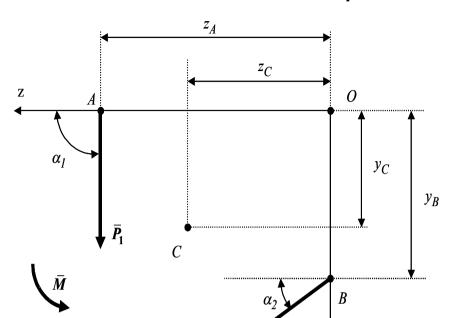
Tp 1 - Ejercicio N°4



P1	P2	М	α1	α2	yА	zA	уВ	zB	уC	zC
kN	kN	kN m	0	0	m	m	m	m	m	m
20	40	30	90	20	0	4	4	0	2	2

Los valores indicados en la tabla corresponden al módulo de las magnitudes correspondientes

Se solicita:

Hallar el binomio de reducción en el punto O

Determinar la resultante del sistema (módulo, dirección, sentido y un punto de aplicación)

у

Equilibrarlo con una cupla y dos fuerzas, cuyas rectas de acción sean, respectivamente, el eje z y una paralela al eje y que pase por el punto *C*. Equilibrarlo con dos fuerzas, una cuya recta de acción pase por el punto *C* y otra cuya recta de acción sea el eje y.

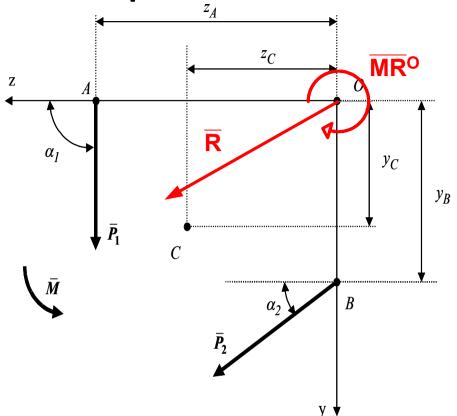
Binomio de reducción al punto "0"

$$R_y = P_1 \cdot \sin(\alpha_1) + P_2 \cdot \sin(\alpha_2)$$

$$R_z = P_1 \cdot \cos(\alpha_1) + P_2 \cdot \cos(\alpha_2)$$

$$M_{Rx}^{O} = -P_1 \cdot \sin(\alpha_1) \cdot z_A + P_2 \cdot \cos(\alpha_2) \cdot y_B - M$$

Ry	Rz	MROx
33,7	37,6	40,4



Resultante:

Vector

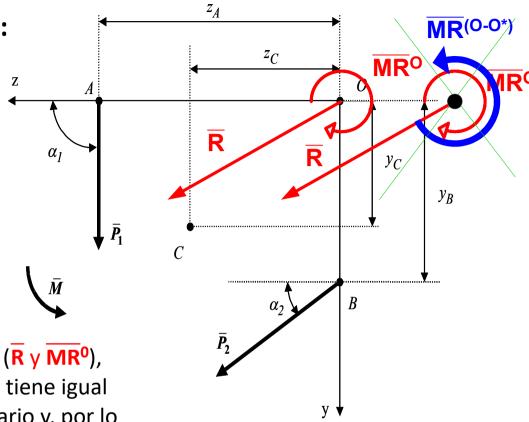
$$R = R_y \cdot j + R_z \cdot k$$

Módulo

$$R = \sqrt{{R_y}^2 + {R_z}^2}$$

Punto de aplicación O* de la resultante:

Si redujéramos el sistema (ahora usando el binomio de reducción \overline{R} y $\overline{MR^0}$) a un punto "O*" de la recta de acción de la resultante



Obtendríamos, además del binomio encontrado (\overline{R} y $\overline{MR^0}$), una cupla al reducir \overline{R} hacia "O*" ($\overline{MR^{(O-O^*)}}$), que tiene igual dirección y módulo que $\overline{MR^0}$ pero sentido contrario y, por lo tanto, se anulan mutuamente, quedando sólo \overline{R} equivalente al sistema original

