Trabajo Práctico Nro. 3

Integrales Complejas

- 1. Calcular las siguientes integrales:
 - (a) $\int_{0}^{1} (1+it^2)dt$ (b) $\int_{-\pi}^{\pi/4} te^{-it^2}dt$ (c) $\int_{0}^{\pi} (\sin 2t + i\cos 2t)dt$
- 2. Calcular las siguientes integrales de línea:
 - a) $\int_C \operatorname{Re}(z) dz$ a lo largo de las siguientes trayectorias:

- b) $\int_C \frac{1}{z} dz$, C: semicircunf. superior de |z|=1 desde $z_1=-1$ hasta $z_2=1$.
- c) $\int_{C}^{C} (2|z|+3) dz$, C: segmento del eje real que une $z_1 = -1$ y $z_2 = 2$. d) $\int_{C}^{C} \pi e^{(\pi \overline{z})} dz$, C: borde del cuadrado de vértices $z_1 = 0$, $z_2 = 1$, $z_3 = 1 + i$ y $z_4 = i$, recorrido en sentido positivo.
- 3. Mostrar que para $m, n \in \mathbb{Z}$, $\int_{-1}^{2\pi} e^{im\theta} e^{-in\theta} d\theta = \begin{cases} 0 & \text{si } m \neq n \\ 2\pi & \text{si } m = n \end{cases}$ y obtener el valor de $\int z^m \bar{z}^n \ dz$ siendo γ la circunferencia centrada en el origen, de radio r, recorrida en sentido antihorario.
- 4. Sea la circunferencia $C: z-a=r_0e^{i\theta}$ donde $r_0>0$ y $0\leqslant\theta\leqslant 2\pi$ y f continua sobre C. Demostrar que $\int_{0}^{1} f(z) dz = ir_0 \int_{0}^{2\pi} f(a + r_0 e^{i\theta}) e^{i\theta} d\theta$.
- 5. Sea $f: A \to \mathbb{C}$, f = u + iv continua en A y γ una curva simple orientada incluída en A. Demostrar que Re $(\int f(z)dz)$ y Im $(\int f(z)dz)$ dan respectivamente, la circulación a lo largo de γ y el flujo del campo vectorial (u,-v) a través de $\gamma.$

6. Sin calcular la integral, obtener las siguientes acotaciones:

(a)
$$\left| \int_{C} \frac{1}{z^4} dz \right| \le 4\sqrt{2}$$
 C : segmento que une los puntos $z_1 = i$ y $z_2 = 1$.

(b)
$$\left| \int_{C} \frac{\bar{z}}{\bar{z}+1} dz \right| \leq \frac{8}{3}\pi$$
 C : circunferencia $|z| = \frac{2}{3}$, recorrida en sentido positivo.

(c)
$$\left| \int_{C} \frac{1}{z^2 + 1} dz \right| \leq \frac{\pi}{3}$$
 C: circunferencia $|z| = 2$, en el primer cuadrante.

7. Sea γ la semicircunferencia superior de |z|=R. Probar que:

(a)
$$\lim_{R \to +\infty} \int_{\gamma} \frac{e^{iz}}{z^2 + a^2} dz = 0$$
 (b) $\lim_{R \to +\infty} \int_{\gamma} \frac{\log z}{z^2} dz = 0$

- 8. Clasificar a los conjuntos conexos del ejercicio 17 (a) del Trabajo Práctico Nro. 2 en simplemente o multiplemente conexos.
- 9. a) Independencia del camino. Estudiar bajo qué condiciones es válido $\int\limits_{\gamma} f(z) \ dz = \int\limits_{\lambda} f(z) \ dz \ \text{para dos curvas} \ \gamma \colon [a,b] \to \mathbb{C}, \ \lambda \colon [a,b] \to \mathbb{C} \ \text{tales}$ que $\gamma(a) = \lambda(a)$ y $\gamma(b) = \lambda(b)$.
 - b) Aplicar, si es posible, el resultado del ítem (a) para calcular: (i) $\int_C \frac{1}{z} dz$ C: semicircunf. inferior de |z|=1 desde $z_1=1$ hasta $z_2=-1$.

(ii)
$$\int_{C} \frac{1}{z} dz$$
 C: curva definida por $x^4 + y^4 = 1$ desde $z_1 = -1$ hasta $z_2 = 1$.

