{ "cells": [ { "cell_type": "markdown", "id": "c9df0f50-7e21-4f44-afcd-0411b083ddbd", "metadata": {}, "source": [ " Vamos a hacer algunos ejemplos de convolución y sistemas LTI. Empezamos cargando algunas librerías: " ] }, { "cell_type": "code", "execution_count": 1, "id": "0c00c2ac-8fa5-43cc-8598-0af1e3b291d1", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy import fft, signal\n", "import sys\n", "sys.path.insert(1, 'Some functions/')\n", "from generate_signals import *" ] }, { "cell_type": "markdown", "id": "db4510a0-d2de-4980-bfcf-2fc51e8a8e40", "metadata": {}, "source": [ "Empecemos con un ejemplo ya visto en la clase. Sea $h(t)=u(t)$ y $x(t)=e^{-\\alpha t}u(t)$ con $0<\\alpha$. Queremos calcular $y(t)=h(t)*x(t)$. Empecemos tomando algunas definiciones para \"simular\" señales de tiempo continuo en la computadora. " ] }, { "cell_type": "code", "execution_count": 2, "id": "faaa8caa-26ad-4fa5-aa87-d3e4da73c981", "metadata": {}, "outputs": [], "source": [ "# Signal duration in seconds\n", "D = 15\n", "# Sampling rate in Hz\n", "fs = 1000\n", "#Sampling period\n", "T = 1/fs\n" ] }, { "cell_type": "markdown", "id": "0fe505df-ee07-42bc-a322-f10e21e2c943", "metadata": {}, "source": [ "Vamos a generar las señales $h(t)$ y $x(t)$." ] }, { "cell_type": "code", "execution_count": 3, "id": "f44ca6b8-bf68-4c20-babc-8fffa0000fc7", "metadata": {}, "outputs": [], "source": [ "amplitude = 1\n", "alpha = -1\n", "sample_rate = fs\n", "duration = D\n", "position = 0.5 #Position of impulse. Value between 0 a 1. The start of exponential will be positioned in the index closer \n", " #to duration*position \n", "tx,x=generate_right_exponential(amplitude,alpha, sample_rate, duration, position) " ] }, { "cell_type": "code", "execution_count": 4, "id": "f9c1b7c7-813d-4faa-bc7c-59adfacd480c", "metadata": {}, "outputs": [], "source": [ "amplitude = 1\n", "alpha = 0\n", "sample_rate = fs\n", "duration = D\n", "position = 0.5 #Position of impulse. Value between 0 a 1. The start of exponential will be positioned in the index closer \n", " #to duration*position \n", "th,h=generate_right_exponential(amplitude,alpha, sample_rate, duration, position) " ] }, { "cell_type": "code", "execution_count": 5, "id": "1ce08dd3-1381-4607-990e-b80831cec999", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABNEAAANBCAYAAADObSizAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACArUlEQVR4nOzdd5idZYE+/vtMT++dQOjFSBdEQREpiqLs6q7ruhZUXLtrdFdRActPsSBYV1yQ1V11Lft1WVeKIILCgrD03kJCIKS3SZuSmfP7Y5KBmDYnmck7M+fzua44c85533PuIQ+5wu1TSuVyuRwAAAAAYJtqig4AAAAAAP2dEg0AAAAAdkCJBgAAAAA7oEQDAAAAgB1QogEAAADADijRAAAAAGAHlGgAAAAAsANKNAAAAADYgbqiA+xunZ2defbZZzNixIiUSqWi4wAAAABQoHK5nNWrV2fq1Kmpqdn2fLOqK9GeffbZTJ8+vegYAAAAAPQjTz/9dPbYY49tvl51JdqIESOSdP2DGTly5E6/T3t7e6699tqceuqpqa+v7614DGLGDJUyZqiUMUOljBkqYbxQKWOGShkzVKq3xkxzc3OmT5/e3RltS9WVaJuWcI4cOXKXS7ShQ4dm5MiR/uWmR4wZKmXMUCljhkoZM1TCeKFSxgyVMmaoVG+PmR1t++VgAQAAAADYASUaAAAAAOyAEg0AAAAAdqDq9kTriXK5nA0bNqSjo2Ob17S3t6euri4tLS3bvY5i1dbWpq6ubofrmgEAAAC2R4n2Z9ra2rJgwYKsW7duu9eVy+VMnjw5Tz/9tIKmnxs6dGimTJmShoaGoqMAAAAAA5QS7Xk6OzszZ86c1NbWZurUqWloaNhmQdbZ2Zk1a9Zk+PDhqamxKrY/KpfLaWtry5IlSzJnzpzsv//+fq8AAACAnaJEe562trZ0dnZm+vTpGTp06Hav7ezsTFtbW5qamhQz/diQIUNSX1+fp556qvv3CwAAAKBS2p+tUIoNLn4/AQAAgF2lXQAAAACAHVCiAQAAAMAOKNHYzPz587PXXnvl1FNPzaJFi3LwwQdXdP/cuXNTKpVyzz337FKOtra27Lfffrnlllu2e90nP/nJfOhDH9qlzwIAAADYESXaILFkyZK8733vy5577pnGxsZMnjw5p512Wv73f/+3ovf5/e9/n7/7u7/L61//+hx33HF597vf3UeJt++SSy7J3nvvnZe85CVJtl3OffzjH8+PfvSjPPnkkwWkBAAAAKqF0zkHiTe84Q1pa2vLj370o+yzzz5ZtGhRrr/++ixbtqyi93nrW9/a/f0HPvCB3o7ZI+VyOd/5znfy+c9/fofXjh8/Pqeddlq+973v5Wtf+9puSAcAAABUIzPRdqBcLmdd24at/lrf1rHN13rjV7lc7lHGlStX5qabbspXvvKVvOIVr8hee+2VY445Juecc05e97rXbXbdu9/97kyYMCEjR47MSSedlHvvvbf79c9+9rM5/PDD8+///u+ZMWNGRo0alb/5m7/J6tWru6+55pprcvzxx2f06NEZN25cXvva12b27Nk9/uf5yCOPZOjQofnpT3/a/dwvfvGLDBkyJA899FCS5M4778zs2bPzmte8pvuavffeO0lyxBFHpFQq5cQTT+x+7YwzzsjPfvazHmcAAAAAqJSZaDuwvr0jh5z320I++6HPn5ahDTv+LRo+fHiGDx+eK664Ii9+8YvT2Ni41ev+6q/+KkOGDMnVV1+dUaNG5fvf/35e+cpX5rHHHsvYsWOTJLNnz84VV1yR3/zmN1mxYkX++q//Ol/+8pfzxS9+MUmydu3azJo1K4ceemjWrFmT8847L3/xF3+Re+65JzU1O+5kDzrooFx44YV5//vfn+OPPz41NTV573vfm6985Ss55JBDkiQ33XRTDjjggIwYMaL7vttvvz3HHHNMfve73+UFL3hBGhoaul875phj8swzz2Tu3LmZMWPGDjMAAAAAVEqJNgjU1dXlhz/8Yc4+++xccsklOfLII/Pyl788f/M3f5NDDz00SXLzzTfn9ttvz+LFi7tLtgsvvDBXXHFF/vM//zPvec97kiSdnZ354Q9/2F1gvfWtb83111/fXaK94Q1v2OyzL7/88kyYMCEPPfRQZs6c2aO873//+3PVVVfl7/7u79LQ0JAXvehFmx0O8NRTT2Xq1Kmb3TNhwoQkybhx4zJ58uTNXtt07VNPPaVEAwAAAPqEEm0HhtTX5qHPn7bF852dnVndvDojRo7o0Qysnf3snnrDG96Q17zmNbnpppvypz/9KVdffXW++tWv5rLLLss73vGO3HvvvVmzZk3GjRu32X3r16/fbDnmjBkzNpsBNmXKlCxevLj78eOPP57zzjsvt912W5YuXZrOzs4kybx583pcoiVd5dsBBxyQmpqaPPjggymVSptlampq6vF7DRkyJEmybt26Ht8DAAAAUAkl2g6USqWtLqns7OzMhobaDG2o67MSrVJNTU055ZRTcsopp+Tcc8/Nu9/97px//vl5xzvekTVr1mTKlCm58cYbt7hv9OjR3d/X19dv9lqpVOouypKu/cf22muvXHrppZk6dWo6Ozszc+bMtLW1VZT13nvvzdq1a1NTU5MFCxZkypQp3a+NHz8+999/f4/fa/ny5Umem60GAAAA0NuUaIPYIYcckiuuuCJJcuSRR2bhwoWpq6vb6SWPy5Yty6OPPppLL700J5xwQpKuZaKVWr58ed7xjnfk05/+dBYsWJC3vOUtueuuu7pnlB1xxBH53ve+l3K53D1DbdMeaB0dHVu83wMPPJD6+vq84AUv2KmfCwAAAGBH+scUKnbJsmXLctJJJ+XHP/5x7rvvvsyZMye//OUv89WvfjWvf/3rkyQnn3xyjjvuuJx55pm59tprM3fu3Nxyyy359Kc/nTvuuKNHnzNmzJiMGzcu//Iv/5Innngiv//97zNr1qyK8773ve/N9OnT85nPfCYXXXRROjo68vGPf7z79Ve84hVZs2ZNHnzwwe7nJk6cmCFDhuSaa67JokWLsmrVqu7XbrrpppxwwgndJRwAAABAb1OiDQLDhw/Psccem4svvjgve9nLMnPmzJx77rk5++yz853vfCdJ17LMq666Ki972cty1lln5YADDsjf/M3f5KmnnsqkSZN69Dk1NTX52c9+ljvvvDMzZ87MRz/60Xzta1+rKOu//du/5aqrrsq///u/p66uLsOGDcuPf/zjXHrppbn66quTdB0e8Bd/8Rf5yU9+0n1fXV1dvvWtb+X73/9+pk6d2l0OJsnPfvaznH322RXlAAAAAKhEqVwul4sOsTs1Nzdn1KhRWbVqVUaOHLnZay0tLZkzZ0723nvvHW5s39nZmebm5owcObLf7Ik2mNx333055ZRTMnv27AwfPnyb11199dX52Mc+lvvuuy91dVtfnVzJ72tfam9vz1VXXZXTTz99i73nYGuMGSplzFApY4ZKGC9UypihUsYMleqtMbO9ruj5tD/0S4ceemi+8pWvZM6cOdu9bu3atfnXf/3XbRZoAAAAAL1B80C/9Y53vGOH17zxjW/s+yAAAABA1TMTDQAAAAB2QIkGAAAAADugRAMAAACAHSi0RPvjH/+YM844I1OnTk2pVMoVV1yxw3tuvPHGHHnkkWlsbMx+++2XH/7wh32eEwAAAIDqVmiJtnbt2hx22GH57ne/26Pr58yZk9e85jV5xStekXvuuSf/8A//kHe/+9357W9/28dJAQAAAKhmhZ7O+epXvzqvfvWre3z9JZdckr333jtf//rXkyQHH3xwbr755lx88cU57bTT+iomAAAAAFWu0BKtUrfeemtOPvnkzZ477bTT8g//8A/FBAIAGKA6Ojrz+B3XZcLy/0vpkc6ktrboSPRzpY6OTFl5p/FCjxkzVMqYGUBKpeTgM4pOsdsNqBJt4cKFmTRp0mbPTZo0Kc3NzVm/fn2GDBmyxT2tra1pbW3tftzc3JwkaW9vT3t7+2bXtre3p1wup7OzM52dndvNUi6Xu7/u6NqBZP78+Tn++ONzwAEH5N/+7d9y0kkn5cEHH+zx/XPnzs2+++6bO++8M4cffvhWr9lnn33ykY98JB/5yEe2+14/+MEP8otf/GK7y3WXLl2amTNn5o477sgee+yx1Ws6OztTLpfT3t6e2gL/IN403v583MG2GDNUypihEr/9rx/ltQ99rOvBU8VmYWCoS3JMkswpOAgDhjFDpYyZgaNcU5cN5ywsOkav/f23p/cPqBJtZ1xwwQX53Oc+t8Xz1157bYYOHbrZc3V1dZk8eXLWrFmTtra2Hr3/6tWreyXnrlq6dGm+9KUv5dprr82SJUsyevTozJw5M//4j/+YF7/4xT1+nyuvvDJvfOMbM3ny5Bx33HF597vf3V089sSaNWuSdO13t637Ojs709LSst33bWlpyXnnnZd//dd/7b7u/e9/f1atWpWf/OQn3dc1NDTkTW96Uz796U/n29/+9lbfq62tLevXr88f//jHbNiwocc/S1+57rrrio7AAGPMUCljhp64/4EH8tqaZEV5eDqHTyk6DgAwgJRLNfnfq64qOka3Xf3777p163p03YAq0SZPnpxFixZt9tyiRYsycuTIrc5CS5Jzzjkns2bN6n7c3Nyc6dOn59RTT83IkSM3u7alpSVPP/10hg8fnqampu1mKZfLWb16dUaMGJFSqbSTP1Hved3rXpe2trb86Ec/yj777JNFixbl97//fVpaWrb4ObfnPe95T/f3H/vYxyrOMXz48CTJsGHDtvm5NTU1aWpq2m6uX//61xk1alROPfXU7ufq6+tTV1e3xX3vec978qIXvSgXX3xxxo4du8V7tbS0ZMiQIXnZy162w9/XvtTe3p7rrrsup5xySurr6wvLwcBhzFApY4ZKPPvYn5K1ya2dh+TED/y3McMO+TOGShkzVMqYGVhOLzpAem/M9HTy0IAq0Y477rhc9WdN53XXXZfjjjtum/c0NjamsbFxi+fr6+u3+Afc0dGRUqmUmpqa1NRsPLi0XE7at2wkOzs7k/Z1KbXXPndtb6sf2rXOeAdWrlyZm266KTfeeGNe/vKXJ0n23nvvLWagrVy5Mh//+Mfz3//932ltbc3RRx+diy++OIcddliS5LOf/WyuuOKKfOxjH8u5556bFStW5NWvfnUuvfTSjBgxIklyzTXX5P/7//6/PPDAA6mtrc1xxx2Xb37zm9l3332TpPufxWb/DLdi/fr1efe7351f/vKXGTNmTD7zmc9sVuD94he/yBlnnNH9Hp/97Gfzb//2b0nSvSTzhhtuyIknnpgXvvCFmTp1av77v/8773rXu7b4rJqampRKpa3+nhehv+Rg4DBmqJQxQ0+MHFKfrO363pihEsYLlTJmqJQxQ6V2dcz09N5CS7Q1a9bkiSee6H48Z86c3HPPPRk7dmz23HPPnHPOOZk/f353efLe97433/nOd/JP//RPeec735nf//73+cUvfpErr7yy70K2r0u+NHWLp2uSjO67T+3yqWeThmE7vGz48OEZPnx4rrjiirz4xS/eammYJH/1V3+VIUOG5Oqrr86oUaPy/e9/P6985Svz2GOPdc/gmj17dq644or85je/yYoVK/LXf/3X+fKXv5wvfvGLSbqWac6aNSuHHnpo1qxZk/POOy9/8Rd/kXvuuaeiMvHrX/96vvCFL+RTn/pU/vM//zPve9/78vKXvzwHHnhgkuTmm2/OW9/61u7rP/7xj+fhhx9Oc3Nz/vVf/zVJNpt1dswxx+Smm27aaokGAGxpRNNzf1ns6CzHf6oAAGxfH02h6pk77rgjRxxxRI444ogkyaxZs3LEEUfkvPPOS5IsWLAg8+bN675+7733zpVXXpnrrrsuhx12WL7+9a/nsssuy2mnnVZI/v6irq4uP/zhD/OjH/0oo0ePzktf+tJ86lOfyn333dd9zc0335zbb789v/zlL3P00Udn//33z4UXXpjRo0fnP//zP7uv6+zszA9/+MPMnDkzJ5xwQt761rfm+uuv7379DW94Q/7yL/8y++23Xw4//PBcfvnluf/++/PQQw9VlPn000/P+9///uy33375xCc+kfHjx+eGG25I0jVjbtWqVZk69bnycvjw4RkyZEgaGxszefLkTJ48OQ0NDd2vT506NU89ZVdkAOip4Y3PHbazdE3rdq4EACApeCbaiSee2H3K5db88Ic/3Oo9d999dx+m+jP1Q7tmhP2Zzs7ONK9enZEjRvTtcs4eesMb3pDXvOY1uemmm/KnP/0pV199db761a/msssuyzve8Y7ce++9WbNmTcaNG7fZfevXr8/s2bO7H8+YMaN76WaSTJkyJYsXL+5+/Pjjj+e8887LbbfdlqVLl3afTDpv3rzMnDmzx3kPPfTQ7u9LpVImT57c/Tnr169Pkor2LxsyZEiPNwIEAJJSntsyYvHq1uwxbsR2rgYAYEDtiVaIUmnrSyo7O5P6jq7X+qpEq1BTU1NOOeWUnHLKKTn33HPz7ne/O+eff37e8Y53ZM2aNZkyZUpuvPHGLe4bPXp09/d/vg64VCp1F2VJcsYZZ2SvvfbKpZdemqlTp6azszMzZ87s8WmmPfmccePGpVQqZcWKFT1+v+XLl2fChAkVZQAAuixqNhMNAGBHlGiD2CGHHJIrrrgiSXLkkUdm4cKFqaury4wZM3bq/ZYtW5ZHH300l156aU444YQkXctEe1tDQ0MOOeSQPPTQQ5udztnQ0JCOjo6t3vPAAw/kxBNP7PUsAFANFq1WogEA7Ej/mELFLlm2bFlOOumk/PjHP859992XOXPm5Je//GW++tWv5vWvf32S5OSTT85xxx2XM888M9dee23mzp2bW265JZ/+9Kdzxx139OhzxowZk3HjxuVf/uVf8sQTT+T3v/99Zs2a1Sc/02mnnbZFQTdjxozcd999efTRR7N06dK0t7cnSdatW5c777xzs8INAOi5Rc0tRUcAAOj3zEQbBIYPH55jjz02F198cWbPnp329vZMnz49Z599dj71qU8l6VouedVVV+XTn/50zjrrrCxZsiSTJ0/Oy172skyaNKlHn1NTU5Of/exn+fCHP5yZM2fmwAMPzLe+9a0+mQH2rne9K0cffXRWrVqVUaNGJUnOPvvs3HjjjTn66KOzZs2a3HDDDTnxxBPz3//939lzzz27Z8cBAJVZbCYaAMAOKdEGgcbGxlxwwQW54IILtnvdiBEj8q1vfSvf+ta3tvr6Zz/72Xz2s5/d7Ll/+Id/yD/8wz90Pz755JO3OInz+YdDzJgxY7uHRSTJ3Llzt3junnvu2ezxIYcckte85jX553/+55xzzjlJkgkTJuTaa6/d4t5vfvOb3Se6AgCVsycaAMCOWc5Jv/W1r30tw4cP3+41S5cuzV/+5V/mzW9+825KBQCDj+WcAAA7ZiYa/daMGTPyoQ99aLvXjB8/Pv/0T/+0mxIBwOBkOScAwI6ZiQYAUOVWrd+Qlvatn4ANAEAXJRoAAJZ0AgDsgBJtK3a0MT4Di99PANixhauUaAAA26NEe576+vokybp16wpOQm/a9Pu56fcXANjSIvuiAQBsl4MFnqe2tjajR4/O4sWLkyRDhw5NqVTa6rWdnZ1pa2tLS0tLamp0kf1RuVzOunXrsnjx4owePTq1tbVFRwKAfmuRmWgAANulRPszkydPTpLuIm1byuVy1q9fnyFDhmyzaKN/GD16dPfvKwDQpZTNtzuwJxoAwPYp0f5MqVTKlClTMnHixLS3t2/zuvb29vzxj3/My172MssE+7H6+noz0ACgBxYq0QAAtkuJtg21tbXbLV9qa2uzYcOGNDU1KdEAgAGrttQ1I21xsz3RAAC2x2ZeAABVrK6ma1sKM9EAALZPiQYAUMXqN/5tcFFzS8rl8vYvBgCoYko0AIAqtqlEa93QmVXrt70fLABAtVOiAQBUsVKSMUO79nddZF80AIBtUqIBAFS5SSMak9gXDQBge5RoAABVbuLIrhJt0SolGgDAtijRAACq3KSRTUm6DhcAAGDrlGgAAFVuouWcAAA7pEQDAKhykzYt53SwAADANinRAACq3KaZaJZzAgBsmxINAKDKTbYnGgDADinRAACq3KaZaEvXtGZDR2fBaQAA+iclGgBAlRs3rCG1NaV0lpOla9qKjgMA0C8p0QAAqlxNTckJnQAAO6BEAwAgk+yLBgCwXUo0AAAcLgAAsANKNACAqlTe7NGkkV3LOZVoAABbp0QDACCTRnXNRFu4qrXgJAAA/ZMSDQCgipU2ft20nHNh8/riwgAA9GNKNACAKrZpUefk7plolnMCAGyNEg0AgEwZNSRJsmBVS8rl8g6uBgCoPko0AAC6l3Oua+vI6tYNBacBAOh/lGgAAGRIQ21GD61PYkknAMDWKNEAAEjy3Gy0BUo0AIAtKNEAAEiSTNl4uMCClU7oBAD4c0o0AACSJJOfd7gAAACbU6IBAJDkuZlo9kQDANiSEg0AgCTJ5E3LOZuVaAAAf06JBgBAkmTqxuWcC1fZEw0A4M8p0QAASPK8mWiWcwIAbEGJBgBAkudKtNUtG7KmdUPBaQAA+hclGgAASZLhjXUZ0VSXxOECAAB/TokGAEA3J3QCAGydEg0AgG6TNx4usMDhAgAAm1GiAQDQbcpIM9EAALZGiQYAUJXKW3120+ECzyrRAAA2o0QDAKDbc3uiWc4JAPB8SjQAALptmom2wEw0AIDNKNEAAOg2ZePBAgublWgAAM+nRAMAqGLllDZ7vGkm2sp17Vnf1lFEJACAfkmJBgBAt5FNdRnWUJvEbDQAgOdTogEA0K1UKj1vXzSHCwAAbKJEAwBgM937ojlcAACgmxINAIDNOKETAGBLSjQAADYzZWOJZiYaAMBzlGgAAGzGnmgAAFtSogEAsJkplnMCAGxBiQYAwGYmj3SwAADAn1OiAQCwmU0z0ZatbUtLe0fBaQAA+gclGgAAmxk9tD6NdV1/TVzc3FpwGgCA/kGJBgDAZkql0vP2RXO4AABAokQDAGArNp3QubDZvmgAAIkSDQCArZg6qutwASd0AgB0UaIBALCF7ploSjQAgCRKNACA6lQub/flTXuiPbvSnmgAAIkSDQCArZhiOScAwGaUaAAAbGHq6K4SzUw0AIAuSjQAgGpW2vrTU0d3LedctrYtLe0duzEQAED/pEQDAKhqW2/RRg2pz9CG2iSWdAIAJEo0AAC2olQqWdIJAPA8SjQAALZqU4k2X4kGAKBEAwBg66aO6toXbcFKyzkBAJRoAABsleWcAADPUaIBALBV3SXaKiUaAIASDQCArZo6ums5pz3RAACUaAAAbMPUUV0z0RasbEm5XC44DQBAsZRoAABs1eSNBwusb+/IynXtBacBACiWEg0AgK1qqq/N+OGNSSzpBABQogEAsE3TNu6L5oROAKDaKdEAANimKZv2RVvVUnASAIBiKdEAANimqaO7SjQz0QCAaqdEAwBgm6ZuXM5pTzQAoNop0QAA2KZpZqIBACRRogEAsB1TRtsTDQAgUaIBALAdm5ZzLmpuSXtHZ8FpAACKo0QDAGCbxg9rTENtTTrLXUUaAEC1UqIBALBNNTWlTNk4G82STgCgminRAACqWLkH10wZ1VWiOVwAAKhmSjQAALZr6sbDBeYr0QCAKqZEAwBgu6ZtLNHMRAMAqpkSDQCA7do0E23BSnuiAQDVS4kGAMB2bdoTzXJOAKCaKdEAANguyzkBAJRoAADswJSNJVpzy4asad1QcBoAgGIo0QAA2K7hjXUZNaQ+SbLAbDQAoEop0QAA2KFNhwvYFw0AqFZKNAAAdmjqxsMFnnVCJwBQpZRoAADs0FSHCwAAVU6JBgDADnWXaKuUaABAdVKiAQCwQ1NHdy3nnL9CiQYAVCclGgAAO7THGAcLAADVTYkGAMAOTRs9NEmyYFVLNnR0FpwGAGD3U6IBAFShUrlc0fUTRzSmvraUjs5yFq1u7aNUAAD9lxINAIAdqqkpdR8u8MzydQWnAQDY/ZRoAAD0iH3RAIBqpkQDAKhC5VS2nDNJpm2aieaETgCgCinRAADokT3GdB0uMF+JBgBUISUaAEBVK/X4yu6ZaCvtiQYAVB8lGgAAPdK9J5qZaABAFVKiAQDQI9M2lmjPrmxJZ2fle6oBAAxkSjQAAHpk8sim1NaU0tbRmSVrWouOAwCwWynRAADokbramkwe2ZQkeWaFfdEAgOqiRAMAoMc27Yv2jH3RAIAqo0QDAKDHpinRAIAqpUQDAKDH9hgzNEkyf6USDQCoLko0AAB6bI/RZqIBANVJiQYAQI9tWs4538ECAECVUaIBANBjmw4WmL9yfcrlcsFpAAB2HyUaAAA9NmXUkJRKSUt7Z5atbSs6DgDAbqNEAwCgxxrqajJpRFOSZL590QCAKqJEAwCoQqXs/FLMTfuiOVwAAKgmSjQAACry3L5oDhcAAKqHEg0AgIpMG20mGgBQfZRoAABUZI8xQ5PYEw0AqC6Fl2jf/e53M2PGjDQ1NeXYY4/N7bffvt3rv/GNb+TAAw/MkCFDMn369Hz0ox9NS0vLbkoLAIA90QCAalRoifbzn/88s2bNyvnnn5+77rorhx12WE477bQsXrx4q9f/9Kc/zSc/+cmcf/75efjhh/ODH/wgP//5z/OpT31qNycHAKhez+2Jtj7l8s4fUAAAMJAUWqJddNFFOfvss3PWWWflkEMOySWXXJKhQ4fm8ssv3+r1t9xyS1760pfmb//2bzNjxoyceuqpefOb37zD2WsAAGxdOaWK79m0J9qa1g1Ztb69tyMBAPRLhZVobW1tufPOO3PyySc/F6amJieffHJuvfXWrd7zkpe8JHfeeWd3afbkk0/mqquuyumnn75bMgMAkDTV12b88MYklnQCANWjrqgPXrp0aTo6OjJp0qTNnp80aVIeeeSRrd7zt3/7t1m6dGmOP/74lMvlbNiwIe9973u3u5yztbU1ra2t3Y+bm5uTJO3t7Wlv3/n/53TTvbvyHlQXY4ZKGTNUypihEp3PW4a5M2Nm6ujGLF3TmqeWrs6BE4f2ZjT6KX/GUCljhkoZM1Sqt8ZMT+8vrETbGTfeeGO+9KUv5Z//+Z9z7LHH5oknnshHPvKRfOELX8i555671XsuuOCCfO5zn9vi+WuvvTZDh+76X/iuu+66XX4PqosxQ6WMGSplzNATrUuWdH+/M2Omdn1Nkpr87ta7smGufdGqiT9jqJQxQ6WMGSq1q2Nm3bp1PbqusBJt/Pjxqa2tzaJFizZ7ftGiRZk8efJW7zn33HPz1re+Ne9+97uTJC984Quzdu3avOc978mnP/3p1NRsuTr1nHPOyaxZs7ofNzc3Z/r06Tn11FMzcuTInc7f3t6e6667Lqecckrq6+t3+n2oHsYMlTJmqJQxQyVuXnFXsrbr+50ZM/fXPpa7b56bkVP2zumnH9QHCelv/BlDpYwZKmXMUKneGjObVi3uSGElWkNDQ4466qhcf/31OfPMM5MknZ2duf766/PBD35wq/esW7dui6KstrY2SbZ5MlRjY2MaGxu3eL6+vr5X/qXsrfehehgzVMqYoVLGDD1RU3ruQIGdGTN7jRuWJHl2VavxVmX8GUOljBkqZcxQqV0dMz29t9DlnLNmzcrb3/72HH300TnmmGPyjW98I2vXrs1ZZ52VJHnb296WadOm5YILLkiSnHHGGbnoootyxBFHdC/nPPfcc3PGGWd0l2kAAPS9PcZ0bYvhYAEAoFoUWqK96U1vypIlS3Leeedl4cKFOfzww3PNNdd0HzYwb968zWaefeYzn0mpVMpnPvOZzJ8/PxMmTMgZZ5yRL37xi0X9CAAAVWn62CFJkmeWr0u5XE7peTPbAAAGo8IPFvjgBz+4zeWbN95442aP6+rqcv755+f888/fDckAANiWTTPRVrduyMp17RkzrKHgRAAAfWvLnfgBAGAHmuprM3FE176zT6/o2YlWAAADmRINAICdMn1s12y0p5fbFw0AGPyUaAAA7JTpY7r2RZu33Ew0AGDwU6IBALBT9tw0E81yTgCgCijRAADYKXt0L+dUogEAg58SDQCAnbKnEg0AqCJKNAAAdsqmgwXmr1yfjs5ywWkAAPqWEg0AgJ0yeWRT6mtLae8oZ1FzS9FxAAD6lBINAICdUltTyrTRTugEAKqDEg0AoAqVe2n15XT7ogEAVUKJBgDATttjzMYSbcX6gpMAAPQtJRoAQBXb1QlpTugEAKqFEg0AgJ02fWzXnmhKNABgsFOiAQCw06Z3L+dUogEAg5sSDQCAnbZpOeei5ta0tHcUnAYAoO8o0QAA2Gmjh9ZneGNdkuQZhwsAAIOYEg0AgJ1WKpWyx5iN+6JZ0gkADGJKNAAAdokTOgGAaqBEAwBgl0xXogEAVUCJBgDALpm+aTnncnuiAQCDlxINAIBdsue4rplo88xEAwAGMSUaAAC7ZPqY55ZzlsvlgtMAAPQNJRoAALtkj40l2urWDVm1vr3gNAAAfUOJBgBQhUrpvRljQxpqM2FEYxL7ogEAg5cSDQCAXdZ9uMAK+6IBAIOTEg0AgF2251iHCwAAg5sSDQCAXTZ97HOHCwAADEZKNAAAdtmmEzrNRAMABislGgAAu2zPcWaiAQCDmxINAIBdttfGEu2ZFeuzoaOz4DQAAL1PiQYAUNVKvfIuk0Y0paGuJhs6y3l2ZUuvvCcAQH+iRAMAYJfV1JS6T+h8avnagtMAAPQ+JRoAAL1ixsYlnU8tsy8aADD4KNEAAOgVe44dliR5apmZaADA4KNEAwCgV+xlJhoAMIgp0QAA6BWbSrR5y5VoAMDgo0QDAKBX7DVu03LOdSmXywWnAQDoXUo0AAB6xbTRQ1JTSta3d2TJ6tai4wAA9ColGgAAvaKhriZTRw9JkjxlSScAMMgo0QAA6DUznrekEwBgMFGiAQDQa/bsPqFzbcFJAAB6lxINAIBes9fYTSWamWgAwOCiRAMAqEp9c3rmXptmotkTDQAYZJRoAAD0mr027ok2z3JOAGCQUaIBANBr9ty4nHPFuvasWt9ecBoAgN6jRAMAoNcMa6zL+OGNSZJ59kUDAAYRJRoAAL1qRve+aJZ0AgCDhxINAIBetec4J3QCAIOPEg0AgF6119iuwwWecrgAADCIKNEAAKpYOaVef8+9zEQDAAYhJRoAAL1KiQYADEZKNAAAetVe47qWcy5sbklLe0fBaQAAeocSDQCAXjVmaH1GNNYlSZ5ebjYaADA4KNEAAOhVpVLJCZ0AwKCjRAMAoNfN2Likc64TOgGAQUKJBgBAr9s0E22e5ZwAwCChRAMAoNftNbarRJtrOScAMEgo0QAA6HWbTuh8ynJOAGCQUKIBANDr9pnQVaI9s2J92jZ0FpwGAGDXKdEAAOh1E0c0ZmhDbTo6y3l6hSWdAMDAp0QDAKDXlUql7iWdc5da0gkADHxKNACAqlTu80/YZ3xXiTZHiQYADAJKNAAA+sSM8V0ndCrRAIDBQIkGAECfmLFpOacTOgGAQUCJBgBAn9h0QufcpQ4WAAAGPiUaAAB9YtNMtPkr16elvaPgNAAAu0aJBgBAnxg7rCEjmuqSJE8tMxsNABjYlGgAAPSJUqn0vBM61xScBgBg1yjRAADoMzO6SzQz0QCAgU2JBgBAn+k+oXOpEzoBgIFNiQYAQJ/ZdELnHCUaADDAKdEAAOgzm2aizVmmRAMABjYlGgAAfWbTnmhLVrdmTeuGgtMAAOw8JRoAAH1m1JD6jBvWkMS+aADAwKZEAwCgTz13QqcSDQAYuJRoAAD0KSd0AgCDgRINAIA+5YROAGAwUKIBANCnnNAJAAwGSjQAAPrUjPFDk1jOCQAMbEo0AAD61KaZaCvWtWfluraC0wAA7BwlGgBAFSqVd99nDWusy6SRjUnsiwYADFxKNAAA+lz3vmhKNABggFKiAQDQ5zad0GlfNABgoFKiAQDQ5547oXNdwUkAAHaOEg0AgD639/hNyznXFJwEAGDnKNEAAOhz+0wYniR5csnalMu78VQDAIBeokQDAKhKu7fI2nPs0NTWlLKurSMLm1t262cDAPQGJRoAAH2uoa4me40dmiSZvdjhAgDAwKNEAwCoaqXd9kndSzrtiwYADEBKNAAAdot9J3QdLjB7sRINABh4lGgAAOwW+3bPRLOcEwAYeJRoAADsFvuYiQYADGBKNAAAdotNM9GeXdWSdW0bCk4DAFAZJRoAALvFmGENGTO0Pkny5BJLOgGAgUWJBgDAbmNfNABgoFKiAQCw29gXDQAYqJRoAADsNptmos1eokQDAAYWJRoAALtN93JOe6IBAAOMEg0AgN1m03LOJ5euSWdnueA0AAA9p0QDAKhKxRRY08cOTX1tKS3tnVnQ3FJIBgCAnaFEAwBgt6mvrcmeY4cmcbgAADCwKNEAANitntsXTYkGAAwcSjQAAHarfbpP6HS4AAAwcCjRAADYrfZ93uECAAADhRINAIDdat+JG2eiLTYTDQAYOJRoAADsVvuO7yrRFja3ZE3rhoLTAAD0jBINAIDdatTQ+owf3pAkmWNfNABggFCiAQCw2+0zftPhAvZFAwAGBiUaAEAVKxf0uftO3Hi4gBINABgglGgAAOx2z81Es5wTABgYlGgAAOx2m2aiWc4JAAwUSjQAAHa7/SeOSJI8uXRtNnR0FpwGAGDHlGgAAOx200YPSVN9Tdo2dObpFeuLjgMAsENKNAAAdruamlL2ndC1L9rji1YXnAYAYMeUaAAAFGL/iRtLtMX2RQMA+j8lGgAAhdh/Ute+aE8o0QCAAUCJBgBAIfbrnolmOScA0P8p0QAAKMSm5ZyzF69NZ2e54DQAANunRAMAqEKlcvGl1Z5jh6ahtibr2zsyf6UTOgGA/k2JBgBAIepqa7L3+GFJ7IsGAPR/SjQAAAqz3yT7ogEAA4MSDQCAwmzaF+3xRWaiAQD9mxINAIDC7D9xRJLkccs5AYB+TokGAEBh9t+4nPOJxWtS7geHHQAAbIsSDQCAwswYNyy1NaWsad2QRc2tRccBANgmJRoAQBXqL3O+Gupqste4oUkcLgAA9G9KNACAalYqOoDDBQCAgUGJBgBQxcr9oEVzuAAAMBAo0QAAKNRzhwtYzgkA9F+Fl2jf/e53M2PGjDQ1NeXYY4/N7bffvt3rV65cmQ984AOZMmVKGhsbc8ABB+Sqq67aTWkBAOht+21azumETgCgH6sr8sN//vOfZ9asWbnkkkty7LHH5hvf+EZOO+20PProo5k4ceIW17e1teWUU07JxIkT85//+Z+ZNm1annrqqYwePXr3hwcAoFfsO2F4SqVk5br2LFvblvHDG4uOBACwhUJLtIsuuihnn312zjrrrCTJJZdckiuvvDKXX355PvnJT25x/eWXX57ly5fnlltuSX19fZJkxowZuzMyAAC9rKm+NtPHDM285evy+KI1SjQAoF8qbDlnW1tb7rzzzpx88snPhampycknn5xbb711q/f8+te/znHHHZcPfOADmTRpUmbOnJkvfelL6ejo2F2xAQDoA5tO6LQvGgDQXxU2E23p0qXp6OjIpEmTNnt+0qRJeeSRR7Z6z5NPPpnf//73ectb3pKrrroqTzzxRN7//venvb09559//lbvaW1tTWtra/fj5ubmJEl7e3va29t3Ov+me3flPaguxgyVMmaolDFDJTqft/dYfxgz+4wfmuuTPLqwuV/kYUv+jKFSxgyVMmaoVG+NmZ7eX+hyzkp1dnZm4sSJ+Zd/+ZfU1tbmqKOOyvz58/O1r31tmyXaBRdckM997nNbPH/ttddm6NChu5zpuuuu2+X3oLoYM1TKmKFSxgw9sWHZsu7v+8OYWbe4lKQ2f3r4qVxVM6foOGxHfxgvDCzGDJUyZqjUro6ZdevW9ei6wkq08ePHp7a2NosWLdrs+UWLFmXy5MlbvWfKlCmpr69PbW1t93MHH3xwFi5cmLa2tjQ0NGxxzznnnJNZs2Z1P25ubs706dNz6qmnZuTIkTudv729Pdddd11OOeWU7v3ZYHuMGSplzFApY4ZK/O/SPyUb/77YH8bM9Pmr8pPZt2VFR1NOP/3EQrOwdf6MoVLGDJUyZqhUb42ZTasWd6SwEq2hoSFHHXVUrr/++px55plJumaaXX/99fngBz+41Xte+tKX5qc//Wk6OztTU9O1ndtjjz2WKVOmbLVAS5LGxsY0Nm65OW19fX2v/EvZW+9D9TBmqJQxQ6WMGXqiplTq/r4/jJmDpo5OqZQsW9uWVa2dDhfox/rDeGFgMWaolDFDpXZ1zPT03sIOFkiSWbNm5dJLL82