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CONDUCCIONES A SUPERFICIE LIBRE  

 

CANALES  

 

REGIMEN PERMANENTE Y UNIFORME  

 

 

Es una forma muy económica de transportar agua , cuando disponemos de una topografía 

favorable y resulta casi imprescindible cuando los caudales son muy grandes . 

 

( debemos aclarar que es económico su transporte , no asi , su manejo )  

 

La fuerza motriz , es el peso del agua . 

 

Tambien debemos remarcar , que es la forma mas común de escurrimiento de agua en la 

naturaleza , Rios y Arroyos . 

 

 

CUALES SON LAS CONDICIONES  QUE DEBE CUMPLIR , UN BUEN DISEÑO DE 

CANAL ? 

 

 

 TRANSPORTAR EL CAUDAL DE DISEÑO  

 

 EN FORMA ECONOMICA ( secciones practicas o minima resistencia , menor costo 

anual de construcción + operación )  

 

 CON FUNCIONAMIENTO ESTABLE H >1.05 Hmin  

 

 SIN PROVOCAR EROSION , U < Umax 

 

 SIN PROVOCAR SEDIMENTACION , U > Umin  

 

 CON TALUDES ESTABLES  
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ESCURRIMIENTO DEL AGUA  A  SUPERFICIE LIBRE 

MOVIMIENTO UNIFORME Y PERMANENTE 

 

NECESIDAD DE ESTUDIAR LOS ESCURRIMIENTOS A SUPERFICIE LIBRE . 

 

El escurrimiento a superficie libre , en Rios , Arroyos , canales , etc. , constituye la forma mas natural de 

escurrimiento del agua y era conocida por el hombre desde mucho tiempo atrás . 

 

Leonardo se intereso desde pequeño en los escurrimientos de los rios y arroyos , le llamaba mucho la atención 

los “ remolinos “ y otros fenómenos turbulentos . ( años mas tarde diseño todos los desagues de la Ciudad de 

Florencia  ) . 

 

Ocurre que ademas de ser una forma muy natural , cuando las pendientes son favorables y los caudales a 

transportar son importantes , la superficie libre se convierte en la solucion claramente MAS ECONOMICA de 

transportar AGUA . 

 

Por lo tanto en los mencionados casos , ademas de cuando existen limitaciones tecnologicas que implican 

necesidades en cuanto a la CALIDAD del LIQUIDO transportado , la superficie libre , es la solucion . 

 

Este caso lo configuran las conducciones PLUVIALES , CLOACALES y MIXTAS , donde en grandes 

ciudades , a pesar de que se entuba el fluido , el escurrimiento es a superficie libre y habitualmente , en tuberias 

enterradas . 

 

Cuando decimos superficie libre , estamos queriendo significar , que la potencia motriz del movimiento del 

AGUA , es la FUERZA DE GRAVEDAD  . 

 

Se designan con el nombre de escurrimientos a superficie libre las que tienen lugar en Canales y Ríos; es 

decir aquellas en las que el líquido escurre en contacto con la atmósfera, a diferencia de los 

escurrimientos forzados  o bajo carga, tales como los que tienen lugar en tuberías, cuando el líquido las  

llena completamente. La superficie libre es la separación entre la masa líquida y el aire. 

 

Se admitirá en todo caso que el fondo y las paredes del canal son impermeables, por lo tanto el gasto a 

través de toda la sección  canal es constante. La superficie libre debe constituir un límite de la conducción, bajo 

el efecto de las fuerzas puestas en juego, es una superficie de corriente y en todos los puntos de la misma, en 

régimen permanente, la velocidad es tangente a esa superficie y la presión constante e igual a la presión 

atmosférica. Dichas fuerzas son: la presión, gravedad, las de rozamiento viscosas   

 

Respecto a las secciones transversales del canal, consideraremos que las pendientes de la solera son 

pequeñas, de modo de no cometer errores , al considerar las secciones transversales  verticales y no 

normales al canal. 

                                                                     CANAL DE PANAMA 
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Cuando el escurrimiento tiene lugar como ESCURRIMIENTO  UNIFORME Y PERMANENTE, el canal 

resulta ser prismático con sus generatrices paralelas, permaneciendo constantes todos los elementos geométricos 

del canal: 

 

Q : Gasto ó Caudal  m
3
/ seg 

 

: superficie de la sección transversal de escurrimiento  m
2
. ( las secciones transversales son verticales y no 

perpendiculares al canal). 

 

U: velocidad media de la corriente m /seg 

 

h: tirante hidráulico m. Es la profundidad máxima, ó distancia vertical comprendida entre la superficie libre y 

el punto más bajo del fondo del canal ( Fig 1 a 16). 

 

i = tg  : pendiente longitudinal del canal, es un valor adimensional, expresado como la relación entre dos 

longitudes, por ejemplo i = 0003,0
000.10

3

1000

30,0


m

m

m

m
 ó   0,3 ‰ . 

j = tg  = i = tg  : pendiente longitudinal de la superficie libre, la que es igual a la del fondo, puesto que el 

canal debe ser prismático ( Fig 1) 

 

χ =  perímetro mojado m. es la longitud del contorno de la sección transversal que está en contacto con el 

fluido que escurre por el canal. 

R = 



 : Radio hidráulico m. 

