150

Solución ejercicio 5 (ejercicio 3.7 M2)

Ensayo D:

(1 kg/cm2 = 100kPa)

	σ'_1	σ'_3	σ_1	σ_3	u
1°	10	10	0	0	-10
2°	20	20	220	220	200
3°	850	850	1050	1050	200
4°	870	340	1580	1050	710

¿ Puedo determinar c' y ϕ' ?

Si, utilizando la expresión $\sigma'_{1f} = \sigma'_{3f}N_{\phi} + 2c'\sqrt{N_{\phi}}$ para cada uno de los ensayos triaxiales efectuados

NOTA: $\Delta V / V > 0$ disminución de volúmen

Sobre una muestra de arcilla normalmente consolidada (OCR=1.0) se efectuó un ensayo triaxial Q (no consolidado – no drenado). A continuación se presenta en la Figura 3-3 los resultados obtenidos durante la ejecución del ensayo. Se pide:

- Graficar la curva tensión deformación de la muestra ensayada.
- Calcular el valor del esfuerzo desviador al momento de alcanzar la falla (σ_{df}).
- Calcular el valor de resistencia al corte no drenada (s_{μ}).
- Estimar los valores del módulo de Young inicial E_i y relación de falla R_f en base a un ajuste de los valores experimentales obtenidos con el modelo hiperbólico de Kondner:

$$\sigma_d = \frac{\epsilon}{\frac{1}{E_i} + R_f \frac{\epsilon}{\sigma_{df}}} \qquad \text{modelo hip.}$$

Kondner

def.

(div)

200

250

300

400

450

carga

(kg)

5.1

5.6

6.0

6.5

6.7

Calcular el valor del módulo secante para un valor de tensión igual al 50% de la carga que produce la falla (E_{50}) .

DATOS INICIALES			V	ALORES	MEDIDO)S	
ω	51.4	%	σ_3	def.	carga	σ_3	
γ	17.4	KN/m ³	(kPa)	(div)	(kg)	(kPa)	
γ_{s}	27.0	KN/m ³	100	0	0.0	100	
γ _d	11.5	KN/m ³	100	10	0.9	100	
e _{inicial}	1.39		100	20	1.4	100	
Sr	100	%	100	30	1.8	100	
LL	61	%	100	40	2.1	100	

13

Ejercicio 6 (ejercicio 3.9 M2)

Ensayo:

- 1° montaje
- 2° saturación
- 3° ruptura

DATOS INICIALES				
ω	51.4	%		
γ	17.4	KN/m ³		
γ _s	27.0	KN/m ³		
γ _d	11.5	KN/m ³		
e _{inicial}	1.39			
Sr	100	%		
LL	61	%		
LP	29	%		
USCS	СН			
Pasa #200	100	%		
vel. def.	0.80	mm/min		
K _{flexím.}	0.01	mm/div		
H _{inicial}	116.4	mm		
$\Phi_{inicial}$	46.4	mm		

VALORES MEDIDOS							
σ_3	def.	carga	def.	carga			
(kPa)	(div)	(kg)	(kPa)	(div)	(kg)		
100	0	0.0	100	200	5.1		
100	10	0.9	100	250	5.6		
100	20	1.4	100	300	6.0		
100	30	1.8	100	400	6.5		
100	40	2.1	100	450	6.7		
100	50	2.4	100	500	6.9		
100	60	2.6	100	550	7.0		
100	70	2.9	100	600	7.1		
100	80	3.2	100	650	7.2		
100	100	3.5	100	700	7.2		
100	120	3.9	100	750	7.3		
100	140	4.3	100	800	7.3		
100	160	4.6	100	850	7.4		
100	180	4.9	_	-	-		

Solución ejercicio 6 (ejercicio 3.9 M2)

- Deformación axialTensión desviadora
 - Tensión axial en falla

$$\epsilon_1 = \frac{\Delta h_i}{H_0} = \frac{k_{flex} \cdot div}{H_0}$$
$$\sigma_d = \frac{P_i}{A_i} = \frac{P_i}{\frac{A_0}{A_0}}$$

$$\sigma_{1_f} = \sigma_{d_f} + \sigma_3$$

•

•

 \bullet

lacksquare

Solución ejercicio 6 (ejercicio 3.9 M2)