PfvSjPPzww3nf+96XtWvXdp/W+ba3vS3nnHNO9/Xve9/7snz58nzkIx/JY489liuvvDJf+tKX8oEPfKCoHwEAYEAq7fiS3WpoQ132HNu11cZjCx0uAAD0P4XuifamN70pS5YsyXnnnZeFCxfm8MMPzzXXXNN92MC8efO6Z5wlyfTp0/Pb3/42H/3oR3PooYdm2rRp+chHPpJPfOITRf0IAAD0kgMmjchTy9bl0UWr85L9xhcdBwBgM4UfLPDBD35wm8s3b7zxxi2eO+644/KnP/2pj1MBALC7HTR5RK57aFEeNRMNAOiHCl3OCQAAmxwwaUSS5NFFSjQAoP9RogEA0C8cOLmrRHts4eqUy+WC0wAAbE6JBgBAv7D3+GGpry1lbVtHnlmxvug4AACbUaIBANAv1NfWZN8Jw5Mkj1nSCQD0M0o0AAD6jU1LOu2LBgD0N0o0AAD6je7DBZzQCQD0M0o0AICqVio6wGYOVKIBAP2UEg0AgH5j03LOJ5esTXtHZ8FpAACeo0QDAKDfmDZ6SIY11KatozNzl64tOg4AQDclGgAA/UZNTSn7T3K4AADQ/yjRAADoVw7auKTzMfuiAQD9iBINAIB+ZdMJnY8o0QCAfkSJBgBAv7LpcIHHLOcEAPoRJRoAAP3KphLtqeXrsr6to+A0AABdlGgAAPQr44c3ZtywhpTLyeOLzUYDAPoHJRoAQFUqFx1guzbti/aofdEAgH5CiQYAQL9jXzQAoL9RogEA0O9sKtGc0AkA9BdKNAAA+p1NJZrlnABAf6FEAwCg3zlw0oiUSsni1a1Ztqa16DgAAEo0AAD6n2GNddlr7NAkycMLzEYDAIqnRAMAoF86eMrIJMnDC5oLTgIAoEQDAKCfUqIBAP2JEg0AgH5pU4n2kBINAOgHlGgAAFWoXHSAHjh4StcJnbOXrEnbhs6C0wAA1U6JBgBAvzRt9JCMbKpLe0c5TyxeU3QcAKDKKdEAAKpYf56RViqVcpB90QCAfkKJBgBAv3WIEg0A6CeUaAAA9Fub9kV7eKESDQAolhINAIB+66DJm2airU653J8XnwIAg50SDQCAfuvAySNSU0qWr23L4tWtRccBAKrYTpVoK1euzGWXXZZzzjkny5cvT5LcddddmT9/fq+GAwCgujXV12bv8cOS2BcNAChWxSXafffdlwMOOCBf+cpXcuGFF2blypVJkl/96lc555xzejsfAABV7uApzy3pBAAoSsUl2qxZs/KOd7wjjz/+eJqamrqfP/300/PHP/6xV8MBAMDBTugEAPqBiku0//u//8vf//3fb/H8tGnTsnDhwl4JBQBA3yoNoE36D1GiAQD9QMUlWmNjY5qbt/wLzGOPPZYJEyb0SigAANhk00y0J5euTUt7R8FpAIBqVXGJ9rrXvS6f//zn097eniQplUqZN29ePvGJT+QNb3hDrwcEAKC6TRrZmDFD69PRWc7ji9YUHQcAqFIVl2hf//rXs2bNmkycODHr16/Py1/+8uy3334ZMWJEvvjFL/ZFRgAAqlipVLIvGgBQuLpKbxg1alSuu+663HzzzbnvvvuyZs2aHHnkkTn55JP7Ih8AAOTgKSNzy+xleUiJBgAUpOISbZPjjz8+xx9/fG9mAQCArTITDQAoWo9KtG9961s9fsMPf/jDOx0GAAC25uApI5IkDy1oTrlcTqlUKjgRAFBtelSiXXzxxZs9XrJkSdatW5fRo0cnSVauXJmhQ4dm4sSJSjQAAHrd/hNHpKG2JqtbNuTp5euz57ihRUcCAKpMjw4WmDNnTvevL37xizn88MPz8MMPZ/ny5Vm+fHkefvjhHHnkkfnCF77Q13kBAKhCDXU1OXBy12y0B59dVXAaAKAaVXw657nnnptvf/vbOfDAA7ufO/DAA3PxxRfnM5/5TK+GAwCATV4wtWtftAeUaABAASou0RYsWJANGzZs8XxHR0cWLVrUK6EAAODPvWDaqCTJA/MdLgAA7H4Vl2ivfOUr8/d///e56667up+788478773vS8nn3xyr4YDAKCvDZwN+mdunIn24LOrUi6XC04DAFSbiku0yy+/PJMnT87RRx+dxsbGNDY25phjjsmkSZNy2WWX9UVGAADIQZNHpqaULF3TlsWrW4uOAwBUmR6dzvl8EyZMyFVXXZXHHnssjzzySJLkoIMOygEHHNDr4QAAYJMhDbXZb+LwPLZoTR6YvyqTRjYVHQkAqCIVl2ibHHDAAYozAAB2q5lTR+WxRWvy4LPNeeXBk4qOAwBUkYpLtHe+853bff3yyy/f6TAAALA9h0wdmV/dPT8PzHdCJwCwe1Vcoq1YsWKzx+3t7XnggQeycuXKnHTSSb0WDAAA/tzMjSd0PvisEzoBgN2r4hLtv/7rv7Z4rrOzM+973/uy77779kooAADYmkM2ntA5f+X6rFjbljHDGgpOBABUi4pP59zqm9TUZNasWbn44ot74+0AAGCrRjbVZ69xQ5OYjQYA7F69UqIlyezZs7Nhw4beejsAAPpUuegAO23m1E1LOu2LBgDsPhUv55w1a9Zmj8vlchYsWJArr7wyb3/723stGAAAbM0Lpo3MlfcvyANmogEAu1HFJdrdd9+92eOamppMmDAhX//613d4cicAAOyqF2yaieaETgBgN6q4RLvhhhv6IgcAAPTICzYeLjBn2dqsad2Q4Y0V/5UWAKBiFe+JdtJJJ2XlypVbPN/c3JyTTjqpNzIBAMA2jR/emMkjm1IuJw8vsKQTANg9Ki7RbrzxxrS1tW3xfEtLS2666aZeCQUAANszc1rXbLQHLOkEAHaTHs99v++++7q/f+ihh7Jw4cLuxx0dHbnmmmsybdq03k0HAABb8YKpo/K7hxfnQYcLAAC7SY9LtMMPPzylUimlUmmryzaHDBmSb3/7270aDgAAtmbTvmhmogEAu0uPS7Q5c+akXC5nn332ye23354JEyZ0v9bQ0JCJEyemtra2T0ICAMDzvXCPrhM6H1+8JuvbOjKkwd9DAYC+1eMSba+99kqSdHZ29lkYAADoickjmzJhRGOWrG7NQwtW5ai9xhYdCQAY5HpUov3617/Oq1/96tTX1+fXv/71dq993ete1yvBAABgW0qlUg6dNirXP7I49z2jRAMA+l6PSrQzzzwzCxcuzMSJE3PmmWdu87pSqZSOjo7eygYAANt06B6ju0s0AIC+1qMS7flLOC3nBAAYPMopFR1hpx06vWtftHufWVlsEACgKtQUHQAAAHbGodO6SrQnl6zN6pb2gtMAAINdj2aifetb3+rxG374wx/e6TAAANBT44Y3ZtroIZm/cn3un78qL9l3fNGRAIBBrEcl2sUXX9yjNyuVSko0AAB2m0P3GNVVoj2jRAMA+laPSrQ5c+b0dQ4AAKjYoXuMztUPLHS4AADQ53ZpT7RyuZxyudxbWQAAoCKH7eFwAQBg99ipEu0HP/hBZs6cmaampjQ1NWXmzJm57LLLejsbAABs1ws2Hi7wzIr1Wb62reA0AMBg1qPlnM933nnn5aKLLsqHPvShHHfccUmSW2+9NR/96Eczb968fP7zn+/1kAAA9LbBsZpg1JD67DN+WJ5cujb3PbMyJx44sehIAMAgVXGJ9r3vfS+XXnpp3vzmN3c/97rXvS6HHnpoPvShDynRAADYrV64x6iNJdoqJRoA0GcqXs7Z3t6eo48+eovnjzrqqGzYsKFXQgEAQE8dusfoJHG4AADQpyou0d761rfme9/73hbP/8u//Eve8pa39EooAADoqU2HC9zncAEAoA9VvJwz6TpY4Nprr82LX/ziJMltt92WefPm5W1ve1tmzZrVfd1FF13UOykBAGAbDpk6MjWlZPHq1ixqbsmkkU1FRwIABqGKS7QHHnggRx55ZJJk9uzZSZLx48dn/PjxeeCBB7qvK5VKvRQRAAC2bWhDXQ6YNCKPLFyde59emVNfMLnoSADAIFRxiXbDDTf0RQ4AANhpL5w2Ko8sXJ37nlmlRAMA+kTFe6IBAEB/c+j00UmS++Y7XAAA6BsVz0RraWnJt7/97dxwww1ZvHhxOjs7N3v9rrvu6rVwAADQE88/XKBcLttaBADodRWXaO9617ty7bXX5o1vfGOOOeYYf0EBAKBwB00emYa6mqxc1565y9Zl7/HDio4EAAwyFZdov/nNb3LVVVflpS99aV/kAQCAijXU1eSF00blzqdW5O55K5RoAECvq3hPtGnTpmXEiBF9kQUAAHba4Rv3Rbt73spCcwAAg1PFJdrXv/71fOITn8hTTz3VF3kAANiNykUH6EVH7Dk6SXLP0ysLzQEADE4VL+c8+uij09LSkn322SdDhw5NfX39Zq8vX76818IBAEBPHbHnmCTJwwuas76tI0MaagtOBAAMJhWXaG9+85szf/78fOlLX8qkSZMcLAAAQL8wdVRTJoxozJLVrXng2VV50YyxRUcCAAaRiku0W265JbfeemsOO+ywvsgDAAA7pVQq5Yjpo3PtQ4tyz7yVSjQAoFdVvCfaQQcdlPXr1/dFFgAA2CWblnTe/fSKgpMAAINNxSXal7/85XzsYx/LjTfemGXLlqW5uXmzXwAAUJRNhws4oRMA6G0VL+d81atelSR55Stfudnz5XI5pVIpHR0dvZMMAAAq9MJpo1JTShasasnCVS2ZPKqp6EgAwCBRcYl2ww03bPO1+++/f5fCAACwe5RSLjpCnxjWWJcDJ4/Mwwuac8/TK/KqUVOKjgQADBIVl2gvf/nLN3u8evXq/Md//Ecuu+yy3HnnnfngBz/Ya+EAAKBSR+w5Og8vaM7dT6/Mq2Yq0QCA3lHxnmib/PGPf8zb3/72TJkyJRdeeGFOOumk/OlPf+rNbAAAULHDp49OYl80AKB3VTQTbeHChfnhD3+YH/zgB2lubs5f//Vfp7W1NVdccUUOOeSQvsoIAAA9duTGwwXuf2ZVNnR0pq52p/9/YwCAbj3+G8UZZ5yRAw88MPfdd1++8Y1v5Nlnn823v/3tvswGAAAV22f88Ixoqsv69o48umh10XEAgEGixyXa1VdfnXe961353Oc+l9e85jWpra3ty1wAALBTampKlnQCAL2uxyXazTffnNWrV+eoo47Ksccem+985ztZunRpX2YDAICdcoQSDQDoZT0u0V784hfn0ksvzYIFC/L3f//3+dnPfpapU6ems7Mz1113XVavNlUeAID+4Yg9xyRJ7n56RcFJAIDBouJdVocNG5Z3vvOdufnmm3P//ffnYx/7WL785S9n4sSJed3rXtcXGQEAoCKblnM+uWRtVqxtKzYMADAo7NJRRQceeGC++tWv5plnnsl//Md/9FYmAADYJWOGNWTfCcOSJHc+ZTYaALDreuW879ra2px55pn59a9/3RtvBwAAu+zovcYmSe5QogEAvaBXSjQAAAaWcrnoBH3vqBld+6Ld+dTygpMAAIOBEg0AoIqVig7Qh47eq6tEu/eZVWnd0FFwGgBgoFOiAQBUsfIgrtH2Hj8s44Y1pG1DZx6Y31x0HABggFOiAQAwKJVKpRy5lyWdAEDvUKIBADBobVrSecdchwsAALtGiQYAwKB1dPfhAitSrobTFACAPqNEAwBg0Jo5bVQa6mqybG1b5i5bV3QcAGAAU6IBADBoNdbV5tBpo5Ikd8y1LxoAsPOUaAAAVaiU6lnaeNTzlnQCAOwsJRoAAIPa0XuNTZLcoUQDAHaBEg0AgEHtqI0ndD6xeE1WrmsrOA0AMFAp0QAAGNTGDmvIPhOGJbGkEwDYeUo0AAAGvaP27JqNZkknALCzlGgAAAx6R286XGCuEg0A2DlKNAAABr2jZ3QdLnDPMyvTuqGj4DQAwECkRAMAYNDbZ/ywjB/ekLYNnbnvmVVFxwEABiAlGgAAg16pVMoxe3fNRrvtyWUFpwEABiIlGgAAVeHYvcclSW6bs7zgJADAQKREAwCgKmyaiXbnUyuyoaOz4DQAwECjRAMAoCocOGlERg2pz7q2jjzwbHPRcQCAAUaJBgBAVaipKeVFG0/pvH2OfdEAgMoo0QAAqlqp6AC71bF7byrR7IsGAFRGiQYAQNU4dp/nSrSOznLBaQCAgUSJBgBA1ThkysgMa6hNc8uGPLpwddFxAIABRIkGAEDVqKutyVEb90W7zb5oAEAFlGgAAFQV+6IBADtDiQYAQFV5folWLtsXDQDomX5Ron33u9/NjBkz0tTUlGOPPTa33357j+772c9+llKplDPPPLNvAwIAMGgcusfoNNbVZNnatsxesqboOADAAFF4ifbzn/88s2bNyvnnn5+77rorhx12WE477bQsXrx4u/fNnTs3H//4x3PCCSfspqQAAAwGDXU1OXLPMUmS2yzpBAB6qPAS7aKLLsrZZ5+ds846K4ccckguueSSDB06NJdffvk27+no6Mhb3vKWfO5zn8s+++yzG9MCADAYHGNfNACgQoWWaG1tbbnzzjtz8skndz9XU1OTk08+Obfeeus27/v85z+fiRMn5l3vetfuiAkAwCBz7D4bT+h80r5oAEDP1BX54UuXLk1HR0cmTZq02fOTJk3KI488stV7br755vzgBz/IPffc06PPaG1tTWtra/fj5ubmJEl7e3va29t3LvjG+5//FXbEmKFSxgyVMmaoxPOLo2ocMy+cMjz1taUsbG7J4wtXZe/xw4qO1O/5M4ZKGTNUypihUr01Znp6f6ElWqVWr16dt771rbn00kszfvz4Ht1zwQUX5HOf+9wWz1977bUZOnToLme67rrrdvk9qC7GDJUyZqiUMUOPLH9uGWO1jpm9htXkieaaXPrrP+b4yWaj9VS1jhd2njFDpYwZKrWrY2bdunU9uq7QEm38+PGpra3NokWLNnt+0aJFmTx58hbXz549O3Pnzs0ZZ5zR/VxnZ2eSpK6uLo8++mj23Xffze4555xzMmvWrO7Hzc3NmT59ek499dSMHDlyp7O3t7fnuuuuyymnnJL6+vqdfh+qhzFDpYwZKmXMUIk/Lf5jMr/r+2odM08OmZ1v/n521gydmtNPP6zoOP2eP2OolDFDpYwZKtVbY2bTqsUdKbREa2hoyFFHHZXrr78+Z555ZpKuUuz666/PBz/4wS2uP+igg3L//fdv9txnPvOZrF69Ot/85jczffr0Le5pbGxMY2PjFs/X19f3yr+UvfU+VA9jhkoZM1TKmKEnSqVS9/fVOmZOOGBivvn72blt7orU1talpqa045uo2vHCzjNmqJQxQ6V2dcz09N7Cl3POmjUrb3/723P00UfnmGOOyTe+8Y2sXbs2Z511VpLkbW97W6ZNm5YLLrggTU1NmTlz5mb3jx49Okm2eB4AALbn0D1GZ2hDbZavbcuji1bn4Ck7v0oBABj8Ci/R3vSmN2XJkiU577zzsnDhwhx++OG55pprug8bmDdvXmpqCj1EFACAQaihriYvmjE2f3hsSW6ZvUyJBgBsV+ElWpJ88IMf3OryzSS58cYbt3vvD3/4w94PBABAVXjJvuPyh8eW5NbZS/Ou4/cuOg4A0I+Z4gUAQNV6yb5dJ77f9uTybOjoLDgNANCfKdEAAKhah0wdmVFD6rO6dUMeeLZnJ3MBANVJiQYAUMXKVX4gZW1NKS/eZ2yS5JbZSwtOAwD0Z0o0AACq2qYlnbfOXlZwEgCgP1OiAQBQ1V6y77gkyf/NXZ7WDR0FpwEA+islGgAAVW2/icMzfnhjWto7c8+8lUXHAQD6KSUaAABVrVQqdc9Gu8WSTgBgG5RoAABUvU0lmn3RAIBtUaIBAFSjcrnoBP3KpsMF7n56Rda2big4DQDQHynRAACoenuOG5o9xw5Ne0c5t80xGw0A2JISDQAAkpywf9dstD8+trTgJABAf6REAwCAJCfsPyFJctPjSwpOAgD0R0o0AABIcty+41JbU8rsJWszf+X6ouMAAP2MEg0AAJKMGlKfw6ePTpLcbDYaAPBnlGgAALBR975oj9sXDQDYnBINAAA22rQv2v8+sTQdneWC0wAA/YkSDQAANjpsj1EZ0VSXleva88D8VUXHAQD6ESUaAABsVFdbk5fu27Wk0ymdAMDzKdEAAOB5TjjAvmgAwJaUaAAA8Dwv27gv2l1Prcia1g0FpwEA+gslGgAAPM/0sUMzY9zQbOgs50+zlxUdBwDoJ5RoAADwZzad0mlfNABgEyUaAEAVK6dUdIR+6YT97YsGAGxOiQYAAH/muH3Hpa6mlDlL12besnVFxwEA+gElGgAA/JkRTfU5aq8xSZIbH1tccBoAoD9QogEAwFa84qCJSZIbHlGiAQBKNAAA2KpXHNhVot0ye1la2jsKTgMAFE2JBgBQhUopFx2h3ztg0vBMHdWU1g2dufXJZUXHAQAKpkQDAICtKJVKOdGSTgBgIyUaAABsw0kbl3T+/pHFKZfN3gOAaqZEAwCAbXjJfuPSUFuTZ1asz+wla4uOAwAUSIkGAADbMLShLsfuMzZJcuOjlnQCQDVTogEAwHZsOqXzBiUaAFQ1JRoAAGzHKzYeLnD7nOVZ07qh4DQAQFGUaAAAsB17jx+WvccPS3tHOTc/vrToOABAQZRoAACwAyceOCGJfdEAoJop0QAAYAeevy9auVwuOA0AUAQlGgAA7MAxe4/NkPraLGpuzYPPNhcdBwAogBINAAB2oKm+NifsPz5J8ruHFxWcBgAoghINAKAKWZBYuZMPmZQkue4hJRoAVCMlGgAA9MArD5qYmlLy4LPNeXbl+qLjAAC7mRINAKCqlYoOMGCMG96Yo/Yak8SSTgCoRko0AADooZMPtqQTAKqVEg0AAHrolI37ov3pyWVpbmkvOA0AsDsp0QAAoIf2mTA8+04YlvaOcv7w6JKi4wAAu5ESDQCgCpWcz7nTnNIJANVJiQYAABU4dWOJdsOji9Pe0VlwGgBgd1GiAQBABQ6fPibjhzdkdcuG3D5nedFxAIDdRIkGAAAVqK0p5aSDJiaxpBMAqokSDQAAKnTKIZOTdJVo5bL95QCgGijRAACgQsfvNz5N9TWZv3J9Hl6wuug4AMBuoEQDAIAKDWmozQn7T0iSXPPgwoLTAAC7gxINAAB2wukv7FrSefX9CwpOAgDsDko0AADYCScdNCn1taU8vnhNnlhsSScADHZKNAAA2AmjhtTnpfuNT5Jcfb8lnQAw2CnRAABgJ50+c0qS5OoHlGgAMNgp0QAAYCedcsik1NaU8tCC5jy1bG3RcQCAPqREAwCAnTRmWENevM/YJGajAcBgp0QDAIBd8GpLOgGgKijRAABgF5z6gkkplZJ7n16Z+SvXFx0HAOgjSjQAANgFE0c05UV7dS3pvMZsNAAYtJRoAACwi179wslJkmseWFBwEgCgryjRAABgF71qZleJdsdTK7K4uaXgNABAX1CiAQDALpoyakgOnz465bIDBgBgsFKiAQBUo3K56ASDzmsP7Tql83/ufbbgJABAX1CiAQBAL3jtoVNTKnUt6XRKJwAMPko0AADoBZNHNeWYGV2ndF55n9loADDYKNEAAKCXnHHY1CTJry3pBIBBR4kGAAC95NUzJ6e2ppQH5jfnySVrio4DAPQiJRoAAPSSccMbc/x+45Mkv7lvQcFpAIDepEQDAIBe9PwlnWWnoALAoKFEAwCAXnTqCyaloa4mTyxek0cWri46DgDQS5RoAADQi0Y21ecVB05IkvyPAwYAYNBQogEAQC/btKTzf+6zpBMABgslGgAA9LJXHjQpQxtq8/Ty9bnn6ZVFxwEAeoESDQAAetmQhtqccsikJMkVd88vOA0A0BuUaAAA0AfOPGJakuR/7luQ9o7OgtMAALtKiQYAAH3ghP3GZ/zwxixf25Y/PLqk6DgAwC5SogEAQB+oq63J6w/vOmDgV3c/U3AaAGBXKdEAAKCP/OWRXUs6f/fw4qxa115wGgBgVyjRAACqWDmloiMMaodMGZmDJo9I24bOXHn/gqLjAAC7QIkGAAB9pFQq5S82HjDwq7ss6QSAgUyJBgAAfejMI6alppTc8dSKPLVsbdFxAICdpEQDAKhK5aIDVI1JI5vy0v3GJ0n+6+75BacBAHaWEg0AAPrYpgMG/uvu+SmXFZgAMBAp0QAAoI+d9oLJGdpQm6eWrctd81YUHQcA2AlKNAAA6GNDG+ryqpmTkyT/eacDBgBgIFKiAQDAbvBXR01PkvzPvQuyrm1DwWkAgEop0QAAYDd48T5js9e4oVnTuiFX3reg6DgAQIWUaAAAsBuUSqX89dFds9F+ccfTBacBACqlRAMAgN3kjUftkZpS8n9zV+SJxWuKjgMAVECJBgAAu8mkkU15xYETkyS/NBsNAAYUJRoAAOxGf/2iriWd/++uZ9Le0VlwGgCgp5RoAACwG5100MSMH96YpWva8vtHFhcdBwDoISUaAADsRvW1NXnDkdOSJD//P0s6AWCgUKIBAMButmlJ542PLs7CVS0FpwEAekKJBgAAu9m+E4bnRTPGpLOc/OedZqMBwECgRAMAgAK86UV7Jkl+9n9Pp6OzXHAaAGBHlGgAAFCA17xwSkY21eWZFevzh8ccMAAA/Z0SDQCgipn/VJwhDbX5q6O79kb78Z/mFZwGANgRJRoAABTkLcd2Lem84dHFeXr5uoLTAADbo0QDAICC7DNheF6637iUy8l/3G42GgD0Z0o0AICqZCFnf/HWF++VJPn5/z2d1g0dBacBALZFiQYAAAU6+eBJmTSyMcvWtuWaBxYWHQcA2AYlGgAAFKiutiZvPqZrb7SfOGAAAPotJRoAABTsb160Z2prSrl97vI8unB10XEAgK1QogEAQMEmj2rKKQdPSpL8+E9PFZwGANgaJRoAAPQDbz2u64CBX931TJpb2gtOAwD8OSUaAAD0Ay/Zd1z2nzg8a9s68ov/e7roOADAn1GiAQBAP1AqlXLWS/dOkvzo1rnp6CwXnAgAeD4lGgAA9BN/ccS0jB5an6eXr8/vHl5UdBwA4HmUaAAA0E8MaajNm4/ZM0ly+c1zCk4DADyfEg0AAPqRtx23V2prSrltzvI8+OyqouMAABsp0QAAoB+ZMmpITn/hlCTJv/7v3GLDAADdlGgAANDPnPXSGUmSX9/zbJasbi02DACQRIkGAAD9zpF7jsnh00enraMzP7ntqaLjAABRogEAQL+0aTbaj/80Ly3tHcWGAQCUaAAAValcdAB25PQXTsmUUU1ZuqY1/3X3/KLjAEDVU6IBAEA/VF9bk3cdv3eS5NI/PpmOTs0nABRJiQYAUNVKRQdgO/7mmD0zsqkuTy5dm+seWlh0HACoako0AADop4Y31uVtx81IknzvD0+mXDYbDQCKokQDAKhC5p8NHG9/yYw01NXk3qdX5vY5y4uOAwBVS4kGAAD92IQRjXnjUXskSS75w+yC0wBA9VKiAQBAP/eeE/ZJqZTc8OiSPLKwueg4AFCVlGgAANDPzRg/LK+eOTlJ8i9/fLLgNABQnZRoAAAwAPz9y/ZNkvz6nmfzzIp1BacBgOqjRAMAgAHgsOmj89L9xmVDZ9neaABQACUaAAAMEB86af8kyS/+75ksXNVScBoAqC5KNAAAGCBevM+4HLP32LR1dJqNBgC7Wb8o0b773e9mxowZaWpqyrHHHpvbb799m9deeumlOeGEEzJmzJiMGTMmJ5988navBwCAweQjr+yajfYft8/L4maz0QBgdym8RPv5z3+eWbNm5fzzz89dd92Vww47LKeddloWL1681etvvPHGvPnNb84NN9yQW2+9NdOnT8+pp56a+fPn7+bkAACw+71k33E5cs/Rad3Q6aROANiNCi/RLrroopx99tk566yzcsghh+SSSy7J0KFDc/nll2/1+p/85Cd5//vfn8MPPzwHHXRQLrvssnR2dub666/fzckBAGD3K5VK+fDG2Wg/vu2pLF3TWnAiAKgOhZZobW1tufPOO3PyySd3P1dTU5OTTz45t956a4/eY926dWlvb8/YsWP7KiYAAPQrLz9gQg7bY1Ra2jtz2U1zio4DAFWhrsgPX7p0aTo6OjJp0qTNnp80aVIeeeSRHr3HJz7xiUydOnWzIu75Wltb09r63P8719zcnCRpb29Pe3v7TiZP97278h5UF2OGShkzVMqYoRLlcrn7e2NmYHr/ifvk7398d/7t1rk567jpGTusoU8/z58xVMqYoVLGDJXqrTHT0/sLLdF21Ze//OX87Gc/y4033pimpqatXnPBBRfkc5/73BbPX3vttRk6dOguZ7juuut2+T2oLsYMlTJmqJQxQ0/UrlzR/b0xMzCVy8kew2rzzNqOfOrffp/X7dW5Wz7XeKFSxgyVMmao1K6OmXXr1vXoukJLtPHjx6e2tjaLFi3a7PlFixZl8uTJ2733wgsvzJe//OX87ne/y6GHHrrN684555zMmjWr+3Fzc3P3YQQjR47c6ezt7e257rrrcsopp6S+vn6n34fqYcxQKWOGShkzVOL2Bb9LFnZ9b8wMXE37Ls57f3JP/ndJXb7wdydkwojGPvssf8ZQKWOGShkzVKq3xsymVYs7UmiJ1tDQkKOOOirXX399zjzzzCTpPiTggx/84Dbv++pXv5ovfvGL+e1vf5ujjz56u5/R2NiYxsYt/zJRX1/fK/9S9tb7UD2MGSplzFApY4aeKJVK3d8bMwPXaTOn5vDpc3PP0yvz/Zvm5nOvn9nnn2m8UCljhkoZM1RqV8dMT+8t/HTOWbNm5dJLL82PfvSjPPzww3nf+96XtWvX5qyzzkqSvO1tb8s555zTff1XvvKVnHvuubn88sszY8aMLFy4MAsXLsyaNWuK+hEAAKAQpVIp/3TagUmSn94+L8+s6NlyFACgcoWXaG9605ty4YUX5rzzzsvhhx+ee+65J9dcc033YQPz5s3LggULuq//3ve+l7a2trzxjW/MlClTun9deOGFRf0IAAADVjmlHV9Ev/aS/cbnJfuOS3tHOd/83eNFxwGAQatfHCzwwQ9+cJvLN2+88cbNHs+dO7fvAwEAwADy8dMOzF/+8y35f3c9k/eeuG/2nTC86EgAMOgUPhMNAIAilIsOQC86cs8xOfngieksJxdd91jRcQBgUFKiAQDAIPCxU7v2RrvyvgV58NlVBacBgMFHiQYAAIPAwVNG5ozDpiZJvnrNowWnAYDBR4kGAACDxMdOOSD1taX84bEluenxJUXHAYBBRYkGAACDxIzxw/J3L94rSfLFKx9OR6e97wCgtyjRAABgEPnwSftnRFNdHlm4Or+665mi4wDAoKFEAwCAQWTMsIZ88BX7JUm+fu1jWd/WUXAiABgclGgAADDIvP0lMzJt9JAsbG7JD25+sug4ADAoKNEAAGCQaaqvzT+96sAkyfdunJ0lq1sLTgQAA58SDQAABqEzDp2aw/YYlbVtHbn4d48VHQcABjwlGgAADEI1NaV86vSDkyQ/u31eHnq2ueBEADCwKdEAAGCQOnafcXnNoVPSWU4+++sHUy6Xi44EAAOWEg0AAAaxT59+cJrqa3L73OX59b3PFh0HAAYsJRoAAAxiU0cPyQdO3C9JcsFVj2Rt64aCEwHAwKREAwCAQe7sl+2T6WOHZGFzS757wxNFxwGAAUmJBgAAg1xTfW3Ofc0hSZLLbpqTuUvXFpwIAAYeJRoAAFSBUw6ZlJcdMCFtHZ35wm8eKjoOAAw4SjQAAKgCpVIp5732kNTVlHL9I4tz7YMLi44EAAOKEg0AAKrEfhOH5+yX7ZMkOf/XD2aNQwYAoMeUaAAAValcdAAK8uGT9s/0sUOyYFVLLr7usaLjAMCAoUQDAIAqMqShNl94/cwkyb/+75w8MH9VwYkAYGBQogEAQJU58cCJOeOwqeksJ+f86v50dJqZCAA7okQDAIAqdO5rD86IprrcP39V/u3WuUXHAYB+T4kGAABVaOKIpnzy1QclSS787aNZsGp9wYkAoH9TogEAQJV684v2zFF7jcnato586lf3p1y2rBMAtkWJBgAAVaqmppQv/+UL01BbkxseXZL/d9f8oiMBQL+lRAMAgCq2/6QR+egpByRJPvc/D2bhqpaCEwFA/6REAwCAKnf2CXvnsD1GZXXLhnzqvyzrBICtUaIBAECVq6utydf+6rA01Nbk948szn/dbVknAPw5JRoAAJADJo3IR07eP0ny2V8/mMXNlnUCwPMp0QAAgCTJ379sn7xw2qg0t2zIJ53WCQCbUaIBAABJupZ1Xvi8ZZ0/uW1e0ZEAoN9QogEAAN0OnDwi//SqA5Mk/9+VD+WJxWsKTgQA/YMSDQAA2Mw7X7p3jt9vfFraO/MPP787bRs6i44EAIVTogEAAJupqSnl6399WEYPrc8D85tz0XWPFR0JAAqnRAMAALYwaWRTvvyXL0ySfP+Ps3PbnOUFJwKAYinRAACArXrVzCn566P3SLmc/OP/eyBr24tOBADFUaIBAFS1UtEB6OfOP+MFmTFuaBasaslPZ9ekXC4XHQkACqFEAwCoQqUoQuiZYY11+c7fHpn62lIeWFGTy295quhIAFAIJRoAALBdM6eNyqdPPyhJcuG1j+fOp1YUnAgAdj8lGgAAsEN/+6I9csS4zmzoLOdDP70rK9a2FR0JAHYrJRoAALBDpVIpf7NPZ2aMG5pnV7XkY7+8N52dlgUDUD2UaAAAQI801SXffNOhaairye8fWZxL/ji76EgAsNso0QAAgB47ZMrIfO51L0iSfO23j+YPjy0pOBEA7B5KNAAAoCJ/86Lp+ZsXTU+5nHzop3dl7tK1RUcCgD6nRAMAACpSKpXyude/IEfsOTrNLRvynn+/I2tbNxQdCwD6lBINAACoWGNdbS75u6MyYURjHlu0Jh//5b0plx00AMDgpUQDAAB2yqSRTbnk745MfW0pVz+wMP98o4MGABi8lGgAAMBOO2qvsfnc62YmSS689tFc88DCghMBQN9QogEAALvkb4/dM2998V4pl5N/+Pndue+ZlUVHAoBep0QDAAB22flnHJKXHzAhLe2dedeP7sj8leuLjgQAvUqJBgAA7LK62pp852+PyEGTR2TJ6ta864f/l9Ut7UXHAoBeo0QDAAB6xYim+vzgHS/KhBGNeWTh6nzwp3dnQ0dn0bEAoFco0QAAgF4zbfSQ/ODtR6epviZ/eGxJzv3vB1Mul4uOBQC7TIkGAAD0qkP3GJ1vvOmIlErJf9w+Lxf/7vGiIwHALlOiAQBUIROD6Guvmjk5n3/9zCTJt65/PD+6ZW6xgQBgFynRAACqWanoAAxmb33xXvnoyQckST77Pw/m1/c+W3AiANh5SjQAgCpUStdUtLIWjT724Vful7cdt1fK5eRjv7gnf3xsSdGRAGCnKNEAAIA+UyqVcv4ZL8hrDp2S9o5y3vvjO3PnUyuKjgUAFVOiAQAAfaq2ppSL/vqwHL/f+Kxr68g7Lr899z2zsuhYAFARJRoAANDnGutq8y9vOyrHzBib1a0b8neX3ZYH5q8qOhYA9JgSDQAA2C2GNtTl8rNelCP3HJ3mlg156w9uyyMLm4uOBQA9okQDAAB2m+GNdfnhO4/JYXuMyop17XnLpbfl8UWri44FADukRAMAAHarkU31+bd3HpsXTB2ZZWvb8uZLb8tjijQA+jklGgAAsNuNGlqfH7/r2Bw0eUSWrmnNm75/qz3SAOjXlGgAAEAhxgxryM/e8+IcunFp55sv/VPufGpF0bEAYKuUaAAAQGFGD23Ij999bF40Y0xWbzxs4NbZy4qOBQBbUKIBAACFGtlUnx+985gcv9/4rGvryDv+9fbc8OjiomMBwGaUaAAAQOGGNtTlsrcfnVceNDGtGzpz9o/uyK/ueqboWADQTYkGAAD0C031tbnkrUfl9YdPzYbOcmb94t5878bZKZfLRUcDACUaAADQf9TX1uTivz4873nZPkmSr1zzSD776wfT0alIA6BYSjQAAKBfqakp5VOnH5xzX3tISqXkR7c+lQ/9x11pae8oOhoAVUyJBgAA9EvvOn7vfPvNR6ShtiZX3b8wf3fZbVm6prXoWABUKSUaAADQb7320Kn50TuPycimutzx1Iq8/jv/m0cWNhcdC4AqpEQDAAD6teP2HZf/+sBLs/f4YZm/cn3e8M+35HcPLSo6FgBVRokGAAD0e/tOGJ7/ev9L8pJ9x2VtW0fO/vc7cskfnNwJwO6jRAMAqErl5/0vDAyjhzbkR+88Jm85ds+Uy8mXr34kH/35PVnXtqHoaABUASUaAAAwYNTX1uT/O3NmPve6F6S2ppQr7nk2f/HdWzJn6dqiowEwyCnRAACAAaVUKuXtL5mRn7z72Iwf3phHF63O6759c3774MKiowEwiCnRAACAAenF+4zLlR8+PkfvNSarWzfk7//9znz56keyoaOz6GgADEJKNAAAYMCaNLIp//GeF+edL907SXLJH2bnby+7Lc+uXF9wMgAGGyUaAAAwoNXX1uS8Mw7Jd/72iAxrqM3tc5bn1d+8Kdc8sKDoaAAMIko0AABgUHjtoVNz5YdPyGF7jMqq9e1574/vyjm/uj/r2zqKjgbAIKBEAwAABo0Z44fll+99Sd778n1TKiX/cfu8nPGdm/PQs81FRwNggFOiAQAAg0pDXU0++eqD8uN3HZuJIxrzxOI1ef13b863r3887Q4dAGAnKdEAAIBB6aX7jc81//CynHrIpLR3lPP16x7LX/7zLXl04eqiowEwACnRAACAQWvssIZ8/61H5RtvOjyjhtTn/vmrcsa3b853b3giG8xKA6ACSjQAAGBQK5VKOfOIabnuoy/LKw+amLaOznztt4/mDd+7JQ8+u6roeAAMEEo0AACgKkwc2ZTL3n50vv5Xh2VEU13ufWZVXved/83/95uHsrZ1Q9HxAOjnlGgAAEDVKJVKecNRe+R3s16e17xwSjo6y7ns5jk55aI/5NoHFxYdD4B+TIkGAABUnUkjm/LdtxyZf33Hi7LHmCF5dlVL3vPvd+bsf7sjz6xYV3Q8APohJRoAAFC1XnHQxFz30ZfnfSfum7qaUq57aFFe+fU/5KJrH826Nks8AXiOEg0AAKhqQxpq84lXHZQrP3xCjt17bFo3dOZbv38iJ134h/zX3c+ks7NcdEQA+gElGgBANdIJwBYOnDwiP3vPi/O9txyZPcYMycLmlnz05/fmL793S+6et6LoeAAUTIkGAFCVtGiwNaVSKa9+4ZT8btbL84+nHZihDbW55+mV+Yt/viXv+/GdeWLxmqIjAlAQJRoAQFUrFR0A+qWm+tp84BX75YaPn5g3HrVHSqXk6gcW5tSL/5BP/Od9eXbl+qIjArCbKdEAAAC2YdLIplz4V4flmo+8LCcfPCmd5eTndzydEy+8MV+88qEsX9tWdEQAdhMlGgAAwA4cOHlELnv70fl/73tJjtl7bNo2dObSm+bkhK/8Phdc/XCWrmktOiIAfUyJBgAA0ENH7TUmP3/Pi/PDs16UF0wdmbVtHfn+H57M8V/5fT7/Pw9lUXNL0REB6CNKNAAAgAqUSqWceODE/OZDx+eytx2dw/YYlZb2zlz+v3NywldvyLlXPJBnVqwrOiYAvayu6AAAAAADUalUysmHTMorD56YPz6+NN++/vHc8dSK/PufnspPb5+X0184Je8+fu8cNn100VEB6AVKNAAAgF1QKpXy8gMm5GX7j8+tTy7Ld37/RG6ZvSz/c++z+Z97n80xM8bm3SfsnVcePCm1NU7EBRiolGgAAAC9oFQq5SX7js9L9h2fB+avyg9unpP/uffZ3D53eW6fuzwzxg3NO4/fO39xxLSMaKovOi4AFbInGgAAQC+bOW1ULn7T4bn5EyflvS/fNyOb6jJ32bqc998P5tgvXZ9zfnV/Hnx2VdExAaiAmWgAAAB9ZPKopnzy1QflQyftl1/e8XT+/U9PZfaStfmP2+flP26flyP2HJ2/O3avvObQKWmqry06LgDboUQDAADoY8Ma6/KOl+6dt79kRv705PL8+Lan8tsHFubueStz97yV+cKVD+XMw6flDUfukZnTRqZUsncaQH+jRAMAANhNSqVSjtt3XI7bd1wWr27JL+94Jj+9bV7mr1yfH94yNz+8ZW4OnDQibzhqWs48fFomjmwqOjIAGynRAAAACjBxRFM+8Ir98t6X75s/Pr4k/+/OZ3LtQ4vy6KLV+dJVj+TLVz+Slx8wIX955B555cETM7TBf74BFMmfwgAAAAWqrSnlFQdOzCsOnJhV69vzm/uezf+785ncNW9lbnh0SW54dEmG1NfmlQdPzGsPnZoTD5xg/zSAAijRAAAA+olRQ+rzlmP3yluO3Suzl6zJr+56Jv99z7N5ZsX6/Oa+BfnNfQsyrKE2pxwyKa89dGpOOGB8GusUagC7gxINAACgH9p3wvD842kH5eOnHph7n1mVK+97NlfetyDPrmrJFfc8myvueTYjGuvy8gMn5JRDJuXEAydm1JD6omMDDFpKNAAAgH6sVCrl8Omjc/j00Tnn1Qfn7qdX5jf3PZur7l+QRc2t3TPU6mpKOWbvsTnlkEk5+eBJmT52aNHRAQYVJRoAAMAAUVNTylF7jclRe43Jua85JPc8szK/e2hRrntoUR5fvCa3zF6WW2Yvy+f+56EcNHlEXn7ghLxs/wk5esYYyz4BdpESDQCgCpWKDgDsspqaUo7cc0yO3HNM/ulVB2Xu0rX53cNdhdr/zV2eRxauziMLV+f7f3gyTfU1efE+43LC/hPy8gPGZ98Jw1Mq+ZMAoBJKNAAAgEFgxvhhefcJ++TdJ+yTFWvb8sfHl+SPjy3NHx9fkiWrW3Pjo0ty46NL8oUkU0c15aX7jc+x+4zLsXuPtfQToAeUaAAAVc1MFBiMxgxryOsPn5bXHz4t5XI5jyxcnZs2lmq3z12eZ1e15Jd3PpNf3vlMkmTa6CE5dp+xefHe43LsPmOz59ihZqoB/BklGgAAwCBWKpVy8JSROXjKyLznZftmfVtHbpuzLLc+uSy3Pbk8989flfkr1+dXd83Pr+6anySZPLIpx+w9NkfuOTpH7DkmB08ZmYa6moJ/EoBiKdEAAACqyJCG2px44MSceODEJMna1g2586kVuW1OV6l27zMrs7C5Jb++99n8+t5nkyQNdTV54bRROWJ6V6l2xJ6jM3X0kCJ/DIDdTokGAABQxYY11uVlB0zIyw6YkCRZ39aRu+etyJ1PrcjdT6/M3fNWZMW69tz5VNdzyZwkyaSRjXnhtFF5wdRRmTltVF4wdWSmjGqyDBQYtJRoAAAAdBvSUJuX7Dc+L9lvfJKkXC5n7rJ1uXveitw9b2XufnpFHl6wOouaW7OoeXF+9/Di7nvHDmvIC6aOzAumjspBk4Zlyfqko7Oc+qJ+GIBepEQDAABgm0qlUvYePyx7jx+WvzxyjyRds9UeeHZVHpi/Kg8+25wH5q/K44vXZPnattz0+NLc9PjSjXfX5esPXp/9Jg7PAZNG5IBJI3LgpBHZf9LwTBs9xKw1YEBRogEAAFCRIQ21edGMsXnRjLHdz7W0d+SxRavzwPzmjQXbyjw8f1Va2ju7npvfvNl7DGuozf6TRuSAScOz/8QRXUXdhGGZPmaoQwyAfkmJBgAAwC5rqq/NoXuMzqF7jE6StLe35zdXXpUXHPvyPLmsJY8vWp1HF63O44vW5Mmla7K2rSP3PL0y9zy9crP3qa0pZfqYIRtnvw3P3hOGZZ/xwzJj/LBMGdmUmhqz14BiKNEAAADoEzWlZO/xw3LAlNF51czJ3c+3d3Rm7tK1eWzRmjy6aHVmL1mTOUvWZs7StVnf3pG5y9Zl7rJ1ueHRJZu9X2NdTaaNGZLpY4ZmjzFDMn3sxq8bH48d1mCJKNBnlGgAAADsVvW1Ndl/0ojsP2lEXpMp3c+Xy+UsXt2aJzcWanOWrtn4dW3mLV+X1g2deXLJ2jy5ZO1W33doQ232GDMke2ws1SaPasqUUU2ZPLLr+8kjmzKkoXZ3/ZjAIKNEAwAAoF8olUqZNLIpk0Y25bh9x2322oaOzjy7siXPrFiXp1esyzMr1ufp5Ru/rliXRc2tWdfWkccWrclji9Zs8zNGD63P5JFN3QXbpJHPfR0/vDETRjRm7LCG1Nfalw3YnBINAACAfq+utiZ7jhuaPccN3errLe0deXbl+u5Sbf6K9VnY3JKFq1qysLklC1a2ZH17R1aua8/Kde15ZOHq7X7emKH1mTCiMeOHP+/XiIbuom3C8MaMG96QMUMb0lRvdhtUAyUaAAAAA15TfW32mTA8+0wYvtXXy+Vymls2ZFFzSxasasmiVV1fFzav31i0tWbpmtYsX9uWjs5yVqxrz4p17dud1fbcZ9dkzNCGjB7akDFD6zd+v/nXMcPqN77edc2IpvrUOiQBBhQlGgAAAINeqVTKqCH1GTWkPgdMGrHN6zo7y1mxri1L17Rl6ZquYm3J6tYsWdOapas3f2752rZs6Cynpb0zCzaWcpUY3liXEU11GdlU3/V1SP0OH49sqsuIpvoMa6zL0Ppap5XCbtQvSrTvfve7+drXvpaFCxfmsMMOy7e//e0cc8wx27z+l7/8Zc4999zMnTs3+++/f77yla/k9NNP342JAQAAGIxqakoZN7wx44Y35sBsu2xLuma3rWndkJXr2rNiXVuWr23r/n7Fuvas3OxrW1as7fp+bVtHkmRN64asad1Qcfn2fEPqazOssTZDG+oytKG2q1xrqM3wxroMbajrfm1YQ22GNj73dXhjbYbU16WpviZN9bVpqq/NkPra7seNdTVOOoU/U3iJ9vOf/zyzZs3KJZdckmOPPTbf+MY3ctppp+XRRx/NxIkTt7j+lltuyZvf/OZccMEFee1rX5uf/vSnOfPMM3PXXXdl5syZBfwEAAAAVKNSqZQRTV1LM6eP3fpebVvTtqEzq1va09yyoevr+q6vq1s2pHnj883rn3v8/NdWt2zI6pYN6egsJ0nWt3dkfXtHkrZe//m6C7a62gxp6CrWmjYWbUM2Fm9Nzyvemupr01Bbk4a6mue+VvB9qdyRte3J2tYNGVZTm7qakiKPfqXwEu2iiy7K2WefnbPOOitJcskll+TKK6/M5Zdfnk9+8pNbXP/Nb34zr3rVq/KP//iPSZIvfOELue666/Kd73wnl1xyyW7NDgAAAJVqqKvpnu22M8rlclo3dGZdW0fWtm7I2rYNWdvakXXP/7rxtXWtXd8//7U1rRuyrq0j69o60tK+6VdnWto7smFjOZdk43OdSdp76Sfvibp86o7fJ0lKpaS+tiaNG8u2+tqa1NWWUldTSl1tTepqSqmvrUltTSn1taXU1Wz+en1tKbU1NamvKaVu0/dbu66mlNraUur/7PnamlJqS1331pRKqa157mttTZ77vlRKTc2fvV4qpaYmm7++6T2e//qfPff896gpRYnYzxRaorW1teXOO+/MOeec0/1cTU1NTj755Nx6661bvefWW2/NrFmzNnvutNNOyxVXXNGXUfu1e67/WcobWouOwQ50dHSm9eknc+91y1PruGx6wJihUsYMlWhaPbfoCADspFKp1D3za+ywhl597/aOzs1Kte7vN3R9v76tIy0bul5r3TgL7rlrO9PW0ZG2DZ1dvzo607ahvPFrR/dz7d3PdaZ1w8bXOjrT3lHunmGXJOVyut8rVfqfvDWldBdrXb+6yrtSqWvpcU2plFK6xsSm1zaVb6XnPa553uPnvm5+T7byHjWlpJSuwu/599TV1OSytx9d9D+e3a7QEm3p0qXp6OjIpEmTNnt+0qRJeeSRR7Z6z8KFC7d6/cKFC7d6fWtra1pbn/u3rbm5OUnS3t6e9vadb9M33bsr79Fb9rrp4xmT7R/PTP9wdJIsLToFA4kxQ6WMGSrVWarpF3+fof/rT3//ZWAwZgauptqkqbYmaar5/9u796Co6/+L42cXETHATAQ1CcwsZ7wAopKXikwxR51oHHTKDMmxLDSJPwpvkOUl8xKFhZfKLHW0ctSakiK8xtSAYpaVMmpODt7QVBD66rK7vz/ULX6oHzaBzyLPxwzD8t7bWecFLofPRZJ3vT2vzWbTN9/m6MGHB8hp8dKlSodsdoercLPZnbLZHbI7nKp0OK+Ubg5V2p2yOZyqvHLd5cuXr7t6udLuUOWV+1Xanap0OP51+crX9urX2Z1OORyXP9sdTjmcuvL5yteu6/TP2nVu+89jyXU/p/PG/yYOp+SwOyUZ3LCeeXtZPOJ7u7Z+ztT0/qbvzlnX5s6dq5kzZ1Zb//bbb9W8ec33Wb+enJycm36Mm9XWerd8nX+bHQMAADQw/7M004XgPh7xfgYNB/MCdzEzcIfVIn2/bct/u++VD7dqP68rHyZxOiXH1c9XLjuc/6z/+7LTeblKc33+f/fXDdYcrvtaqtz3mp9rsCZJX3/9dV3/89TYzf6cqaioqNHtTC3RAgMD5eXlpZMnT1ZZP3nypNq0aXPN+7Rp08at20+ZMqXK7p+lpaUKCQlRbGysAgIC/nN2m82mnJwcDRo0SN7e9dfMXxNnJm0QPGpm0CAwM3AXMwN32Ww2HWNmUEP8jIG7mBm4i5mBu2prZq7utWjE1BKtadOmioqKUm5uruLi4iRJDodDubm5mjhx4jXv06dPH+Xm5io5Odm1lpOToz59+lzz9j4+PvLxqX6wRm9v71r5pqytx0HjwczAXcwM3MXMwF3MDNzBvMBdzAzcxczAXTc7MzW9r+m7c6akpCghIUE9e/ZU7969lZGRofLyctfZOp9++mndeeedmjt3riRp8uTJeuihh7Rw4UINHTpUa9eu1a5du7Rs2TIzXwYAAAAAAABuYaaXaKNGjVJJSYnS0tJ04sQJRUREKDs723XygD///FNW6z9nGOvbt6/WrFmj6dOna+rUqerUqZM2btyorl27mvUSAAAAAAAAcIszvUSTpIkTJ153981t27ZVW4uPj1d8fHwdpwIAAAAAAAAusxrfBAAAAAAAAGjcKNEAAAAAAAAAA5RoAAAAAAAAgAFKNAAAAAAAAMAAJRoAAAAAAABggBINAAAAAAAAMECJBgAAAAAAABigRAMAAAAAAAAMUKIBAAAAAAAABijRAAAAAAAAAAOUaAAAAAAAAIABSjQAAAAAAADAACUaAAAAAAAAYIASDQAAAAAAADBAiQYAAAAAAAAYoEQDAAAAAAAADFCiAQAAAAAAAAYo0QAAAAAAAAADlGgAAAAAAACAAUo0AAAAAAAAwAAlGgAAAAAAAGCAEg0AAAAAAAAwQIkGAAAAAAAAGKBEAwAAAAAAAAxQogEAAAAAAAAGKNEAAAAAAAAAA5RoAAAAAAAAgAFKNAAAAAAAAMBAE7MD1Den0ylJKi0tvanHsdlsqqioUGlpqby9vWsjGm5xzAzcxczAXcwM3MXMwB3MC9zFzMBdzAzcVVszc7UjutoZXU+jK9HKysokSSEhISYnAQAAAAAAgKcoKytTixYtrnu9xWlUs91iHA6Hjh07Jn9/f1kslv/8OKWlpQoJCdHRo0cVEBBQiwlxq2Jm4C5mBu5iZuAuZgbuYF7gLmYG7mJm4K7amhmn06mysjK1a9dOVuv1j3zW6LZEs1qtat++fa09XkBAAN/ccAszA3cxM3AXMwN3MTNwB/MCdzEzcBczA3fVxszcaAu0qzixAAAAAAAAAGCAEg0AAAAAAAAwQIn2H/n4+Cg9PV0+Pj5mR0EDwczAXcwM3MXMwF3MDNzBvMBdzAzcxczAXfU9M43uxAIAAAAAAACAu9gSDQAAAAAAADBAiQYAAAAAAAAYoEQDAAAAAAAADFCiAQAAAAAAAAYo0WpBUVGRHnvsMQUGBiogIED9+/fX1q1bzY4FD/fVV18pOjpavr6+atmypeLi4syOhAbg4sWLioiIkMVi0U8//WR2HHioI0eOaNy4cerQoYN8fX3VsWNHpaen69KlS2ZHgwd59913FRYWpmbNmik6Olr5+flmR4KHmjt3rnr16iV/f38FBQUpLi5OBw4cMDsWGpA33nhDFotFycnJZkeBBysuLtZTTz2lVq1aydfXV926ddOuXbvMjgUPZbfbNWPGjCrvd19//XXV9bkzKdFqwbBhw1RZWaktW7Zo9+7dCg8P17Bhw3TixAmzo8FDrV+/XmPGjFFiYqL27t2rvLw8Pfnkk2bHQgPw8ssvq127dmbHgIfbv3+/HA6Hli5dql9//VVvvfWWlixZoqlTp5odDR5i3bp1SklJUXp6ugoLCxUeHq7Bgwfr1KlTZkeDB9q+fbuSkpL0448/KicnRzabTbGxsSovLzc7GhqAgoICLV26VN27dzc7CjzY2bNn1a9fP3l7e2vz5s367bfftHDhQrVs2dLsaPBQ8+bNU1ZWlhYvXqzff/9d8+bN05tvvqnMzMw6fV6Ls65rulvc6dOn1bp1a+3YsUMPPPCAJKmsrEwBAQHKycnRwIEDTU4IT1NZWamwsDDNnDlT48aNMzsOGpDNmzcrJSVF69evV5cuXbRnzx5FRESYHQsNxPz585WVlaXDhw+bHQUeIDo6Wr169dLixYslSQ6HQyEhIZo0aZJSU1NNTgdPV1JSoqCgIG3fvl0PPvig2XHgwS5cuKAePXrovffe06xZsxQREaGMjAyzY8EDpaamKi8vTzt37jQ7ChqIYcOGKTg4WB988IFrbcSIEfL19dWqVavq7HnZEu0mtWrVSvfdd58+/vhjlZeXq7KyUkuXLlVQUJCioqLMjgcPVFhYqOLiYlmtVkVGRqpt27YaMmSI9u3bZ3Y0eLCTJ09q/Pjx+uSTT9S8eXOz46ABOn/+vO644w6zY8ADXLp0Sbt3767yhz6r1aqBAwfqhx9+MDEZGorz589LEj9TYCgpKUlDhw5lwwIY+uKLL9SzZ0/Fx8crKChIkZGRWr58udmx4MH69u2r3NxcFRUVSZL27t2r77//XkOGDKnT521Sp4/eCFgsFn333XeKi4uTv7+/rFargoKClJ2dzaanuKarW4G8+uqrWrRokcLCwrRw4ULFxMSoqKiIN6Soxul0auzYsZowYYJ69uypI0eOmB0JDczBgweVmZmpBQsWmB0FHuD06dOy2+0KDg6ush4cHKz9+/eblAoNhcPhUHJysvr166euXbuaHQcebO3atSosLFRBQYHZUdAAHD58WFlZWUpJSdHUqVNVUFCgF198UU2bNlVCQoLZ8eCBUlNTVVpaqs6dO8vLy0t2u12zZ8/W6NGj6/R52RLtOlJTU2WxWG74sX//fjmdTiUlJSkoKEg7d+5Ufn6+4uLiNHz4cB0/ftzsl4F6VNOZcTgckqRp06ZpxIgRioqK0ooVK2SxWPTZZ5+Z/CpQn2o6M5mZmSorK9OUKVPMjgyT1XRm/q24uFiPPvqo4uPjNX78eJOSA7hVJCUlad++fVq7dq3ZUeDBjh49qsmTJ2v16tVq1qyZ2XHQADgcDvXo0UNz5sxRZGSknn32WY0fP15LliwxOxo81KeffqrVq1drzZo1Kiws1MqVK7VgwQKtXLmyTp+XY6JdR0lJic6cOXPD29x9993auXOnYmNjdfbsWQUEBLiu69Spk8aNG8dxRRqRms5MXl6eBgwYoJ07d6p///6u66KjozVw4EDNnj27rqPCQ9R0ZkaOHKkvv/xSFovFtW632+Xl5aXRo0fX+X8U8Bw1nZmmTZtKko4dO6aYmBjdf//9+uijj2S18rczXN6ds3nz5vr888+rnBk6ISFB586d06ZNm8wLB482ceJEbdq0STt27FCHDh3MjgMPtnHjRj3++OPy8vJyrdntdlksFlmtVl28eLHKdUBoaKgGDRqk999/37WWlZWlWbNmqbi42MRk8FQhISFKTU1VUlKSa23WrFlatWpVnW5Zz+6c19G6dWu1bt3a8HYVFRWSVO0XE6vV6triCI1DTWcmKipKPj4+OnDggKtEs9lsOnLkiEJDQ+s6JjxITWfmnXfe0axZs1xfHzt2TIMHD9a6desUHR1dlxHhYWo6M9LlLdAefvhh19auFGi4qmnTpoqKilJubq6rRHM4HMrNzdXEiRPNDQeP5HQ6NWnSJG3YsEHbtm2jQIOhRx55RL/88kuVtcTERHXu3FmvvPIKBRqq6devnw4cOFBlraioiN+PcF0VFRXV3t96eXnVeQ9DiXaT+vTpo5YtWyohIUFpaWny9fXV8uXL9ccff2jo0KFmx4MHCggI0IQJE5Senq6QkBCFhoZq/vz5kqT4+HiT08ET3XXXXVW+9vPzkyR17NhR7du3NyMSPFxxcbFiYmIUGhqqBQsWqKSkxHVdmzZtTEwGT5GSkqKEhAT17NlTvXv3VkZGhsrLy5WYmGh2NHigpKQkrVmzRps2bZK/v79OnDghSWrRooV8fX1NTgdP5O/vX+2YebfddptatWrFsfRwTS+99JL69u2rOXPmaOTIkcrPz9eyZcu0bNkys6PBQw0fPlyzZ8/WXXfdpS5dumjPnj1atGiRnnnmmTp9Xkq0mxQYGKjs7GxNmzZNAwYMkM1mU5cuXbRp0yaFh4ebHQ8eav78+WrSpInGjBmjv//+W9HR0dqyZQsnowBQK3JycnTw4EEdPHiwWtHKURwgSaNGjVJJSYnS0tJ04sQJRUREKDs7u9rJBgDp8i5VkhQTE1NlfcWKFRo7dmz9BwJwy+nVq5c2bNigKVOm6LXXXlOHDh2UkZFR5weJR8OVmZmpGTNm6IUXXtCpU6fUrl07Pffcc0pLS6vT5+WYaAAAAAAAAIABDpACAAAAAAAAGKBEAwAAAAAAAAxQogEAAAAAAAAGKNEAAAAAAAAAA5RoAAAAAAAAgAFKNAAAAAAAAMAAJRoAAAAAAABggBINAADgFjZ27FjFxcWZHQMAAKDBa2J2AAAAAPw3Fovlhtenp6fr7bffltPprKdEAAAAty5KNAAAgAbq+PHjrsvr1q1TWlqaDhw44Frz8/OTn5+fGdEAAABuOezOCQAA0EC1adPG9dGiRQtZLJYqa35+ftV254yJidGkSZOUnJysli1bKjg4WMuXL1d5ebkSExPl7++ve+65R5s3b67yXPv27dOQIUPk5+en4OBgjRkzRqdPn67nVwwAAGAeSjQAAIBGZuXKlQoMDFR+fr4mTZqk559/XvHx8erbt68KCwsVGxurMWPGqKKiQpJ07tw5DRgwQJGRkdq1a5eys7N18uRJjRw50uRXAgAAUH8o0QAAABqZ8PBwTZ8+XZ06ddKUKVPUrFkzBQYGavz48erUqZPS0tJ05swZ/fzzz5KkxYsXKzIyUnPmzFHnzp0VGRmpDz/8UFu3blVRUZHJrwYAAKB+cEw0AACARqZ79+6uy15eXmrVqpW6devmWgsODpYknTp1SpK0d+9ebd269ZrHVzt06JDuvffeOk4MAABgPko0AACARsbb27vK1xaLpcra1bN+OhwOSdKFCxc0fPhwzZs3r9pjtW3btg6TAgAAeA5KNAAAANxQjx49tH79eoWFhalJE94+AgCAxoljogEAAOCGkpKS9Ndff+mJJ55QQUGBDh06pG+++UaJiYmy2+1mxwMAAKgXlGgAAAC4oXbt2ikvL092u12xsbHq1q2bkpOTdfvtt8tq5e0kAABoHCxOp9NpdggAAAAAAADAk/GnQwAAAAAAAMAAJRoAAAAAAABggBINAAAAAAAAMECJBgAAAAAAABigRAMAAAAAAAAMUKIBAAAAAAAABijRAAAAAAAAAAOUaAAAAAAAAIABSjQAAAAAAADAACUaAAAAAAAAYIASDQAAAAAAADBAiQYAAAAAAAAY+D/qDThnWjc/1QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(15, 10))\n", "plt.xlabel('Time')\n", "plt.ylabel('Amplitude')\n", "plt.plot(tx-position*duration, x, label='Señal x(t)') # Notar que desplazamos el eje del tiempo para que veamos la señal como que empieza en t=0. Esto es una cuestión simplemente\n", " # de visualización, ya que el cero de tiempo lo ponemos en el indice del array que contiene la señal x(t) \n", " # en donde más nos convenga.\n", "plt.plot(tx-position*duration, h, label='Señal h(t)') #Como las señales se generan con los mismos parámetros de duration y sample_rate tx=th asi que puedo usar cualquiera.\n", "plt.grid()\n", "plt.legend(loc='best')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "f9622c62-4e25-450a-a826-b9ead7c216a2", "metadata": {}, "source": [ "Para realizar la convolución vamos a usar el método [convolve](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html#scipy.signal.convolve) de [scipy.signal](https://docs.scipy.org/doc/scipy/reference/signal.html). Miren un poco la documentación para entender como usarlo. Hay cosas que todavía no van a entender pero\n", "a medida que avancemos con la materia muchas cosas quedarán más claras!\n", "\n", "La sintaxis general del comando es \n", "\n", "output=signal.convolve(in1, in2, mode='full', method='auto')\n", "\n", "donde in1 y in2 son los arrays de las señales a convolucionar (tienen que ser el mismo número de dimensiones pero no necesariamente del mismo tamaño). \n", "\n", "El argumento mode específica particularidades de el array de salida. El que usaremos el modo por defecto que es 'full'. \n", "\n", "El argumento method especifica como se computará la convolución. El default que es 'auto' permite que el programa selecciona el método más eficiente en término de recursos y tiempo. También están 'direct' y 'fft'. El segunda hace la convolución vía transformadas de Fourier (lo veremos más adelante). El 'direct' es método estandar que implementa la convolucion con productos y sumas (o integrales) tal como vimos en clase." ] }, { "cell_type": "code", "execution_count": 6, "id": "0fb17100-42ab-4e99-a720-76141ba9e4fb", "metadata": {}, "outputs": [], "source": [ "y=signal.convolve(x, h, mode='full', method='direct')" ] }, { "cell_type": "markdown", "id": "f747b793-77fb-490c-97a1-02a26e4e1b5b", "metadata": {}, "source": [ "Veamos el tamaño de las entradas y la salida" ] }, { "cell_type": "code", "execution_count": 7, "id": "a7cd6e25-c05c-48ee-bbc4-8d304cfc9598", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(15000,)\n", "(15000,)\n", "(29999,)\n" ] } ], "source": [ "print(h.shape)\n", "print(x.shape)\n", "print(y.shape)" ] }, { "cell_type": "markdown", "id": "4300de8f-8805-4a54-b697-55040a312fe3", "metadata": {}, "source": [ "Vemos que el tamaño de la salida es igual a igual al doble de la entradas menos 1. En general, para entradas de distinto tamaño va a ser $N_y=N_x+N_h-1$." ] }, { "cell_type": "markdown", "id": "07f08814-0f49-468f-a45e-0f6eafed296f", "metadata": {}, "source": [ "Para graficar con el eje temporal tal como teniamos arriba tenemos que tener en cuenta esto. Sino podemos graficar directamente la salida sin referencia al eje temporal" ] }, { "cell_type": "code", "execution_count": 8, "id": "c9a10234-1c14-4a87-83ea-d5896b5ba011", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABN4AAAMtCAYAAABAULwfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACP40lEQVR4nOzdeZzddX0v/teZPctMJnsIBAj7JqCggFpXlirutPdiqdW6/hT1Kr1dvFVbaa3VWrGg1dbdVrS3t0rVIiXuGwKC7CrIFiD7MplMktnP74+ZMyECkklm5nuW5/PxyIPMOd+ZeR/4Mpy8eL8/71K5XC4HAAAAAJhSTUUXAAAAAAD1SPAGAAAAANNA8AYAAAAA00DwBgAAAADTQPAGAAAAANNA8AYAAAAA00DwBgAAAADToKXoAmrB6Oho1qxZk87OzpRKpaLLAQAAAKBA5XI527dvz/Lly9PU9Nh9bYK3vbBmzZqsWLGi6DIAAAAAqCIPPPBADjrooMd8XvC2Fzo7O5OM/c3s6uoquJqpMTQ0lKuvvjpnn312Wltbiy4HJsX9S61zD1PL3L/UMvcvtcz9Sy2rx/u3t7c3K1asmMiMHovgbS9Uxku7urrqKnibPXt2urq66uamp3G4f6l17mFqmfuXWub+pZa5f6ll9Xz/Pt6RZJYrAAAAAMA0ELwBAAAAwDQQvAEAAADANHDGGwAAAMAUGRkZydDQUNFlVJWhoaG0tLSkv78/IyMjRZezV1pbW9Pc3LzfX0fwBgAAALCfyuVy1q1bl56enqJLqTrlcjnLli3LAw888LjLCKpJd3d3li1btl81C94AAAAA9lMldFuyZElmz55dUwHTdBsdHU1fX1/mzp2bpqbqP/WsXC5n586d2bBhQ5LkgAMO2OevJXgDAAAA2A8jIyMTodvChQuLLqfqjI6OZnBwMB0dHTURvCXJrFmzkiQbNmzIkiVL9nnstDZeLQAAAECVqpzpNnv27IIrYSpV/nnuz5l9gjcAAACAKWC8tL5MxT9PwRsAAAAATAPBGwAAAABMA8EbAAAAAPvloYceyiGHHJKzzz4769evz7HHHjupz7/vvvtSKpVy00037Vcdg4ODOeKII/LjH//4N173Z3/2Z3nLW96yX99rbwjeAAAAABrUxo0b88Y3vjEHH3xw2tvbs2zZspxzzjn50Y9+NKmv8+1vfzu///u/nxe/+MU544wz8trXvnaaKv7NPv7xj2flypV56lOfmuSxA73//b//dz73uc/lnnvumdZ6Wqb1qwMAAABQtc4777wMDg7mc5/7XA477LCsX78+3/rWt7J58+ZJfZ1XvOIVE7+/8MILp7rMvVIul/ORj3wkF1988eNeu2jRopxzzjn52Mc+lr/7u7+btpp0vAEAAABMsXK5nJ2Dw4X8KpfLe1VjT09PfvCDH+T9739/nv3sZ+eQQw7JU57ylLzjHe/Ii170oj2ue+1rX5vFixenq6srz3nOc3LzzTdPPP+Xf/mXOfnkk/Mv//IvOfTQQzNv3rycf/752b59+8Q13/zmN/OMZzwj3d3dWbhwYV7wghfk7rvv3uu/nxdffHFOOOGERzx+8skn513veleS5IYbbsjdd9+dc889d+L5lStXJkme+MQnplQq5VnPetbEcy984QvzpS99aa9r2Bc63gAAAACm2K6hkRz37v8u5HvfcfE5md32+JHP3LlzM3fu3FxxxRU5/fTT097e/qjX/e7v/m5mzZqVb3zjG5k3b17+6Z/+Kc997nNz5513ZsGCBUmSu+++O1dccUW+/vWvZ+vWrfkf/+N/5G//9m/z3ve+N0myc+fOvO1tb8vJJ5+cvr6+vPvd785LX/rS3HTTTWlqevy+sFe/+tV5z3vek+uvvz5PfvKTkyQ/+9nPcsstt+TLX/5ykuQHP/hBjjrqqHR2dk583nXXXZenPOUp+eY3v5njjz8+bW1tE8895SlPyYMPPpj77rsvhx566OPWsC90vAEAAAA0oJaWlnz2s5/N5z73uXR3d+dpT3ta/s//+T+55ZZbJq754Q9/mOuuuy7//u//nlNPPTVHHnlkPvjBD6a7uzv/7//9v4nrRkdH89nPfjYnnHBCfuu3fiuveMUr8q1vfWvi+Re96EV52cteliOOOCInn3xyPv3pT+fWW2/NHXfcsVe1HnTQQTnnnHPymc98ZuKxz3zmM3nmM5+Zww47LEly//33Z/ny5Xt83uLFi5MkCxcuzLJlyyaCwiQT195///17+7ds0nS8AQAAAEyxWa3NuePicwr73nvrvPPOy7nnnpsf/OAH+clPfpJvfOMb+cAHPpBPfvKTedWrXpWbb745fX19Wbhw4R6ft2vXrj1GRQ899NA9Os0OOOCAbNiwYeLju+++O3/3d3+X6667Lps2bcro6GiSZPXq1Y86QvpoXve61+XVr351PvShD6WpqSmXX355Lrnkkj1q6ujo2OvXPmvWrCRj3XjTRfAGAAAAMMVKpdJejXtWg46Ojpx11lk566yz8q53vSuvfe1r8xd/8Rd51atelb6+vhxwwAH57ne/+4jP6+7unvh9a2vrHs+VSqWJcC1JXv7yl+fQQw/NJz7xiSxfvjyjo6M54YQTMjg4uNd1vvCFL0x7e3u+8pWvpK2tLUNDQ/md3/mdiecXLVqUW2+9da+/3pYtW5Ls7oqbDrVxBwAAAAAwI4477rhcccUVSZInPelJWbduXVpaWvb5HLTNmzfnrrvuyic+8Yk885nPTDI2wjpZLS0teeUrX5nPfOYzaWtry/nnnz/RtZaMLVD42Mc+lnK5nFKplCQTZ7qNjIw84uvddtttaW1tzfHHH78vL2vvap62rwwAAABA1dq8eXN+93d/N69+9atz4oknprOzMz/96U/zgQ98IC9+8YuTJGeeeWbOOOOMvOQlL8kHPvCBHHXUUVmzZk3+67/+Ky996Utz6qmnPu73mT9/fhYsWJBPfOITOfDAA7N69er82Z/92T7V/NrXvjbHHntskuRHP/rRHs89+9nPTl9fX26//faJ8dUlS5Zk1qxZueqqq3LQQQelo6Mj8+bNSzK2jOG3fuu39gjvpprlCgAAAAANaO7cuTnttNNyySWX5BnPeEZOOOGEvOtd78rrXve6fOQjH0kyNjJ65ZVX5hnPeEb+8A//MEcddVTOP//83H///Vm6dOlefZ+mpqZ86lOfyo033pgTTjghb3/72/N3f/d3+1TzkUcemac+9ak55phjctppp+3x3MKFC/PSl740X/jCFyYea2lpyaWXXpp/+qd/yvLlyycCxST50pe+lNe97nX7VMfeKpXL5fK0foc60Nvbm3nz5mXbtm3p6uoqupwpMTQ0lCuvvDLPf/7zHzGHDdXO/Uutcw9Ty9y/1DL3L7XM/Vvd+vv7c++992blypWTOty/UYyOjqa3tzddXV1patq/HrByuZwjjzwyb3rTm3LRRRc94vlbbrklZ511Vu6+++7MnTv3Mb/ON77xjfzRH/1RbrnllrS0PPpA6G/657q3WZGONwAAAACq3saNG/ORj3wk69atyx/+4R8+6jUnnnhi3v/+9+fee+/9jV9rx44d+cxnPvOYodtUccYbAAAAAFVvyZIlWbRoUf75n/858+fPf8zrXvWqVz3u13r4NtTpJHgDAAAAoOrV4mlpRk0BAAAAYBoI3gAAAACmwOjoaNElMIWm4p9noaOm3//+9/N3f/d3ueGGG7J27dp85StfyUte8pKJ58vlcv7iL/4in/jEJ9LT05OnPe1p+djHPpYjjzxy4potW7bkLW95S772ta+lqakp5513Xv7hH/5hj80Vt9xySy688MJcf/31Wbx4cd7ylrfkT/7kT2bypQIAAAB1qq2tLU1NTVmzZk0WL16ctra2lEqlosuqGqOjoxkcHEx/f/9+bzWdCeVyOYODg9m4cWOamprS1ta2z1+r0OBtx44dOemkk/LqV786L3vZyx7x/Ac+8IFceuml+dznPpeVK1fmXe96V84555zccccdE2tcL7jggqxduzarVq3K0NBQ/vAP/zCvf/3rc/nllycZW+969tln58wzz8zHP/7x3HrrrXn1q1+d7u7uvP71r5/R1wsAAADUn6ampqxcuTJr167NmjVrii6n6pTL5ezatSuzZs2qqUBy9uzZOfjgg/crLCw0eHve856X5z3veY/6XLlczoc//OG8853vzItf/OIkyec///ksXbo0V1xxRc4///z8/Oc/z1VXXZXrr78+p556apLksssuy/Of//x88IMfzPLly/OFL3whg4OD+fSnP522trYcf/zxuemmm/KhD31I8AYAAABMiba2thx88MEZHh7OyMhI0eVUlaGhoXz/+9/PM57xjLS2thZdzl5pbm5OS0vLfgeFVbvV9N577826dety5plnTjw2b968nHbaabnmmmty/vnn55prrkl3d/dE6JYkZ555ZpqamnLttdfmpS99aa655po84xnP2KMt8Jxzzsn73//+bN269VHXzw4MDGRgYGDi497e3iRjN8rQ0NB0vNwZV3kd9fJ6aCzuX2qde5ha5v6lltXL/VsulzM0Uk7/0EgGhkczNDKaoZFyBodHMziy++OhX/v94KM8NjQ8/vvR0YyMlvf4NTxazmh57K8jI7/28WNc+8ITD8jvPWVF0X+L6lK93L+Norm5uegSqsro6GiGh4fT3NxcU39vhoeHH/O5vf13sWqDt3Xr1iVJli5dusfjS5cunXhu3bp1WbJkyR7Pt7S0ZMGCBXtcs3Llykd8jcpzjxa8ve9978t73vOeRzx+9dVXZ/bs2fv4iqrTqlWrii4B9pn7l1rnHqaWuX+pZTN1/46Wk8HRZGAk6R9J+oeT/tFS+oeTgdHxj0eSgZFSBkbGrh0affhfSxka//3QaDI4svv5cqpzVOvnD21N96Zbiy6jrvn5Sy2rp/t3586de3Vd1QZvRXrHO96Riy66aOLj3t7erFixImeffXa6uroKrGzqDA0NZdWqVTnrrLNqps0TKty/1Dr3MLXM/Ust25/7t39oJBv7BrKpbzA9O4eybddQto7/tWfn+K9dQ+nZNZhtO4fSs2s4OwaHUy5P04sZVyolbc1NaW1uSmtzafz3pfGPm9LaUnrY87ufm7iupSktTWOPNTeV0txUSktTKU2lsb82/9qvlqZSmpp2P1e5tm9gOH/xtZ9nYLQpz3ve2TV1hlOt8POXWlaP929lOvLxVG3wtmzZsiTJ+vXrc8ABB0w8vn79+px88skT12zYsGGPzxseHs6WLVsmPn/ZsmVZv379HtdUPq5c8+va29vT3t7+iMdbW1vr5gapqMfXRONw/1Lr3MPUMvcvtezh9+/QyGjWbevPg1t3ZU3PrmzsG8iG3oFs7BvIxu392bB9IBu3D2R7/2OPGz2e5qZS5ra37P7V0fKIj+e0NaejrTkdLc2Z1dacjtamzGptTntrc2a1Nqdj4q+7H+9oHQvQqiHk2t4/lL/42s/HRk5LY/UyPfz8pZbV0/27t6+jaoO3lStXZtmyZfnWt741EbT19vbm2muvzRvf+MYkyRlnnJGenp7ccMMNOeWUU5Ik3/72tzM6OprTTjtt4po///M/z9DQ0MTflFWrVuXoo49+1DFTAACgfpTL5azr7c+9G3fkVxt68/37m7Lq/96Stb0DWdOzK+t7+zO6l11pbS1NWTy3PfPntGb+7LbMmzX21/mzWzNv/K/zZ7dl3uzWdM9qTWdHazo7WtLeUh3h2HSa07b7j5Z9A8OCN4BxhQZvfX19+dWvfjXx8b333pubbropCxYsyMEHH5y3ve1t+eu//usceeSRWblyZd71rndl+fLleclLXpIkOfbYY/Pbv/3bed3rXpePf/zjGRoaypvf/Oacf/75Wb58eZLk937v9/Ke97wnr3nNa/Knf/qnue222/IP//APueSSS4p4yQAAwDQYGB7J3Rt25M7123PPxr7cs2lH7tm4I/dt3pGdgw/fLtiUrFm3x+e2NTdleXdHlnfPytKujizpbM/ih/0a+7gjXR37v92uXjU1lTKnrTk7BkeyY2A4i+Y+coIIoBEVGrz99Kc/zbOf/eyJjyvnqr3yla/MZz/72fzJn/xJduzYkde//vXp6enJ05/+