10. Calcular, en cada caso, la integral de línea de la función f a lo largo de los contornos C indicados:

(a)
$$f(z) = \frac{1}{z^2 + 2z + 2}$$
 $C = \{z \in \mathbb{C}/|z| = 1\}.$

(b)
$$f(z) = z^3$$
 (i) $C = \{z \in \mathbb{C}/ |z| = 1\},\$

- (ii) C: recta que une los puntos z=1 y z=i,
- (iii) C: arco de circunferencia de centro 0 y radio 1 que une los puntos z=1 y z=i,
- (iv) C: un contorno que une los puntos z=1 y z=i.

(c)
$$f(z) = z \operatorname{sen}(z^2)$$
 C: contorno que une los puntos $z = -i\pi$ y $z = i\pi$.

11. Sea $D = \{z \in \mathbb{C} : 1 < |z| < 2\}$ y γ la frontera de D, orientada de modo que los puntos de D están a la izquierda de γ . Probar que $\int f(z) \ dz = 0$ para:

(a)
$$f(z) = \frac{e^z}{z^2 + 9}$$
 (b) $f(z) = \cot z$

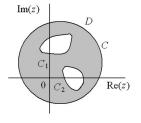
- 12. a) Sean D y los contornos C, C_1 y C_2 como se indican en la Figura a (más abajo). Probar que si f es holomorfa en D y continua sobre los contornos C, C_1 y C_2 , el valor de la integral de f sobre la frontera de D es cero (o sea que bajo estas condiciones, se puede extender el teorema de Cauchy a dominios múltiplemente conexos). Deducir la relación entre las integrales de f sobre C, C_1 y C_2 .
 - b) Mostrar:

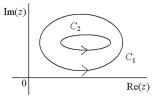
$$\int_{|z|=2} \frac{\sin z}{z^2 - 1} dz = \int_{|z-1|=1/2} \frac{\sin z}{z^2 - 1} dz + \int_{|z+1|=1/2} \frac{\sin z}{z^2 - 1} dz$$

c) Analizar bajo qué condiciones $\int_{C_1} f(z) dz = \int_{C_2} f(z) dz$ siendo $f(z) = \frac{1}{(z-a)(z-b)} \text{ y } C_1 \text{ y } C_2 \text{ como se indican en la Figura b.}$

Figura a

Figura b





- 13. Aplicando la fórmula integral de Cauchy, integrar la función $f(z) = \frac{2z^2 4}{z^2 + 1}$ a lo largo del círculo de radio 1 y recorrido una vez en sentido antihorario, con centro en:
 - (a) z=i (b) $z=\frac{1}{2}$ (c) z=-i
- 14. Calcular las siguientes integrales:

(a)
$$\int_{|z|=1}^{z^2+4} \frac{z^2+4}{z} dz$$
 (b) $\int_{|z|=4}^{z} \left(\frac{\cos(\pi z)}{z+1} + \frac{2e^z}{z-3}\right) dz$ (c) $\int_{|z|=\frac{3}{2}}^{z} \frac{\log(z+2)}{(z+1)(z^2+4)} dz$

- 15. Calcular todos los posibles valores de la integral $\int_{\Gamma} \frac{dz}{z(z^2-1)}$ para diferentes contornos cerrados Γ que no pasen por 0, 1 y -1.
- 16. Calcular la integral de línea de las siguientes funciones:

(i)
$$f(z) = \frac{z^3 - z}{(z+1)^2}$$
 (ii) $f(z) = \frac{z^4}{(z-1)^2(z-3)}$ (iii) $f(z) = \frac{\sinh z}{(z^2-1)^2}$ (iv) $f(z) = \frac{e^z}{z^n}$ para $n > 0$

sobre el círculo de radio 2 y centro en: (a) z=0, (b) z=2+i.

- 17. Mostrar que si f(z) es holomorfa en $\Gamma \cup \operatorname{int}(\Gamma)$ donde Γ es un contorno cerrado en \mathbb{C} , entonces $\int_{\Gamma} \frac{f(z)}{(z-a)^2} dz = \int_{\Gamma} \frac{f'(z)}{(z-a)} dz$, $\forall a \notin \Gamma$.
- 18. Probar que si f(z) es holomorfa en un dominio D y si el disco cerrado $|z-a|\leqslant R$ está en D, entonces $f(a)=\frac{1}{2\pi}\int\limits_{0}^{2\pi}f(a+Re^{it})\ dt$.

Este resultado puede interpretarse como un teorema del valor medio que expresa el valor de f en el centro de la circunferencia como un "promedio" de los valores sobre la misma.