El sistema de fuerzas provoca sólo traslaciones en el cuerpo o estructura en estudio

Para hallar un punto de aplicación O^* de la resultante (con coordenadas y_{O^*} y z_{O^*}), debe plantearse:

1°) Encontrar la cupla de traslación de R calculando:

 $\overline{MR}^{(O-O^*)} = (O-O^*) \wedge \overline{R}$

2°) Sumar vectorialmente $\overline{MR^{(0-0^*)}} + \overline{MR^0} = 0$ por lo que escalarmente planteamos:

$$R_{y} \cdot z_{O^{*}} - R_{z} \cdot y_{O^{*}} + M_{Rx}^{O} = 0$$

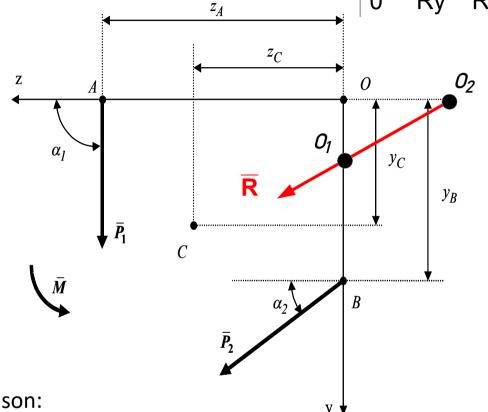
Por lo que, evidentemente, existen infinitos puntos de aplicación de la resultante, formando una recta:

$$z_{O^*} = \frac{R_z}{R_y} \cdot y_{O^*} - \frac{M_{Rx}^O}{R_y}$$

$$z_{O^*} = \frac{R_z}{R_y} \cdot y_{O^*} - \frac{M_{Rx}^O}{R_y}$$
 ó $y_{O^*} = \frac{R_y}{R_z} \cdot z_{O^*} + \frac{M_{Rx}^O}{R_z}$

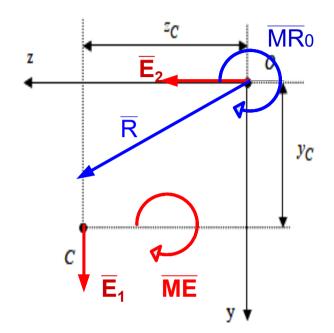
Los puntos de intersección de esta recta con los ejes coordenados \overline{y} y \overline{z} son O_1 y O_2

$$y_{O1} = \frac{M_{Rx}^O}{R_z}$$



Ry	Rz	R	z01	yO1	z02	yO2
33,7	37,6	50,5	0	1,07	-1,19	0

Equilibrar el sistema con una cupla y dos fuerzas, cuyas rectas de acción sean, respectivamente, el eje z y una paralela al eje y que pase por el punto C



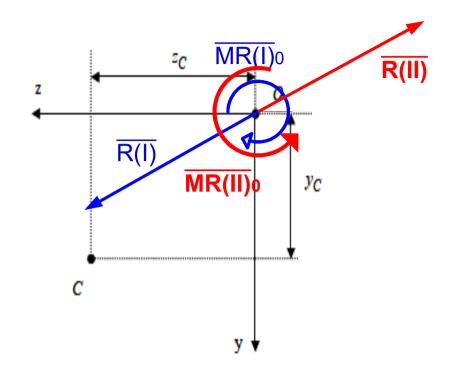
Como el binomio de reducción (AZUL) en "0" es equivalente al sistema original, trabajaremos con R y MRo y lo equilibramos con el conjunto de fuerzas en ROJO

Las magnitudes estáticas equilibrantes y sus respectivos puntos de aplicación serán:

$$egin{aligned} ar{E}_1 &= E_{1y} \cdot j \ ar{E}_2 &= E_{2z} \cdot k \ ar{M}_E &= M_E \cdot i \end{aligned} \qquad egin{aligned} C \left(y_C & z_C
ight) \ O \left(0 & 0
ight) \end{aligned}$$

NOTA: Las direcciones son dato, pero los sentidos y múdulos de las fuerzas y momento "E" son incógnitas. Lo recomendable es asignar sentidos positivos (en este caso de acuerdo a la terna izquierda usada) a todas las incógnitas. Los módulos se calcularán a continuación planteando el "EQUILIBRIO" de ambos sistemas. El **AZUL** y el **ROJO**

Plantear el equilibrio de ambos sistemas significa plantear la nulidad del conjunto de todas las fuerzas puestas en juego (o sea: ambos binomios de reducción).