9Fx11VXp6OiY+JwvfOELefOb35znPve5aWpqynnnnZdLL7104vl58+bl6quvzoUXXphTTjklixYtyrvf/e68/vWvn7kXCgAATJmN2wdyx9re/Hxtb36xtjc/X7s9d2/sy/BjtK41N5Vy8ILZOXjBrIxu25AzTj46By+cmwO7Z+XA+bOyaE57mpoEavtrTntLdgyO7NdYLkC9KTR4e9aznpXybzhttFQq5eKLL87FF1/8mNcsWLAgl19++W/8PieeeGJ+8IMf7HOdAABAMfqHRnL7mt78bPXW/OyBnty0uicP9ex61Gu7OlpyzLKuHL5kTg5bNDcrF83JysVzcvCC2WltbsrQ0FCuvPLKPP/pK+vmjKFqMre9JRu2D2THgOANoKJqz3gDAAAaz87B4fz0vq255p7Nuebuzbl9zbYMjez5P+tLpWTlojk59oCuHLusM8ce0JVjDujK8nkdRkELNLdj7I+XOwYFbwAVgjcAAKAwI6Pl3PTA1nzvzk255u5NuemBnkcEbYvmtuXkFd154sHzc/KK7px40Lx0duhYqzaVBQtGTQF2E7wBAAAzqrd/KN+/c2O+/fMN+c4vN2TrzqE9nj+we1ZOP2xhnnr4wjxl5YIcNH+WTrYaMNHxNjDyOFcCNA7BGwAAMO227RzKVbevzdduXpuf3LN5j0UIXR0tecZRi/P0IxbljMMX5uAFswVtNWhu+9gfL/sGhh7nSoDGIXgDAACmxY6B4ay6Y32+dvOafP+ujXuMkB6xZG6ee8ySPOeYJTnlkPlpaW4qsFKmwpz25iRJn443gAmCNwAAYMqUy+Xc8uC2fOn61fnqTWuyY3B3CHPMss688KTlef4TDsjKRXMKrJLpMLd97Nw9W00BdhO8AQAA+61vYDj/ccOD+eJ1q/OLddsnHj9k4ey8+OQD88ITD8iRSzsLrJDpNrfS8Wa5AsAEwRsAALDPHurZlc/9+L588drV2T7e6dTW0pTnn7As5z/l4Jy2coHz2hrExBlvg4I3gArBGwAAMGm3PbQt//T9e3LlrWszMr4o4bDFc/IHpx+Slz7xoMyb3Vpwhcy0OZXgTccbwATBGwAAsNduX7MtH/7mXVl1x/qJx556+MK89rdW5llHLUlTk+62RlXpeHPGG8BugjcAAOBx/WJdby5ZdWf++/axwK1USl544vK84ZmH5fjl8wqujmowt2O8403wBjBB8AYAADymDdv786Gr78y//fSBlMu7A7e3PveIHLHEsgR2mxg1FbwBTBC8AQAAj9A/NJJP/fDe/ON3fpUdgyNJkuedsCwXnXWU7aQ8qk6jpgCPIHgDAAD28P07N+bPr7g1D2zZlSQ56aB5edcLjsuphy4ouDKqmY43gEcSvAEAAEmSTX0D+euv35ErblqTJFnW1ZE/e94xedFJyy1N4HFVzngbGilnYHgk7S3NBVcEUDzBGwAANLhyuZwrbnoo7/naHenZOZRSKXnVUw/NH5199MSmSng8c9p23yt9/cNpnyt4A/BfUQAAaGA9Owfz51fclv+6ZW2S5NgDuvK+lz0hJ6/oLrYwak5zUymzWpuza2gkOwZGsnBu0RUBFE/wBgAADeqHd23K//73m7Outz/NTaX8r+cemTc+6/C0NjcVXRo1am5HS3YNjTjnDWCc4A0AABrMyGg5l6y6Mx/5zq+SJIctmpNL/ufJOUmXG/tpbntLNm4fELwBjBO8AQBAA9myYzD/60s/yw/u2pQk+b3TDs47zz02s9v80YD9VzkTcIfgDSCJ4A0AABrGzQ/05I3/ekPWbOvPrNbm/O15T8iLTz6w6LKoI3PaxxYqbBe8ASQRvAEAQEP42s1r8kf/fnMGh0dz2KI5+djvn5Kjl3UWXRZ1RscbwJ4EbwAAUMfK5XL+8bt35+/++5dJkjOPXZIP/c+T09XRWnBl1KNK8NbXL3gDSARvAABQt4ZGRvPOr9yWf/vpA0mSVz9tZf783GPT3FQquDLq1ZxK8KbjDSCJ4A0AAOpS/9BI3vSFG/PtX2xIUyn5ixcen1c+9dCiy6LOze0wagrwcII3AACoMzsGhvPaz/0019yzOe0tTfnHC56U5x67tOiyaABz23S8ATyc4A0AAOrItp1DedVnr8vPVvdkTltzPvWqJ+f0wxYWXRYNwqgpwJ4EbwAAUCe27RrKBZ/6SW57qDfzZrXmc69+Sk5e0V10WTSQyqip4A1gjOANAADqQN/AcF71mety20O9WTinLf/62tNy7AFdRZdFg6lsNXXGG8CYpqILAAAA9k//0Ehe+7nr87PVPZk3q1XoRmHmToyajhRcCUB1ELwBAEANGxwezRv+5Yb85J4tmdveks+/+ilCNwqz+4y3oYIrAagOgjcAAKhR5XI57/jyrfnenRszq7U5n/nDJ+ckZ7pRoN2jpjreABLBGwAA1KwPf/Ou/MeND6a5qZR//P0n5cmHLii6JBrcxHKFfme8ASSCNwAAqEn/96cP5B++dVeS5K9fckKeffSSgiuCZG7bWPA2ODKagWFdbwCCNwAAqDE//tWm/J8v35okufDZh+flTzm44IpgzJz25onfGzcFELwBAEBNeWDLzlx4+Y0ZHi3nxScvz/8+++iiS4IJLc1N6Wgd+2PmjgHjpgCCNwAAqBG7Bkfyhn+5IVt3DuUJB87L+887MaVSqeiyYA9zJzabCt4ABG8AAFADxjaY3pI71vZm4Zy2/NMrTklHa/PjfyLMMMEbwG6CNwAAqAGf+/F9ueKmNWluKuUjv/ekLO+eVXRJ8KjmCN4AJgjeAACgyt320Lb8zZW/SJL8n+cfmzMOX1hwRfDYJjre+gVvAII3AACoYjsGhvPWL/4sgyOjOeu4pXn10w4tuiT4jSrBm+UKAII3AACoan/51dtzz6YdOWBeRz5gmQI1wKgpwG6CNwAAqFL/edND+fcbHkxTKfnw/zw58+e0FV0SPK65HYI3gArBGwAAVKH1vf151xW3JUne/Jwjc9phznWjNhg1BdhN8AYAAFWmXC7nHV++Nb39wznpoHl563OOKLok2GtzjZoCTBC8AQBAlfnyjQ/l27/YkLbmpvzd756UlmZv26kdu894Gym4EoDi+S84AABUkfW9/XnP125PkvyvM4/MUUs7C64IJmdue3MSo6YAieANAACqRrlczp9/ZfeI6RuecVjRJcGkzW1vTZL09QveAARvAABQJa6+Y32++fMNaW0uGTGlZlW2mm7X8QYgeAMAgGqwY2A47/nq2Ijp659xmBFTalZnJXjrHyq4EoDiCd4AAKAKXPqtu7JmW38Omj8rb372kUWXA/us01ZTgAmCNwAAKNgv123Pp354b5LkPS86PrPamguuCPZdZ8fYGW/b+4dTLpcLrgagWII3AAAoULlczrv+87YMj5Zz9nFL89xjlxZdEuyXyhlvI6Pl9A+NFlwNQLEEbwAAUKD/vn1drrt3Szpam/IXLzq+6HJgv81pa06pNPZ757wBjU7wBgAABRkcHs37vvGLJMnrf+uwHNg9q+CKYP+VSqXMbbfZFCARvAEAQGE+f819uX/zzizubM8bnnl40eXAlOl62DlvAI1M8AYAAAXYumMwl37rriTJ/z77qMwZ7xCCelDpeOsTvAENTvAGAAAFuPTbd6W3fzjHLOvM75yyouhyYEp1ji9YcMYb0OgEbwAAMMMe2LIz//qT+5Mkf37usWluKhVcEUytymZTZ7wBjU7wBgAAM+yyb9+VoZFynn7EovzWkYuLLgemXKcz3gCSCN4AAGBG3bOxL/9x40NJkovOPqrgamB6VEZNnfEGNDrBGwAAzKB/+NZdGRkt57nHLMmTDp5fdDkwLTrbnfEGkAjeAABgxvxy3fZ89eY1SZK3n6Xbjfq1e7mCjjegsQneAABghnz4m3emXE6e/4RlOeHAeUWXA9Nm7njHW5/lCkCDE7wBAMAMuHP99nzjtnUplZK3nanbjfpWWa7Qa9QUaHCCNwAAmAEf/+7dSZLfPn5ZjlraWXA1ML3mduh4A0gEbwAAMO0e2LIz/zl+ttubnnVEwdXA9HPGG8AYwRsAAEyzT/zgnoyMlvNbRy7KEw5ythv1r7N9bNS0T/AGNDjBGwAATKON2wfyb9c/kCR547MOL7gamBm7O96c8QY0NsEbAABMo8/86N4MDI/m5BXdOeOwhUWXAzOicsbbjsGRjIyWC64GoDiCNwAAmCY7BobzLz+5P0nypmcdnlKpVHBFMDMqHW+JBQtAYxO8AQDANPmPGx/M9v7hHLZoTs48dmnR5cCMaW9pTlvL2B83BW9AIxO8AQDANBgdLeezP7ovSfLKpx6apibdbjSWznbnvAEI3gAAYBp8766NuWfTjnR2tOR3Tjmo6HJgxlXGTW02BRqZ4A0AAKbBp394b5Lkf566InPaWx7naqg/cyc2mwregMYleAMAgCl21/rt+cFdm9JUGhszhUbU2d6aJNnujDeggQneAABgin3mx/clSc46bmlWLJhdbDFQkN0db854AxqX4A0AAKbQ9v6hXPGzh5Ikr3rqyoKrgeI44w1A8AYAAFPqP29ak52DIzliydycftiCosuBwuzeaip4AxqX4A0AAKZIuVzO5deuTpK8/CkHp1QqFVwRFKezY/yMN6OmQAMTvAEAwBS5+cFtuWNtb9pamnLekw4suhwo1MQZb5YrAA1M8AYAAFPki+Pdbuc+4YB0z24ruBooVmeHUVMAwRsAAEyB3v6hfPXmNUmS3zvt4IKrgeLNbbdcAUDwBgAAU+A/b1qTXUNjSxVOPWR+0eVA4boqZ7wNOOMNaFyCNwAAmAL/dr2lCvBwlVFTHW9AIxO8AQDAfvrluu257aHetDaX8tInWqoAycOWKwjegAYmeAMAgP305RsfTJI8++glWTDHUgVIks6JUVPBG9C4BG8AALAfRkbL+crPHkqSnHfKQQVXA9WjslxhcHg0A8MjBVcDUAzBGwAA7Icf/mpTNmwfSPfs1jz76CVFlwNVoxK8Jc55AxqX4A0AAPZDZcz0RSctT1uLt9dQ0dxUypy25iTOeQMal3cGAACwj7b3D+W/b1+XJDnvScZM4ddVznnrc84b0KAEbwAAsI++cdu69A+N5vDFc3LiQfOKLgeqTmWzaW//UMGVABRD8AYAAPvoivGlCi970kEplUoFVwPVp3M8eHPGG9CoBG8AALAPNmzvz0/u2Zxk7Hw34JEqCxac8QY0KsEbAADsg6tuW5fRcnLSiu6sWDC76HKgKnU54w1ocII3AADYB1+/eW2S5IUnHlBwJVC9KqOm253xBjQowRsAAEzSum39uf7+LUmS5z9B8AaPZWLUVMcb0KAEbwAAMElX3ro25XJy6iHzs7x7VtHlQNXqHB81dcYb0KgEbwAAMElfv2VNkuRcY6bwG+0eNRW8AY1J8AYAAJPwUM+u3Li6J6WSMVN4PF2zxjreenc54w1oTII3AACYhCtvGVuq8JRDF2RpV0fB1UB1q3S89VquADQowRsAAEzCVbevS2LMFPZGlzPegAYneAMAgL20YXt/bly9NUly9nHLCq4Gql/XrPGON6OmQIMSvAEAwF761s83pFxOTlrRnWXzjJnC46l0vBk1BRqV4A0AAPbS1eNjpmcft7TgSqA2VIK3/qHRDA6PFlwNwMwTvAEAwF7oGxjOj361OUlyzvGCN9gbc8eXKyTJdl1vQAMSvAEAwF743i83ZnBkNIctmpPDF88tuhyoCc1NpXS2VzabWrAANB7BGwAA7IWr7xgbMz3r+KUplUoFVwO1o2vW+DlvFiwADUjwBgAAj2NweDTf/sWGJLaZwmR1dlQ63gRvQOMRvAEAwOO49t7N2d4/nEVz2/PEFd1FlwM1ZWKz6S6jpkDjEbwBAMDj+OYd65MkZx23JE1NxkxhMrpmjXW8Wa4ANCLBGwAA/Ablcjnf+eXGJMmzj15ScDVQeyY63gRvQAMSvAEAwG9w76YdWb1lZ1qbS3naEYuKLgdqzsQZb0ZNgQYkeAMAgN+g0u122sqFmdPeUnA1UHsmtprqeAMakOANAAB+g+/+cmyb6bOOXlxwJVCbKqOm2/t1vAGNR/AGAACPYefgcK69Z0uS5FnOd4N9Ulmu0LtLxxvQeARvAADwGH78q80ZHBnNigWzcvjiOUWXAzWp03IFoIEJ3gAA4DF8987xMdOjlqRUKhVcDdSmia2mlisADUjwBgAAj6JcLuc7vxhbrPDsY5zvBvtqYtRUxxvQgARvAADwKH61oS8P9exKW0tTzjhsUdHlQM2yXAFoZII3AAB4FN+7c6zb7bSVCzKrrbngaqB2dXaMdbz1DQxneGS04GoAZpbgDQAAHsWPfrUpSfKMI42Zwv6oLFdIxsI3gEYieAMAgF8zODyaa+/dkiR52hHGTGF/tLU0ZVbrWNeoBQtAoxG8AQDAr7npgZ7sHBzJwjltOWZZZ9HlQM2zYAFoVII3AAD4NT8cHzN96hGL0tRUKrgaqH2VcVPBG9BoBG8AAPBrKue7Pf2IhQVXAvWha3zBglFToNEI3gAA4GG29w/lpgd6kjjfDaZK1ywdb0BjErwBAMDDXHfvloyMlnPIwtk5aP7sosuButBVGTXdJXgDGovgDQAAHqZyvptuN5g6neOjptv7jZoCjaWqg7eRkZG8613vysqVKzNr1qwcfvjh+au/+quUy+WJa8rlct797nfngAMOyKxZs3LmmWfmrrvu2uPrbNmyJRdccEG6urrS3d2d17zmNenr65vplwMAQA3Yfb6b4A2milFToFFVdfD2/ve/Px/72MfykY98JD//+c/z/ve/Px/4wAdy2WWXTVzzgQ98IJdeemk+/vGP59prr82cOXNyzjnnpL+/f+KaCy64ILfffntWrVqVr3/96/n+97+f17/+9UW8JAAAqtiG3v7cub4vpVJyxmEWK8BU2T1qquMNaCwtRRfwm/z4xz/Oi1/84px77rlJkkMPPTRf/OIXc9111yUZ63b78Ic/nHe+85158YtfnCT5/Oc/n6VLl+aKK67I+eefn5///Oe56qqrcv311+fUU09Nklx22WV5/vOfnw9+8INZvnx5MS8OAICqc809m5Mkxy/vyvw5bQVXA/Wja9b4VlMdb0CDqerg7alPfWr++Z//OXfeeWeOOuqo3HzzzfnhD3+YD33oQ0mSe++9N+vWrcuZZ5458Tnz5s3LaaedlmuuuSbnn39+rrnmmnR3d0+Ebkly5plnpqmpKddee21e+tKXPuL7DgwMZGBgYOLj3t7eJMnQ0FCGhurjPxSV11Evr4fG4v6l1rmHqWX1fv9ec/fYmOlTDplft6+xkdX7/VvNZreUkiS9uwb9/d9H7l9qWT3ev3v7Wqo6ePuzP/uz9Pb25phjjklzc3NGRkby3ve+NxdccEGSZN26dUmSpUuX7vF5S5cunXhu3bp1WbJkyR7Pt7S0ZMGCBRPX/Lr3ve99ec973vOIx6+++urMnl1fm61WrVpVdAmwz9y/1Dr3MLWsXu/f79zWnKSUps335Mor7y66HKZJvd6/1eyXW0tJmvPg+i258soriy6nprl/qWX1dP/u3Llzr66r6uDt//7f/5svfOELufzyy3P88cfnpptuytve9rYsX748r3zlK6ft+77jHe/IRRddNPFxb29vVqxYkbPPPjtdXV3T9n1n0tDQUFatWpWzzjorra2tRZcDk+L+pda5h6ll9Xz/bu4byPprvpckecPLzkz37Pp6fdT3/VvtDnigJx//xXUptc3K85//jKLLqUnuX2pZPd6/lenIx1PVwdsf//Ef58/+7M9y/vnnJ0me8IQn5P7778/73ve+vPKVr8yyZcuSJOvXr88BBxww8Xnr16/PySefnCRZtmxZNmzYsMfXHR4ezpYtWyY+/9e1t7envb39EY+3trbWzQ1SUY+vicbh/qXWuYepZfV4/9744NiY6THLOrN4Xn1NObCnerx/q92CubOSJL39w/7e7yf3L7Wsnu7fvX0dVb3VdOfOnWlq2rPE5ubmjI6OJklWrlyZZcuW5Vvf+tbE8729vbn22mtzxhlnJEnOOOOM9PT05IYbbpi45tvf/nZGR0dz2mmnzcCrAACgFlx375YkyVNWLii4Eqg/XR1jPR99A8MZHS0XXA3AzKnqjrcXvvCFee9735uDDz44xx9/fH72s5/lQx/6UF796lcnSUqlUt72trflr//6r3PkkUdm5cqVede73pXly5fnJS95SZLk2GOPzW//9m/nda97XT7+8Y9naGgob37zm3P++efbaAoAwISfjG80PW3lwoIrgfrTNWusM2S0nOwYHE5nR310vAA8nqoO3i677LK8613vypve9KZs2LAhy5cvzxve8Ia8+93vnrjmT/7kT7Jjx468/vWvT09PT57+9KfnqquuSkdHx8Q1X/jCF/LmN785z33uc9PU1JTzzjsvl156aREvCQCAKtSzczC/XL89SfLklfMLrgbqT3tLU9qamzI4MprefsEb0DiqOnjr7OzMhz/84Xz4wx9+zGtKpVIuvvjiXHzxxY95zYIFC3L55ZdPQ4UAANSD6+/bmnI5OWzxnCzp7Hj8TwAmpVQqpWtWSzb1DaZ311AO7J5VdEkAM6Kqz3gDAICZcN29lTFT57vBdKl0ufXuGiq4EoCZI3gDAKDhXTu+WMH5bjB9KgsWtvcPF1wJwMwRvAEA0ND6BoZz20PbkthoCtOpsmCht1/HG9A4BG8AADS0n63emtFycmD3rCx37hRMmy6jpkADErwBANDQbrh/a5Lk1ENtM4Xp1DVrbNR02y6jpkDjELwBANDQblzdkyQ55RDBG0yniY43o6ZAAxG8AQDQsEZHy/nZ6rGOtycdLHiD6VQ5422bUVOggQjeAABoWL/a2Jft/cOZ1dqcY5Z1Fl0O1LV548Fbz07BG9A4BG8AADSsyvluJ6/oTkuzt8YwnbpnW64ANB7vLgAAaFiV4O1Jh3QXWwg0gHlGTYEGJHgDAKBh3Th+vpvFCjD9BG9AIxK8AQDQkLbuGMw9G3ckSZ64QvAG003wBjQiwRsAAA3pZw+MdbsdtnhO5s9pK7gaqH+V4G3X0EgGh0cLrgZgZgjeAABoSJXz3U45WLcbzITOjtaJ3+t6AxqF4A0AgIZ04/09SZzvBjOluamUzo6WJII3oHEI3gAAaDjDI6O5+cGeJMmTBG8wY5zzBjQawRsAAA3nrg192Tk4krntLTli8dyiy4GGUQneegVvQIMQvAEA0HBuGe92e8KB89LUVCq2GGggOt6ARiN4AwCg4dz84LYkyYkr5hVcCTSW7tmCN6CxCN4AAGg4Nz/QkyQ56aDuQuuARlPpeOvZKXgDGoPgDQCAhtI/NJJfrtueJDnxIB1vMJO6jJoCDUbwBgBAQ7ljbW+GR8tZNLctB3bPKrocaCjOeAMajeANAICGcsv4mOmJB3WnVLJYAWaS4A1oNII3AAAayi2VxQrGTGHGVYK3XsEb0CAEbwAANJSbH+xJYrECFEHHG9BoBG8AADSM3v6h3L1xRxIdb1AEwRvQaARvAAA0jNvGx0wP7J6VhXPbC64GGo/gDWg0gjcAABrGzePB28kruostBBpUJXjbNTSSweHRgqsBmH6CNwAAGsYt4+e7GTOFYnR2tKayTFjXG9AIBG8AADSM3RtNu4stBBpUc1Mpne0tSQRvQGMQvAEA0BC27hjMQz27kiTHH9hVcDXQuObNds4b0DgEbwAANIQ71vYmSQ5eMDtdHa0FVwONa/eChcGCKwGYfoI3AAAawu1rxsZMj1+u2w2KZLMp0EgEbwAANITb14x1vAneoFgTwdtOwRtQ/wRvAAA0hN3Bm42mUKTdHW/DBVcCMP0EbwAA1L1dgyO5Z2NfEh1vULQuo6ZAAxG8AQBQ936+rjej5WTR3PYs6eoouhxoaM54AxqJ4A0AgLrnfDeoHoI3oJEI3gAAqHt32GgKVaN7VluSpFfwBjQAwRsAAHWv0vF2nOANCqfjDWgkgjcAAOra0MhofrFuexIbTaEaCN6ARiJ4AwCgrt29sS+Dw6OZ296SQxbMLrocaHiCN6CRCN4AAKhrtz80NmZ67AGdaWoqFVwNUAnedg2NZGB4pOBqAKaX4A0AgLq2e6OpMVOoBp0dLSmNZ+C63oB6J3gDAKCu3bF2bKOpxQpQHZqaSulsb0lisylQ/wRvAADUrXK5nF+OL1Y4dpngDarFvNnOeQMag+ANAIC6tXH7QLbuHEpTKTly6dyiywHGWbAANArBGwAAdesX491uhy6ak47W5oKrASq6Z7UlSXp2Ct6A+iZ4AwCgbv1i3dhihWOWdRZcCfBw3eOjpoI3oN4J3gAAqFuVjrejlzrfDarJRPBm1BSoc4I3AADqVmWxwtE63qCqzJ9dGTUdLLgSgOkleAMAoC4Nj4zmrg19SYyaQrWpLFfYatQUqHOCNwAA6tJ9m3dmcHg0s1qbc/CC2UWXAzyMjjegUQjeAACoS5Ux06OWdaapqVRwNcDDWa4ANArBGwAAdWlio+lSY6ZQbborHW+7dLwB9U3wBgBAXfqFxQpQtSY63nboeAPqm+ANAIC6VBk1tVgBqk/ljLftA8MZGhktuBqA6SN4AwCg7uwYGM7qLTuT6HiDalTZapok23bpegPql+ANAIC6c+f6sW63xZ3tWTi3veBqgF/X3FRKV0dLEgsWgPomeAMAoO78wpgpVL35c8YXLOy0YAGoX4I3AADqTuV8t6NtNIWq1T0+bqrjDahngjcAAOrOrzb0JUmOErxB1eoeX7CwVccbUMcEbwAA1J27Nox1vB2xdG7BlQCPpXu2jjeg/gneAACoK739Q1nfO5AkOWKJ4A2q1fzxjreeXTregPoleAMAoK5UxkyXdrWnq6O14GqAxzJv/Iy3rTregDomeAMAoK78av1Y8HbkEue7QTWbPz5quk3wBtQxwRsAAHXlVxvHgjdjplDdLFcAGoHgDQCAunLX+vHFCoI3qGqWKwCNQPAGAEBduWtDZdRU8AbVbGK5go43oI4J3gAAqBs7B4fzUM+uJMmRS53xBtVsouNtl443oH4J3gAAqBv3bNyRcjlZMKctC+a0FV0O8BtUznjbOTiSgeGRgqsBmB6CNwAA6sZdG5zvBrWis70lTaWx3zvnDahXgjcAAOrGr5zvBjWjqak00fUmeAPqleANAIC6cdf6seBNxxvUhu5ZY+e8bbVgAahTgjcAAOrG7o43ixWgFkwsWNDxBtQpwRsAAHVhYHgk92/ZmSQ5cqmON6gFu0dNdbwB9UnwBgBAXbhv086MjJbT2d6SJZ3tRZcD7IWJjrddOt6A+iR4AwCgLkxsNF06N6VSqeBqgL3RPWus480Zb0C9ErwBAFAX7t6wI0lyxGJjplAr5o93vG1zxhtQpwRvAADUhXs2jS1WOEzwBjWje46ON6C+Cd4AAKgL924a63hbuWhOwZUAe6t7lq2mQH0TvAEAUPPK5XLu3TgWvB22WPAGtWL+xFZTwRtQnwRvAADUvI19A9k+MJxSKTlk4eyiywH2UmWrqVFToF4J3gAAqHmVbreD5s9Ke0tzwdUAe6sSvPXsGkq5XC64GoCpJ3gDAKDm3TN+vtthiyxWgFrSPT5qOjg8ml1DIwVXAzD1BG8AANQ8ixWgNs1pa05rcymJc96A+iR4AwCg5t0zPmp6uMUKUFNKpVLmzRrretuywzlvQP0RvAEAUPPu2dSXJFlp1BRqzsI5NpsC9UvwBgBATRseGc3qzTuTJCt1vEHNmT9nbMHCFptNgTokeAMAoKY9sHVXhkfL6WhtygFdHUWXA0zSgvGOt61GTYE6JHgDAKCm3Ts+ZnrowjlpaioVXA0wWfNnO+MNqF+CNwAAatruxQrOd4NaNNHxZtQUqEOCNwAAato9m8aCt5WLnO8GtUjHG1DPBG8AANS0e8c73g6zWAFqko43oJ4J3gAAqGn3jJ/xpuMNatP8OZWOt6GCKwGYeoI3AABq1o6B4azvHUiSHLbIGW9QixbMttUUqF+CNwAAata94+e7LZzTlnmzWwuuBtgX8+eM/bu7ZcdgyuVywdUATC3BGwAANasSvB1qzBRqVuWMt8GR0ewYHCm4GoCpJXgDAKBmrd6yM0lyyMLZBVcC7KtZrc1pbxn7o6lxU6DeCN4AAKhZ91U63hbqeINaVSqVJrretgjegDojeAMAoGbdr+MN6sJE8LZT8AbUF8EbAAA16/7NYx1vh+h4g5pWCd6MmgL1RvAGAEBN2jU4kvW9A0mSQxboeINaNn+2UVOgPgneAACoSZXFCp0dLeme3VpwNcD+mOh4M2oK1BnBGwAANakyZnrowjkplUoFVwPsj90db0MFVwIwtQRvAADUpPs3j3W8HWyxAtS8BXPGulad8QbUG8EbAAA16f4tlY43wRvUuvm2mgJ1SvAGAEBNqnS8HbLARlOodQtm22oK1CfBGwAANWkieNPxBjVvouNN8AbUGcEbAAA1Z2hkNA/17EqSHLJQxxvUuodvNR0dLRdcDcDUEbwBAFBzHtq6KyOj5bS3NGVJZ3vR5QD7qXv22HKF0XLS22+zKVA/BG8AANSc+7fsHjNtaioVXA2wv9pbmjO3vSWJcVOgvgjeAACoOfdvHttoerDFClA3Hj5uClAvBG8AANScymKFQy1WgLqxe8GCUVOgfgjeAACoOTaaQv1ZMH7O21ajpkAdEbwBAFBzKqOmNppC/ZjoeDNqCtQRwRsAADVldLSc1Vt0vEG9WTB7/Iw3HW9AHRG8AQBQU9Zv78/A8Giam0pZ3j2r6HKAKbL7jDfBG1A/BG8AANSUB7bsSpIs7+5Ia7O3s1AvbDUF6pF3KgAA1JQHxsdMV8w3Zgr1ZP74qOlmHW9AHRG8AQBQUx7cOtbxJniD+jLR8SZ4A+qI4A0AgJrywNaxjreD5jvfDerJgjmtSZzxBtQXwRsAADVlYtR0gY43qCeVUdPe/uEMjYwWXA3A1BC8AQBQUyZGTRfoeIN60j27LaXS2O8tWADqheANAICaMTQymrXbxoK3g5zxBnWluamUBZUFC32CN6A+CN4AAKgZa3v6M1pO2lqasnhue9HlAFNs4VzBG1BfBG8AANSMhy9WaGoqFVwNMNUWzhkL1DfvGCi4EoCpIXgDAKBmPDgRvBkzhXqk4w2oN4I3AABqxgNbxhcrzLdYAerRwjnjwZuON6BOVH3w9tBDD+X3f//3s3DhwsyaNStPeMIT8tOf/nTi+XK5nHe/+9054IADMmvWrJx55pm566679vgaW7ZsyQUXXJCurq50d3fnNa95Tfr6+mb6pQAAsJ8qo6YrFuh4g3q0cPzsRh1vQL2o6uBt69atedrTnpbW1tZ84xvfyB133JG///u/z/z58yeu+cAHPpBLL700H//4x3Pttddmzpw5Oeecc9Lf3z9xzQUXXJDbb789q1atyte//vV8//vfz+tf//oiXhIAAPvhwa2VjaY63qAeVUZNNwnegDrRUnQBv8n73//+rFixIp/5zGcmHlu5cuXE78vlcj784Q/nne98Z1784hcnST7/+c9n6dKlueKKK3L++efn5z//ea666qpcf/31OfXUU5Mkl112WZ7//Ofngx/8YJYvXz6zLwoAgH32wJbxjjdnvEFdqixX2GLUFKgTVR28ffWrX80555yT3/3d3833vve9HHjggXnTm96U173udUmSe++9N+vWrcuZZ5458Tnz5s3LaaedlmuuuSbnn39+rrnmmnR3d0+Ebkly5plnpqmpKddee21e+tKXPuL7DgwMZGBg9w/63t7eJMnQ0FCGhoam6+XOqMrrqJfXQ2Nx/1Lr3MPUsiLv3/6hkWzYPvYebVlnq3+HmDQ/f6tfd8fYUNamvgH/nH6N+5daVo/3796+lqoO3u6555587GMfy0UXXZT/83/+T66//vq89a1vTVtbW175yldm3bp1SZKlS5fu8XlLly6deG7dunVZsmTJHs+3tLRkwYIFE9f8uve97315z3ve84jHr7766syeXV//d3XVqlVFlwD7zP1LrXMPU8uKuH/X70qSlrQ1lXPNd7+ZUmnGS6BO+PlbvTaM/3u+ftvOXHnllUWXU5Xcv9Syerp/d+7cuVfXVXXwNjo6mlNPPTV/8zd/kyR54hOfmNtuuy0f//jH88pXvnLavu873vGOXHTRRRMf9/b2ZsWKFTn77LPT1dU1bd93Jg0NDWXVqlU566yz0traWnQ5MCnuX2qde5haVuT9+/27NiU33ZhDF3Xm3HOfOqPfm/rg52/16901lPfe9J0MjJTynLPOSUdrc9ElVQ33L7WsHu/fynTk46nq4O2AAw7Icccdt8djxx57bP7jP/4jSbJs2bIkyfr163PAAQdMXLN+/fqcfPLJE9ds2LBhj68xPDycLVu2THz+r2tvb097e/sjHm9tba2bG6SiHl8TjcP9S61zD1PLirh/1/SOHbZ+8MLZ/t1hv/j5W70WtLSktbmUoZFyegfL6Zztn9Ovc/9Sy+rp/t3b11HVW02f9rSn5Ze//OUej91555055JBDkowtWli2bFm+9a1vTTzf29uba6+9NmeccUaS5IwzzkhPT09uuOGGiWu+/e1vZ3R0NKeddtoMvAoAAKbCg1vHRjoOslgB6lapVNq9YMFmU6AOVHXw9va3vz0/+clP8jd/8zf51a9+lcsvvzz//M//nAsvvDDJ2A/lt73tbfnrv/7rfPWrX82tt96aP/iDP8jy5cvzkpe8JMlYh9xv//Zv53Wve12uu+66/OhHP8qb3/zmnH/++TaaAgDUkAe37EqSHDR/VsGVANNp4dy2JMkmm02BOlDVo6ZPfvKT85WvfCXveMc7cvHFF2flypX58Ic/nAsuuGDimj/5kz/Jjh078vrXvz49PT15+tOfnquuuiodHR0T13zhC1/Im9/85jz3uc9NU1NTzjvvvFx66aVFvCQAAPbRA+MdbysW6HiDerZgzljwtlnHG1AHqjp4S5IXvOAFecELXvCYz5dKpVx88cW5+OKLH/OaBQsW5PLLL5+O8gAAmCEPbtXxBo1g0dyxUdPNfTregNpX1aOmAACQJDsHh7Nlx1j3izPeoL4tHO94q/w7D1DLBG8AAFS9NT1j3W6d7S2ZN6s+tqEBj27heMfbJqOmQB0QvAEAUPUe6ulPkizvNmYK9a6yXGGz5QpAHRC8AQBQ9Sodbwc63w3q3kLLFYA6IngDAKDqVYK35d0dj3MlUOsWWq4A1BHBGwAAVe+hrZXgTccb1LuJjrcdgymXywVXA7B/BG8AAFS9hyqjpoI3qHuVM94GhkezY3Ck4GoA9o/gDQCAqrdmm443aBSz21oyu605iXFToPYJ3gAAqGojo+Ws22arKTSSBePjppssWABqnOANAICqtqlvIEMj5TQ3lbK0s73ocoAZYMECUC8EbwAAVLXK+W7LujrS0uztKzSCReMdb1t26HgDapt3LgAAVLU1PZXz3ToKrgSYKZUFC5sFb0CNE7wBAFDVdgdvzneDRlEZNd1k1BSocYI3AACq2kNbBW/QaBaOj5putlwBqHGCNwAAqtpDPTaaQqOpjJo64w2odYI3AACqWmXU9EBnvEHDWDjHqClQHwRvAABUtTXbKsHb7IIrAWZKpeNtk1FToMYJ3gAAqFo7BobTs3Moia2m0EgWjy9X2LJjICOj5YKrAdh3gjcAAKrW2vFut86OlnR2tBZcDTBTFsxpS6mUjJad8wbUNsEbAABVq7JY4UCLFaChtDQ3TWw2dc4bUMsEbwAAVK2Hto51vNloCo1n0fi46cbtgjegdgneAACoWpWNps53g8azuFPwBtQ+wRsAAFWrErzZaAqNp7JgwagpUMsEbwAAVK2HdLxBw1qk4w2oA4I3AACq1pptzniDRlXpeNuo4w2oYYI3AACqUrlczvptY3/gPmCejjdoNJUz3oyaArVM8AYAQFXasmMwgyOjKZWSJZ2CN2g0tpoC9UDwBgBAVVq7rT9JsnBOe9pavG2FRmOrKVAPvIMBAKAqrRsP3oyZQmOqBG9bdw5laGS04GoA9o3gDQCAqrS2dyx4WyZ4g4bUPas1zU2lJMnmvsGCqwHYN4I3AACq0nodb9DQmppKWTS3LYlxU6B27VPw1tPTk09+8pN5xzvekS1btiRJbrzxxjz00ENTWhwAAI2rcsabjjdoXJUFCzabArWqZbKfcMstt+TMM8/MvHnzct999+V1r3tdFixYkC9/+ctZvXp1Pv/5z09HnQAANJh1vbuSJMu6BG/QqCxYAGrdpDveLrroorzqVa/KXXfdlY6O3W+Cnv/85+f73//+lBYHAEDj0vEGLB7veNuo4w2oUZMO3q6//vq84Q1veMTjBx54YNatWzclRQEA0NjK5fLDtprOKrgaoCiLdLwBNW7SwVt7e3t6e3sf8fidd96ZxYsXT0lRAAA0tu0Dw9k5OJLEqCk0Mh1vQK2bdPD2ohe9KBdffHGGhoaSJKVSKatXr86f/umf5rzzzpvyAgEAaDyVbrd5s1ozq6254GqAojjjDah1kw7e/v7v/z59fX1ZsmRJdu3alWc+85k54ogj0tnZmfe+973TUSMAAA1m7cSYqW43aGS2mgK1btJbTefNm5dVq1blhz/8YW655Zb09fXlSU96Us4888zpqA8AgAa03mIFIDregNo36eCt4ulPf3qe/vSnT2UtAACQRMcbMKYSvG3vH07/0Eg6Wo2eA7Vlr4K3Sy+9dK+/4Fvf+tZ9LgYAAJJkXe+uJMmyLhtNoZF1dbSkrbkpgyOj2dQ3kIPmzy66JIBJ2avg7ZJLLtnj440bN2bnzp3p7u5OkvT09GT27NlZsmSJ4A0AgP22dmLUtL3gSoAilUqlLO5sz0M9u7Jxu+ANqD17tVzh3nvvnfj13ve+NyeffHJ+/vOfZ8uWLdmyZUt+/vOf50lPelL+6q/+arrrBQCgAaybCN50vEGjW+ScN6CGTXqr6bve9a5cdtllOfrooyceO/roo3PJJZfkne9855QWBwBAY1rX64w3YMziuW1Jkk19gwVXAjB5kw7e1q5dm+Hh4Uc8PjIykvXr109JUQAANK5dgyPp2TmUxFZTwGZToLZNOnh77nOfmze84Q258cYbJx674YYb8sY3vjFnnnnmlBYHAEDjqXS7zWlrTmf7Xh1JDNSxRXPHgrdNfYI3oPZMOnj79Kc/nWXLluXUU09Ne3t72tvb85SnPCVLly7NJz/5yemoEQCABrJ229hG06XzOlIqlQquBiiajjeglk36fyEuXrw4V155Ze6888784he/SJIcc8wxOeqoo6a8OAAAGs9657sBD7N4vONtw/b+gisBmLx97t0/6qijhG0AAEy5tZWNpl02mgLJkq6xEH6DjjegBk06eHv1q1/9G5//9Kc/vc/FAADAum063oDdloyPmm7oHUi5XDaCDtSUSQdvW7du3ePjoaGh3Hbbbenp6clznvOcKSsMAIDGVOl4Wyp4A5Is6RoL3gZHRrNt11C6Z7cVXBHA3pt08PaVr3zlEY+Njo7mjW98Yw4//PApKQoAgMa1obcyaip4A5L2luZ0z25Nz86hrO8dELwBNWXSW00f9Ys0NeWiiy7KJZdcMhVfDgCABlY5x6kyXgawtLNyzpsFC0BtmZLgLUnuvvvuDA8PT9WXAwCgAY2OlieCt6U63oBxlXHT9b0WLAC1ZdKjphdddNEeH5fL5axduzb/9V//lVe+8pVTVhgAAI1n847BjIyWUyoli+YaJwPGLBnveFvfq+MNqC2TDt5+9rOf7fFxU1NTFi9enL//+79/3I2nAADwm1TGyBbOaU9L85QNZwA1bul4x9vG7TregNoy6eDtO9/5znTUAQAA2dBbGTN1vhuwW+XMRx1vQK2Z9P9GfM5znpOenp5HPN7b25vnPOc5U1ETAAANqtLxZrEC8HCVMx8Fb0CtmXTw9t3vfjeDg4OPeLy/vz8/+MEPpqQoAAAa0/peixWAR1rSVdlqatQUqC17PWp6yy23TPz+jjvuyLp16yY+HhkZyVVXXZUDDzxwaqsDAKChVLpZlgjegIepdMFu6B1IuVxOqVQquCKAvbPXwdvJJ5+cUqmUUqn0qCOls2bNymWXXTalxQEA0Fgq3SxGTYGHWzJ+7uPgyGi27RpK92xbj4HasNfB27333ptyuZzDDjss1113XRYvXjzxXFtbW5YsWZLm5uZpKRIAgMawYbzjzagp8HDtLc3pnt2anp1DWd87IHgDasZeB2+HHHJIkmR0dHTaigEAoLGtt9UUeAxLOzvGg7f+HL2ss+hyAPbKXgVvX/3qV/O85z0vra2t+epXv/obr33Ri140JYUBANBYRkfL2dhXGTXV8QbsaUlXe365frsFC0BN2avg7SUveUnWrVuXJUuW5CUvecljXlcqlTIyMjJVtQEA0EA27xjMyGg5pVKyaK4xMmBPlUC+soQFoBbsVfD28PFSo6YAAEyHyh+mF85pT0tzU8HVANWmMoK+QfAG1BDvaAAAqAobtzvfDXhslW3HRk2BWrJXHW+XXnrpXn/Bt771rftcDAAAjWu9jabAb1D52WDUFKglexW8XXLJJXv1xUqlkuANAIB9UuliqXS1ADzckvHgTccbUEv2Kni79957p7sOAAAaXKWLZYmON+BRTIya9g6kXC6nVCoVXBHA49uvM97K5XLK5fJU1QIAQANb36vjDXhsS8bPfxwcGU3PzqGCqwHYO/sUvH3qU5/KCSeckI6OjnR0dOSEE07IJz/5yamuDQCABrJxuzPegMfW3tKc7tmtSYybArVjr0ZNH+7d7353PvShD+Utb3lLzjjjjCTJNddck7e//e1ZvXp1Lr744ikvEgCA+lfpeLPVFHgsSzs70rNzKOt7+3P0ss6iywF4XJMO3j72sY/lE5/4RF7+8pdPPPaiF70oJ554Yt7ylrcI3gAAmLSR0XI29lVGTXW8AY9uSVd7frl+u443oGZMetR0aGgop5566iMeP+WUUzI8PDwlRQEA0Fi27BjMyGg5pVKyaG5b0eUAVaoSzFeWsQBUu0kHb694xSvysY997BGP//M//3MuuOCCKSkKAIDGUvlD9KK57Wlp3q/9X0Adq4yibxC8ATVi0qOmydhyhauvvjqnn356kuTaa6/N6tWr8wd/8Ae56KKLJq770Ic+NDVVAgBQ1zaML1aw0RT4TZbNG+t4Wyd4A2rEpIO32267LU960pOSJHfffXeSZNGiRVm0aFFuu+22ietKpdIUlQgAQL3bMLFYwfluwGOr/IxYt03wBtSGSQdv3/nOd6ajDgAAGlhlo6mON+A3OWC8422t4A2oEQ7QAACgcEZNgb1RGTXd2DeQoZHRgqsBeHyT7njr7+/PZZddlu985zvZsGFDRkf3/GF34403TllxAAA0hk19Yx1viwVvwG+waE57WppKGR4tZ+P2gSzvnlV0SQC/0aSDt9e85jW5+uqr8zu/8zt5ylOe4iw3AAD228btgjfg8TU1lbK0qyMP9ezK2m39gjeg6k06ePv617+eK6+8Mk972tOmox4AABrQRh1vwF5aNm8seLNgAagFkz7j7cADD0xnZ+d01AIAQAMql8vZtH0wSbJoruAN+M0q57yt6xW8AdVv0sHb3//93+dP//RPc//9909HPQAANJgdgyPZNTSSRPAGPL4DusaDt227Cq4E4PFNetT01FNPTX9/fw477LDMnj07ra2tezy/ZcuWKSsOAID6VznfbU5bc+a0T/rtKdBgKh1va42aAjVg0u9sXv7yl+ehhx7K3/zN32Tp0qWWKwAAsF8qG00XOd8N2AsHzBtbqOCMN6AWTDp4+/GPf5xrrrkmJ5100nTUAwBAg5nYaGrMFNgLy+aN/azQ8QbUgkmf8XbMMcdk1y6z9AAATI2J4E3HG7AXlo13vG3Y3p/R0XLB1QD8ZpMO3v72b/82f/RHf5Tvfve72bx5c3p7e/f4BQAAkzExaqrjDdgLSzrbUyolQyPlbN4xWHQ5AL/RpEdNf/u3fztJ8tznPnePx8vlckqlUkZGRqamMgAAGoKON2AyWpubsnhuezZsH8i6bf1+dgBVbdLB23e+853HfO7WW2/dr2IAAGg8gjdgsg6Y15EN2weydtuuPOGgeUWXA/CYJh28PfOZz9zj4+3bt+eLX/xiPvnJT+aGG27Im9/85ikrDgCA+mfUFJispV0dSbZlfa8FC0B1m/QZbxXf//7388pXvjIHHHBAPvjBD+Y5z3lOfvKTn0xlbQAANAAdb8BkHTCvI4nNpkD1m1TH27p16/LZz342n/rUp9Lb25v/8T/+RwYGBnLFFVfkuOOOm64aAQCoU+VyOZv6xg5HF7wBe6uy2XSd4A2ocnvd8fbCF74wRx99dG655ZZ8+MMfzpo1a3LZZZdNZ20AANS53l3DGRwZTZIsnNNWcDVArdDxBtSKve54+8Y3vpG3vvWteeMb35gjjzxyOmsCAKBBbOwb+0NzV0dLOlqbC64GqBXLxoM3Z7wB1W6vO95++MMfZvv27TnllFNy2mmn5SMf+Ug2bdo0nbUBAFDnNm43ZgpM3rKu3R1v5XK54GoAHtteB2+nn356PvGJT2Tt2rV5wxvekC996UtZvnx5RkdHs2rVqmzfvn066wQAoA5ttNEU2AeVjrddQyPp3TVccDUAj23SW03nzJmTV7/61fnhD3+YW2+9NX/0R3+Uv/3bv82SJUvyohe9aDpqBACgTtloCuyLjtbmzJ/dmiRZ27ur4GoAHtukg7eHO/roo/OBD3wgDz74YL74xS9OVU0AADSITX2CN2DfVDabWrAAVLP9Ct4qmpub85KXvCRf/epXp+LLAQDQICodb0ZNgcmqbDZdJ3gDqtiUBG8AALAvjJoC+6pyzpuON6CaCd4AACjMxKipjjdgkg7sHhs1XdPjjDegegneAAAojI43YF8t7x7reHtoq+ANqF6CNwAACjE6Ws7mHYNJBG/A5B3YPTtJsmab4A2oXoI3AAAKsXXnYEZGy0mSBXPaCq4GqDWVjre1Pf0ZHf9ZAlBtBG8AABRi4/j5bgvmtKW12dtSYHKWdnWkqZQMjoxm046BossBeFTe4QAAUIhN28fHTC1WAPZBa3NTlnaNdb2t6bHZFKhOgjcAAAqxsW/sD8qLOo2ZAvtmuc2mQJUTvAEAUIhKx9siHW/APhK8AdVO8AYAQCEqZzItnCN4A/ZNZcHCQ4I3oEoJ3gAAKMSWvrGOt4VzjZoC++ag8Y63h7YK3oDqJHgDAKAQm3dURk0Fb8C+mRg13SZ4A6qT4A0AgEJs7jNqCuyf3We82WoKVCfBGwAAhdhk1BTYT5XgbcuOwewaHCm4GoBHErwBADDjyuVyNluuAOynro6WzG1vSWLcFKhOgjcAAGbczsGR9A+NJtHxBuy7Uqk0sdl0jc2mQBUSvAEAMOO2jC9W6Ghtyuy25oKrAWrZ7nPeBG9A9RG8AQAw4zY9bLFCqVQquBqglh04Hrw9ZMECUIUEbwAAzLjN44sVFhkzBfZTpePtoa063oDqI3gDAGDGVRYrLJgjeAP2z4FGTYEqJngDAGDGbRrveFs410ZTYP9MnPFmqylQhQRvAADMuMpyBRtNgf1V2Wq6tqc/o6PlgqsB2JPgDQCAGbd5fLnCojk63oD9s7SrI02lZHBkNJvGx9gBqoXgDQCAGbd5vOPNGW/A/mptbsrSrrGutzU2mwJVRvAGAMCM233Gm+AN2H+VBQsPbt1ZcCUAexK8AQAw4yZGTS1XAKbAQfMrwZsFC0B1EbwBADCjyuWy5QrAlFqxYHaS5IEtOt6A6lJTwdvf/u3fplQq5W1ve9vEY/39/bnwwguzcOHCzJ07N+edd17Wr1+/x+etXr065557bmbPnp0lS5bkj//4jzM8PDzD1QMAkCS9u4YzPL550BlvwFSodLw9oOMNqDI1E7xdf/31+ad/+qeceOKJezz+9re/PV/72tfy7//+7/ne976XNWvW5GUve9nE8yMjIzn33HMzODiYH//4x/nc5z6Xz372s3n3u9890y8BAIBkYutgZ3tL2luaC64GqAcr5o91vDnjDag2NRG89fX15YILLsgnPvGJzJ8/f+Lxbdu25VOf+lQ+9KEP5TnPeU5OOeWUfOYzn8mPf/zj/OQnP0mSXH311bnjjjvyr//6rzn55JPzvOc9L3/1V3+Vj370oxkcHCzqJQEANKzNFisAU6wyavrg1l0ZHe+oBagGLUUXsDcuvPDCnHvuuTnzzDPz13/91xOP33DDDRkaGsqZZ5458dgxxxyTgw8+ONdcc01OP/30XHPNNXnCE56QpUuXTlxzzjnn5I1vfGNuv/32PPGJT3zE9xsYGMjAwMDEx729vUmSoaGhDA0NTcdLnHGV11Evr4fG4v6l1rmHqWVTcf+u3zbWkbJgTpt/D5hRfv7Wr0Wzm9PcVMrg8GjWbO3L0q6Ookuacu5falk93r97+1qqPnj70pe+lBtvvDHXX3/9I55bt25d2tra0t3dvcfjS5cuzbp16yaueXjoVnm+8tyjed/73pf3vOc9j3j86quvzuzZs/flZVStVatWFV0C7DP3L7XOPUwt25/794frSkmaM7R9S6688sqpKwr2kp+/9Wlea3O2DJTy/77x7azsLLqa6eP+pZbV0/27c+fejbZXdfD2wAMP5H/9r/+VVatWpaNj5v6PxTve8Y5cdNFFEx/39vZmxYoVOfvss9PV1TVjdUynoaGhrFq1KmeddVZaW1uLLgcmxf1LrXMPU8um4v69+zt3J/feneMOX5HnP//4Ka4QHpufv/Xt8nXX59p7t+agY56Y5590QNHlTDn3L7WsHu/fynTk46nq4O2GG27Ihg0b8qQnPWnisZGRkXz/+9/PRz7ykfz3f/93BgcH09PTs0fX2/r167Ns2bIkybJly3Ldddft8XUrW08r1/y69vb2tLe3P+Lx1tbWurlBKurxNdE43L/UOvcwtWx/7t+eXWPb5Rd3zvLvAIXw87c+HbxgTq69d2vWbhuo63++7l9qWT3dv3v7Oqp6ucJzn/vc3Hrrrbnpppsmfp166qm54IILJn7f2tqab33rWxOf88tf/jKrV6/OGWeckSQ544wzcuutt2bDhg0T16xatSpdXV057rjjZvw1AQA0OssVgOlw0Phm0wdsNgWqSFV3vHV2duaEE07Y47E5c+Zk4cKFE4+/5jWvyUUXXZQFCxakq6srb3nLW3LGGWfk9NNPT5KcffbZOe644/KKV7wiH/jAB7Ju3bq8853vzIUXXvioXW0AAEyvTX1jS6wWzvVeDJg6KxbMSjK22RSgWlR18LY3LrnkkjQ1NeW8887LwMBAzjnnnPzjP/7jxPPNzc35+te/nje+8Y0544wzMmfOnLzyla/MxRdfXGDVAACNa8uOsY63RXN0vAFTZ8UCHW9A9am54O273/3uHh93dHTkox/9aD760Y8+5ucccsghNmYBAFSJzePB2wKjpsAUOmj+WMfbmp7+DI+MpqW5qk9WAhqEn0QAAMyY4ZHRbN05fsbbHKOmwNRZ2tmRtuamjIyWs663v+hyAJII3gAAmEFbdw6lXE5KpWT+7PrYagZUh6amUg4c73p7YItz3oDqIHgDAGDGbN4xtlhh/uw2Y2DAlKuMmzrnDagW3u0AADBjtvSNn+9msQIwDQ6aP7Zg4cEtgjegOgjeAACYMROLFQRvwDRYsWCs4+3BrUZNgeogeAMAYMZUFissmC14A6ZepePNqClQLQRvAADMmC3jHW/zdbwB02CF5QpAlRG8AQAwY7ZOjJraaApMvRULxjre1m/vz8DwSMHVAAjeAACYQVt2DiUZ22oKMNUWzmnLrNbmlMvJQ855A6qA4A0AgBlT6XhbOFfwBky9UqmUg8e73lbbbApUAcEbAAAzZuKMNx1vwDQ5eOFY8Hb/ZsEbUDzBGwAAM2Ziq6nlCsA0OVTwBlQRwRsAADOiXC7reAOm3cEL5yRJ7t+8o+BKAARvAADMkF1DIxkYHk2i4w2YPhMdb854A6qA4A0AgBlR6XZra2nK7LbmgqsB6tUhC8Y63lZv2ZnR0XLB1QCNTvAGAMCM2LpjKEmyYHZbSqVSwdUA9Wp5d0damkoZHB7Nut7+ossBGpzgDQCAGbF5x0CSZL4xU2AatTQ35aD5s5JYsAAUT/AGAMCM2L3RtLXgSoB6d4gFC0CVELwBADAjtoyPmtpoCky3QyxYAKqE4A0AgBmxdUel403wBkyvgxeMB2863oCCCd4AAJgRW3YK3oCZcejEqKmON6BYgjcAAGaEjjdgplRGTVdv3plyuVxwNUAjE7wBADAjtowHb854A6bbigWzUyol2weGJ372ABRB8AYAwIzYatQUmCEdrc1Z1tWRxIIFoFiCNwAAZoStpsBMmthsasECUCDBGwAA065cLut4A2bUIQssWACKJ3gDAGDa9fYPZ2R07IDz7tmtBVcDNIKDJzreBG9AcQRvAABMu8pG0zltzelobS64GqARHLqw0vFm1BQojuANAIBpt7my0dSYKTBDKme8rbZcASiQ4A0AgGlX6XhzvhswUyrB26a+wfT2DxVcDdCoBG8AAEy7LeOLFWw0BWZKZ0drFs1tT5Lct8m4KVAMwRsAANOu0vG2UMcbMIMOWzx2zts9GwVvQDEEbwAATLuJjjfBGzCDDls0HrzpeAMKIngDAGDaOeMNKEKl4+1ewRtQEMEbAADTbsuOsYPNnfEGzKSVi+YmSe7Z2FdwJUCjErwBADDttu6sdLy1FlwJ0EhWLtrd8VYulwuuBmhEgjcAAKZdZdRUxxswkw5eMDvNTaXsHBzJ+t6BossBGpDgDQCAabdlpzPegJnX1tKUFfNnJUnu2WTcFJh5gjcAAKbV8Mhotu0aP+NN8AbMsMMWV855s2ABmHmCNwAAptW2XUOpHK3UPcsZb8DMevg5bwAzTfAGAMC0qixW6OpoSUuzt5/AzDpsseANKI53PgAATKuencZMgeJUOt7u2eiMN2DmCd4AAJhWW8eDt24bTYECHLZo7Iy3B7buyuDwaMHVAI1G8AYAwLSqjJo63w0owtKu9sxua87IaDmrt+wsuhygwQjeAACYVtsqo6azBW/AzCuVShYsAIURvAEAMK0mOt6MmgIFOWzx2Lipc96AmSZ4AwBgWvXsqpzxpuMNKIaON6AogjcAAKZVjzPegIIdvnh8s6ngDZhhgjcAAKZVT+WMtzlGTYFiVDrejJoCM03wBgDAtNo6HrzN0/EGFOTw8TPeNvUNZuuOwYKrARqJ4A0AgGm1bXzUdL7lCkBB5rS35MDuWUmSX+l6A2aQ4A0AgGlV6XgTvAFFOmLJWNfbXesFb8DMEbwBADBt+odGsmtoJEkyz1ZToEBHjgdvv9ogeANmjuANAIBps23XWLdbc1MpXR0tBVcDNLKJjrcN2wuuBGgkgjcAAKbN1vHz3ebNak2pVCq4GqCRHblUxxsw8wRvAABMm57x8926jZkCBTticWeSZO22/mzvHyq4GqBRCN4AAJg2PeMdb92zBG9AsebNbs3izvYkyd0bdxRcDdAoBG8AAEybHhtNgSpy5MRmU+e8ATND8AYAwLTZOh682WgKVAObTYGZJngDAGDa9OwaGzXV8QZUgyMEb8AME7wBADBtenaML1dwxhtQBY5YMrZg4S7BGzBDBG8AAEybSsdb9xwdb0Dxjlw61vH2wNad6R8aKbgaoBEI3gAAmDZbJ5Yr6HgDirdwTlu6Z7emXE7u3qjrDZh+gjcAAKbNtp2VUVMdb0DxSqWSBQvAjBK8AQAwbbbuHB811fEGVImJc97WC96A6Sd4AwBgWpTL5fTsGu94E7wBVaKy2fSuDdsLrgRoBII3AACmxa6hkQwOjyZJ5s82agpUh6PGFyzcqeMNmAGCNwAApkVlsUJrcymz25oLrgZgzDHLupIk923ekV2DNpsC00vwBgDAtOiZON+tLaVSqeBqAMYs7mzPwjltKZeNmwLTT/AGAMC06JnYaOp8N6C6HL1sbMHCL9YK3oDpJXgDAGBaVII357sB1WYieFsneAOml+ANAIBpsXV81HSejaZAlTlmPHj75fregisB6p3gDQCAabFtV6XjTfAGVJejxxcs/FLHGzDNBG8AAEyLrTvGOt6MmgLV5qilc1MqJZv6BrNx+0DR5QB1TPAGAMC06BnveDNqClSb2W0tOWTB7CS63oDpJXgDAGBa9OzU8QZUr90LFpzzBkwfwRsAANOistW0e5aON6D6OOcNmAmCNwAApkVlq2m3jjegCu3ebCp4A6aP4A0AgGkx0fHmjDegClVGTe9cvz0jo+WCqwHqleANAIApVy6Xs22X4A2oXocunJP2lqb0D43m/s07ii4HqFOCNwAAptyOwZEMj3eQdM8yagpUn+amUo5aOj5u6pw3YJoI3gAAmHKVbre25qZ0tHrLCVSn3ZtNBW/A9PAuCACAKbdt/Hy3rlmtKZVKBVcD8OgqCxbuWNtbcCVAvRK8AQAw5Sodb/NmtRRcCcBjO375vCTJHWsEb8D0ELwBADDldgdvFisA1eu45V1Jkod6dmXrjsGCqwHqkeANAIApt23X2B9gBW9ANZs3qzUrFsxKkvzcuCkwDQRvAABMOR1vQK04/oCxcdPbjZsC00DwBgDAlBO8AbXi+PFx09vXbCu4EqAeCd4AAJhygjegVhx/YCV40/EGTD3BGwAAU27bruEkybzZbQVXAvCbVTab3r2xL7sGRwquBqg3gjcAAKacjjegVizpbM+iuW0ZLSe/WKfrDZhagjcAAKac4A2oFaVSKcctt2ABmB6CNwAAplyv4A2oIbsXLAjegKkleAMAYMrpeANqSSV4u8NmU2CKCd4AAJhS5XJZ8AbUlMqChV+s257hkdGCqwHqieANAIAptWNwJCOj5SSCN6A2HLJgdua2t2RgeDR3b9xRdDlAHRG8AQAwpSrdbm3NTelo9XYTqH5NTaUce0BnkuR246bAFPJOCACAKdWzczBJ0jWrNaVSqeBqAPZOZdz0lgcFb8DUEbwBADCldp/v1lJwJQB77+QV3UmSWx7sKbQOoL4I3gAAmFK9FisANejEg8Y63m5f05shCxaAKSJ4AwBgStloCtSiQxfOSWfH2IKFO9dvL7ocoE4I3gAAmFKV4K17dlvBlQDsvaam0kTXm3PegKkieAMAYErpeANq1YkHdSdJbn6gp9A6gPoheAMAYEpVgrcuwRtQY04a73i7WccbMEUEbwAATKltu4aT6HgDas9J45tN71y/PbsGR4otBqgLgjcAAKaUUVOgVi3r6sjizvaMjJZzx1pdb8D+E7wBADClBG9ArSqVSrvHTR8QvAH7T/AGAMCU6hW8ATWssmDhlgd7Cq0DqA+CNwAAppSON6CWnTje8XaLBQvAFBC8AQAwZcrlsuANqGmVjrd7Nu2Y+HkGsK8EbwAATJm+geGMjJaTCN6A2rRgTlsOXjA7iXFTYP8J3gAAmDKV7pC25qZ0tHqrCdSmk1d0J0l+trqn0DqA2ufdEAAAU6YSvHXNak2pVCq4GoB9c8oh85MkN9y/teBKgFoneAMAYMpUgrfu2cZMgdpVCd5uXL01o+Pj8wD7QvAGAMCU6bVYAagDxyzrzKzW5mzvH87dG/uKLgeoYYI3AACmjI2mQD1oaW7KSSvmJTFuCuwfwRsAAFNG8AbUiycd7Jw3YP8J3gAAmDKCN6BePPycN4B9JXgDAGDKPHyrKUAte+J4x9vdG3ekZ+dgwdUAtUrwBgDAlNm2aziJjjeg9i2Y05bDFs1JkvxsdU+xxQA1S/AGAMCUMWoK1JMnHeKcN2D/CN4AAJgygjegnliwAOwvwRsAAFOmV/AG1JHKgoWbH+zJ8MhowdUAtUjwBgDAlNneX1mu0FJwJQD778glc9PZ0ZKdgyO5Y21v0eUANUjwBgDAlCiXy+kdX67Q1aHjDah9TU2lnDre9XbdvVsKrgaoRYI3AACmxMDwaAbHR7G6jJoCdeK0wxYmSa4VvAH7QPAGAMCUqJzv1lRK5rQ1F1wNwNR4ysoFSZLr79uS0dFywdUAtUbwBgDAlOgdP9+ts6M1pVKp4GoApsYTDpyX2W3N6dk5lDs3bC+6HKDGCN4AAJgSvf3j57tZrADUkdbmpontps55AyarqoO3973vfXnyk5+czs7OLFmyJC95yUvyy1/+co9r+vv7c+GFF2bhwoWZO3duzjvvvKxfv36Pa1avXp1zzz03s2fPzpIlS/LHf/zHGR4ensmXAgBQ9yqjphYrAPXmKYeOjZtee4/gDZicqg7evve97+XCCy/MT37yk6xatSpDQ0M5++yzs2PHjolr3v72t+drX/ta/v3f/z3f+973smbNmrzsZS+beH5kZCTnnntuBgcH8+Mf/zif+9zn8tnPfjbvfve7i3hJAAB1a6LjTfAG1JmHL1gol53zBuy9qp4DuOqqq/b4+LOf/WyWLFmSG264Ic94xjOybdu2fOpTn8rll1+e5zznOUmSz3zmMzn22GPzk5/8JKeffnquvvrq3HHHHfnmN7+ZpUuX5uSTT85f/dVf5U//9E/zl3/5l2lrayvipQEA1J1Kx1tnR1W/xQSYtBMPmpe2lqZs6hvIPZt25PDFc4suCagRNfWuaNu2bUmSBQvG2nxvuOGGDA0N5cwzz5y45phjjsnBBx+ca665JqeffnquueaaPOEJT8jSpUsnrjnnnHPyxje+Mbfffnue+MQnPuL7DAwMZGBgYOLj3t7eJMnQ0FCGhoam5bXNtMrrqJfXQ2Nx/1Lr3MPUst90//bsGHv/NLe92f1NVfLzl33VnOTkg+bluvu25ppfbczB3e0zXoP7l1pWj/fv3r6WmgneRkdH87a3vS1Pe9rTcsIJJyRJ1q1bl7a2tnR3d+9x7dKlS7Nu3bqJax4eulWerzz3aN73vvflPe95zyMev/rqqzN79uz9fSlVZdWqVUWXAPvM/Uutcw9Tyx7t/r3p/qYkTdm87sFceeXqmS8K9pKfv+yL+UNjP+O+8qPb0rnhlsLqcP9Sy+rp/t25c+deXVczwduFF16Y2267LT/84Q+n/Xu94x3vyEUXXTTxcW9vb1asWJGzzz47XV1d0/79Z8LQ0FBWrVqVs846K62tzmGhtrh/qXXuYWrZb7p/f/LVO5I1D+akY47M859zeEEVwmPz85f90X335vz3Z2/IQ4Oz8rznPSOlUmlGv7/7l1pWj/dvZTry8dRE8PbmN785X//61/P9738/Bx100MTjy5Yty+DgYHp6evboelu/fn2WLVs2cc111123x9erbD2tXPPr2tvb097+yNbh1tbWurlBKurxNdE43L/UOvcwtezR7t++wdEkybw57e5tqpqfv+yLJx+2KK3NpazrHcja7UM5ZOGcQupw/1LL6un+3dvXUdVbTcvlct785jfnK1/5Sr797W9n5cqVezx/yimnpLW1Nd/61rcmHvvlL3+Z1atX54wzzkiSnHHGGbn11luzYcOGiWtWrVqVrq6uHHfccTPzQgAAGsD2/rGzTrosVwDq0Oy2ljzx4PlJkh/+alPB1QC1oqqDtwsvvDD/+q//mssvvzydnZ1Zt25d1q1bl127diVJ5s2bl9e85jW56KKL8p3vfCc33HBD/vAP/zBnnHFGTj/99CTJ2WefneOOOy6veMUrcvPNN+e///u/8853vjMXXnjho3a1AQCwbypbTbtm1cf/yQb4dU8/YlGS5EeCN2AvVXXw9rGPfSzbtm3Ls571rBxwwAETv/7t3/5t4ppLLrkkL3jBC3LeeeflGc94RpYtW5Yvf/nLE883Nzfn61//epqbm3PGGWfk93//9/MHf/AHufjii4t4SQAAdau3fzhJ0tUheAPq09PGg7cf3705I6PlgqsBakFVzwGUy4//g6yjoyMf/ehH89GPfvQxrznkkENy5ZVXTmVpAAD8mt0db1X9FhNgn5100LzMbW9Jz86h3LGmN084aF7RJQFVrqo73gAAqB29E2e86XgD6lNLc1NOP2xhEue8AXtH8AYAwH4bHB5N/9DYVlPBG1DPnn7EWPDmnDdgbwjeAADYb5WNpkky11ZToI49/cixc96uv29L+odGCq4GqHaCNwAA9ltlsUJne0uam0oFVwMwfQ5fPDdLOtszMDyaG+/fWnQ5QJUTvAEAsN8qixU6dbsBda5UKuXp49tNnfMGPB7BGwAA+237eMdb1yznuwH172mCN2AvCd4AANhvNpoCjaRyztutD23L5r6BgqsBqpngDQCA/VYZNe2aZdQUqH9Luzpy7AFdKZeTH9yl6w14bII3AAD2W6XjrVPHG9Agnn304iTJd365oeBKgGomeAMAYL9NnPFmuQLQIJ519JIkyffu3JiR0XLB1QDVSvAGAMB+2z1qquMNaAxPOrg7nR0t6dk5lJsf7Cm6HKBKCd4AANhvvRMdb4I3oDG0NDflGUeNjZt+9xfGTYFHJ3gDAGC/Wa4ANKJnVYK3OzcWXAlQrQRvAADsN8sVgEb0zPEFC7c8uC0btw8UXA1QjQRvAADst+1GTYEGtKSzIycc2JVkbMkCwK8TvAEAsN+MmgKN6tnj202/80vnvAGPJHgDAGC/Wa4ANKpnHzMWvH3/lxszODxacDVAtRG8AQCwX0ZGy+kbGAveOjt0vAGN5eSDurNobnu2DwznJ/dsLrocoMoI3gAA2C99491uieUKQONpairlrOOWJkmuvmNdwdUA1UbwBgDAfqlsNJ3V2py2Fm8vgcZz9vFjwduqO9ZndLRccDVANfHOCACA/bLNYgWgwT318IWZ09ac9b0DueWhbUWXA1QRwRsAAPul0vFmsQLQqNpbmvOs8e2mV99u3BTYTfAGAMB+2d5vsQJAZdz06jvWF1wJUE0EbwAA7JfeiVFTHW9A43rW0UvS0lTKrzb05e6NfUWXA1QJwRsAAPuld7zjzagp0MjmzWrNGYcvTDK2ZAEgEbwBALCfei1XAEiSnH3c2LjpN25zzhswRvAGAMB+qSxX6NTxBjS4c05YlqZScvMDPXlgy86iywGqgOANAID9st2oKUCSZElnR05bOTZu+vVb1hZcDVANBG8AAOyXyqipraYAyQtOOiBJ8l+3rim4EqAaCN4AANgvlY43wRtA8tvHL0tzUym3PdSb+zbtKLocoGCCNwAA9kvfgFFTgIqFc9vz1MMr46a63qDRCd4AANgv2/uNmgI83AtOHBs3dc4bIHgDAGC/VDre5greAJIk5xy/LC1Npfxi3fb8asP2ossBCiR4AwBgv/ROnPFm1BQgSbpnt+W3jlyUJPnazbreoJEJ3gAA2GcDwyMZHB5Nksxt1/EGUPHCk5YnSf7zpodSLpcLrgYoiuANAIB91jfe7ZYI3gAe7pzjl2V2W3Pu27wzN67eWnQ5QEEEbwAA7LPt48HbnLbmNDeVCq4GoHrMaW/J804YW7LwHzc+VHA1QFEEbwAA7LPKYgXnuwE80nlPOjBJ8vWb16R/aKTgaoAiCN4AANhnvf1DSWw0BXg0px+2MMvndaS3fzjf+vmGossBCiB4AwBgn/VNbDQVvAH8uqamUl463vX25RsfLLgaoAiCNwAA9lnljDeLFQAe3UufeFCS5Lt3bszG7QMFVwPMNMEbAAD7rHLGW5cz3gAe1RFL5uakFd0ZGS3nP2+yZAEajeANAIB9tr1yxpuON4DH9DunjHW9fen6B1IulwuuBphJgjcAAPbZ9gFnvAE8nhefvDyzWpvzqw19+en9W4suB5hBgjcAAPbZxBlvgjeAx9TV0ZoXnbQ8SXL5tasLrgaYSYI3AAD22e6tps54A/hNfu+0g5Mk/3Xr2vTsHCy4GmCmCN4AANhnlTPeOp3xBvAbnXjQvBx3QFcGh0fzHzdasgCNQvAGAMA+297vjDeAvVEqlSa63r543WpLFqBBCN4AANhnfQPOeAPYWy8+eXlmt40tWbj+PksWoBEI3gAA2GfbnfEGsNc6H7Zk4XPX3FdsMcCMELwBALDPJs540/EGsFde+dRDkyRX3bYua3p2FVsMMO0EbwAA7JNyuTwxamq5AsDeOfaArpxx2MKMjJbz+WvuL7ocYJoJ3gAA2Cc7B0cyOn42uFFTgL33h087NMnYkoVdgyPFFgNMK8EbAAD7pHK+W3NTKR2t3lYC7K3nHrs0KxbMyrZdQ/nyzx4suhxgGnmHBADAPukb2H2+W6lUKrgagNrR3FTKq566Mkny2R/dl3K5XHBFwHQRvAEAsE96xzve5jrfDWDSfvfUgzKnrTl3bejLD+7aVHQ5wDQRvAEAsE/6xoM357sBTF5XR2t+99QVSZKPf+/ugqsBpovgDQCAfVI5481GU4B987pnHJaWplJ+fPfm/Gz11qLLAaaB4A0AgH2yvX/3GW8ATN6B3bPykicemCT5x+/qeoN6JHgDAGCf9A2Mn/EmeAPYZ//fMw9PqZSsumN97ly/vehygCkmeAMAYJ/0TpzxJngD2FdHLJmbc45bliT5uK43qDuCNwAA9knfxFZTyxUA9sebnn14kuQ/b16TB7bsLLgaYCoJ3gAA2CfOeAOYGice1J3fOnJRRkbL+eh3flV0OcAUErwBALBPKme8Cd4A9t/bzjwySfLvNzyY+zbtKLgaYKoI3gAA2CfbnfEGMGVOOWRBnn304oyMlvMP37qr6HKAKSJ4AwBgn2wfcMYbwFS66KyjkyRX3PRQ7rLhFOqC4A0AgH3ijDeAqfWEg+blt49flnI5+fA3db1BPRC8AQCwT3ZvNRW8AUyVt591VEql5L9uXZvbHtpWdDnAfhK8AQCwTypnvHV1GDUFmCpHL+vMi05aniT5myt/nnK5XHBFwP4QvAEAMGlDI6PZNTSSxKgpwFT732cfnbaWpvz47s359i82FF0OsB8EbwAATNqOgZGJ388VvAFMqRULZufVT1uZJHnvlT/P0MhowRUB+0rwBgDApG0fGFus0NHalNZmbykBptqbnn14Fs5pyz0bd+SL160uuhxgH3mXBADApPX1j3W8zW13vhvAdOjqaM3bzjoqSXLJqjvTu2uo4IqAfSF4AwBg0iodb13GTAGmzcufvCJHLJmbrTuH8g/fvrvocoB9IHgDAGDS+sbPeHO+G8D0aWluyl++8Pgkyb9euzoP9BVcEDBpgjcAACZte/9wEhtNAabb049clBeceEBGy8m/39uc0dFy0SUBkyB4AwBg0voGxoK3ue2CN4Dp9q4XHJc57c25v6+Uf7vhwaLLASZB8AYAwKT1TXS8Wa4AMN2WdnXk7c89Iknywavvyqa+gYIrAvaW4A0AgEnT8QYwsy54yoocOLuc3v7hvOdrdxRdDrCXBG8AAExaJXhzxhvAzGhpbsr5h4+kuamUr928JlfdtrbokoC9IHgDAGDSKqOmc3S8AcyYg+cmr3/6oUmSd15xW7bsGCy2IOBxCd4AAJi0HYMjSYyaAsy0C599eI5e2plNfYN593/eVnQ5wOMQvAEAMGk7nPEGUIj2lqZ88HdPSnNTKV+/ZW3+6xYjp1DNBG8AAEya5QoAxXnCQfPypmcdniR5x5dvyYNbdxZcEfBYBG8AAExa38DYqKkz3gCK8dbnHpmTV3Snt384b/vSTRkeGS26JOBRCN4AAJi0HbaaAhSqtbkpl738ielsb8lP79+aS791V9ElAY9C8AYAwKT1DdpqClC0FQtm570ve0KS5LLv/CrX3L254IqAXyd4AwBgUkbLyc7Byqhpc8HVADS2F520PP/j1INSLidv+eKNWbttV9ElAQ8jeAMAYFIGR5Nyeez3ne2txRYDQP7yRcfnmGWd2dQ3mP/vX2/MwPBI0SUB4wRvAABMyvhehTSVko5WbycBija7rSX//IpTM29Wa25+oCfvvuL2lCv/hwQolHdKAABMSv948Da3vSWlUqnYYgBIkhy8cHYue/kT01RK/u2nD+QL164uuiQggjcAACbp4cEbANXjGUctzh+fc0yS5C++enu+d+fGgisCBG8AAEzKwMhYl5uNpgDV5/975mF56RMPzMhoOW/61xtyx5reokuChiZ4AwBgUiY63joEbwDVplQq5f3nnZgzDluYHYMjefVnr7fpFAokeAMAYFIGjJoCVLW2lqZ8/BWn5Mglc7Outz+v+vT16dk5WHRZ0JAEbwAATIoz3gCq37xZrfnsq5+SJZ3t+eX67Xnlp6/L9v6hosuChiN4AwBgUirBmzPeAKrbgd2z8i+vOS3zZ7fm5ge35TWf/Wl2Dg4XXRY0FMEbAACTUlmuoOMNoPodvawz//Ka09LZ0ZLr7tuSN/zLDekfGim6LGgYgjcAACbFqClAbTnhwHn57B8+JbPbmvODuzbltZ/T+QYzRfAGAMCkDBg1Bag5pxwyP59+1ZMzu605P/zVprziU9dl2y5nvsF0E7wBADApEx1vHYI3gFpy+mEL86+vPS1dHS254f6t+b1P/CSb+waKLgvqmuANAIBJ2T1q2lxsIQBM2pMOnp8vvf6MLJzTltvX9OZ3Pn5N7tu0o+iyoG4J3gAAmJTdyxVaC64EgH1x3PKu/N//74wc2D0r927akZf+44/y0/u2FF0W1CXBGwAAk9I/ccabjjeAWnX44rn5ypuemhMPmpetO4fye5+8Nl+9eU3RZUHdEbwBADApA7aaAtSFJV0d+dLrT89Zxy3N4PBo3vrFn+UDV/0iI6PlokuDuiF4AwBgUvoFbwB1Y3ZbSz7++6fkdb+1Mknyj9+9O3/w6WstXYApIngDAGCvlctlHW8Adaa5qZQ/P/e4XPryJ2Z2W3N+9KvNecFlP8yNq7cWXRrUPMEbAAB7bdfQSMoZX67QIXgDqCcvOml5rrjwaTls8Zys3daf3/34NfmHb96V4ZHRokuDmiV4AwBgr/WNt7s1lZJZrZYrANSbo5Z25j8vfFpeeNLyjIyWc8k378zv/tM1uW/TjqJLg5okeAMAYK/tGBhOksxpb0mpVCq4GgCmQ2dHay57+RPzD+efnM6OlvxsdU+ef+kP8vlr7rN4ASZJ8AYAwF7rqwRvbbrdAOrdi08+MFe97Rk5beWC7Bwcybv/8/b8zsd/nF+s6y26NKgZgjcAAPbajvFR0zkWKwA0hAO7Z+Xy152ei198fOa2j3W/veDSH+YDV/0iOweHiy4Pqp7gDQCAvVYZNbXRFKBxNDeV8v+3d+/RUdX33sc/M5OZSUKumCsQMIAE5RILlDS2gqukXOpj7eV5pJTHQ2kPXgprtQtLAdtK7R8PLPVx2cWi6lldwvmjS9Qe0J6CLGm4WGlEQQJEIOUS5JaEa27kNpn5nj9CRqYBTSyTYZj3a629smf/frP57fBh88s3e8/+t+LbtXnhJE0bla2OgOn3247q689t13/tPqUAt58C10XhDQAAAD0WvNXUy62mABBrclMT9PLDE/Tyw+M1KD1BNQ2teuKNvXpw1Q7tPHYh0sMDbkoU3gAAANBjTe2dt5pyxRsAxK5po3L014WTtXj6SCV547T/dL1m/sf7mvPKByo/WRfp4QE3FQpvAAAA6LGm1k+fagoAiF3xbpcev2+Ytv78Ps2aOFgup0Pb/3FO3161Q3NXf6C9FOAASRTeAAAA0AuXr3yQdhJPNQUASMpM9mr5d8eodOFk/e/xg+RyOrS18pweXLVD//cPO7W18iyfAYeYRuENAAAAPdb1VFNuNQUAXO32jH567v8UqnThZH1vXGcB7r0j5zV39Yea+sK7evWDE2r1+SM9TKDPUXgDAABAj336cAUKbwCA7m7P6Kf//1Chti+6T//+tXwleeN05GyTlq7br6L/V6rf/PljHappiPQwgT7DjAkAAAA9dvlK4S2Jp5oCAD7DoPRE/ep/3aWfltyh1z48qdU7jut0XYvW/P241vz9uArz0jTry3maMSZXqQnuSA8XCBsKbwAAAOixpiu3mnLFGwCgJ5Lj3fr3e4dq7lfz9bfD5/Tahye1+UCt9p6s096TdXrqrY81uSBTDxQOUMmdWUr08P8Lbi0kGgAAAD3W9XCFfvxgBADoBZfTofsKsnRfQZbONbZp3Uen9Kfdp3T4bJM2H6jV5gO1SnC79PU7szT1rmxNHpGptERPpIcN/MuYMQEAAKDHgreaxnOrKQDgi8lM9urRycP06ORhqqxp1H/vPaP/3ndGn1xo1oZ91dqwr1pOhzRhSH99/c4sTRmZpeFZSXI4HJEeOtBrFN4AAADQY8FbTbniDQBwAxTkJKsgp0BPTB2h/afr9XZFjbYeOqtDNY364PhFfXD8ola8fUjZKV4VD71N9wzLUPGw25TXPzHSQwd6hBkTAAAAeuzThyswjQQA3DgOh0NjB6Vp7KA0LZ4+UqcuNWvrobMqPXRWfz96QbUNbXqz/IzeLD8jSRqYlqCiof01bnC67s5L08icZMW5nBE+CqA7ZkwAAADoETNT05XCWz+eagoACKNB6Yl6uPh2PVx8u1p9fn104pLKjl5Q2dELKj9Zp9N1LVr30Wmt++i0JCnB7dKYgan60uDO4t2duckacls/uZzcnorIovAGAACAHmn1BRSwznWueAMA9JV4t0v3DMvQPcMyJHVefb3rk0vaffyi9pysU/mJOjW2dQRvTe2S4HZpRE6y7sxJ1p25KRqZk6zhWUnq38/D58WhzzBjAgAAQI90Xe3mkCnRwxVvAIDI6OeN0+QRmZo8IlOSFAiYjp1v0kcn6rTnRJ0OnKlXZW2jWnx+7T1Zp70n60LenxIfp/zMJA3L6Kf8jH7Kz+ynoRlJyuufoOR4dwSOCLcyCm8AAADoka7Cm8clrhQAANw0nE6Hhmcla3hWsh6akCdJ8gdMxy9c1qHqRh2sbtChmgYdrG7UmfoWNbR2XLMgJ3UW5QamJ2pgWoIGpSdoYFqCBl75mpMar9v6efgsOfRKTBXeVq1apWeffVY1NTUqLCzUypUrNXHixEgPCwAAICp0PVghnovdAAA3OZfToWGZSRqWmaT7x+YGt7f6/Dp+4bKqzl3WsfOXdezcZVWdb9Kx85dV1+xTQ2uHGqobdLC64Zr7dTik2/p5lJHkVWZy55KVHB9c75/oUVqiW2mJbqUnepTocfHLqhgXM4W31157TQsXLtRLL72koqIivfDCC5o2bZoqKyuVlZUV6eEBAADc9BpbKbwBAKJbvNulkTkpGpmT0q2tqa1Dpy+