 La velocidad media de la corriente, queda expresada por la  FÓRMULA DE CHEZY  para canales. 

 

U = C iR.   ( 1)       C 














seg

m 2
1

 

El valor de C , depende  esencialmente de la rugosidad de las paredes y del radio hidráulico, estando expresado 

por fórmulas empíricas, cuya estructura matemática varía en general, según los investigadores que la han 

verificado. 

 

 

 

 

 

 

 

 

 

 

 

 

En esta fórmula C , coeficiente de CHEZY ( m
½
 / seg ), depende  de la rugosidad del las paredes del canal y 

del radio hidráulico, su forma matemática depende del autor que la investigó. 
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    FORMA DE LA SECCIÓN TRANSVERSAL 

 

 

SECCIONES DE CONTORNO ABIERTO 

 

La de mayor aplicación es la forma trapecial ( Fig 3 ) , siguiendo en orden las de forma tolva ( Fig 4 ) y 

rectangular ( Fig 5) , en raras ocasiones  las de forma semicircular (Fig 6), la triangular ( Fig 7) y la forma 

parabólica ( Fig 8 ). Además pueden existir combinaciones  entre las formas indicadas anteriormente , como 

ser la trapecial con la rectangular ( Fig 9). 
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Los canales a cielo abierto pueden ser construidos en desmonte o en terraplén, lo que dependerá de la 

diferencia que exista entre la pendiente del terreno natural y la pendiente longitudinal del canal i. 

Así por ejemplo los de la Fig 3 a 10, son totalmente excavados ( en desmonte), mientras que el de 

sección trapecial de la fig 11-a  es parte en desmonte y parte en terraplén y el de la fig 11-b es 

totalmente en terraplén. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                       

 

 

REVANCHA  

 

El cauce de los canales a cielo abierto, cualquiera sea la forma de su sección transversal, se construye 

siempre de manera que queda un excedente sobre la sección transversal de escurrimiento que da el 

cálculo hidráulico, el cual se denomina revancha , su principal objetivo es el de absorber incrementos 
en el caudal. 

Si no existiera la revancha, el incremento ΔQ, rebalsaría el canal inundando los lugares adyacentes. 

Si fuera un canal en terraplén, el rebalse ocasionaría la destrucción  del coronamiento y por ende la del 

canal mismo. 

El valor de la REVANCHA queda a criterio del proyectista, que tomará en cuanta las causas 

apuntadas u otras que pudieran presentarse, por lo general este valor varía de 0,20 a 0,40 mts en 

canales chicos  y de 0,60 a 0,80 mts, ó mas, en los canales grandes , los que según la funcion que 

deberan cumplir , debera determinarse la revancha mas conveniente . ( Ver Apunte de la Catedra  “ 

Impermanentes a Superficie Libre “) . 
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SECCIONES  DE  CONTORNO  CERRADO 

 

 

La forma mas común es la de segmento de círculo ( Fig 12), estando  constituido el canal por un tubo o 

caño circular, y le siguen  la sección rectangular ( Fig 13) y la denominada   

 “ modelo “ ( Fig 14 ) . En menor escala se emplean la parabólica ( Fig 15)  , la ovoidal ( fig 16) y otras 

mas. 

En general los canales entubados van bajo tierra, se pueden construir en túnel ó bien en el fondo 

mismo de una zanja, sobre un colchón de arena  seleccionada y luego se tapa con tierra de la misma 

excavación. 

 

 
                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Éstas secciones pueden encontrarse en instalaciones cloacales y pluviales muy antiguas, y su forma 

obedece a que se construían con mampostería u hormigón simple y el trabajo de sus paredes debía ser en 

consecuencia a la compresión pura. 
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FORMAS  HABITUALES  DE CANALES ABIERTOS  

 

 

 

PRESION EN SECCIONES TRANSVERSALES 

 

 
 

La presión en el punto A, tomando la atmosférica como origen de presiones, viene dada por : p1 = γ. H . cosα 

En los canales usuales, α es pequeño (pendientes del orden del  1/1000, relativamente débil ) entonces , p = γ.h  

En la hipótesis de que sea cóncavo ó convexo el fondo del canal, en el sentido longitudinal, el régimen no es 

uniforme y se produce un aumento ó disminución de presiones, debido al efecto de la fuerza centrípeta originada 

por la curvatura de los filetes ( fig 17 a  y b).  
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ECUACIONES DE LA HIDRAULICA  

 

Para el Analisis de los escurrimientos en CANALES , emplearemos las siguientes ECUACIONES  

 

 

1 - Ecuación de Continuidad, 2- Ecuación de la Energía (Bernoulli ) y 3- Ecuación de la Cantidad 

de Movimiento. 

 

Para nuestro caso, un movimiento uniforme y permanente,  tendríamos: 
 

Q = U1. Ω1 = U2. Ω2       Ecuación de Continuidad  (Condición de escurrimiento permanente) 

 

 

z1 + 
g

Up

2

2

11 


 =   z2 + 
g

Up

2

2

22 


+ Δ J*1-2     Ecuación de Energía 

 

 

                                                
Si el canal es prismático y el movimiento uniforme, entonces U1 = U2 = U = cte  y h1 = h 2 = h = cte. 