Vectorialmente:

$$\overline{R(I)} + \overline{R(II)} = 0$$

$$\overline{MR(I)}_0 + \overline{MR(II)}_0 = 0$$

Escalarmente:

$$(1) R_y + E_{1y} = 0$$

$$(2) R_z + E_{2z} = 0$$

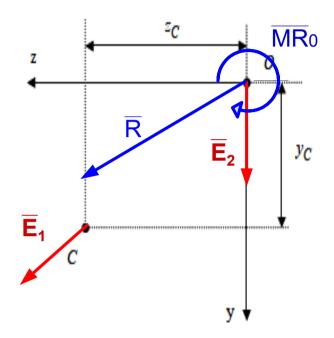
(3)
$$M_{Rx}^O + M_E - E_{1y} \cdot z_C = 0$$

Sistema de 3 ecuaciones con 3 incógnitas cuya resolución es:

E1y	E2z	ME
-33,7	-37,6	-107,7

NOTA: Los signos "-" significan que los sentidos arbitrariamente elegidos para las incógnitas son contrarios a los reales.

Equilibrar el sistema con dos fuerzas, una cuya recta de acción pase por el punto C y otra cuya recta de acción sea el eje y



Como el binomio de reducción (AZUL) en "0" es equivalente al sistema original, trabajaremos con R y MRo y lo equilibramos con el conjunto de fuerzas en ROJO

Las magnitudes estáticas equilibrantes y sus respectivos puntos de aplicación serán:

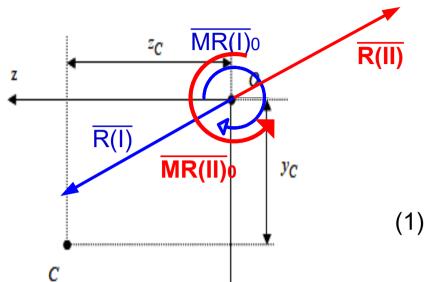
$$\overline{E}_{1} = E_{1y} \cdot j + E_{1z} \cdot k$$

$$\overline{E}_{2} = E_{2y} \cdot j$$

$$O(0 0)$$

<u>NOTA</u>: Las direcciones son dato, pero los sentidos y múdulos de las fuerzas son incógnitas. Lo recomendable es asignar sentidos positivos (en este caso de acuerdo a la terna izquierda usada) a todas las incógnitas. Los módulos se calcularán a continuación planteando el "EQUILIBRIO" de ambos sistemas. El <u>AZUL</u> y el <u>ROJO</u>

Plantear el equilibrio de ambos sistemas significa plantear la nulidad del conjunto de todas las fuerzas puestas en juego (o sea: ambos binomios de reducción).



Vectorialmente:

$$\overline{R(I)} + \overline{R(II)} = 0$$

$$\overline{MR(I)}_0 + \overline{MR(II)}_0 = 0$$

Escalarmente:

$$R_y + E_{1y} + E_{2y} = 0$$

$$(2) R_z + E_{1z} = 0$$

(3)
$$M_{Rx}^O + E_{2y} \cdot z_C + R_y \cdot z_C - R_z \cdot y_C = 0$$

Sistema de 3 ecuaciones con 3 incógnitas cuya resolución es:

E1y	E1z	E2y
-17,4	-37,6	-16,3

NOTA: Los signos "-" significan que los sentidos arbitrariamente elegidos para las incógnitas son contrarios a los reales.