- 19. Sea f(z) una función holomorfa en |z-a| < R. Si 0 < r < R, demostrar que $f'(a) = \frac{1}{2\pi r} \int\limits_0^{2\pi} f(a+re^{it}) \, e^{-it} \, dt.$
- 20. Explicar por qué si f = u + iv es holomorfa en un dominio D, existen todas las derivadas parciales de u y de v y son continuas en D.
- 21. Demostrar que si f es holomorfa en $|z-z_0| < R$ y continua en $|z-z_0| = R$ con $|f(z)| \le M$ en $|z-z_0| = R$, entonces

$$|f^{(n)}(z_0)| \le \frac{n!M}{R^n} \quad \forall n \in \mathbb{N}.$$

- 22. Probar que si f(z) es holomorfa y $|f(z)| < \frac{1}{1-|z|}$ en B(0,1) entonces $|f'(0)| \le 4$.
- 23. Justificar que, a excepción de la función nula, no existe función entera que tenga límite 0 en ∞ .

Funciones Armónicas

- 24. Determinar si las siguientes funciones son armónicas indicando el dominio en que lo son.
 - (a) $u(x, y) = e^{-x} \cos y$
- (b) $u(x,y) = e^x (x \cos y y \sin y)$
- (c) $v(x,y) = x^2 y^2 + e^x \cos y + x$ (d) $v(x,y) = e^{2xy} \cos(x^2 y^2)$
- (e) $u(x,y) = \frac{x^2 y^2}{(x^2 + u^2)^2}$
- (f) $u(x,y) = \ln(x^2 + y^2)$
- (g) $v(x,y) = \operatorname{arctg}\left(\frac{y}{x}\right)$
- 25. Hallar una función holomorfa u + iv tal que su parte real (respectivamente, su parte imaginaria) coincida con la función u (respectivamente, v) de cada ítem del ejercicio 31. Especificar su dominio de holomorfía.
- 26. Establecer las condiciones que deben cumplir $a, b \ y \ c \in \mathbb{R}$ para que las siguientes funciones sean armónicas en \mathbb{R}^2 :

 - (a) u(x,y) = ax + bxy + cy (b) $u(x,y) = ax^2 + bxy + cy^2$
- 27. Probar que si $\phi(x,y)$ es armónica en un dominio S entonces $\psi = \phi_x i\phi_y$ es holomorfa en S (la función ψ se llama el gradiente conjugado de ϕ).
- 28. Justificar por qué si f(x,y) = u(x,y) + iv(x,y) es holomorfa, la función $3u^2v v^3$ es armónica respecto a (x, y).
- 29. Obtener una conjugada armónica de $x^2 y^2 + e^{2\pi(x-1)}\cos(2\pi y)$. Hallar la curva ortogonal a la curva definida por $x^2 - y^2 + e^{2\pi(x-1)}\cos(2\pi y) = 1$ en (1,1).

Aplicaciones sobre armónicas conjugadas

- 30. Sea $\phi(x,y) = 2x 6y$ la distribución de temperatura estacionaria de un sólido bidimensional. ¿Cuál es la temperatura compleja? Describir las líneas isotérmicas y las líneas de flujo.
- 31. El potencial complejo de un flujo de fluido está dado por $\Phi(z) = 1/z$ para $z \neq 0$. Hallar la velocidad compleja. Mostrar que la curva equipotencial que pasa por (1,1) es $(x-1)^2+y^2=1$. Obtener la línea de coriente que pasa por (1,1). Graficar ambas curvas.
- 32. Encontrar el potencial complejo de un fluido que se mueve con velocidad constante v_0 y cuya dirección forma un ángulo θ con el semieje real positivo. Hallar las componentes del campo de velocidad. Esbozar las curvas equipotenciales y las líneas de corriente.

33. Determinar si las siguientes ecuaciones describen las líneas de corriente de un fluido ideal. En caso afirmativo, calcular el correspondiente potencial complejo:

(i)
$$\operatorname{arctg}\left(\frac{y}{x+1}\right) = cte$$
,
(ii) $\frac{x-y}{x^2+y^2} = cte$,
(iii) $e^{(x^2-y^2)}\operatorname{sen}(2xy) + x^2 - y^2 = cte$

(ii)
$$\frac{x - \dot{y}}{r^2 + u^2} = cte$$
,

(iii)
$$e^{(x^2-y^2)}$$
sen $(2xy) + x^2 - y^2 = cte$