En cualquier sección 
g

U

2


 = cte , por lo tanto Δ J*1-2  = Δ J1-2 , es decir    j* = j.  

Planteando Bernoulli, nos quedará: 

 

  z1 + h + 
g

U

2

2
 = z2 + h  + 

g

U

2

2
 + ΔJ*1-2                →   Δ z1-2  = ΔJ*1-2 = j*. Δ l1-2  → j* = 

21

21









l

z
= i 

 

En resumen podemos escribir   i  =  j  =  j*  ( IX -1) 
 

La interpretación física, nos dice que en un movimiento permanente y uniforme, en un canal 

prismático, las pendientes de la solera del canal, de la superficie libre y de la línea de energía, son 

iguales. 

 

La diferencia de nivel es la energía gastada para vencer los rozamientos. 
 

En los canales, en los que escurre agua, el movimiento es siempre turbulento y en general los 

coeficientes α y β se toman aproximadamente igual a 1. 

 

 

h1 = 


1
p

 

Δl1-2 

Δ z1-2 

ΔJ1-2 

ΔJ*1-2 

i 

j* 

j g

U

2

2

22


 

g

U

2

2

11


 

h2 = 


2
p

 

z2 
z1 

1 2 

Fig 18 
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ECUACION DE CHEZY 

 

 

De la experiencia, sabemos que Δ J* es proporcional a: 
 

1) La superficie de rozamiento  χ. Δ l 

2)  La velocidad al cuadrado  ( U
2 
 ) y  a la inversa del área ( 



1
 ) 

3)  La naturaleza de la pared del canal. 
 

 

Entonces: 

                 Δ J* = K . 










lU ..2 
. f ( nat. de las paredes) K.f = b   y   




 = R 

 

 

            Δ J* = b . 






 

R

lU .2

  →       
l

J



 *
 =  j* = b. 

R

U 2

               ( IX – 2) 

 
En el movimiento uniforme, donde j* = i , despejando U de la ecuación anterior :  

 

U = *j..
1

R
b

 

 

O sea  

 

U = C iR.         Expresión de CHEZY  (.  i = j en regimen  Permanente y Uniforme )  

 

 

ECUACIÓN DE LA CANTIDAD DE MOVIMIENTO       
 

  UQFFF
gp

...   

 

Si la aplicamos al caso de movimiento uniforme y permanente, la aceleración es nula, por lo tanto la sumatoria 

de fuerzas es nula. Las fuerzas que  actúan  son: 

 

Componente de G ( peso )   = γ.Ω.Δ l . senα  ≈ γ.Ω.Δ l . i    ( tangente α , seno α y α , son prácticamente 

iguales )  

 

Fuerzas de rozamiento  = τ . χ. Δ l = k . U
2
. χ. Δ l        τ = k. U

2
  ( coeficiente experimental) 

 

 

 

EXPRESION DE CHEZY 

 

γ.Ω.Δ l . i = k. U
2
. χ. Δ l   →  U  =  





.

..

f

i
  =  iR

k
..


  =  C. iR.    ( IX- 3) 
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Determinación del coeficiente de CHEZY ( C ) 

 
 

Se supone que la expresión de Chezy ( IX- 3) fue dada a conocer alrededor del año 1775. Las diversas fórmulas 

que se indican a continuación, han sido determinadas en forma experimental. 

 

a) Fórmula de TADINI ( 1850) :  C = cte = 50  Independiente de la naturaleza de las paredes, se aplica en la 

preparación de anteproyectos y cálculos rápidos para tirantes mayores a 1 mt. Entonces: 

 

U = 50. iR.   ( IX- 4)  NO SE EMPLEA  

 

 

 

b) Fórmula de GANGUILLET y KUTTER ( 1869)  Deducida del estudio de Darcy  y Bazin y las realizadas 

por Humpreis y Abbot en el río Mississippi, empleada en EEUU, Inglaterra y Alemania. 

 

 

                                                                  C = 













iR

n

in

00185,0
231

00155,01
23

      ( IX- 5) 

 

 

En la cual “n”, es un coeficiente que depende exclusivamente de la naturaleza ( rugosidad) de las 

paredes  

De esta expresión se deduce que los autores hacen depender C el tipo de canal, de tal forma que al 

aumentar la rugosidad y por lo tanto “n”, disminuye el valor de C; de la forma del canal, al aumentar R 

aumenta C, ( pero mas lento que R) y de la pendiente i, suponiendo que C aumenta con i en canales 

pequeños y  lisos, y que , por el contrario, disminuye con i en canales grandes y de mucha rugosidad. 

Sin embargo para valores de i  mayores de 5.10
-4

, C es prácticamente independiente de i. 

 

También C es independiente de i, cuando R = 1, en tal caso C = 
n

1
; cuando R < 1, C aumenta al aumentar i; y si 

R > 1 , C disminuye al aumentar i. 

Los autores hicieron notar que para secciones semicirculares, el valor de C obtenido debe aumentarse en 5 ó 6 

unidades. Valores de  n , TABLA Nº 1 . 

 

c) Fórmula de KUTTER                           C = 
rm

R



100
  ( IX-6) 

 

Es aplicable para pendientes mayores de 5.10
-4

, “m” es coeficiente de rugosidad de las paredes, C es inde – 

-pendiente de i. Aplicaciones, calculo de conductos de desagües urbanos pluviales y cloacales ( canales 

entubados ó llamados también alcantarillas) y en conductos a presión. Es una versión simplificada de la anterior   

 

 

d) Fórmula de MANNING  ( 1890)            C = 61
R

n
    ( IX- 7) 

 
Una de la más empleada por los Ingenieros en la Argentina, es más simple que la de Kutter y tiene un grado 

aceptable de exactitud. El coeficiente “n” es el mismo que se utiliza en la ecuación ( 5). TABLA Nº 3 
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e) Fórmula de BAZIN ( 1897) :                C = 

R


1

87
  ( IX – 8) 

Donde γ depende exclusivamente de la rugosidad de las paredes ( no es el peso específico). TABLA Nº 2 

 

 

 

f) Fórmula de Forchheimer ( 1923) :         C = λ  5 R     (IX-9) 

 

Los valores de λ, dependen de la rugosidad de las paredes, y es = 
n

1
. Se hace notar que la expresión  de 

Forchheimer  coincide bastante con la de Kutter en radios hidráulicos menores  de 0,75 mts y con la de Bazin en 

los mayores. 

 

 

 

CURVA DE LAS PERDIDAS DE ENERGIA UNITARIA 

 

 

Trazaremos la curva de perdida de energía unitaria j* en función del tirante h, para un gasto cte y forma del 

canal cte. 

U = C iR.  Q = Ω. C iR.  , como j* = i → j* = j = i = 
RC

Q

.. 22

2


 

Si adoptamos la fórmula de Manning :         j* = 
3

4
2

22

.

.

R

nQ



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h 

Q = cte 

i = j = j* 

Fig 19 
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DISTRIBUCIÓN DE VELOCIDADES  EN UNA SECCION 

 

 

La velocidad  no es constante a través de una sección. En contacto con las paredes sólidas, el líquido 

está inmóvil, como consecuencia de su adherencia ala pared. A causa del rozamiento, se forma, a partir 

de la extremidad aguas arriba del canal, una capa límite, la cual, desde que está lo suficientemente 

alejada de dicho extremo, se extiende a toda la sección mojada. 

Con números de Reynolds elevados, y en consecuencia, siempre en las aplicaciones industriales, el 

régimen es turbulento. En un punto cualquiera, la velocidad  varía en magnitud y dirección con el 

tiempo, lo que llamamos velocidad en un punto es, en realidad, la velocidad media en un intervalo de 

tiempo. La proyección de la velocidad media sobre el eje es   
T

dtU
T

U
0

1
 , siendo T un lapso de 

tiempo muy largo en relación a la duración de las fluctuaciones. 

 

El gasto Q = 


dU , la velocidad media es , una media en el tiempo y en el espacio de la componente U. 

Si  el canal es prismático y el régimen uniforme ( veloc. media cte a lo largo de todo el canal), la velocidad en 

un punto cualquiera, es paralela a las generatrices y pro consiguiente normal a la sección del canal, siendo las 

líneas de corriente rectas  paralelas a las generatrices. Si el canal no es prismático, o el régimen no es uniforme, 

la superficie libre no es paralela al eje del canal, las velocidades no son paralelas entre sí y las líneas de corriente  

no son rectas paralelas. 

 

Trataremos, sólo casos de canales cuya evolución es continua, progresiva y lenta; en forma general  vamos a 

considerar los casos de movimientos gradualmente variados, es decir tales que la superficie libre conserva la 

pendiente  semejante a la del fondo. Así podemos, en una primera aproximación, despreciar la inclinación de las 

velocidades con respecto al fondo y admitir que son paralelas entre sí y perpendiculares a la sección. 

En contacto con la pared, la velocidad es nula, crece cuando alejamos de esta y alcanza el máximo en la región 

central ( fig 20 ). El máximo se encuentra ligeramente por debajo de la superficie libre. 

 

Cuando  las dimensiones horizontales crecen en relación a las verticales, este se acerca a la superficie libre.  

En un canal infinitamente ancho estaría ubicado sobre la superficie libre. 

 

Le velocidad crece rápidamente cuando se aleja de la pared para conservar un valor  poco diferente de la 

velocidad media U. 

 

Como  primera consecuencia admitiremos que la velocidad  en la sección es constante e igual a la velocidad 

media U. Esto nos permite transformar un problema tridimensional en uno unidimensional, dependiendo la 

velocidad sólo de la abscisa de la sección, siempre que el régimen sea permanente. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 15 

 

 

 

 

 

 

 

 

 
 

 

 

 

Para el cálculo de α y β, podemos decir que en canales de formas simples el valor de α oscila entre 1,05 y 1,15  

de manera que en los cálculos previos se acostumbra adoptar α = 1,1  ó con menos rigor = 1. 

 

Conviene advertir a este respecto lo siguiente: 

 

1.-  Que en secciones irregulares o de formas compuestas α puede exceder  de 1,30. 

 

2.-  Que para dos  secciones  transversales iguales en movimiento uniforme α es mayor  cuanto mas rugosas 

sean las paredes. 

 

3.-  En movimiento gradualmente variado, α tiende a aumentar de aguas arriba hacia aguas abajo, cuando hay 

divergencia de los filetes (remansos de sobre elevación, ensanchamientos, etc) y por el contrario tiende a dis-  

-minuir hacia aguas abajo cuando hay convergencia de los filetes ( remansos de depresión, estrechamientos ..) 

Como corolario de lo anterior, cuando un escurrimiento se acerca al régimen crítico, sin que ello implique una 

curvatura muy pronunciada de los filetes el valor de α tiende a la unidad. 

 

 

 

 

 

 

 

 

 

 

 

Fig 20 
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VELOCIDADES LIMITES 

 

LOS CRITERIOS DE VELOCIDADES LIMITES , SON MANDATORIOS EN EL DISEÑO Y 

VERIFICACIÓN DE CONDUCCIONES A SUPERFICIE LIBRE . 

 

LOS CÁLCULOS Y VERIFICACIONES , IMPLICAN NECESARIAMENTE , VERIFICAR LA 

VELOCIDAD MAXIMA Y LA VELOCIDAD MINIMA , QUE SE PRODUCE EN TODAS LAS 

SECCIONES DEL CANAL A DISEÑAR Y VERIFICAR . 

 

 

La velocidad máxima para un escurrimiento a superficie libre viene dada ,según la naturaleza de las paredes, 

podemos indicar a modo de ejemplo , que  para tierra sería de 0,6 a 0,7 m/seg y para hormigón de 5 mts/seg 

aproximadamente- 

 

La velocidad mínima, necesaria para evitar embanques y formación de plantas acuáticas, por ejemplo según 

KENNEDY: 

 Umín = β.h
5  

,    donde β, es función del material en suspensión ,oscila entre 0,3 y 0,65 . 

 

 

 

SECCIONES MÁS CONVENIENTES 

 

SECCIONES DE MINIMA RESISTENCIA 

 

SECCIONES DE GASTO MAXIMO 

 

SECCIONES MAS ECONOMICAS 

 

 

 

A veces interesa determinar, para algunas formas geométricas, qué sección, en igualdad de área, tiene mayor 

capacidad de transporte de caudal.  

 

Es evidente que para la misma área  Ω, el gasto será máximo cuando el radio hidráulico R sea máximo y por ser  

Ω constante, el perímetro mojado χ debe ser mínimo (secciones de mínima resistencia). 

 

Para una sección semicircular, la superficie libre debe coincidir con el diámetro del círculo, el tirante hidráulico 

debe ser igual al radio del círculo y el radio hidráulico será R = h / 2. 

 

El perfil trapecial isósceles que corresponde al máximo gasto es, para cada inclinación de los taludes m, el que 

pudiera circunscribir en una semicircunferencia  cuyo diámetro coincida con la superficie libre. 

 

La sección rectangular puede considerarse como caso límite del anterior, cuando m → 0 , lo que conduce a un 

ancho igual al doble de la altura. Es sencillo comprobar que, de los tres perfiles indicados, el semicircular es el 

que, para un mismo gasto, necesita menores dimensiones. Por ser un perfil de difícil construcción, se adopta 

frecuentemente el perfil trapecial. 

 

A veces perfil trapecial, es poco conveniente, para un gasto máximo, cuando su diseño exige grandes valores en 

su altura. 
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TEÓRICAMENTE LA SECCIÓN MÁS ECONÓMICA ES LA QUE OFRECE LA MÍNIMA 

RESISTENCIA, PERO EN LA PRÁCTICA, ESTE CRITERIO NO CONDUCE A LA 

SECCIÓN MÁS CONVENIENTE. 

 

 

La sección más conveniente es la que , siendo técnicamente aceptable, resulta la más económica y 

esto no significa que sea la de menor costo en su construcción, sino también debe ser la de menor 

costo anual de operación, para ello debemos tener en cuenta la incidencia sobre el costo de los 

siguientes factores :  

 

  

 

a) Mayor profundidad de la obra de revancha ( h +  %   h) 

 

b) Ancho de la zona a expropiar 

 

c) Pendiente transversal 

 

d) Talud, según el material 

 

e) Costo a mayor profundidad 

 

f) Relación  Qmáx / Qmín.  

 

g) Existencia de equipos adecuados ( por ejemplo retroexcavadoras ) . 

 

h) Existencia de encofrados metálicos para determinadas formas . 

 

i) Necesidad o no de revestimiento . 

 

j) Otras condiciones particulares del Proyecto . 

 

 

Igualmente , aunque NO PROYECTEMOS con el criterio de minima resistencia , siempre es MUY 

UTIL , conocer cual seria dicha seccion , a efecto de comparar cuanto nos estamos apartando de la 

misma , por cualquiera que fuera la razon . 
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PLANTEO DE LOS PROBLEMAS QUE SE PRESENTAN 

 

 

Los problemas que se presentan en el diseño de canales pueden resumirse  

 

 

 

1.- VERIFICACIÓN  
                                

Se tiene un canal cuyos datos son conocidos, sección Ω, perímetro mojado χ , índice de rugosidad n,  

pendiente de la solera o fondo del canal i; debemos verificar el caudal Q.  

 

 

2.- PROYECTO  
                          

Dado  n , i   y  Q, se debe diseñar la sección Ω 

 
 

Como hemos visto , las ecuaciones de aplicación son simples , pero su relacion matematica ( potencias 

fraccionarias y otras ) , implica que no sean de despeje directo de las variables y parámetros del canal . 

 

Por este motivo y en las epocas pre COMPUTADORA , era necesario preparar tablas y abacos que 

simplificaran las taraes de proyecto , tablas que Uds. emplearan en sus T.P. ‘s . 

 

 

TABLAS ADIMENSIONALES DE WOODWARD  y POSEY , PROGRAMAS DE CALCULO , 

PLANILLA ELECTRONICA EXEL  , MATHCAD . 

 

 

Estas tablas facilitan el cálculo de canales con movimiento uniforme y permanente,  fueron realizadas de 

acuerdo al siguiente razonamiento. 

 

De la ecuación de Continuidad y la ecuación de CHEZY , tenemos :    Q = C . Ω. iR.  

 

de Manning    C = 6.
1

R
n

 

 

 

              Q  =    2

1

3

2

...
1

iR
n
     ( IX-16)     como R = 




   Q  =    2

1

3

5

3

2
..

.

1
i

n





    ( IX – 17) 

 

 

Si las unidades de n es ( m 
-1/3

. seg ), se comprueba que la (IX-17) es, en referencia a sus unidades, homogénea. 

Entonces las relaciones:    

 

 

       1

..

.

2

1

3

2


 iR

nQ
  ( IX – 18)        y           1

.

..

2

1

3

5

3

2



 i

nQ 
   ( IX – 19 )         Son adimensionales 
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EJEMPLOS 

 
 

 

a) SECCION TRAPECIAL                       

 

                                                                                          Ω = ( Bf + m.h ).h = h
2
. 













 m

h

B f
 

                                                                                           χ = Bf + 2 222 . hhm  = h 












 12 2m

h

B f
 

                                                                                         Reemplazando en ( IX- 19): 

        

                                                                                         

2
1

3
3

5

3
13

2

2

..

...12

ihm
h

B

hnQm
h

B

f

f































 = 1 

 

 

 

de donde:  

 

 

         );(

.

..

2
1

3

3
1

m
h

B
f

ih

hnQ f                ( IX-20 a)         TABLA   6 a –b   

 

 ó     );(

.

.

2
1

3
8

m
h

B
f

iB

nQ f

f

                 ( IX- 20 b)       TABLA    7 a – b 

 

 

 

                                                                                           

                                                                                           

 

 

 

 

 

Seccion Trapecial 
 

Q
i

n

Bf

h
m









5

3


Bf

h
2 1 m

2










2

3

 h

8

3


 
 

 

 

 

    

fB
h  

 

  m  = 0 

 

 

   m =  1 / 2 

  

      m = 4 

                

         ( IX-20) 

  

Revancha 

Bs 

Bf 

Ω 

1 

m 

θ 
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b) SECCIÓN TOLVA   

 

 

(   similar al caso del canal trapecial )  

                                                                                     

 

 

                                                                                              );(

.

..

2
1

3

3
1

m
r

hf

ir

rnQ
     ( IX- 22)  

 

                                                                                               );(

.

..

2
1

3

3
1

m
r

hf

ih

hnQ
     ( IX – 23) 

 

 

 

CON LOS ADIMENSIONALES , O BIEN PROGRAMANDO LAS FORMULAS  EN MATHCAD , EXEL , 

ETC.  

 

 

 

 

 

c) SEGMENTO DE CÍRCULO  

 

 

 

 

                                                                                          

                                                                                         )(

.

..

2
1

3

3
1

D
hf

iD

DnQ
    ( IX – 24)     TABLA 8  

 

                                                                                          )(

.

..

2
1

3

3
1

D
hf

ih

hnQ
    ( IX – 25 ) 

 

 

 

 

 

CON LOS ADIMENSIONALES , O BIEN PROGRAMANDO LAS FORMULAS  EN MATHCAD , EXEL , 

ETC.  
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CALCULO DE CANALES 
 

 

VERIFICACIÓN DE LA CAPACIDAD DE TRANSPORTE    (   Q   )  

 

 

Datos:  Ω , m, n, i, h, Bf     Incógnita:Q 

Se calcula 
fB

h
 y con  m, se determina el valor de  

2
1

3

3
1

.

..

ih

hnQ
  ó bien de  

2
1

3
8

.

.

iB

nQ

f

, de donde despejamos Q. 

Otra manera es  con las fórmulas, ya vistas, determinando el área, el valor del perímetro mojado, la  velocidad U 

( Chezy) y finalmente el caudal Q ( continuidad). 

 

 

 

DISEÑO DE LA SECCIÓN 
 

 

Datos: Q , i ( pendiente del terreno) Se fijan los valores de n, m; de acuerdo a las características del terreno  

y/o  del  revestimiento a emplear  

 

Se elige 
fB

h
 (  h ó Bf , según criterios a ver  mas adelante  ) 

1.- Fijando U según terreno ó revestimiento, por lo tanto  cte
U

Q
 . 

 

1.1.- Se fija relación 
fB

h
,  de la expresión de Ω, despejamos  h: 

        

 h = 

h

B
m

f



  , con m y 

fB

h
, se calcula h. Con 

fB

h
 y h, se calcula Bf. 

 

 Luego con m y 
fB

h
, de tabla se obtiene 

2
1

3
8

.

.

ih

nQ
 = ATrap                            ATrap: Adimensional  canal trapecial 

 

 De donde  obtenemos   i. 

 

1.2.- Se fija h, de la expresión de Ω  se obtiene  Bf, se calcula 
fB

h
. Con 

fB

h
 y m de tabla se determina ATrap y 

finalmente se calcula i. 

1.3.- Se fija Bf , de Ω despejamos h, calculamos 
fB

h
.Con m y 

fB

h
, de tabla se determina ATrap , obteniendo 

finalmente i. 
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En cualquiera de los tres casos se puede llegar a :  

 

 

i  < it ,  se deben proyectar saltos en el canal. 

 

i  =  it, no existen  inconvenientes. 

 

i  >  it   se debe modificar el cálculo fijando la pendiente del canal igual a la del terreno, procediendo de la 

siguiente forma  

 

 

 

2.- Fijando i, menor ó igual a la pendiente del terreno 

 

 

Siendo U = C. iR. , para i = cte y R casi cte ( función de h), por lo tanto U = cte    Ω  = cte. 

2.1.- Se fija 
fB

h
, y con m, de tabla se obtiene  ATrap =  

2
1

3
8

.

.

ih

nQ
 , con  ATrap   se obtiene h;  y  finalmente  con 

fB

h
 y h se calcula Bf. 

 

*  Se debe verificar SIEMPRE que la velocidad se encuentre debajo de la admisible , por EROSION  

 U    Uadm 

 

2.2.-Se fija h , se calcula   ATrap   =  
2

1
3

8

.

.

ih

nQ
, de tabla  con ATrap y m se determina 

fB

h
. 

Con h  y  
fB

h
, se calcula Bf. 

* Verificar que U   Uadm 

 

2.3.-Se fija Bf , se calcula   ATrap   =  
2

1
3

8

.

.

iB

nQ

f

, de tabla  con ATrap y m se determina 
fB

h
. 

Con Bf   y  
fB

h
, se calcula h. 

*Verificar que U   Uadm 
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Nota: en todos los casos debe calcularse el tirante crítico hc , y se debe verificar que la energía propia 

supere en un 5% a la Hc. , o en canales veloces , que se encuentre ese porcentaje por debajo . 

Esto es para evitar que pequeños cambios en las condiciones reales de la obra , provoquen un cambio de 

regimen y oscilación de los parámetros del canal . (  velocidad , tirante , etc. ) . 

 

 

.  

ENERGIA PROPIA DE LA CORRIENTE 

 

CRITERIOS PARA FIJAR  
fB

h
 

a) Por experiencia 
fB

h
= 0,5 

 

b) Mínima resistencia ( fijando m según características del terreno o revestimiento) . 

 

Según se ha visto, tanto fijando U como i, resulta Ω = cte. La mínima resistencia ( Q = máximo) se obtiene para 

perímetro mojado mínimo. 

 

χ= Bf + 2 h 12 m              Ω =  h  ( Bf  + m h)        Bf = mh
h



 

 

χ= mh
h



 + 2 h 12 m      (IX – 26)  

 

Derivando respecto de  h ( siendo m y Ω  = cte ) : 

2

2

0

12 mm
hdh

d






= 0      

mm
h






2

2
0

12
   =  

2

0

2
0

12 mm

m
h

B
h

f


















   

 

 de donde:    












212

10

mmf
B

h
           ( IX – 27) 

 

h 
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hc 

H g

Uu

2

2

 

H1 Hmín 

hu 

hc 2g

U 2
c  

 

g

U
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Veloces 
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hu 
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c) Mínima resistencia ( sin fijar m ) 

 

 

Si Ω se mantiene cte, dejando h = cte, tendremos un talud m, que hace mínimo el perímetro. 

 

χ = mh
h



 + 2 h 12 m    

χ =  


tgh
h

h
.

cos
.2 


 = )

cos

2
( 


tgh

h



 

 

0
cos

12

0

2

0 











 








 sen
h

d

d
  

 2 senα -1 = 0       senα = 
2

1
         Entonces  α  = 30º   

este valor de α , nos permite  determinar , la sección  del canal que cumple con el requisito de mínima 

resistencia debe ser de forma semi-hexagonal. En donde: 

 

Bs = 2.h 21 m = 2 Bf      

                                             

 

El terreno , debe ser capaz de soportar el   m  que surge de esta adopción  
 

 

NORMAS  GENERALES  PARA  EL  PROYECTO DE CANALES 

 

1.- La sección debe alejarse de los valores críticos   H  > 1,05 Hc , donde Hc = hc  +  
g

U c

2

2

 

2.- La relación entre el tirante uniforme  y el crítico mantiene un valor casi constante, si varía el gasto de un 

canal con pendiente constante. Veamos esta relación aplicada a un canal rectangular 

 

Ω = B . h  ;            R = 
hB 2


  ;             Q =  

n

iR 2
1

3
2

..
   =    

n

ihB 2
1

3
5

..
           

 

 h  =  

3
5

2
1

.














i

n

B

Q
= 

3
5

2
1

.














i

n
q ; sabemos que    hc = 

3
1

2















g

q
   15

1

10
3

3
1

5
3

.
. 

 q

i

gn

h

h

c

  

 

 

h 

Bs 

Bf m.h 

α  = 30º 

h
21 m  

21 m  
1 

m 

α 
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Siendo 15
1

q , un valor pequeño, podemos decir que  K
h

h

c

 . De modo que si un canal se proyecta   en 

régimen lento, si se modifica el gasto, conservará el régimen lento; pero en régimen veloz, dada la forma de la 

curva de energía, puede suceder que calculando el canal para un gasto dado Q, de modo que la condición  J, sea 

estable, los gastos pequeños, pueden escurrir en la zona inestable, próxima  al crítico. Para ello en canales de 

régimen veloz deben satisfacerse ciertas relaciones que cumplan con  valores límites, por ejemplo: 

 

 

 

   Sección TRAPECIAL     Sección  TOLVA 

 

 

 

 

 

 

 

 

 

 

 

 

 

En la sección segmento de círculo 
3

1

2

.

.

ri

ng
 varía entre 0,14 y 0,553. 

Para secciones parabólicas  
3

1

3
1

2

.

..

Bi

png
  varía entre 0,04 y 0,95. 

 

c) En el proyecto de canales, cuando se presentan singularidades, transiciones de soleras, curvas, cambios de 

pendiente, etc, debe realizarse el diseño en base a la línea de energía a fin de ubicar correctamente el nivel de la 

solera 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Taludes m 
3

1

2

.

.

ri

ng
 

0 0,14 a 0,553 

1/4 0,14 a 0,553 

1/2 0,13 a 0,59 

3/4 0,12 a0,72 

1 0,12 a 0,83 

2 0,10 a 1,02 

 

   Taludes m 
3

1

2

.

.

fBi

ng
 

 1/4 0,20 a 0,375 

1/2 0,20 a 0,416 

3/4 0,20 a 0,80 

1 0,20 a 0,96 

1
1/2 

0,20 a 1,16 

2 0,20 a 1,32 
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TABLA Nº 1 – Valores de n por GAUNGUILLET- KUTTER 

 

 

 

 

CATEGORIA Naturaleza de las paredes n 

1 De madera cuidadosamente cepillas o enlucidos de cemento 0,010 

2 De tablas de madera en bruto 0,012 

3 De mampostería en ladrillo bien rejuntado 0,013 

4 De mampostería de piedra en bruto 0,017 

5 De tierra 0,025 

6 Grandes cursos de agua con cauce irregular y plantas acuáticas 0,030 

 

 

 

 

 

TABLA Nº 2 – Valores de γ dados por BAZIN 

 

 

 

 

CATEGORIA Naturaleza de las paredes γ 

1 Paredes muy lisas ( enlucido de cemento, madera cepillada,etc) 0,06 

2 Paredes lisas ( madera, ladrillos, piedra labrada) 0,16 

3 Mampostería común 0,46 

4 Secciones en  tierra muy uniformes 0,85 

5 De tierra, en condiciones ordinarias 1,30 

6 De tierra con resistencia al escurrimiento (paredes con  

vegetación) 

1,75 
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TABLA Nº 3 – Valores de n de la fórmula de MANNING 

 

CATEGORIA Naturaleza de las paredes n 

1 Revestimientos vitrificados ó esmaltados 0.003 

 

 

2 

Paredes de madera 

a) Tablas cepilladas, perfectamente colocadas 

b)  Tablas cepilladas, colocación inferior 

c)  Sin cepillar, perfectamente colocadas 

d)  Sin cepillar, colocación inferior 

 

0,010 

0,012 

0,012 

0,014 

 

3 

Metálicas 

a)  Chapa pulida 

b)  Chapa remachada 

 

0,010 

0,015 

 

 

4 

Mampostería 

a)  Con enlucido de cemento alisado 

b)  Revoque de mortero alisado 

c)  Ladrillos de máquina 

d)  Ladrillos comunes 

 

0,010 

0,012 

0,013 

0,015 

 

5 

Paredes de hormigón 

a)  Moldeado con encofrado metálico 

b)  Con encofrado de madera 

 

0,013 

0,015 

 

 

6 

Paredes de tierra 

a) Revestidas con pedregullo bien apisonado 

b) Tierra alisada en perfectas condiciones 

c)  Tierra en condiciones naturales 

d) Tierra en malas condiciones ( escombros  o 

vegetación) 

 

0,020 

0,020 

0,023 

0,040 

7 PVC ( policloruro de vinilo) 0,009  

a 

0,010 

8 PRFV ( Plástico reforzado con fibra de vidrio ) 0,010 

a 

0,011 

9 Asbesto -cemento 0,011 

a 

0,012 

10 Hierro dúctil 0,012 

a 

0,013 

11 Acero revestido 0,011 

a 

0,013 
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VELOCIDADES LIMITE DE EROSION  

( SE OBTIENEN DE LOS MANUALES )  
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EJEMPLO DE TABLA DE WOODWARD Y POSEY  
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CANAL TRAPECIAL ( función de  Bf )  
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CANAL SEGMENTO DE CIRCULO  
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Q
i D

2.666


20.159 n
2 acos 1

2 h

D










 sin 2 acos 1
2 h

D




























 1

sin 2 acos 1
2 h

D



















2 acos 1
2 h

D


























0.666

  
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ALGUNOS EJEMPLOS HISTORICOS DE CANALES  
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