16HRd85WvrTpd16LTl5p1uq5F55va5Q+Yzje163xTuw7VNH7un+dxOZWa6FZ6oltpCZ5gQS45Pk5J8XFK8l5Z4uPUzxun5K51T5ySr2xzc4VdVIuZwtvzzz+vefPmae7cuZKkl156SRs2bNArr7yiJUuWRHh0AAAANz+ueAMA3MqSvHEqyElWQU7yNdv9AdOl5nadbWjTuaY2nWts09nGVp1r7FpvU11zu+qafapr9qndH1C7PxBs/6K8cU4leFyKj3MpwePq9jre7VS829W5xLmU4HEG2zxxTrldXYtDnq71uH967XLKE+e48vWqbS6n4lwOuRwOOXlC7BcSE4W39vZ27d69W0uXLg1uczqdKikpUVlZWbf+bW1tamv79B9FQ0PnJaY+n08+ny/8A+4Di/9rv/Ycdek/T+3ksldEHTPTpTryi+hFhhGtLjW3S5K8Lrtl5kSILV25Jb+IRuT35pDqdSo1M0F3ZCZ8Zj8zU4vP31mEa/EFi3Fd601tHcHlcpv/muttHQFJUltH4Mp6ZP/uHQ4pzumQy9lZiHM5Q5c4p0NOh+PTPldtd0hqbHBp3D2XlZPWL6LHcaP09N9iTBTezp8/L7/fr+zs7JDt2dnZOnToULf+y5cv19NPP91t+zvvvKPExMSwjbMvfXjYpZOXHapqrI/0UIAviPwi2pFhRK+MeGnz5s2RHgbwhZFfRDPyG93SriySOisycZKuU4fyB6RWf+fiC3Qu7QHJF3BctX5lu7+r3RHS12+d++mwzvWOgOPK1yuvr7R3rXdt91v3Xw6bST6/yee3L3j0Dm3dtl2pni/49ptMc3Nzj/rFROGtt5YuXaqFCxcGXzc0NCgvL09Tp05VSkr3+8CjUfLws3pv524VFhbK5eJ+EUQXv9+vvXv3kl9ELTKMaOZUQE3H9ugb3/iG3G53pIcD9IrP59PmzZvJL6IS+UVfMrMrRbaAfH6T30yBgKkjYPIHOl/7/VetX2nr6hOwq/oGTG0+nz7as1cPTPu6khLiI314N0TX3ZGfJyYKbxkZGXK5XKqtrQ3ZXltbq5ycnG79vV6vvF5vt+1ut/uWOcHdOyJLjUdM3xw74JY5JsQOn88nnSonv4haZBjRzOfzaeMne26peRFiD/lFNCO/6Cs38sI0n8+nwIlyJSXE3zL57elxxMSjMTwej8aPH6/S0tLgtkAgoNLSUhUXF0dwZAAAAAAAALhVxcQVb5K0cOFCzZkzRxMmTNDEiRP1wgsv6PLly8GnnAIAAAAAAAA3UswU3mbOnKlz587pqaeeUk1Nje6++25t2rSp2wMXAAAAAAAAgBshZgpvkrRgwQItWLAg0sMAAAAAAABADIiJz3gDAAAAAAAA+hqFNwAAAAAAACAMKLwBAAAAAAAAYUDhDQAAAAAAAAgDCm8AAAAAAABAGFB4AwAAAAAAAMKAwhsAAAAAAAAQBhTeAAAAAAAAgDCg8AYAAAAAAACEAYU3AAAAAAAAIAwovAEAAAAAAABhQOENAAAAAAAACAMKbwAAAAAAAEAYUHgDAAAAAAAAwoDCGwAAAAAAABAGFN4AAAAAAACAMKDwBgAAAAAAAIQBhTcAAAAAAAAgDCi8AQAAAAAAAGFA4Q0AAAAAAAAIAwpvAAAAAAAAQBhQeAMAAAAAAADCgMIbAAAAAAAAEAYU3gAAAAAAAIAwoPAGAAAAAAAAhAGFNwAAAAAAACAMKLwBAAAAAAAAYRAX6QFEAzOTJDU0NER4JDeOz+dTc3OzGhoa5Ha7Iz0coFfIL6IdGUY0I7+IZuQX0Yz8IprdivntqhF11Yyuh8JbDzQ2NkqS8vLyIjwSAAAAAAAA3CwaGxuVmpp63XaHfV5pDgoEAjpz5oySk5PlcDgiPZwboqGhQXl5eTp58qRSUlIiPRygV8gvoh0ZRjQjv4hm5BfRjPwimt2K+TUzNTY2asCAAXI6r/9Jblzx1gNOp1ODBg2K9DDCIiUl5ZYJPWIP+UW0I8OIZuQX0Yz8IpqRX0SzWy2/n3WlWxcergAAAAAAAACEAYU3AAAAAAAAIAwovMUor9erZcuWyev1RnooQK+RX0Q7MoxoRn4Rzcgvohn5RTSL5fzycAUAAAAAAAAgDLjiDQAAAAAAAAgDCm8AAAAAAABAGFB4AwAAAAAAAMKAwhsAAAAAAAAQBhTeAAAAAAAAgDCg8BajVq1apdtvv13x8fEqKirSBx98EOkhIcb85je/kcPhCFlGjhwZbG9tbdX8+fN12223KSkpSd/73vdUW1sbso8TJ07o/vvvV2JiorKysrRo0SJ1dHSE9Nm2bZvGjRsnr9er4cOHa82aNX1xeLjFvPvuu3rggQc0YMAAORwOvfnmmyHtZqannnpKubm5SkhIUElJiQ4fPhzS5+LFi5o9e7ZSUlKUlpamH//4x2pqagrps2/fPt17772Kj49XXl6ennnmmW5jeeONNzRy5EjFx8drzJgx2rhx4w0/XtxaPi+/P/zhD7udj6dPnx7Sh/wiUpYvX64vf/nLSk5OVlZWlr797W+rsrIypE9fzhmYQ6M3epLf++67r9s5+LHHHgvpQ34RCS+++KLGjh2rlJQUpaSkqLi4WG+//XawnXNvLxhiztq1a83j8dgrr7xiH3/8sc2bN8/S0tKstrY20kNDDFm2bJmNGjXKqqurg8u5c+eC7Y899pjl5eVZaWmp7dq1y77yla/YPffcE2zv6Oiw0aNHW0lJie3Zs8c2btxoGRkZtnTp0mCfY8eOWWJioi1cuNAOHDhgK1euNJfLZZs2berTY0X027hxo/3yl7+0devWmSRbv359SPuKFSssNTXV3nzzTdu7d69961vfsvz8fGtpaQn2mT59uhUWFtr7779vf/vb32z48OE2a9asYHt9fb1lZ2fb7NmzraKiwl599VVLSEiwl19+Odhnx44d5nK57JlnnrEDBw7Yr371K3O73bZ///6wfw8QvT4vv3PmzLHp06eHnI8vXrwY0of8IlKmTZtmq1evtoqKCisvL7dvfvObNnjwYGtqagr26as5A3No9FZP8jt58mSbN29eyDm4vr4+2E5+ESl//vOfbcOGDfaPf/zDKisr7cknnzS3220VFRVmxrm3Nyi8xaCJEyfa/Pnzg6/9fr8NGDDAli9fHsFRIdYsW7bMCgsLr9lWV1dnbrfb3njjjeC2gwcPmiQrKyszs84fJJ1Op9XU1AT7vPjii5aSkmJtbW1mZvaLX/zCRo0aFbLvmTNn2rRp027w0SCW/HPhIhAIWE5Ojj377LPBbXV1deb1eu3VV181M7MDBw6YJPvwww+Dfd5++21zOBx2+vRpMzP7/e9/b+np6cH8mpktXrzYCgoKgq8feughu//++0PGU1RUZI8++ugNPUbcuq5XeHvwwQev+x7yi5vJ2bNnTZJt377dzPp2zsAcGv+qf86vWWfh7ac//el130N+cTNJT0+3P/zhD5x7e4lbTWNMe3u7du/erZKSkuA2p9OpkpISlZWVRXBkiEWHDx/WgAEDNHToUM2ePVsnTpyQJO3evVs+ny8kpyNHjtTgwYODOS0rK9OYMWOUnZ0d7DNt2jQ1NDTo448/Dva5eh9dfcg6bqSqqirV1NSEZC01NVVFRUUheU1LS9OECROCfUpKSuR0OrVz585gn0mTJsnj8QT7TJs2TZWVlbp06VKwD5lGOGzbtk1ZWVkqKCjQ448/rgsXLgTbyC9uJvX19ZKk/v37S+q7OQNzaNwI/5zfLn/84x+VkZGh0aNHa+nSpWpubg62kV/cDPx+v9auXavLly+ruLiYc28vxUV6AOhb58+fl9/vDwm/JGVnZ+vQoUMRGhViUVFRkdasWaOCggJVV1fr6aef1r333quKigrV1NTI4/EoLS0t5D3Z2dmqqamRJNXU1Fwzx11tn9WnoaFBLS0tSkhICNPRIZZ05e1aWbs6i1lZWSHtcXFx6t+/f0if/Pz8bvvoaktPT79uprv2AXwR06dP13e/+13l5+fr6NGjevLJJzVjxgyVlZXJ5XKRX9w0AoGAfvazn+mrX/2qRo8eLUl9Nme4dOkSc2j8S66VX0n6wQ9+oCFDhmjAgAHat2+fFi9erMrKSq1bt04S+UVk7d+/X8XFxWptbVVSUpLWr1+vu+66S+Xl5Zx7e4HCG4CImDFjRnB97NixKioq0pAhQ/T6669TEAOAPvT9738/uD5mzBiNHTtWw4YN07Zt2zRlypQIjgwINX/+fFVUVOi9996L9FCAXrtefh955JHg+pgxY5Sbm6spU6bo6NGjGjZsWF8PEwhRUFCg8vJy1dfX609/+pPmzJmj7du3R3pYUYdbTWNMRkaGXC5Xt6eN1NbWKicnJ0KjAqS0tDSNGDFCR44cUU5Ojtrb21VXVxfS5+qc5uTkXDPHXW2f1SclJYXiHm6Yrrx91nk1JydHZ8+eDWnv6OjQxYsXb0imOX/jRho6dKgyMjJ05MgRSeQXN4cFCxboL3/5i7Zu3apBgwYFt/fVnIE5NP4V18vvtRQVFUlSyDmY/CJSPB6Phg8frvHjx2v58uUqLCzU7373O869vUThLcZ4PB6NHz9epaWlwW2BQEClpaUqLi6O4MgQ65qamnT06FHl5uZq/PjxcrvdITmtrKzUiRMngjktLi7W/v37Q34Y3Lx5s1JSUnTXXXcF+1y9j64+ZB03Un5+vnJyckKy1tDQoJ07d4bkta6uTrt37w722bJliwKBQHCCXVxcrHfffVc+ny/YZ/PmzSooKFB6enqwD5lGuJ06dUoXLlxQbm6uJPKLyDIzLViwQOvXr9eWLVu63dLcV3MG5tD4Ij4vv9dSXl4uSSHnYPKLm0UgEFBbWxvn3t6K9NMd0PfWrl1rXq/X1qxZYwcOHLBHHnnE0tLSQp42AoTbE088Ydu2bbOqqirbsWOHlZSUWEZGhp09e9bMOh9PPXjwYNuyZYvt2rXLiouLrbi4OPj+rsdTT5061crLy23Tpk2WmZl5zcdTL1q0yA4ePGirVq3q9nhqoCcaGxttz549tmfPHpNkzz//vO3Zs8c++eQTMzNbsWKFpaWl2VtvvWX79u2zBx980PLz862lpSW4j+nTp9uXvvQl27lzp7333nt2xx132KxZs4LtdXV1lp2dbQ8//LBVVFTY2rVrLTEx0V5++eVgnx07dlhcXJw999xzdvDgQVu2bJm53W7bv39/330zEHU+K7+NjY3285//3MrKyqyqqsr++te/2rhx4+yOO+6w1tbW4D7ILyLl8ccft9TUVNu2bZtVV1cHl+bm5mCfvpozMIdGb31efo8cOWK//e1vbdeuXVZVVWVvvfWWDR061CZNmhTcB/lFpCxZssS2b99uVVVVtm/fPluyZIk5HA575513zIxzb29QeItRK1eutMGDB5vH47GJEyfa+++/H+khIcbMnDnTcnNzzePx2MCBA23mzJl25MiRYHtLS4v95Cc/sfT0dEtMTLTvfOc7Vl1dHbKP48eP24wZMywhIcEyMjLsiSeeMJ/PF9Jn69atdvfdd5vH47GhQ4fa6tWr++LwcIvZunWrSeq2zJkzx8zMAoGA/frXv7bs7Gzzer02ZcoUq6ysDNnHhQsXbNasWZaUlGQpKSk2d+5ca2xsDOmzd+9e+9rXvmZer9cGDhxoK1as6DaW119/3UaMGGEej8dGjRplGzZsCNtx49bwWfltbm62qVOnWmZmprndbhsyZIjNmzev22SW/CJSrpVdSSH/n/flnIE5NHrj8/J74sQJmzRpkvXv39+8Xq8NHz7cFi1aZPX19SH7Ib+IhB/96Ec2ZMgQ83g8lpmZaVOmTAkW3cw49/aGw8ys766vAwAAAAAAAGIDn/EGAAAAAAAAhAGFNwAAAAAAACAMKLwBAAAAAAAAYUDhDQAAAAAAAAgDCm8AAAAAAABAGFB4AwAAAAAAAMKAwhsAAAAAAAAQBhTeAAAAAAAAgDCg8AYAAAAAAACEAYU3AAAAAAAAIAwovAEAAAAAAABh8D+Ci+t/uax2GAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(15, 10))\n", "plt.ylabel('Amplitude')\n", "plt.plot(y, label='Señal y(t)') \n", "plt.legend(loc='best')\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "31f3fc34-b9c6-48c3-82f1-e0a79eae7b21", "metadata": {}, "source": [ " Qué pasó??? Es correcto el resultado?? " ] }, { "cell_type": "markdown", "id": "37d61c58-182a-49b0-a0ea-59a48fcb0f6f", "metadata": {}, "source": [ "Corrijamos esto: vamos usar mode='same'. Esto fuerza a que la salida tenga la misma dimension que el array in1 y que al hacer la convolución, la función no nos\n", "haga un zero padding de $x(t)$ y $h(t)$ para llevarlas dimensión $N_y=N_x+N_h-1$ para luego hacer la convolución!" ] }, { "cell_type": "code", "execution_count": 9, "id": "39eb76dc-7b1f-4e43-b05e-9b013bd48c4a", "metadata": {}, "outputs": [], "source": [ "y=signal.convolve(x, h, mode='same', method='direct')" ] }, { "cell_type": "code", "execution_count": 10, "id": "305c6b50-9a7c-44a8-a71c-7b37ba2dc2bc", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(15000,)\n", "(15000,)\n", "(15000,)\n" ] } ], "source": [ "print(h.shape)\n", "print(x.shape)\n", "print(y.shape)" ] }, { "cell_type": "code", "execution_count": 11, "id": "d35d726a-077a-4fb4-9d5f-108a4774231d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABN4AAAMtCAYAAABAULwfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1n0lEQVR4nOz9eXyddZ03/r9O9qb7vtGWsoPsIIsiKhRQcUHRGUbGG0XBLwN6K/MblRlhhNFBUcEBHRk31HtEZ9VxQYaKCyirIPteCgXadE/TLfv5/ZEmUNaeNsk5SZ7PxyOP5FzXda68T/smPXnxWQrFYrEYAAAAAKBfVZW7AAAAAAAYjgRvAAAAADAABG8AAAAAMAAEbwAAAAAwAARvAAAAADAABG8AAAAAMAAEbwAAAAAwAGrKXcBQ0N3dnaVLl2bs2LEpFArlLgcAAACAMioWi1m/fn1mzZqVqqqXHtcmeNsGS5cuzZw5c8pdBgAAAAAV5KmnnspOO+30kucFb9tg7NixSXr+MMeNG7fd9+no6Mh1112X448/PrW1tf1VHsOYnqFUeoZS6RlKpWcolZ6hVHqGUugXStVfPdPS0pI5c+b0ZUYvRfC2DXqnl44bN26Hg7fGxsaMGzfODwS2iZ6hVHqGUukZSqVnKJWeoVR6hlLoF0rV3z3zSkuS2VwBAAAAAAaA4A0AAAAABoDgDQAAAAAGgDXeAAAAAPpJV1dXOjo6yl0GL6GjoyM1NTVpbW1NV1fXS15XW1ub6urqHf5+gjcAAACAHVQsFtPU1JTm5uZyl8LLKBaLmTFjRp566qlX3BhhwoQJmTFjxite93IEbwAAAAA7qDd0mzZtWhobG3corGHgdHd3Z8OGDRkzZkyqql58BbZisZhNmzZlxYoVSZKZM2du9/cTvAEAAADsgK6urr7QbfLkyeUuh5fR3d2d9vb2NDQ0vGTwliSjRo1KkqxYsSLTpk3b7mmnNlcAAAAA2AG9a7o1NjaWuRL6U+/f546s2Sd4AwAAAOgHppcOL/3x9yl4AwAAAIABIHgDAAAAgAEgeAMAAABghzzzzDOZN29ejj/++Cxfvjx77713Sc9/4oknUigUctddd+1QHe3t7dltt91y0003vex15513Xj7ykY/s0PfaFoI3AAAAgBFq5cqVOeusszJ37tzU19dnxowZOeGEE/KHP/yhpPv8+te/zl/+5V/mHe94R4488sh86EMfGqCKX96VV16Z+fPn5zWveU2Slw70/vqv/zrf+9738vjjjw9oPTUDencAAAAAKtbJJ5+c9vb2fO9738suu+yS5cuX5/rrr8/q1atLus/73ve+vq/PPvvs/i5zmxSLxXz1q1/NRRdd9IrXTpkyJSeccEK+/vWv54tf/OKA1WTEGwAAAEA/KxaL2dTeWZaPYrG4TTU2NzfnxhtvzBe+8IW88Y1vzLx583LYYYflvPPOy9vf/vatrvvQhz6UqVOnZty4cTnmmGNy9913953/zGc+kwMPPDD/7//9v+y8884ZP358TjnllKxfv77vmmuvvTZHHXVUJkyYkMmTJ+etb31rFi1atM1/nhdddFH23XffFxw/8MADc/755ydJ7rjjjixatCgnnnhi3/n58+cnSQ466KAUCoUcc8wxfefe9ra35Uc/+tE217A9jHgDAAAA6GebO7qyzwX/W5bv/cBFJ6Sx7pUjnzFjxmTMmDH5yU9+kiOOOCL19fUvet173vOejBo1Kr/85S8zfvz4/Mu//EuOPfbYPPLII5k0aVKSZNGiRfnJT36Sn//851m7dm3+7M/+LJ///Ofzuc99LkmycePGnHvuudl///2zYcOGXHDBBXnnO9+Zu+66K1VVrzwu7PTTT8+FF16Y22+/Pa9+9auTJH/6059yzz335L//+7+TJDfeeGP22GOPjB07tu95t912Ww477LD86le/yqte9arU1Dz753LYYYfl6aefzhNPPJGdd975FWvYHka8AQAAAIxANTU1+e53v5vvfe97mTBhQl772tfmb//2b3PPPff0XfP73/8+t912W/7jP/4jhx56aHbfffd86UtfyoQJE/Kf//mffdd1d3fnu9/9bvbdd9+87nWvy/ve975cf/31fedPPvnkvOtd78puu+2WAw88MN/5zndy77335oEHHtimWnfaaaeccMIJueqqq/qOXXXVVXn961+fXXbZJUny5JNPZtasWVs9b+rUqUmSyZMnZ8aMGX1BYZK+a5988slt/SMrmRFvAAAAAP1sVG11HrjohLJ972118skn58QTT8yNN96YW265Jb/85S9zySWX5Fvf+lbe//735+67786GDRsyefLkrZ63efPmraaK7rzzzluNNJs5c2ZWrFjR9/jRRx/NBRdckFtvvTWrVq1Kd3d3kmTJkiUvOoX0xZxxxhk5/fTTc+mll6aqqipXX311Lrvssq1qamho2ObXPmrUqCTJpk2btvk5pRK8AQAAAPSzQqGwTdM9K0FDQ0OOO+64HHfccTn//PPzoQ99KH//93+f97///dmwYUNmzpyZ3/72ty943oQJE/q+rq2t3epcoVDoC9eSnvXU5s2bl29+85uZNWtWuru7s++++6a9vX2b63zb296W+vr6/PjHP05dXV06Ojry7ne/u+/8lClTcu+9927z/dasWZPk2VFxA2FodAAAAAAAg2KfffbJT37ykyTJwQcfnKamptTU1Gz3OmirV6/Oww8/nG9+85t53etel6RnCmupampqctppp+Wqq65KXV1dTjnllL5Ra0nPBgpf//rXUywWUygUkiR1dXVJkq6urhfc77777kttbW1e9apXbc/L2raaB+zOAAAAAFSs1atX5z3veU9OP/307L///hk7dmz++Mc/5pJLLsk73vGOJMmCBQty5JFH5qSTTsoll1ySPfbYI0uXLs0vfvGLvPOd78yhhx76it9n4sSJmTx5cr7xjW9k5syZWbJkST71qU9tV80f+tCHsvfeeydJ/vCHP2x17o1vfGM2bNiQ+++/v2/66rRp0zJq1Khce+212WmnnVJXV9cXyt1444153etet1V4199srgAAAAAwAo0ZMyaHH354Lrvsshx99NHZd999c/755+eMM87IV7/61SQ9U0avueaaHH300fnABz6QPfbYI6ecckqefPLJTJ8+fZu+T1VVVX70ox/ljjvuyL777puPf/zj+eIXv7hdNe++++55zWtek7322iuHH374VucmT56cd77znfnBD37Qd6ympiaXX355/uVf/iWzZs3KO9/5zr5zP/rRj3LGGWdsVx3byog3AAAAgBGovr4+F198cS6++OKXvW7s2LG5/PLLc/nll7/o+c985jP5zGc+s9Wxj33sY/nYxz7W93jBggUv2MG0WCz2fb3zzjtv9filFIvFLF26NH/1V3/1ouf/7u/+Lscdd1z+7u/+LmPGjEnSM0ruQx/6UJKe3VdbWlryy1/+MlVVVVutETcQjHgDAAAAoOKtXLkyX/3qV9PU1JQPfOADL3rN/vvvny984QtZvHjxy95r48aNueqqq1JTM7Bj0ox4AwAAAKDiTZs2LVOmTMk3vvGNTJw48SWve//73/+K93r3u9+dqqqBH48meAMAAACg4m3LVNRKY6opAAAAAAwAwRsAAABAP+ju7i53CfSj/vj7LOtU0xtuuCFf/OIXc8cdd2TZsmX58Y9/nJNOOqnvfLFYzN///d/nm9/8Zpqbm/Pa1742X//617P77rv3XbNmzZp85CMfyc9+9rNUVVXl5JNPzj/90z/17VyRJPfcc0/OPvvs3H777Zk6dWo+8pGP5BOf+MRgvlQAAABgmKqrq0tVVVWWLl2aqVOnpq6uLoVCodxl8SK6u7vT3t6e1tbWl1zjrVgspr29PStXrkxVVVXq6uq2+/uVNXjbuHFjDjjggJx++ul517ve9YLzl1xySS6//PJ873vfy/z583P++efnhBNOyAMPPJCGhoYkyamnnpply5Zl4cKF6ejoyAc+8IGceeaZufrqq5MkLS0tOf7447NgwYJceeWVuffee3P66adnwoQJOfPMMwf19QIAAADDT1VVVebPn59ly5Zl6dKl5S6Hl1EsFrN58+aMGjXqFcPRxsbGzJ07d4c2YShr8PbmN785b37zm1/0XLFYzFe+8pV8+tOfzjve8Y4kyfe///1Mnz49P/nJT3LKKafkwQcfzLXXXpvbb789hx56aJLkiiuuyFve8pZ86UtfyqxZs/KDH/wg7e3t+c53vpO6urq86lWvyl133ZVLL71U8AYAAAD0i7q6usydOzednZ3p6uoqdzm8hI6Ojtxwww05+uijU1tb+5LXVVdXp6amZodHLlbsrqaLFy9OU1NTFixY0Hds/PjxOfzww3PzzTfnlFNOyc0335wJEyb0hW5JsmDBglRVVeXWW2/NO9/5ztx88805+uijtxoWeMIJJ+QLX/hC1q5d+6Lbz7a1taWtra3vcUtLS5Kev5yOjo7tfk29z92RezCy6BlKpWcolZ6hVHqGUukZSqVnKEU5+6Wru5jO7mI6u7r7PncVe453F4t9nzu7eh+n73hXsZjuvs/Z6nFX9wuPPXsuW9+7+3n32fJ1sVhMd7Hn2uKWz93FnkFOz3/cd122ftxdTIrdPcdf9PoXedx7n5f6vv/83gMzafT2T9vsD93d3ens7Ex1dXWqq6tf9trOzs6XPLetPVexwVtTU1OSZPr06Vsdnz59et+5pqamTJs2bavzNTU1mTRp0lbXzJ8//wX36D33YsHbxRdfnAsvvPAFx6+77ro0NjZu5yt61sKFC3f4HowseoZS6RlKpWcolZ6hVHqGUumZkaVYTLqKSWcx6eze8lF84eeu7sKLHC/kd9//VTq7t9zjOdd0FZ/96H7JrwtbH+veluckxVjDrVTXXverTKgvdxU9dvRnzKZNm7bpuooN3srpvPPOy7nnntv3uKWlJXPmzMnxxx+fcePGbfd9Ozo6snDhwhx33HEvO5wReukZSqVnKJWeoVR6hlLpGUqlZypHsVhMW2d3NrZ3ZVN7Zza1dWVTR1faOrqzuaMrrR1daevs/bo7bR1d2dzRnbbOnsebt1zb2tm19dftz17T2tmV9s7udHQVy/1y+0WhkFQXCqmqKqS6kFRXVaW6KqkqFFJdVdjqXNVWj7d8rkrfddVVhb7n9XzO8x73Pi+pqdr6PlVb6igUer6uKhRSKOQFj6u2PC7keY+33LeQ5zx+zvk873HhOfd5/vXP/b5H7z4lDbUvP8psoPXXz5je2ZGvpGKDtxkzZiRJli9fnpkzZ/YdX758eQ488MC+a1asWLHV8zo7O7NmzZq+58+YMSPLly/f6prex73XPF99fX3q618YwdbW1vbLD/7+ug8jh56hVHqGUukZSqVnKJWeoVR6Zvt0dRezvrUj61s7s25zz+eW1o5saO3MpvbOnhCtrTMb2rq2eryxvTMb27qycUvAtrG9M5vau9LVXZ5ArKaqkLqaqp6P6qrUVlelvvfxlmN1NVWprSpkzaoVmTN7Zhpqa7Z+Tk3P82qrCqmprkpNVSE11c/5uqqQ2uqqnmNVhdRU9XxdW12V6qpCaqufPdZ3rqoq1dWFZ+/53OduCb8YGnb0Z8y2Prdig7f58+dnxowZuf766/uCtpaWltx6660566yzkiRHHnlkmpubc8cdd+SQQw5Jkvz6179Od3d3Dj/88L5r/u7v/i4dHR19fygLFy7Mnnvu+aLTTAEAAKCcWju60rypI2s2tqd5U3vWbupI8+b2tGzuzPrWjrRsCdZanhOs9T7e2D4wi/qPqq1OY111RtVVZ1RtdRpqez7X11b1fd3wnK/rtzzuvbb36/ra6jTU9NynobYq9TXVWwVp9VvCsuptDLA6OjpyzTXX5C1vOUBQS0Uqa/C2YcOGPPbYY32PFy9enLvuuiuTJk3K3Llz87GPfSyf/exns/vuu2f+/Pk5//zzM2vWrJx00klJkr333jtvetObcsYZZ+TKK69MR0dHzjnnnJxyyimZNWtWkuS9731vLrzwwnzwgx/MJz/5ydx33335p3/6p1x22WXleMkAAACMIF3dxaze2JZV69uzckNb1mxsy9qNHX2B2ppNW8K15xzb3LHj4VlDbVXGNdRmbENNxo2qzZj6moyuq8no+pqMrq9OY11NRtdVb/24vrrvmsYt5xrres5taxAGbK2swdsf//jHvPGNb+x73Luu2mmnnZbvfve7+cQnPpGNGzfmzDPPTHNzc4466qhce+21aWho6HvOD37wg5xzzjk59thjU1VVlZNPPjmXX3553/nx48fnuuuuy9lnn51DDjkkU6ZMyQUXXJAzzzxz8F4oAAAAw0Z3dzFrNrVnRUtbVm5oy6r1bVm1oedj5fq2rNrQ3vd49cb2FLdjtmZ1VSETG2szobEuExtrM35UXcaPejZIG9dQs1WwNvY5j8c21Kaupqr/XzhQsrIGb294wxtSfJmfQIVCIRdddFEuuuiil7xm0qRJufrqq1/2++y///658cYbt7tOAAAARobOru6s3NCWZeta09T70dKaZetas3xda5a1bM7ydW1p7+re5nsWCsnk0XWZMqY+k0bXZeLonjBtYmNdz8fo3oBty/HRdRlbX5NCwSgzGOoqdo03AAAA6G8dXd1Z2rw5T63ZnKfXbspTazf1ff1M8+asXN+Wbd1PYPLoukwdW58pY+q3fO4J1559XJ8pY+syqbEuNdVGoMFIJHgDAABgWFm3uSOLV23ME6s2ZvGqjXl67eY8tXZTnl6zKU0tra8YrNVUFTJ9XENmjG/IjC2fZ45vyPRxPZ9njG/ItLENpnMCr0jwBgAAwJDT2tGVJ1dvyuJVG/L4qo1ZvLInZFu8amNWb2x/2efW11Rlp4mjMmdSY+ZMbOz7evaEUZk5oSFTRtenymYCQD8QvAEAAFCxWju6smjlhjy6fEMeXr4+jzStzyMr1ufptZtfdtOC6ePqM3/K6Ow8eXTmTHo2XNtp4qhMHVNv/TRgUAjeAAAAKLvu7mKeWL0x9z29Ntc8VZVf/PCuPLZiY55YvfElp4aOa6jJLlPHZP6U0Vt97DxldMbU+3UXKD8/iQAAABhUnV3deWzlhtz3TEvuX7ou9z/TkgeWtWRDW+eWK6qSrOi7fkJjbfaYPjZ7Th+bPaaPyR7Tx2a3aWMyaXSdkWtARRO8AQAAMGC6u4t5fNWG3LmkOXc/1Zz7lrbkoWUtaevsfsG1DbVV2WP6mIxub84bD9k7+8yakD1mjDE1FBiyBG8AAAD0m3WbOvKnp9bmT0ua86enmnPXkrVpae18wXVj62uyz6xxedWs8dl39rjsO3t8dpkyOsXurlxzzTV5y2vmpba2tgyvAKD/CN4AAADYbk+v3ZRbH1+TWxevzh1Prs2ilRtfcE1DbVX232lCDpozIfvtND77zhqfuZMaX3Tn0I7ursEoG2BQCN4AAADYJsViMU+v3ZybH1/dF7Y9vXbzC67beXJjDpo7MQfPnZCD5k7MnjPGpra6qgwVA5SX4A0AAICXtGpDW/7w2Krc8Miq3LxoVZaua93qfHVVIfvOHp8j5k/Kq3eelIPnTcyk0XVlqhagsgjeAAAA6NPe2Z07nlybGx9dmRseXZn7nmnZ6nxNVSH77zQ+R+wyOYfvMjmHzJuYMfV+tQR4MX46AgAAjHDLW1pz/YMr8uuHlufmRauzsX3rddb2njkuR+8xJUftNiWHzJuYxjq/SgJsCz8tAQAARphisZhHlm/IwgeasvCB5bn76XVbnZ88ui6v231Kjt5jao7afUqmjW0oU6UAQ5vgDQAAYATo7i7m9ifW5H/vX56FDzblqTVbb4pw4JwJOW6f6Xn9HlOzz8xxL7rjKAClEbwBAAAMU8ViMXcuac7P71maa+5dluUtbX3n6mqqctRuU3LcPtNz7F7TMm2cUW0A/U3wBgAAMIwUi8Xc8/S6/OLeZfnFPcvyTPOzI9vGNtTkuH2m5/h9ZuToPaZYqw1ggPkpCwAAMAw807w5P77z6fzXnc9k8aqNfcdH11XnuH2m5637z8rr9piS+prqMlYJMLII3gAAAIaoze1dufb+ZfmvO57JHxatSrHYc7yhtirH7j09b9t/Zt6w57Q01ArbAMpB8AYAADCEFIvF3P30uvzw1iX5xb3LsqGts+/cEbtMyskH75Q37zczY+r9ugdQbn4SAwAADAGb2jvzP3ctzb/e8mTuX9rSd3zupMacfPBOedfBszNnUmMZKwTg+QRvAAAAFezR5evzr7c8mf++85ms3zK6ra6mKm/db2ZOOWxuXr3zxBQKhTJXCcCLEbwBAABUmO7uYn7z8Ip868bFufnx1X3Hd57cmFMPn5d3H7JTJo6uK2OFAGwLwRsAAECFaO3oyn/f+Uy+/fvHs2hlz86k1VWFLNh7Wv7yiHl57a5TUlVldBvAUCF4AwAAKLNVG9ry/ZufzL/e8mTWbGxPkoytr8l7D5+b016zc2ZNGFXmCgHYHoI3AACAMmla15orf7coP7xtSdo6u5MksyeMyulHzc+fv3qOnUkBhjg/xQEAAAbZ02s35crfLcq/3/502rt6ArcDdhqfM47eJW961YzUVFeVuUIA+oPgDQAAYJAsWb0pX/vNY/mvO59OZ3cxSXLY/En56DG757W7TbY7KcAwI3gDAAAYYMtbWnP59Y/m325/qi9we+1uk/ORY3bPEbtMLnN1AAwUwRsAAMAAWbepI1fesChX/WFxWjt6ppQevcfU/N9jd8sh8yaVuToABprgDQAAoJ9tbu/Kd296Il//7WNpae1Mkhw8d0I++aa9crgRbgAjhuANAACgnxSLxfz07qX5/C8fyrJ1rUmSPaaPyd+csFcW7D3NGm4AI4zgDQAAoB/c83RzLvzZA7njybVJktkTRuXc4/bISQfNTnWVwA1gJBK8AQAA7IAVLa255H8fzn/e8XSSZFRtdf7qDbvmjKN3SUNtdZmrA6CcBG8AAADbobOrO9+96YlctvCRbGzvSpK866DZ+cSb9sqM8Q1lrg6ASiB4AwAAKNHdTzXnb398b+5f2pIkOXDOhFzwtn1y8NyJZa4MgEoieAMAANhGLa0d+fL/Ppzv3/JkisVk/KjanPfmvfJnh85JlXXcAHgewRsAAMA2uPa+Zbngf+7PivVtSZJ3HjQ7f3fi3pkypr7MlQFQqQRvAAAAL2PtxvZc8NP787O7lyZJdp7cmM+etF+O2n1KmSsDoNIJ3gAAAF7Cdfc35W9/fF9WbWhLVSH5/16/az567O52KwVgmwjeAAAAnqd5U3su/NkD+fGfnkmS7DZtTL78ngNywJwJ5S0MgCFF8AYAAPAcf3hsVc7997uyvKVnlNsZR++Sjy/Ywyg3AEomeAMAAEjS0dWdSxc+kit/tyjFYrLLlNH54nsOyCHzJpa7NACGKMEbAAAw4j25emM++qO7cvdTzUmSvzhsTs5/6z5prPMrEwDbz78iAADAiPaTPz2TT//kvmxo68y4hpp8/uT985b9Zpa7LACGAcEbAAAwIrV2dOXCn92fH972VJLksJ0n5bJTDszsCaPKXBkAw4XgDQAAGHGeXrspZ/3rnbn3mXUpFJKPHrN7PnLMbqmprip3aQAMI4I3AABgRPndIyvzf3/0pzRv6siExtr80ykH5fV7TC13WQAMQ4I3AABgROjuLuarv3ksl/3qkRSLyf47jc8/n3pwdprYWO7SABimBG8AAMCwt6m9M+f+29259v6mJMlfHDY3f/+2fdJQW13mygAYzgRvAADAsLZs3eZ86Ht/zP1LW1JXXZXPnrRv/uzVc8pdFgAjgOANAAAYtu56qjlnfP+PWbm+LZNH1+Vf3ndIDt15UrnLAmCEELwBAADD0k/vXpq/+Y+709bZnT2nj823Tjs0cyZZzw2AwSN4AwAAhpVisZiv/25RLrn24STJsXtNyz/9xUEZU+/XHwAGl395AACAYaOru5gLf3Z/vn/zk0mSM143P596896priqUuTIARiLBGwAAMCy0dnTl4/92V355X1MKheT8E/fJ6UfNL3dZAIxggjcAAGDIW7e5I2d8/4+5bfGa1FVX5dI/PyBv3X9WucsCYIQTvAEAAEPaipbWvO/bt+Xh5esztr4m//J/Dslrdp1S7rIAQPAGAAAMXc80b86p37wlT6zelGlj6/O90w/L3jPHlbssAEgieAMAAIaoJ1dvzHu/eWuead6cnSaOytUfOiJzJzeWuywA6CN4AwAAhpzHVqzPe795a1asb8suU0bnXz90eGZNGFXusgBgK4I3AABgSHlgaUve9+1bs3pje/acPjb/70OHZdrYhnKXBQAvIHgDAACGjAeWtuS937olzZs6su/scfl/px+eiaPryl0WALwowRsAADAkPLJ8ff7y27emeVNHDpwzId87/bCMH1Vb7rIA4CVVlbsAAACAV/LYig157zdvzZqN7dlv9nihGwBDguANAACoaE+s2pj3fvOWrNrQlr1njsv/+6DQDYChQfAGAABUrKfWbMp7v3lLVqxvy57Tx+YHHzo8Exqt6QbA0CB4AwAAKtLK9W35y2/fmqXrWrPr1NH51w8dnkk2UgBgCBG8AQAAFWd9a0fef9VteXL1puw0cVSuPuOITB1bX+6yAKAkgjcAAKCitHZ05czv35H7l7Zkypi6/L8PHp7p4xrKXRYAlEzwBgAAVIyu7mI+9qO7cvPjqzOmvibf/cBhmT9ldLnLAoDtIngDAAAqQrFYzPn/c1+uvb8pddVV+cb7Dsm+s8eXuywA2G6CNwAAoCL8828X5epbl6RQSL5yyoF5zW5Tyl0SAOwQwRsAAFB2P7t7ab74vw8nSS58+6vylv1mlrkiANhxgjcAAKCs7nhybf76P+5OknzwqPn5P0fuXN6CAKCfCN4AAICyWbJ6U878/h/T3tmdBXtPz9++Ze9ylwQA/UbwBgAAlMW6zR05/Xu3Z/XG9rxq1rj80ykHprqqUO6yAKDfCN4AAIBB19nVnXOuvjOPrdiQGeMa8u3TXp3R9TXlLgsA+pXgDQAAGHRfuPah3Pjoqoyqrc63339oZoxvKHdJANDvBG8AAMCg+p+7nsk3b1ycJPnSew7Iq2aNL3NFADAwBG8AAMCguX/punzyv+5Jkpz1hl1z4v4zy1wRAAwcwRsAADAo1mxsz5nfvyOtHd15/R5T8/87fs9ylwQAA8rqpQAAwIDr2UzhT3mmeXPmTW7M5accZAdTAIY9I94AAIAB95XrF+WmRavTWFedb7zv0IxvrC13SQAw4Ix4AwAABtT9awv5xkM9mylc8u79s+eMsWWuCAAGhxFvAADAgFm2rjU/eKzn147/c+S8vHX/WWWuCAAGj+ANAAAYEB1d3fnYv9+TjZ2FvGrW2PzdiXuXuyQAGFSCNwAAYEB86bqHc+eS5jRUF/NPf35A6muqy10SAAwqwRsAANDvfv3Q8vzL7x5PkvzFrt2ZN6mxzBUBwOATvAEAAP1qeUtr/vrf706SvO+IuTlwcrHMFQFAeQjeAACAftPdXcz/7z/uztpNHdln5rh88oQ9yl0SAJSN4A0AAOg337v5idz46KrU11Tl8r84MPU1fuUAYOTyryAAANAvHm5an4t/+VCS5O9O3Du7TRtb5ooAoLwEbwAAwA5r6+zK//3Rn9Le2Z037Dk17ztiXrlLAoCyE7wBAAA77IvXPpyHmtZn0ui6XPLu/VMoFMpdEgCUneANAADYITcvWp1v/X5xkuSSk/fPtLENZa4IACqD4A0AANhum9o788n/uidJ8heHzcmCfaaXuSIAqByCNwAAYLtdcu3DWbJmU2aNb8jfvmXvcpcDABVF8AYAAGyXWx9fne/e9ESS5PMn75+xDbXlLQgAKozgDQAAKNnm9q58YssU01NePSdH7zG1zBUBQOURvAEAACX74v8+nCdXb8rM8Q352xNNMQWAFyN4AwAASvLHJ9bkqpt6djG9+F37ZZwppgDwogRvAADANmvr7Mon/+ueFIvJew7ZKW/Yc1q5SwKAiiV4AwAAttk3fvd4Fq3cmClj6vLpE/cpdzkAUNEEbwAAwDZ5YtXGXPGbx5Ik5791n4xvNMUUAF6O4A0AAHhFxWIxn/7JfWnv7M7rdp+Stx8wq9wlAUDFE7wBAACv6H/uWprfP7Yq9TVV+exJ+6ZQKJS7JACoeII3AADgZTVvas8//PyBJMlHjtkt8yaPLnNFADA0CN4AAICX9flfPpTVG9uz27QxOfPoXctdDgAMGYI3AADgJd31VHN+dPtTSZJ/fOd+qavxKwQAbCv/agIAAC+qu7uYz/z0/iTJuw6ancPmTypzRQAwtAjeAACAF/Vfdz6du55qzui66nzqzXuVuxwAGHIEbwAAwAu0tHbkC9c+nCT56LG7Z9q4hjJXBABDj+ANAAB4gSuufzSrNrRllymj84HXzi93OQAwJAneAACArTy2YkOu+sMTSZLz37aPDRUAYDv5FxQAAOhTLBZz4c/uT2d3MQv2npY37jmt3CUBwJAleAMAAPr85uEVufHRVamrrsqnT9yn3OUAwJAmeAMAAJIknV3dufiah5IkH3jtztl5yugyVwQAQ5vgDQAASJL8+x+fzqMrNmRiY23+6o27lbscABjyBG8AAEA2tHXm0oWPJEk+euzuGT+qtswVAcDQJ3gDAADyjRsez6oNbdl5cmNOPXxeucsBgGFB8AYAACPc8pbWfPOGx5Mkn3zTXqmr8WsCAPQH/6ICAMAId+l1j2RzR1cOmTcxb9p3RrnLAYBhQ/AGAAAj2ENNLfn3O55KkvztW/ZOoVAoc0UAMHwI3gAAYAT70v8+kmIxect+M3LIvInlLgcAhhXBGwAAjFB/WrI2v3pweaoKybnH7VnucgBg2BG8AQDACPWl6x5Okpx88E7ZbdqYMlcDAMOP4A0AAEagmxatyh8eW53a6kI+euzu5S4HAIYlwRsAAIwwxWIxX/rfntFuf3HY3MyZ1FjmigBgeKro4K2rqyvnn39+5s+fn1GjRmXXXXfNP/zDP6RYLPZdUywWc8EFF2TmzJkZNWpUFixYkEcffXSr+6xZsyannnpqxo0blwkTJuSDH/xgNmzYMNgvBwAAKsJvHl6RO5c0p6G2Kue8cbdylwMAw1ZFB29f+MIX8vWvfz1f/epX8+CDD+YLX/hCLrnkklxxxRV911xyySW5/PLLc+WVV+bWW2/N6NGjc8IJJ6S1tbXvmlNPPTX3339/Fi5cmJ///Oe54YYbcuaZZ5bjJQEAQFl1dxfzxf99JEly2mt2zrRxDWWuCACGr5pyF/BybrrpprzjHe/IiSeemCTZeeed88Mf/jC33XZbkp7Rbl/5ylfy6U9/Ou94xzuSJN///vczffr0/OQnP8kpp5ySBx98MNdee21uv/32HHrooUmSK664Im95y1vypS99KbNmzSrPiwMAgDK45r5leXBZS8bW1+T/O3rXcpcDAMNaRQdvr3nNa/KNb3wjjzzySPbYY4/cfffd+f3vf59LL700SbJ48eI0NTVlwYIFfc8ZP358Dj/88Nx888055ZRTcvPNN2fChAl9oVuSLFiwIFVVVbn11lvzzne+8wXft62tLW1tbX2PW1pakiQdHR3p6OjY7tfT+9wduQcji56hVHqGUukZSqVnhrbu7mK+srBntNsHXjMvY+oKA/53qWcolZ6hFPqFUvVXz2zr8ys6ePvUpz6VlpaW7LXXXqmurk5XV1c+97nP5dRTT02SNDU1JUmmT5++1fOmT5/ed66pqSnTpk3b6nxNTU0mTZrUd83zXXzxxbnwwgtfcPy6665LY+OOLzy7cOHCHb4HI4ueoVR6hlLpGUqlZ4amu1YX8tjK6oyqLmbWhodzzTUPD9r31jOUSs9QCv1CqXa0ZzZt2rRN11V08Pbv//7v+cEPfpCrr746r3rVq3LXXXflYx/7WGbNmpXTTjttwL7veeedl3PPPbfvcUtLS+bMmZPjjz8+48aN2+77dnR0ZOHChTnuuONSW1vbH6UyzOkZSqVnKJWeoVR6Zujq7i7m6/98c5IN+eDrds3Jxw7Opgp6hlLpGUqhXyhVf/VM7+zIV1LRwdvf/M3f5FOf+lROOeWUJMl+++2XJ598MhdffHFOO+20zJgxI0myfPnyzJw5s+95y5cvz4EHHpgkmTFjRlasWLHVfTs7O7NmzZq+5z9ffX196uvrX3C8tra2X/5D7q/7MHLoGUqlZyiVnqFUemboue7+pjy0fENG11XnQ0fvOuh/f3qGUukZSqFfKNWO9sy2PreidzXdtGlTqqq2LrG6ujrd3d1Jkvnz52fGjBm5/vrr+863tLTk1ltvzZFHHpkkOfLII9Pc3Jw77rij75pf//rX6e7uzuGHHz4IrwIAAMqrWCzmil8/lqRnJ9MJjXVlrggARoaKHvH2tre9LZ/73Ocyd+7cvOpVr8qf/vSnXHrppTn99NOTJIVCIR/72Mfy2c9+Nrvvvnvmz5+f888/P7NmzcpJJ52UJNl7773zpje9KWeccUauvPLKdHR05Jxzzskpp5xiR1MAAEaE3z68Mvc+sy6NddX50Ot2KXc5ADBiVHTwdsUVV+T888/PX/3VX2XFihWZNWtWPvzhD+eCCy7ou+YTn/hENm7cmDPPPDPNzc056qijcu2116ahoaHvmh/84Ac555xzcuyxx6aqqionn3xyLr/88nK8JAAAGFTFYjH/dP2jSZK/PGJeJo022g0ABktFB29jx47NV77ylXzlK195yWsKhUIuuuiiXHTRRS95zaRJk3L11VcPQIUAAFDZfv/Yqtz1VHPqa6pyhtFuADCoKnqNNwAAYMf0ru323sPnZurYF24gBgAMHMEbAAAMU3c8uTa3LV6TuuqqfPjoXctdDgCMOII3AAAYpv7ld4uSJO88aHZmjG94hasBgP4meAMAgGHosRUbsvDB5UmSM462thsAlIPgDQAAhqFv3fh4isXkuH2mZ7dpY8pdDgCMSII3AAAYZla0tOa/73wmSfL/vd5oNwAoF8EbAAAMM9/5wxNp7+rOofMm5pB5k8pdDgCMWII3AAAYRta3duQHtzyZJPnw6+1kCgDlJHgDAIBh5Opbl2R9W2d2mzYmx+41rdzlAMCIJngDAIBhor2zO9/5w+IkyZlH75KqqkKZKwKAkU3wBgAAw8Q19y7L8pa2TB1bn3ccOKvc5QDAiCd4AwCAYaBYLPaNdnvfEfNSX1Nd5ooAAMEbAAAMA3cuWZt7nl6XupqqvPfwueUuBwCI4A0AAIaF7/zhiSTJOw6YlSlj6stbDACQRPAGAABD3tLmzbn2vqYkyQdeO7/M1QAAvQRvAAAwxH3/5ifT1V3MEbtMyj6zxpW7HABgC8EbAAAMYZvaO/PD25YkSU432g0AKorgDQAAhrAf/+mZrNvckTmTRuXYvaeXuxwA4DkEbwAAMEQVi8VctWVThfe/Zn6qqwrlLQgA2IrgDQAAhqg/PLY6j63YkNF11XnPoTuVuxwA4HkEbwAAMET96y1PJknedfBOGddQW+ZqAIDnE7wBAMAQ1LSuNQsfXJ4k+csj5pW5GgDgxQjeAABgCPrR7UvS1V3Mq3eemD1njC13OQDAixC8AQDAENPZ1Z0f3fZUEqPdAKCSCd4AAGCI+dWDK9LU0prJo+vypn1nlLscAOAlCN4AAGCI6d1U4T2Hzkl9TXWZqwEAXorgDQAAhpDFqzbm94+tSqGQnHr43HKXAwC8DMEbAAAMIT/YMtrt9XtMzZxJjWWuBgB4OYI3AAAYIlo7uvIfdzydJHmfTRUAoOIJ3gAAYIi45t5lWbe5I7MnjMob9pxW7nIAgFcgeAMAgCHi325/Kkny56+ek+qqQpmrAQBeieANAACGgCdWbcyti9ekUEjefchO5S4HANgGgjcAABgC/v2PPaPdjt59amZNGFXmagCAbSF4AwCACtfZ1Z3/3LKpwp+/ek6ZqwEAtpXgDQAAKtxvH16ZFevbMml0XRbsPb3c5QAA20jwBgAAFe7ftkwzfddBs1NX4y08AAwV/tUGAIAKtmJ9a3790IokppkCwFAjeAMAgAr233c+k67uYg6aOyG7Tx9b7nIAgBII3gAAoEIVi8X8++0900z//FCj3QBgqBG8AQBAhfrjk2vz+KqNaayrzlsPmFXucgCAEgneAACgQv3nH59Okpy438yMqa8pczUAQKkEbwAAUIFaO7pyzb3LkiQnH7JTmasBALaH4A0AACrQwgeWZ31bZ2ZPGJXDdp5U7nIAgO0geAMAgAr04z89kyR550GzU1VVKHM1AMD2ELwBAECFWbm+Lb97ZGWS5J0Hzy5zNQDA9hK8AQBAhfnZ3UvT1V3MAXMmZNepY8pdDgCwnQRvAABQYf77Tz27mb7rIKPdAGAoE7wBAEAFeXT5+tz3TEtqqgp52wGzyl0OALADBG8AAFBB/nvLpgpv2HNaJo2uK3M1AMCOELwBAECF6O4u5idbgrd32VQBAIY8wRsAAFSIWx5fnWXrWjOuoSbH7DWt3OUAADtI8AYAABXix1tGu524/6w01FaXuRoAYEcJ3gAAoAK0dXbl2vubkiQnHWhTBQAYDgRvAABQAX738Mqsb+3M9HH1efXOk8pdDgDQDwRvAABQAX52z7IkyVv3n5WqqkKZqwEA+oPgDQAAymxTe2d+9cDyJMnbDjDNFACGC8EbAACU2fUPrsjmjq7MndSYA3YaX+5yAIB+IngDAIAy+9ndS5MkbztgZgoF00wBYLgQvAEAQBmt29yR3z68MolppgAw3AjeAACgjK67vyntXd3ZfdqY7Dl9bLnLAQD6keANAADKqHc307cfMMs0UwAYZgRvAABQJqs3tOUPj61KkrzVNFMAGHYEbwAAUCbX3NeUru5i9ps9PvOnjC53OQBAPxO8AQBAmfzinp7dTN+6/8wyVwIADATBGwAAlMHqDW25bfGaJMlb9hO8AcBwJHgDAIAyuO6B5ekuJvvNHp85kxrLXQ4AMAAEbwAAUAbX3Nuzm+mb9p1R5koAgIEieAMAgEG2blNHbl60OknyZsEbAAxbgjcAABhkCx9cns7uYvacPja7TB1T7nIAgAEieAMAgEF27X0900zfvJ/RbgAwnAneAABgEG1o68wNj65Kkrx5X7uZAsBwJngDAIBB9OuHVqS9szu7TBmdPaabZgoAw5ngDQAABlHvNNM37TsjhUKhzNUAAANJ8AYAAINkc3tXfvPQyiSmmQLASCB4AwCAQfK7R1Zkc0dXdpo4KvvOHlfucgCAASZ4AwCAQfLL+5qSJG82zRQARgTBGwAADIKOru78+qEVSXrWdwMAhj/BGwAADILbFq/J+tbOTBlTlwPnTCx3OQDAIBC8AQDAIFj4wPIkyTF7TUt1lWmmADASCN4AAGCAFYvFvuDtuH1MMwWAkULwBgAAA+yhpvV5pnlzGmqrctRuU8pdDgAwSARvAAAwwHpHux2129SMqqsuczUAwGARvAEAwADrDd6O32d6mSsBAAaT4A0AAAbQsnWbc+8z61IoJG/ca1q5ywEABpHgDQAABtCvHlyRJDl47sRMHVtf5moAgMEkeAMAgAH0qy3TTBfsbZopAIw0gjcAABggG9o6c/Oi1UmS46zvBgAjjuANAAAGyA2PrEx7V3fmTxmdXaeOLnc5AMAgE7wBAMAA6d3N9Lh9pqdQKJS5GgBgsAneAABgAHR1F/Obh3s2VjjWbqYAMCIJ3gAAYADc9VRzmjd1ZFxDTQ6ZN7Hc5QAAZSB4AwCAAfDbLaPdjt5jamqqve0GgJHIOwAAABgAvdNM37inaaYAMFIJ3gAAoJ+taGnNfc+0pFBIXr/n1HKXAwCUieANAAD62W8fXpkk2X+nCZkypr7M1QAA5SJ4AwCAfvbsNFOj3QBgJBO8AQBAP+ro6s6Nj65KYn03ABjpBG8AANCP/vjE2mxo68zk0XXZb/b4cpcDAJSR4A0AAPrRb7dMM339nlNTVVUoczUAQDkJ3gAAoB89u76baaYAMNIJ3gAAoJ88vXZTHlm+IVWF5OjdbawAACOd4A0AAPrJbx9emSQ5ZN7EjG+sLXM1AEC5Cd4AAKCf9K7v9gbTTAGACN4AAKBftHV25Q+PrU5ifTcAoIfgDQAA+sEdT67N5o6uTBlTn71nji13OQBABRC8AQBAP7jx0VVJkqN3n5JCoVDmagCASiB4AwCAfnDjoz0bK7xujyllrgQAqBSCNwAA2EGrN7Tl/qUtSZLX7iZ4AwB6CN4AAGAH/WHR6hSLyd4zx2Xa2IZylwMAVAjBGwAA7KAbH+mZZnr07ka7AQDPErwBAMAOKBaLfRsrvG73qWWuBgCoJII3AADYAY+t2JCmltbU11Tl0J0nlrscAKCCCN4AAGAH3LBltNvhu0xOQ211masBACqJ4A0AAHbAjY/2rO/2OruZAgDPI3gDAIDt1NbZlVseX50ked0egjcAYGuCNwAA2E53PLE2rR3dmTq2PntOH1vucgCACiN4AwCA7XRD326mU1IoFMpcDQBQaQRvAACwnXrXdzt696llrgQAqESCNwAA2A5rNrbn/qUtSZLX2lgBAHgRgjcAANgOvZsq7DVjbKaOrS9zNQBAJRK8AQDAdrhpUc/6bkfuOrnMlQAAlUrwBgAA2+GmRT0j3l6zq2mmAMCLE7wBAECJmta15vGVG1NVSA6bP6nc5QAAFUrwBgAAJbr58Z5ppvvNHp/xo2rLXA0AUKkEbwAAUKKbHuuZZnqE9d0AgJcheAMAgBIUi0XruwEA20TwBgAAJXhqzeY807w5NVWFvHrnieUuBwCoYII3AAAowU2LetZ3O2juhDTW1ZS5GgCgkgneAACgBL3TTI80zRQAeAUVH7w988wz+cu//MtMnjw5o0aNyn777Zc//vGPfeeLxWIuuOCCzJw5M6NGjcqCBQvy6KOPbnWPNWvW5NRTT824ceMyYcKEfPCDH8yGDRsG+6UAADDEbb2+m40VAICXV9HB29q1a/Pa1742tbW1+eUvf5kHHnggX/7ylzNx4rNraVxyySW5/PLLc+WVV+bWW2/N6NGjc8IJJ6S1tbXvmlNPPTX3339/Fi5cmJ///Oe54YYbcuaZZ5bjJQEAMIQ9tmJDVm1oS31NVQ6aO6Hc5QAAFa6iF6X4whe+kDlz5uSqq67qOzZ//vy+r4vFYr7yla/k05/+dN7xjnckSb7//e9n+vTp+clPfpJTTjklDz74YK699trcfvvtOfTQQ5MkV1xxRd7ylrfkS1/6UmbNmjW4LwoAgCGrd7Tbq3eelPqa6jJXAwBUuooO3n7605/mhBNOyHve85787ne/y+zZs/NXf/VXOeOMM5IkixcvTlNTUxYsWND3nPHjx+fwww/PzTffnFNOOSU333xzJkyY0Be6JcmCBQtSVVWVW2+9Ne985ztf8H3b2trS1tbW97ilpSVJ0tHRkY6Oju1+Pb3P3ZF7MLLoGUqlZyiVnqFUI71nfv/oyiTJ4TtPGLF/BqUa6T1D6fQMpdAvlKq/emZbn1/Rwdvjjz+er3/96zn33HPzt3/7t7n99tvz0Y9+NHV1dTnttNPS1NSUJJk+ffpWz5s+fXrfuaampkybNm2r8zU1NZk0aVLfNc938cUX58ILL3zB8euuuy6NjY07/LoWLly4w/dgZNEzlErPUCo9Q6lGYs90F5M/PFKdpJDupodyzTUPlbukIWUk9gw7Rs9QCv1CqXa0ZzZt2rRN11V08Nbd3Z1DDz00//iP/5gkOeigg3LfffflyiuvzGmnnTZg3/e8887Lueee2/e4paUlc+bMyfHHH59x48Zt9307OjqycOHCHHfccamtre2PUhnm9Ayl0jOUSs9QqpHcMw8sa8mmW27J6PrqnPnuBamprujlkivGSO4Zto+eoRT6hVL1V8/0zo58JRUdvM2cOTP77LPPVsf23nvv/Nd//VeSZMaMGUmS5cuXZ+bMmX3XLF++PAceeGDfNStWrNjqHp2dnVmzZk3f85+vvr4+9fX1LzheW1vbL/8h99d9GDn0DKXSM5RKz1Cqkdgzdz7V8wb70HmTMqrhhe8VeXkjsWfYMXqGUugXSrWjPbOtz63o/0332te+Ng8//PBWxx555JHMmzcvSc9GCzNmzMj111/fd76lpSW33nprjjzyyCTJkUcemebm5txxxx191/z6179Od3d3Dj/88EF4FQAADAe3Pr4mSXL4LpPKXAkAMFRU9Ii3j3/843nNa16Tf/zHf8yf/dmf5bbbbss3vvGNfOMb30iSFAqFfOxjH8tnP/vZ7L777pk/f37OP//8zJo1KyeddFKSnhFyb3rTm3LGGWfkyiuvTEdHR84555yccsopdjQFAGCbFIvF3PbEluBtvuANANg2FR28vfrVr86Pf/zjnHfeebnooosyf/78fOUrX8mpp57ad80nPvGJbNy4MWeeeWaam5tz1FFH5dprr01DQ0PfNT/4wQ9yzjnn5Nhjj01VVVVOPvnkXH755eV4SQAADEGLVm7Imo3taaityn6zJ5S7HABgiKjo4C1J3vrWt+atb33rS54vFAq56KKLctFFF73kNZMmTcrVV189EOUBADAC3LJlmunBcyemrqaiV2sBACqIdw0AAPAKblvcE7wdZpopAFACwRsAALyMYrEoeAMAtovgDQAAXsZTazanqaU1tdWFHDRnYrnLAQCGEMEbAAC8jFsWr06SHLDThIyqqy5zNQDAUCJ4AwCAl2GaKQCwvQRvAADwMgRvAMD2ErwBAMBLWLZuc5as2ZSqQnLozoI3AKA0gjcAAHgJvaPd9p09PmPqa8pcDQAw1AjeAADgJdzaO83UaDcAYDsI3gAA4CXc+njPjqbWdwMAtofgDQAAXsTqDW1ZtHJjEsEbALB9BG8AAPAi/vjk2iTJHtPHZEJjXZmrAQCGIsEbAAC8iDu2BG+HzDPaDQDYPoI3AAB4EX98omdjhUPnTSxzJQDAUCV4AwCA52nt6Mp9z7QkSQ7dWfAGAGwfwRsAADzPfc+sS3tXd6aMqcvcSY3lLgcAGKIEbwAA8Dx/7FvfbWIKhUKZqwEAhirBGwAAPM8fn+gJ3g61sQIAsAMEbwAA8BzFYjF3Ltky4s36bgDADhC8AQDAczy+amPWbGxPfU1V9p01vtzlAABDmOANAACe444t00wP2GlC6mq8XQYAtp93EgAA8Bx/fHJNEtNMAYAdJ3gDAIDnuOPJ3o0VBG8AwI4RvAEAwBZrN7Zn0cqNSZKD5wreAIAdI3gDAIAteke77Tp1dCaOritzNQDAUCd4AwCALf7YN810UpkrAQCGA8EbAABscYeNFQCAfiR4AwCAJO2d3bn76XVJbKwAAPQPwRsAACS5f+m6tHd2Z9LousyfMrrc5QAAw4DgDQAAktz1VHOS5MA5E1IoFMpbDAAwLAjeAAAgyZ+WNCdJDpozoax1AADDx3YFb83NzfnWt76V8847L2vW9CxAe+edd+aZZ57p1+IAAGCw/Ompnh1ND5prfTcAoH/UlPqEe+65JwsWLMj48ePzxBNP5IwzzsikSZPy3//931myZEm+//3vD0SdAAAwYFZtaMtTazanUEj2nzO+3OUAAMNEySPezj333Lz//e/Po48+moaGhr7jb3nLW3LDDTf0a3EAADAY7toyzXS3qWMyrqG2vMUAAMNGycHb7bffng9/+MMvOD579uw0NTX1S1EAADCYnruxAgBAfyk5eKuvr09LS8sLjj/yyCOZOnVqvxQFAACDyfpuAMBAKDl4e/vb356LLrooHR0dSZJCoZAlS5bkk5/8ZE4++eR+LxAAAAZSV3cxdz+1LokRbwBA/yo5ePvyl7+cDRs2ZNq0adm8eXNe//rXZ7fddsvYsWPzuc99biBqBACAAbNo5YZsaOtMY1119pg+ptzlAADDSMm7mo4fPz4LFy7M73//+9xzzz3ZsGFDDj744CxYsGAg6gMAgAH1pyU900z3mz0+NdUl/39pAICXVHLw1uuoo47KUUcd1Z+1AADAoOvdWMH6bgBAf9um4O3yyy/f5ht+9KMf3e5iAABgsP1pSXOS5KC5E8paBwAw/GxT8HbZZZdt9XjlypXZtGlTJkyYkCRpbm5OY2Njpk2bJngDAGDI2NDWmUeWr0+SHGRjBQCgn23TIhaLFy/u+/jc5z6XAw88MA8++GDWrFmTNWvW5MEHH8zBBx+cf/iHfxjoegEAoN/c83RzuovJ7AmjMm1cQ7nLAQCGmZJXjz3//PNzxRVXZM899+w7tueee+ayyy7Lpz/96X4tDgAABlLvNNMDjXYDAAZAycHbsmXL0tnZ+YLjXV1dWb58eb8UBQAAg+HZjRUmlLUOAGB4Kjl4O/bYY/PhD384d955Z9+xO+64I2eddVYWLFjQr8UBAMBAKRaLRrwBAAOq5ODtO9/5TmbMmJFDDz009fX1qa+vz2GHHZbp06fnW9/61kDUCAAA/e6Z5s1ZtaEtNVWF7Dt7fLnLAQCGoW3a1fS5pk6dmmuuuSaPPPJIHnrooSTJXnvtlT322KPfiwMAgIFyz9PrkiR7zRybhtrqMlcDAAxHJQdvvfbYYw9hGwAAQ9bdTzcnSfabPaGsdQAAw1fJwdvpp5/+sue/853vbHcxAAAwWO7dMuLtgJ1MMwUABkbJwdvatWu3etzR0ZH77rsvzc3NOeaYY/qtMAAAGCjd3cW+4G0/wRsAMEBKDt5+/OMfv+BYd3d3zjrrrOy66679UhQAAAykJ1ZvzPq2ztTXVGWP6WPLXQ4AMEyVvKvpi96kqirnnntuLrvssv64HQAADKjejRX2mTUutdX98pYYAOAF+u1dxqJFi9LZ2dlftwMAgAFzT9/6bhPKWwgAMKyVPNX03HPP3epxsVjMsmXL8otf/CKnnXZavxUGAAAD5Z4tO5rub303AGAAlRy8/elPf9rqcVVVVaZOnZovf/nLr7jjKQAAlFtnV3fuX9qSRPAGAAyskoO33/zmNwNRBwAADIrHVm7I5o6ujK6rzi5TxpS7HABgGCt5jbdjjjkmzc3NLzje0tKSY445pj9qAgCAAdO7vtu+s8enqqpQ5moAgOGs5ODtt7/9bdrb219wvLW1NTfeeGO/FAUAAAOld323A+ZMKGsdAMDwt81TTe+5556+rx944IE0NTX1Pe7q6sq1116b2bNn9291AADQz+7dMuJtv9nWdwMABtY2B28HHnhgCoVCCoXCi04pHTVqVK644op+LQ4AAPpTe2d3Hly2PklywE4TylsMADDsbXPwtnjx4hSLxeyyyy657bbbMnXq1L5zdXV1mTZtWqqrqwekSAAA6A8PN61Pe1d3JjTWZs6kUeUuBwAY5rY5eJs3b16SpLu7e8CKAQCAgXT3lvXd9ps9PoWCjRUAgIG1TcHbT3/607z5zW9ObW1tfvrTn77stW9/+9v7pTAAAOhvveu77b+T9d0AgIG3TcHbSSedlKampkybNi0nnXTSS15XKBTS1dXVX7UBAEC/6h3xtr/13QCAQbBNwdtzp5eaagoAwFC0ub0rj67YkMSINwBgcFSVuwAAABgMDyxrSVd3MVPG1GfGuIZylwMAjADbNOLt8ssv3+YbfvSjH93uYgAAYKA8sLRnfbf9Zo+zsQIAMCi2KXi77LLLtulmhUJB8AYAQEW675mWJMmrZplmCgAMjm0K3hYvXjzQdQAAwIC6f1nPiLd9Z48rcyUAwEixQ2u8FYvFFIvF/qoFAAAGRHtndx5uWp/EiDcAYPBsV/D27W9/O/vuu28aGhrS0NCQfffdN9/61rf6uzYAAOgXj65Yn46uYsY11GSniaPKXQ4AMEJs01TT57rgggty6aWX5iMf+UiOPPLIJMnNN9+cj3/841myZEkuuuiifi8SAAB2xP1b1nfbd/Z4GysAAIOm5ODt61//er75zW/mL/7iL/qOvf3tb8/++++fj3zkI4I3AAAqzn1bdjR91SzruwEAg6fkqaYdHR059NBDX3D8kEMOSWdnZ78UBQAA/en+pc+OeAMAGCwlB2/ve9/78vWvf/0Fx7/xjW/k1FNP7ZeiAACgv3R1F/PAluDNiDcAYDCVPNU06dlc4brrrssRRxyRJLn11luzZMmS/J//839y7rnn9l136aWX9k+VAACwnRav2pjNHV0ZVVud+VPGlLscAGAEKTl4u++++3LwwQcnSRYtWpQkmTJlSqZMmZL77ruv7zqL1gIAUAnu37K+294zx6a6yntUAGDwlBy8/eY3vxmIOgAAYEBY3w0AKJeS13gDAICh5L5n7GgKAJRHySPeWltbc8UVV+Q3v/lNVqxYke7u7q3O33nnnf1WHAAA7Ihisfic4M2INwBgcJUcvH3wgx/Mddddl3e/+9057LDDrOUGAEDFenrt5rS0dqa2upA9po8tdzkAwAhTcvD285//PNdcc01e+9rXDkQ9AADQb3o3Vthj+tjU1VhlBQAYXCW/+5g9e3bGjvV/CwEAqHx9GyuYZgoAlEHJwduXv/zlfPKTn8yTTz45EPUAAEC/6VvfbbaNFQCAwVfyVNNDDz00ra2t2WWXXdLY2Jja2tqtzq9Zs6bfigMAgB3RO+LNxgoAQDmUHLz9xV/8RZ555pn84z/+Y6ZPn25zBQAAKtKK9a1Zsb4thUKy90xLpQAAg6/k4O2mm27KzTffnAMOOGAg6gEAgH7xwJbRbrtMGZ3GupLf9gIA7LCS13jba6+9snnz5oGoBQAA+s2Dy9YnSfaeaX03AKA8Sg7ePv/5z+ev//qv89vf/jarV69OS0vLVh8AAFAJHlzW895U8AYAlEvJY+7f9KY3JUmOPfbYrY4Xi8UUCoV0dXX1T2UAALADHmrqCd72EbwBAGVScvD2m9/85iXP3XvvvTtUDAAA9IfWjq4sWrkxiRFvAED5lBy8vf71r9/q8fr16/PDH/4w3/rWt3LHHXfknHPO6bfiAABgezy2YkO6uouZ0Fib6ePqy10OADBClbzGW68bbrghp512WmbOnJkvfelLOeaYY3LLLbf0Z20AALBdHuhd323GuBQKhTJXAwCMVCWNeGtqasp3v/vdfPvb305LS0v+7M/+LG1tbfnJT36SffbZZ6BqBACAkthYAQCoBNs84u1tb3tb9txzz9xzzz35yle+kqVLl+aKK64YyNoAAGC7PBu8jS1zJQDASLbNI95++ctf5qMf/WjOOuus7L777gNZEwAAbLdisZgHl61PYsQbAFBe2zzi7fe//33Wr1+fQw45JIcffni++tWvZtWqVQNZGwAAlGzZutas29yRmqpCdp8+ptzlAAAj2DYHb0cccUS++c1vZtmyZfnwhz+cH/3oR5k1a1a6u7uzcOHCrF+/fiDrBACAbfJQU880012njkl9TXWZqwEARrKSdzUdPXp0Tj/99Pz+97/Pvffem7/+67/O5z//+UybNi1vf/vbB6JGAADYZr3TTPeyvhsAUGYlB2/Pteeee+aSSy7J008/nR/+8If9VRMAAGy3B+xoCgBUiB0K3npVV1fnpJNOyk9/+tP+uB0AAGy3BwVvAECF6JfgDQAAKsHm9q48sWpjkmRvU00BgDITvAEAMGw8vHx9uovJlDF1mTa2odzlAAAjnOANAIBhwzRTAKCSCN4AABg2BG8AQCURvAEAMGw8tGx9kmSvGdZ3AwDKT/AGAMCwUCwW82CTEW8AQOUQvAEAMCw8vXZz1rd2pra6kF2njil3OQAAgjcAAIaHh5t6ppnuOnVM6mq8zQUAys87EgAAhoWHl1vfDQCoLII3AACGhUe2BG97CN4AgAoheAMAYFjonWq653TBGwBQGQRvAAAMeR1d3Vm0ckOSZA/BGwBQIQRvAAAMeU+s2piOrmJG11Vnp4mjyl0OAEASwRsAAMPAQ03Pru9WKBTKXA0AQA/BGwAAQ17vxgrWdwMAKongDQCAIa9vYwU7mgIAFUTwBgDAkGfEGwBQiQRvAAAMaZvaO/Pkmk1JetZ4AwCoFII3AACGtMdWbEixmEweXZcpY+rLXQ4AQB/BGwAAQ5r13QCASiV4AwBgSOtd320P67sBABVG8AYAwJD2kBFvAECFErwBADCkGfEGAFQqwRsAAENW86b2LG9pS5LsMX1MmasBANia4A0AgCHrkeUbkiSzJ4zK2IbaMlcDALA1wRsAAEPWw00tSazvBgBUJsEbAABD1sPWdwMAKtiQCt4+//nPp1Ao5GMf+1jfsdbW1px99tmZPHlyxowZk5NPPjnLly/f6nlLlizJiSeemMbGxkybNi1/8zd/k87OzkGuHgCA/vZIU89U072MeAMAKtCQCd5uv/32/Mu//Ev233//rY5//OMfz89+9rP8x3/8R373u99l6dKlede73tV3vqurKyeeeGLa29tz00035Xvf+16++93v5oILLhjslwAAQD8qFot5aMtUUyPeAIBKNCSCtw0bNuTUU0/NN7/5zUycOLHv+Lp16/Ltb387l156aY455pgccsghueqqq3LTTTfllltuSZJcd911eeCBB/Kv//qvOfDAA/PmN785//AP/5Cvfe1raW9vL9dLAgBgBy1vaUtLa2eqqwrZddrocpcDAPACNeUuYFucffbZOfHEE7NgwYJ89rOf7Tt+xx13pKOjIwsWLOg7ttdee2Xu3Lm5+eabc8QRR+Tmm2/Ofvvtl+nTp/ddc8IJJ+Sss87K/fffn4MOOugF36+trS1tbW19j1taev5PakdHRzo6Orb7dfQ+d0fuwciiZyiVnqFUeoZSVVLPPLB0bZJk3qRRqSp2p6Oju8wV8WIqqWcYGvQMpdAvlKq/emZbn1/xwduPfvSj3Hnnnbn99ttfcK6pqSl1dXWZMGHCVsenT5+epqamvmueG7r1nu8992IuvvjiXHjhhS84ft1116WxsXF7XsZWFi5cuMP3YGTRM5RKz1AqPUOpKqFnfruskKQ6Y7o35Jprril3ObyCSugZhhY9Qyn0C6Xa0Z7ZtGnTNl1X0cHbU089lf/7f/9vFi5cmIaGhkH7vuedd17OPffcvsctLS2ZM2dOjj/++IwbN26779vR0ZGFCxfmuOOOS21tbX+UyjCnZyiVnqFUeoZSVVLP3PQ/DyRPPJ2j9tstb1mwW1lr4aVVUs8wNOgZSqFfKFV/9Uzv7MhXUtHB2x133JEVK1bk4IMP7jvW1dWVG264IV/96lfzv//7v2lvb09zc/NWo96WL1+eGTNmJElmzJiR2267bav79u562nvN89XX16e+vv4Fx2tra/vlP+T+ug8jh56hVHqGUukZSlUJPfP4qo1Jkj1njit7LbyySugZhhY9Qyn0C6Xa0Z7Z1udW9OYKxx57bO69997cddddfR+HHnpoTj311L6va2trc/311/c95+GHH86SJUty5JFHJkmOPPLI3HvvvVmxYkXfNQsXLsy4ceOyzz77DPprAgBgxxWLxTyyfEOSZLdpY8pcDQDAi6voEW9jx47Nvvvuu9Wx0aNHZ/LkyX3HP/jBD+bcc8/NpEmTMm7cuHzkIx/JkUcemSOOOCJJcvzxx2efffbJ+973vlxyySVpamrKpz/96Zx99tkvOqoNAIDKt2pDe9Zt7kihkOw6VfAGAFSmig7etsVll12WqqqqnHzyyWlra8sJJ5yQf/7nf+47X11dnZ///Oc566yzcuSRR2b06NE57bTTctFFF5WxagAAdsSjK9YnSeZOakxDbXWZqwEAeHFDLnj77W9/u9XjhoaGfO1rX8vXvva1l3zOvHnz7HQFADCMLFrRM810d9NMAYAKVtFrvAEAwIt5dEvwtqvgDQCoYII3AACGnEeX9454G1vmSgAAXprgDQCAIedRU00BgCFA8AYAwJDSvKk9qza0JTHVFACobII3AACGlMe2jHabPWFUxtQPub3CAIARRPAGAMCQYmMFAGCoELwBADCkPLuxguANAKhsgjcAAIaUR1esTyJ4AwAqn+ANAIAhZVHvjqbTBW8AQGUTvAEAMGSsb+3I0nWtSZLdpo4tczUAAC9P8AYAwJCxaOXGJMnUsfUZ31hb5moAAF6e4A0AgCHj0eXWdwMAhg7BGwAAQ8ZjK+xoCgAMHYI3AACGjN7gbTfBGwAwBAjeAAAYMh7tC95srAAAVD7BGwAAQ8Lm9q48tXZTkmT36Ua8AQCVT/AGAMCQsGjlhhSLyYTG2kweXVfucgAAXpHgDQCAIWHRyi3TTKeOSaFQKHM1AACvTPAGAMCQ8PjKjUmSXaeaZgoADA2CNwAAhoTeEW+7TB1d5koAALaN4A0AgCHBiDcAYKgRvAEAUPG6u4t5fJURbwDA0CJ4AwCg4i1raU1rR3dqqwuZM6mx3OUAAGwTwRsAABVv0Yqe0W5zJzWmttpbWABgaPCuBQCAivf4lo0VrO8GAAwlgjcAACreoi0bK+wieAMAhhDBGwAAFa93Y4VdbawAAAwhgjcAACreohVGvAEAQ4/gDQCAirahrTNNLa1JjHgDAIYWwRsAABVt8Zb13SaPrsuExroyVwMAsO0EbwAAVLRn13czzRQAGFoEbwAAVLRFK3qCt11MMwUAhhjBGwAAFW3Rqp6ppka8AQBDjeANAICKZsQbADBUCd4AAKhY3d3FLDbiDQAYogRvAABUrGeaN6etszu11YXsNHFUucsBACiJ4A0AgIr1+JbRbjtPHp2aam9dAYChxbsXAAAqlvXdAIChTPAGAEDFenxVT/BmfTcAYCgSvAEAULEWreiZarqL4A0AGIIEbwAAVKxnR7yZagoADD2CNwAAKtL61o4sb2lLYsQbADA0Cd4AAKhIi7fsaDplTF3Gj6otczUAAKUTvAEAUJF6g7ddphjtBgAMTYI3AAAqUm/wtvOUxjJXAgCwfQRvAABUpGeDNxsrAABDk+ANAICK9ETfVFPBGwAwNAneAACoOMVi0Yg3AGDIE7wBAFBx1mxsT0trZ5Jk3iTBGwAwNAneAACoOE+s7hntNmt8Q0bVVZe5GgCA7SN4AwCg4ixetSmJaaYAwNAmeAMAoOI8YX03AGAYELwBAFBxFtvRFAAYBgRvAABUnL4dTScL3gCAoUvwBgBARSkWi32bK5hqCgAMZYI3AAAqyor1bdnU3pWqQjJ3UmO5ywEA2G6CNwAAKkrvNNOdJjamrsbbVQBg6PJOBgCAimJHUwBguBC8AQBQURZvWd9t/mTTTAGAoU3wBgBARVm8ckvwZsQbADDECd4AAKgodjQFAIYLwRsAABWju7uYJ1dvSmLEGwAw9AneAACoGMtaWtPW2Z3a6kJmTxhV7nIAAHaI4A0AgIrRu77bnEmNqan2VhUAGNq8mwEAoGI8u6OpaaYAwNAneAMAoGI8scqOpgDA8CF4AwCgYixeZUdTAGD4ELwBAFAxjHgDAIYTwRsAABWhs6s7S9ZsSmLEGwAwPAjeAACoCM80b05ndzH1NVWZOa6h3OUAAOwwwRsAABWhb323yaNTVVUoczUAADtO8AYAQEXonWY6d3JjmSsBAOgfgjcAACrCE6u2rO8meAMAhgnBGwAAFWHJmp6ppnMn21gBABgeBG8AAFSEJ1f3jHibN8mINwBgeBC8AQBQdt3dxb413uaZagoADBOCNwAAym75+ta0dXanpqqQ2RNGlbscAIB+IXgDAKDseqeZzp44KjXV3qICAMODdzUAAJTdki3B21zruwEAw4jgDQCAsntyy46m1ncDAIYTwRsAAGXXO9V058mjy1wJAED/EbwBAFB2T5pqCgAMQ4I3AADK7snVvVNNjXgDAIYPwRsAAGXVvKk9La2dSYx4AwCGF8EbAABl1TvNdNrY+oyqqy5zNQAA/UfwBgBAWT2xZZqpjRUAgOFG8AYAQFkt6d1YYbJppgDA8CJ4AwCgrJ5c0xO8zbO+GwAwzAjeAAAoKyPeAIDhSvAGAEBZPbnGGm8AwPAkeAMAoGw2t3dleUtbkmSeEW8AwDAjeAMAoGyWbFnfbVxDTSY01pW5GgCA/iV4AwCgbJ5c3TPNdJ5ppgDAMCR4AwCgbHpHvJlmCgAMR4I3AADK5snVgjcAYPgSvAEAUDZP9E41nWSqKQAw/AjeAAAom96ppnONeAMAhiHBGwAAZdHZ1Z1n1m5OkuxscwUAYBgSvAEAUBZLm1vT2V1MfU1Vpo2tL3c5AAD9TvAGAEBZPLmmZ323uZMaU1VVKHM1AAD9T/AGAEBZ9K3vNsn6bgDA8CR4AwCgLJ5a07O+2xzBGwAwTAneAAAoi6fW9ox422niqDJXAgAwMARvAACUxVOmmgIAw5zgDQCAsugN3kw1BQCGK8EbAACDbn1rR9Zu6kgieAMAhi/BGwAAg653Y4WJjbUZU19T5moAAAaG4A0AgEHXu7GC9d0AgOFM8AYAwKDrXd9tJ8EbADCMCd4AABh0T6/tmWo6Z6LgDQAYvgRvAAAMuiVrTDUFAIY/wRsAAIOud6rpnEmjylwJAMDAEbwBADCoisVi3+YKppoCAMOZ4A0AgEG1ckNbWju6UygksyYY8QYADF+CNwAABtVTa3o2Vpg1flTqarwdBQCGL+90AAAYVE9vmWa600Sj3QCA4U3wBgDAoHp2YwXruwEAw5vgDQCAQbVkS/A2V/AGAAxzgjcAAAZV7xpvcyaZagoADG+CNwAABtVTW9Z4mzPRiDcAYHgTvAEAMGg6urqztLl3xJvgDQAY3gRvAAAMmmXNrekuJvU1VZk6pr7c5QAADCjBGwAAg6Z3mulOE0elqqpQ5moAAAaW4A0AgEHTu6OpaaYAwEggeAMAYNA8tSV4myt4AwBGAMEbAACD5qm1WzZWsKMpADACCN4AABg0T/VNNR1V5koAAAae4A0AgEHTG7ztZMQbADACCN4AABgUG9s6s3pje5Jk7mTBGwAw/FV08HbxxRfn1a9+dcaOHZtp06blpJNOysMPP7zVNa2trTn77LMzefLkjBkzJieffHKWL1++1TVLlizJiSeemMbGxkybNi1/8zd/k87OzsF8KQAAI97TW9Z3Gz+qNuMaastcDQDAwKvo4O13v/tdzj777Nxyyy1ZuHBhOjo6cvzxx2fjxo1913z84x/Pz372s/zHf/xHfve732Xp0qV517ve1Xe+q6srJ554Ytrb23PTTTfle9/7Xr773e/mggsuKMdLAgAYsazvBgCMNDXlLuDlXHvttVs9/u53v5tp06bljjvuyNFHH51169bl29/+dq6++uocc8wxSZKrrroqe++9d2655ZYcccQRue666/LAAw/kV7/6VaZPn54DDzww//AP/5BPfvKT+cxnPpO6urpyvDQAgBHn6bVb1nebYJopADAyVHTw9nzr1q1LkkyaNClJcscdd6SjoyMLFizou2avvfbK3Llzc/PNN+eII47IzTffnP322y/Tp0/vu+aEE07IWWedlfvvvz8HHXTQC75PW1tb2tra+h63tLQkSTo6OtLR0bHd9fc+d0fuwciiZyiVnqFUeoZS7UjPPLWmZ9bCzPH1em4E8XOGUukZSqFfKFV/9cy2Pn/IBG/d3d352Mc+lte+9rXZd999kyRNTU2pq6vLhAkTtrp2+vTpaWpq6rvmuaFb7/necy/m4osvzoUXXviC49ddd10aG3f8/9AuXLhwh+/ByKJnKJWeoVR6hlJtT8/88eGqJFVZt/TxXHPNov4viorm5wyl0jOUQr9Qqh3tmU2bNm3TdUMmeDv77LNz33335fe///2Af6/zzjsv5557bt/jlpaWzJkzJ8cff3zGjRu33fft6OjIwoULc9xxx6W21oLCvDI9Q6n0DKXSM5RqR3rmW0tuSdKS415zSBbsPW1gCqTi+DlDqfQMpdAvlKq/eqZ3duQrGRLB2znnnJOf//znueGGG7LTTjv1HZ8xY0ba29vT3Ny81ai35cuXZ8aMGX3X3HbbbVvdr3fX095rnq++vj719fUvOF5bW9sv/yH3130YOfQMpdIzlErPUKrt6Zmlza1JknlTxuq3EcjPGUqlZyiFfqFUO9oz2/rcit7VtFgs5pxzzsmPf/zj/PrXv878+fO3On/IIYektrY2119/fd+xhx9+OEuWLMmRRx6ZJDnyyCNz7733ZsWKFX3XLFy4MOPGjcs+++wzOC8EAGCE29TemdUb25Mksyfa1RQAGBkqesTb2Wefnauvvjr/8z//k7Fjx/atyTZ+/PiMGjUq48ePzwc/+MGce+65mTRpUsaNG5ePfOQjOfLII3PEEUckSY4//vjss88+ed/73pdLLrkkTU1N+fSnP52zzz77RUe1AQDQ/5Y2b06SjG2oyfhRRiQAACNDRQdvX//615Mkb3jDG7Y6ftVVV+X9739/kuSyyy5LVVVVTj755LS1teWEE07IP//zP/ddW11dnZ///Oc566yzcuSRR2b06NE57bTTctFFFw3WywAAGPGeWtsTvM2eYLQbADByVHTwViwWX/GahoaGfO1rX8vXvva1l7xm3rx5ueaaa/qzNAAASvDMluBtJ9NMAYARpKLXeAMAYHh4ui94ayxzJQAAg0fwBgDAgHum2VRTAGDkEbwBADDgnlm7KYmppgDAyCJ4AwBgwPVONZ0teAMARhDBGwAAA6qtsysr1rclscYbADCyCN4AABhQS5tbkySjaqszsbG2zNUAAAwewRsAAAPqmb4dTUelUCiUuRoAgMEjeAMAYEA9vWVjBeu7AQAjjeANAIAB9Uzzlo0VJgjeAICRRfAGAMCAenaqqY0VAICRRfAGAMCAenpL8GaqKQAw0gjeAAAYUL1TTXcSvAEAI4zgDQCAAdPR1Z1l67YEb9Z4AwBGGMEbAAADpmlda7qLSV1NVaaMqS93OQAAg0rwBgDAgHnujqZVVYUyVwMAMLgEbwAADJi+jRVMMwUARiDBGwAAA+aZtTZWAABGLsEbAAAD5um1m5IY8QYAjEyCNwAABkzvGm87TRK8AQAjj+ANAIAB8+wab41lrgQAYPAJ3gAAGBDd3cUsW2eNNwBg5BK8AQAwIFasb0tHVzE1VYVMH9dQ7nIAAAad4A0AgAHRu7HCzAkNqa4qlLkaAIDBJ3gDAGBA9G6sMGu8aaYAwMgkeAMAYEAsbW5NksyeIHgDAEYmwRsAAANiae+IN8EbADBCCd4AABgQgjcAYKQTvAEAMCCWruuZajprgh1NAYCRSfAGAMCAMOINABjpBG8AAPS7jW2dWbe5I0kyc7wRbwDAyCR4AwCg3y1b1zPabVxDTcY21Ja5GgCA8hC8AQDQ755p7l3fzTRTAGDkErwBANDvrO8GACB4AwBgADwbvFnfDQAYuQRvAAD0u6VbpprOHG/EGwAwcgneAADod70j3mabagoAjGCCNwAA+t3SddZ4AwAQvAEA0K+6u4tZtq53V1NrvAEAI5fgDQCAfrV6Y3vaO7tTKCTTxwneAICRS/AGAEC/6l3fbfrYhtRWe7sJAIxc3gkBANCveoM300wBgJFO8AYAQL9aumV9t5k2VgAARjjBGwAA/ap3xNtswRsAMMIJ3gAA6Fd9U03Hm2oKAIxsgjcAAPqVqaYAAD0EbwAA9CtTTQEAegjeAADoN22dXVm5vi1JMkvwBgCMcII3AAD6TdOWaaYNtVWZ2Fhb5moAAMpL8AYAQL9Z2twTvM0aPyqFQqHM1QAAlJfgDQCAftO3o6lppgAAgjcAAPrPs8FbQ5krAQAoP8EbAAD9ZumWNd5mjjfiDQBA8AYAQL/pHfE221RTAADBGwAA/ccabwAAzxK8AQDQL4rFYl/wNtMabwAAgjcAAPpHS2tnNrZ3JUlmWeMNAEDwBgBA/+gd7TZpdF1G1VWXuRoAgPITvAEA0C/6ppmON80UACARvAEA0E+WrWtNksw0zRQAIIngDQCAftLUF7wZ8QYAkAjeAADoJ70j3mYI3gAAkgjeAADoJ00tPWu8zZogeAMASARvAAD0k74Rb+Os8QYAkAjeAADoB8Vi0RpvAADPI3gDAGCHtbR2ZlN7VxJrvAEA9BK8AQCww3pHu01srE1DbXWZqwEAqAyCNwAAdtiydT0bK8wYb303AIBegjcAAHaY9d0AAF5I8AYAwA7r29FU8AYA0EfwBgDADusb8TZO8AYA0EvwBgDADlvWYsQbAMDzCd4AANhhTVs2V5hpcwUAgD6CNwAAdtiyZiPeAACeT/AGAMAOWd/akfVtnUkEbwAAzyV4AwBghyzfsr7b2IaajKmvKXM1AACVQ/AGAMAOWda7o6nRbgAAWxG8AQCwQ3qDtxk2VgAA2IrgDQCAHdLUO+JtnBFvAADPJXgDAGCHPDviTfAGAPBcgjcAAHZI07rNSazxBgDwfII3AAB2iBFvAAAvTvAGAMAOaWrpCd5mTbC5AgDAcwneAADYbpvbu9K8qSOJEW8AAM8neAMAYLv1jnYbXVedsfU1Za4GAKCyCN4AANhuy7ZsrDBjfEMKhUKZqwEAqCyCNwAAtlvTlo0VZo63vhsAwPMJ3gAA2G52NAUAeGmCNwAAttuzI94EbwAAzyd4AwBguxnxBgDw0gRvAABst6aWns0VjHgDAHghwRsAANutd6rpjHE2VwAAeD7BGwAA26WtsyurNrQnMeINAODFCN4AANguK1rakiT1NVWZ0Fhb5moAACqP4A0AgO2y7Dk7mhYKhTJXAwBQeQRvAABsl2XrejZWmD7ONFMAgBcjeAMAYLssb3l2xBsAAC8keAMAYLss37LGmxFvAAAvTvAGAMB2adoy4k3wBgDw4gRvAABslxWCNwCAlyV4AwBgu/SOeJsxvr7MlQAAVCbBGwAAJSsWi31rvE0ba8QbAMCLEbwBAFCy5s0dae/sTpJMG2fEGwDAixG8AQBQshVbRrtNGl2X+prqMlcDAFCZBG8AAJRs+fqe4M3GCgAAL03wBgBAyXrXd5tumikAwEsSvAEAULLlW3Y0nW5jBQCAlyR4AwCgZCt6p5qOF7wBALwUwRsAACUz1RQA4JUJ3gAAKFnviLcZNlcAAHhJgjcAAErWt8ab4A0A4CUJ3gAAKElXMVm1sT2J4A0A4OUI3gAAKMn69qRYTGqqCpk8uq7c5QAAVCzBGwAAJVnXM9gt08bWp6qqUN5iAAAqmOANAICSNLf3hG3TTDMFAHhZgjcAAErS0tHz2Y6mAAAvT/AGAEBJeke8TR9XX+ZKAAAqm+ANAICStGxZ4236eCPeAABejuANAICSNPcGb2MFbwAAL0fwBgBASVq2TDWdYcQbAMDLErwBAFCSdb0j3qzxBgDwsgRvAABss83tXdnc1bu5ghFvAAAvR/AGAMA2W7G+LUnSWFedMfU1Za4GAKCyCd4AANhmTS2tSZLpY+tTKBTKXA0AQGUTvAEAsM16R7xNs74bAMArErwBALDNlrf0BG/Tx1rfDQDglQjeAADYZka8AQBsO8EbAADbbHnvGm+CNwCAVyR4AwBgm/WOeJs+VvAGAPBKBG8AAGyzpt413sZZ4w0A4JUI3gAA2CbFYvHZNd6MeAMAeEUjKnj72te+lp133jkNDQ05/PDDc9ttt5W7JACAIaN5U0faO7uTJFMFbwAAr2jEBG//9m//lnPPPTd///d/nzvvvDMHHHBATjjhhKxYsaLcpQEADAnL1/dsrDC6ppj6mhHzNhIAYLvVlLuAwXLppZfmjDPOyAc+8IEkyZVXXplf/OIX+c53vpNPfepTW13b1taWtra2vsctLS1Jko6OjnR0dGx3Db3P3ZF79Jfzfnx/Fq/aWO4yeAXFYjFrm6vzvadvTaFQKHc5DAF6hlLpGUqxvrUzSTKhrjLezzA0VNJ7YIYGPUMp9Aul6q+e2dbnF4rFYnGHvtMQ0N7ensbGxvznf/5nTjrppL7jp512Wpqbm/M///M/W13/mc98JhdeeOEL7nP11VensbFxoMsdFF+6pzpPbfQLFgBQukOndOd9u3eXuwwAgLLZtGlT3vve92bdunUZN27cS143Ika8rVq1Kl1dXZk+ffpWx6dPn56HHnroBdefd955Offcc/set7S0ZM6cOTn++ONf9g/zlXR0dGThwoU57rjjUltbu9336Q8T91qdls2dZa2BV9bV1ZW77747BxxwQKqrq8tdDkOAnqFUeoaSFbuzcfGfKuL9DENDJb0HZmjQM5RCv1Cq/uqZ3tmRr2REBG+lqq+vT339CxcMrq2t7Zf/kPvrPjvi6D1nlPX7s206OjqSp+/KW/afVfaeYWjQM5RKz1Cqjo6OXLPkTxXxfoahRc9QKj1DKfQLpdrRntnW546IVXGnTJmS6urqLF++fKvjy5cvz4wZAigAAAAA+t+ICN7q6upyyCGH5Prrr+871t3dneuvvz5HHnlkGSsDAAAAYLgaMVNNzz333Jx22mk59NBDc9hhh+UrX/lKNm7c2LfLKQAAAAD0pxETvP35n/95Vq5cmQsuuCBNTU058MADc+21175gwwUAAAAA6A8jJnhLknPOOSfnnHNOucsAAAAAYAQYEWu8AQAAAMBgE7wBAAAAwAAQvAEAAADAABC8AQAAAMAAELwBAAAAwAAQvAEAAADAABC8AQAAAMAAELwBAAAAwAAQvAEAAADAABC8AQAAAMAAELwBAAAAwAAQvAEAAADAABC8AQAAAMAAELwBAAAAwAAQvAEAAADAABC8AQAAAMAAELwBAAAAwAAQvAEAAADAABC8AQAAAMAAELwBAAAAwAAQvAEAAADAABC8AQAAAMAAELwBAAAAwAAQvAEAAADAABC8AQAAAMAAELwBAAAAwACoKXcBQ0GxWEyStLS07NB9Ojo6smnTprS0tKS2trY/SmOY0zOUSs9QKj1DqfQMpdIzlErPUAr9Qqn6q2d6M6LezOilCN62wfr165Mkc+bMKXMlAAAAAFSK9evXZ/z48S95vlB8pWiOdHd3Z+nSpRk7dmwKhcJ236elpSVz5szJU089lXHjxvVjhQxXeoZS6RlKpWcolZ6hVHqGUukZSqFfKFV/9UyxWMz69esza9asVFW99EpuRrxtg6qqquy00079dr9x48b5gUBJ9Ayl0jOUSs9QKj1DqfQMpdIzlEK/UKr+6JmXG+nWy+YKAAAAADAABG8AAAAAMAAEb4Oovr4+f//3f5/6+vpyl8IQoWcolZ6hVHqGUukZSqVnKJWeoRT6hVINds/YXAEAAAAABoARbwAAAAAwAARvAAAAADAABG8AAAAAMAAEbwAAAAAwAARvAP//9u4vpur6j+P48xyMPBY0Qg7lQiDXcqMCBDol1shIc+KiOWzLHBKjXEfLuKijTugPWAYaCwvRmlnqtHJGrclGWEqsBom5rIAxY2vHSGxmhk3hnPO7aJ39GP2SC799vqff67F5wecwvk+2z+Tw5nO+R0RERERERMQCGrwZ0tvby3333cfkyZOJjY1l1qxZfPLJJ6azxOY++ugjPB4PLpeLuLg4CgsLTSdJBDh//jwZGRk4HA6++uor0zliU/39/ZSWlpKamorL5WLatGlUVlZy4cIF02liI6+++iopKSlMnDgRj8dDR0eH6SSxqRdeeIGcnBxiYmJwu90UFhbS09NjOksiyIsvvojD4WDlypWmU8TG/H4/Dz30EPHx8bhcLm6++Wa+/PJL01liU4FAgLVr1456vvv8888TCoUsva4Gb4YUFBQwMjLCgQMHOHz4MOnp6RQUFDAwMGA6TWxq7969LFmyhJKSEo4ePUp7ezsPPvig6SyJAE899RRTpkwxnSE2193dTTAYpLGxkW+++YaXX36ZzZs3s3r1atNpYhN79uyhvLycyspKurq6SE9PZ+7cuZw8edJ0mtjQwYMH8Xq9fPHFF7S0tDA8PMycOXMYGhoynSYRoLOzk8bGRm655RbTKWJjp0+fJjc3l8suu4z9+/fz7bffsmHDBuLi4kyniU2tX7+ehoYGNm3axHfffcf69et56aWXqK+vt/S6jpDVoz0Z49SpUyQkJHDo0CHuuOMOAM6ePUtsbCwtLS3k5+cbLhS7GRkZISUlhWeffZbS0lLTORJB9u/fT3l5OXv37iUtLY0jR46QkZFhOksiRE1NDQ0NDRw/ftx0itiAx+MhJyeHTZs2ARAMBklKSmLFihX4fD7DdWJ3g4ODuN1uDh48yJ133mk6R2zst99+Y8aMGbz22mtUVVWRkZFBXV2d6SyxIZ/PR3t7O21tbaZTJEIUFBSQmJjIG2+8EV5buHAhLpeLHTt2WHZdnXgzID4+nhtvvJG33nqLoaEhRkZGaGxsxO12k5WVZTpPbKirqwu/34/T6SQzM5Nrr72WefPmcezYMdNpYmM//fQTZWVlvP3220yaNMl0jkSgM2fOcPXVV5vOEBu4cOEChw8fHvXHQafTSX5+Pp9//rnBMokUZ86cAdD/KXJRXq+X+fPn6zCCXNQHH3xAdnY2RUVFuN1uMjMz2bp1q+kssbGZM2fS2tpKb28vAEePHuWzzz5j3rx5ll53gqVfXf6Sw+Hg448/prCwkJiYGJxOJ263m+bmZh2Llb/052mTZ555ho0bN5KSksKGDRvIy8ujt7dXT2JljFAoxNKlS1m2bBnZ2dn09/ebTpII09fXR319PbW1taZTxAZOnTpFIBAgMTFx1HpiYiLd3d2GqiRSBINBVq5cSW5uLjfddJPpHLGx3bt309XVRWdnp+kUiQDHjx+noaGB8vJyVq9eTWdnJ48//jjR0dEUFxebzhMb8vl8/Prrr0yfPp2oqCgCgQDV1dUsXrzY0uvqxNsl5PP5cDgcf/uvu7ubUCiE1+vF7XbT1tZGR0cHhYWFLFiwgB9//NH0tyH/oPHumWAwCMCaNWtYuHAhWVlZbNu2DYfDwbvvvmv4u5B/0nj3TH19PWfPnmXVqlWmk8Ww8e6Z/+b3+7n33nspKiqirKzMULmI/Ft4vV6OHTvG7t27TaeIjf3www888cQT7Ny5k4kTJ5rOkQgQDAaZMWMG69atIzMzk0ceeYSysjI2b95sOk1s6p133mHnzp3s2rWLrq4utm/fTm1tLdu3b7f0urrH2yU0ODjIzz///Lefc/3119PW1sacOXM4ffo0sbGx4cduuOEGSktLdZ+U/yPj3TPt7e3Mnj2btrY2Zs2aFX7M4/GQn59PdXW11aliE+PdM4sWLeLDDz/E4XCE1wOBAFFRUSxevNjyHy5iH+PdM9HR0QCcOHGCvLw8brvtNt58802cTv2NTv54qemkSZN47733Rr2jdnFxMb/88gtNTU3m4sTWli9fTlNTE4cOHSI1NdV0jtjY+++/z/33309UVFR4LRAI4HA4cDqdnD9/ftRjIsnJydxzzz28/vrr4bWGhgaqqqrw+/0Gy8SukpKS8Pl8eL3e8FpVVRU7duyw9AS/Xmp6CSUkJJCQkHDRzzt37hzAmF9mnE5n+GST/H8Y757Jysri8ssvp6enJzx4Gx4epr+/n+TkZKszxUbGu2deeeUVqqqqwh+fOHGCuXPnsmfPHjwej5WJYjPj3TPwx0m3u+66K3yqVkM3+VN0dDRZWVm0traGB2/BYJDW1laWL19uNk5sKRQKsWLFCvbt28enn36qoZtc1N13383XX389aq2kpITp06fz9NNPa+gmY+Tm5tLT0zNqrbe3V78fyf907ty5Mc9vo6KiLJ/DaPBmwO23305cXBzFxcVUVFTgcrnYunUr33//PfPnzzedJzYUGxvLsmXLqKysJCkpieTkZGpqagAoKioyXCd2NHXq1FEfX3nllQBMmzaN6667zkSS2Jzf7ycvL4/k5GRqa2sZHBwMP3bNNdcYLBO7KC8vp7i4mOzsbG699Vbq6uoYGhqipKTEdJrYkNfrZdeuXTQ1NRETE8PAwAAAV111FS6Xy3Cd2FFMTMyYewBeccUVxMfH696A8peefPJJZs6cybp161i0aBEdHR1s2bKFLVu2mE4Tm1qwYAHV1dVMnTqVtLQ0jhw5wsaNG3n44Yctva4GbwZMnjyZ5uZm1qxZw+zZsxkeHiYtLY2mpibS09NN54lN1dTUMGHCBJYsWcLvv/+Ox+PhwIEDekMOEbkkWlpa6Ovro6+vb8xwVnelEIAHHniAwcFBKioqGBgYICMjg+bm5jFvuCACf7zcCyAvL2/U+rZt21i6dOk/HyQi/zo5OTns27ePVatW8dxzz5GamkpdXZ3lN8qXyFVfX8/atWt57LHHOHnyJFOmTOHRRx+loqLC0uvqHm8iIiIiIiIiIiIW0M1bRERERERERERELKDBm4iIiIiIiIiIiAU0eBMREREREREREbGABm8iIiIiIiIiIiIW0OBNRERERERERETEAhq8iYiIiIiIiIiIWECDNxEREREREREREQto8CYiIiIiIiIiImIBDd5EREREREREREQsoMGbiIiIiIiIiIiIBTR4ExERERERERERscB/AHiYywHaISYxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(15, 10))\n", "plt.ylabel('Amplitude')\n", "plt.plot(tx-position*duration, y, label='Señal y(t)') \n", "plt.legend(loc='best')\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "30d887c7-e9c5-4a4f-b18c-662a74195161", "metadata": {}, "source": [ "Conclusión: usar este comando para realizar la convolución es muy útil. Pero como ven, para usarlo hay que saber un poco de la teoría (lo que hacemos en esta materia)\n", "y tener claro como se implementan estas funciones. Como regla general para hacer una convolución entre dos señales lo que se puede hacer es hacer que la primera de ellas tenga una duración que capture la parte importante de dicha señal. La otra la hacemos \"lo suficientemente larga\" para que al momento de \"deslizarse\" sobre la primera capture todos los detalles de la misma. Con el mode='same' fijamos que la salida tenga la longitud de la primer señal y deberiamos apreciar prácticamente todos los detalles importantes de la señal de salida. Esto igual depende de la situación y de que queramos ver en la salida. Las otras opciones del argumento mode existen porque tienen su utilidad. Es importante que jueguen un poco con ejemplos conocidos para ver como esos parámetros influyen en los resultados, ya que no hay forma \"canónica\" de usar este comando. Lo más importante al final del dia es siempre\n", "\n", " ANALIZAR LOS RESULTADOS OBTENIDOS Y PENSAR Y RAZONAR SI TIENEN SENTIDO. MUCHAS VECES NO SABEMOS EXACTAMENTE QUE ES LO QUE TIENE QUE ENTREGARNOS UN COMANDO O EL RESULTADO FINAL CORRECTO DE UN EJERCICIO. PERO CASI SIEMPRE PODEMOS RAZONAR SI ALGÚN RESULTADO TIENE SENTIDO O NO! \n", "\n", "Lo mismo pasa para los comandos equivalentes en Matlab, Octave, etc. " ] }, { "cell_type": "markdown", "id": "4bee105f-959f-43ec-8cb0-8c0bd3f6d74a", "metadata": {}, "source": [ "Repitamos este ejemplo para el caso equivalente de tiempo discreto que también consideramos en clase: Sea $x[n]=\\alpha^nu[n]$ con $0<\\alpha< 1$y $h[n]=u[n]$. En realidad esto lo podemos implementar con las mismas herramientas que usamos arriba (no nos olvidemos que la computadora en realidad trabaja con señales de tiempo discreto!). Por completitud y porque las funciones que usamos lo requieren vamos a definir los parámetros que usamos arriba para \"simular\" señales de tiempo continuo: " ] }, { "cell_type": "code", "execution_count": 12, "id": "daaa97ec-3480-49ad-9c9e-abcaac58fb37", "metadata": {}, "outputs": [], "source": [ "# Signal duration in samples\n", "D = 50\n", "# Sampling rate in Hz\n", "fs = 1 \n", "#Sampling period\n", "T = 1/fs" ] }, { "cell_type": "markdown", "id": "08df0fff-243e-42ff-8ada-6bb4447b543c", "metadata": {}, "source": [ "Generemos $h[n]$ y $x[n]$:" ] }, { "cell_type": "code", "execution_count": 13, "id": "e591e326-3577-44f7-990a-e61459b9cbac", "metadata": {}, "outputs": [], "source": [ "amplitude = 1\n", "alpha = 0\n", "sample_rate = fs\n", "duration = D\n", "position = 0.5 #Position of impulse. Value between 0 a 1. The start of exponential will be positioned in the index closer \n", " #to duration*position \n", "nh,h=generate_right_exponential(amplitude,alpha, sample_rate, duration, position) " ] }, { "cell_type": "markdown", "id": "2d06b67f-f4a8-41a6-b3c9-d51ef805ae27", "metadata": {}, "source": [ "Para generar $\\alpha^nu[n]$ usando la misma función que usamos arriba para generar exponenciales continuas tengamos en cuenta lo siguiente. El valor de $\\alpha$ que requerimos\n", "ahora se puede escribir como $\\alpha=e^{\\alpha_{c}}$ donde $\\alpha_c$ es el usado anteriormente. Supongamos que deseo que $\\alpha=\\frac{1}{2}$ entonces $\\alpha_c=\\ln \\left(\\frac{1}{2}\\right)$ y este es el valor a usar en la función." ] }, { "cell_type": "code", "execution_count": 14, "id": "0fb7e9a2-1f94-4c31-a179-6f64fb3bfd6a", "metadata": {}, "outputs": [], "source": [ "amplitude = 1\n", "alpha_c = np.log(0.5)\n", "sample_rate = fs\n", "duration = D\n", "position = 0.5 #Position of impulse. Value between 0 a 1. The start of exponential will be positioned in the index closer \n", " #to duration*position \n", "nx,x=generate_right_exponential(amplitude,alpha_c, sample_rate, duration, position) " ] }, { "cell_type": "code", "execution_count": 15, "id": "f203f0a4-4990-4d13-805b-bb2bcb75cc09", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABNEAAANBCAYAAADObSizAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhNElEQVR4nO3de5iVBb02/nsGhlOAqBxVEsTE3KgoCmEapoh2MOnVDu7yQGmFhzRsp+w87lLMSs3ysLUMd23Lau+wN5HkRTFLFEVNycQklFKOEoIizDCzfn/4Y3ICfGZwhjUDn891cV2znvWs77rXmvXo4uY5VJRKpVIAAAAAgM2qLHcAAAAAAGjtlGgAAAAAUECJBgAAAAAFlGgAAAAAUECJBgAAAAAFlGgAAAAAUECJBgAAAAAFlGgAAAAAUKB9uQNsbXV1dXnppZfSrVu3VFRUlDsOAAAAAGVUKpWyevXq7LLLLqms3Pz+ZttdifbSSy+lf//+5Y4BAAAAQCvy17/+Nbvttttm79/uSrRu3boleeON6d69e5nTsD2qqanJPffckzFjxqSqqqrccWCbYvuClmHbgpZj+4KWY/uisVatWpX+/fvXd0abs92VaBsO4ezevbsSjbKoqalJly5d0r17d/8hh2Zm+4KWYduClmP7gpZj+6Kpik775cICAAAAAFBAiQYAAAAABZRoAAAAAFBguzsnWmOUSqWsX78+tbW15Y5CM2vXrl3at29feJwzAAAAwJsp0f5JdXV1Fi1alDVr1pQ7Ci2kS5cu6devXzp06FDuKAAAAEAboUR7k7q6uixYsCDt2rXLLrvskg4dOthjaRtSKpVSXV2dZcuWZcGCBXnXu96VykpHNAMAAADFlGhvUl1dnbq6uvTv3z9dunQpdxxaQOfOnVNVVZUXXngh1dXV6dSpU7kjAQAAAG2A3XA2wd5J2za/XwAAAKCptAkAAAAAUMDhnC2ktq6U2QtWZOnqtendrVOGD9wp7SqdXw0AAACgLbInWguYNndRRk2anhNveSjn/PSJnHjLQxk1aXqmzV1U7miFXnzxxey+++4ZM2ZMlixZkne/+91Nevzzzz+fioqKPPHEE1uc4dRTT01FRUUqKioyZcqURj9u5syZ9Y8bO3bsFj8/AAAAwD9TojWzaXMXZfyP52Tvx3+f//3Refnj1Sfkf390XvZ+4vcZ/+M5LVakLVu2LOPHj8873/nOdOzYMX379s3RRx+d3//+902ac++99+bTn/50jjvuuIwcOTKnnXZai+Qtcswxx2TRokX5wAc+0OjHHHLIIVm0aFE+/vGPt2AyAAAAYHvkcM5mVFtXytfvfCpHPvdIbv6fr6UypSTJgS/Ny82/+Fo+d8JFufzODjlqn77Nfmjn8ccfn+rq6tx2223ZY489smTJksyYMSMvv/xyk+acdNJJ9T+feeaZzZqxKTYUgU3RoUOH9O3bN507d866detaKBkAAACwPbInWjOavWBF/ra6JmfMuqO+QNugMqWMf/Bn+evqmsxesKJZn3flypV54IEH8o1vfCPvf//7s/vuu2f48OGZOHFiPvKRjzRY77TTTkuvXr3SvXv3HHHEEfnDH/5Qf/+ll16aoUOH5kc/+lEGDBiQHXbYIZ/85CezevXq+nWmTZuWQw89ND169MjOO++cD3/4w5k/f36jsz7zzDPp0qVLbr/99vplP/vZz9K5c+c8/fTTm33chsNE//d//zfvf//706VLl+y///6ZNWtWo58bAAAAYEsp0ZrR0tVrkySDl72wyfsHL3+hwXrNpWvXrunatWumTJnylntgfexjH8vSpUtz9913Z86cOTnwwANz5JFHZsWKf5R68+fPz5QpU/LrX/86v/71r3P//ffnyiuvrL//tddey4QJE/Loo49mxowZqayszEc/+tHU1dU1Kuvee++db33rWznjjDOycOHC/O1vf8sXvvCFfOMb38g+++xT+PivfvWr+fKXv5wnnngie+21V0488cSsX7++Uc8NAAAAsKUcztmMenfrlCSZ12v3HPjSvI3un9dz9wbrNZf27dtn8uTJOf3003PTTTflwAMPzKhRo/LJT34y++23X5Lkd7/7XWbPnp2lS5emY8eOSZJvfetbmTJlSn7xi1/kc5/7XJKkrq4ukydPTrdu3ZK8cXjnjBkzcvnllyd547DRN7v11lvTq1evPP300xkyZEij8p5xxhmZOnVqPv3pT6dDhw45+OCDc/bZZzfqsV/+8pfzoQ99KEly2WWX5V/+5V/y3HPPZe+9927U4wEAAAC2hD3RmtHwgTtlt25VueGQT6QuDc95VpeK3HjIx9O/W1WGD9yp2Z/7+OOPz0svvZRf/epXOeaYYzJz5swceOCBmTx5cpLkD3/4Q1599dXsvPPO9Xuude3aNQsWLGhwOOaAAQPqC7Qk6devX5YuXVp/+89//nNOPPHE7LHHHunevXsGDBiQJFm4cGGT8t5666158skn89hjj2Xy5MmpqGjcOeI2lIIbsiVpkA8AAACgJdgTrRm1q6zIhcftm/Grq3P6CRfljAd/lsHLX8i8nrvnxkM+nhmDDs6Nx+3b7BcV2KBTp0456qijctRRR+Wiiy7KaaedlksuuSSnnnpqXn311fTr1y8zZ87c6HE9evSo/7mqqqrBfRUVFQ0O1Tz22GOz++6755Zbbskuu+ySurq6DBkyJNXV1U3K+oc//CGvvfZaKisrs2jRovpCrMib820o3hp7KCkAAADAllKiFSiVSim9/nqj1x+zxw65/mP75vKp7XP8oOH1y/t3bZ/rP7B3xuyxQ+rWrGnUrIrOnRu9h9am7LPPPpkyZUqS5MADD8zixYvTvn37+r3Hmurll1/OvHnzcsstt+Swww5L8sZhok21YsWKnHrqqfnqV7+aRYsW5VOf+lQee+yxdO7ceYtyAQAAALQ0JVqB0uuvZ96Bw5r0mIFJ/jMV+WPPPbKiY7fstG51/mX5X9Lux6VsfKa0zRv82JxUdOlSuN7LL7+cj33sY/nMZz6T/fbbL926dcujjz6aq666Kscdd1ySZPTo0Rk5cmTGjh2bq666KnvttVdeeuml3HXXXfnoRz+agw46qPB5dtxxx+y88865+eab069fvyxcuDAXXHBBE17RG77whS+kf//+ufDCC7Nu3boccMAB+fKXv5zrr7++ybMAAAAAtgYlWgtpl1L2Wz6/eMVm0LVr14wYMSLXXHNN5s+fn5qamvTv3z+nn356/v3f/z3JG4c+Tp06NV/96lczbty4LFu2LH379s373ve+9OnTp1HPU1lZmZ/+9Kf54he/mCFDhmTw4MG57rrrcvjhhzc663/9139l6tSpefzxx9O+ffu0b98+P/7xj3PooYfmwx/+cD7wgQ9syVsAAAAA0KKUaAUqOnfO4MfmlO25G6Njx46ZNGlSJk2a9JbrdevWLdddd12uu+66Td5/6aWX5tJLL22w7Nxzz825555bf3v06NF5+umnG6xTKpXqfx4wYECD2//s5JNPzsknn9xg2fDhwwvPqbapuT169HjL5wIAAABoLkq0AhUVFY06pJLm9etf/zpdu3bNT3/603z4wx9u1GMeeOCBfOADH8i6devyoQ99qIUTAgAAANsTJRqtzlVXXZULL7wwSRp91c4kOeigg/LEE08keeMQVwAAAIDmokSj1endu3d69+7d5Md17tw5e+65ZwskAgAAALZ3leUOAAAAAACtnRINAAAAAAqU9XDO3/72t/nmN7+ZOXPmZNGiRfnlL3+ZsWPHvuVjZs6cmQkTJuSPf/xj+vfvnwsvvDCnnnrqVskLALC9qV5fl8kPPp8HFlRmyYPP59T3DkqH9m//32Fr60qZvWBFlq5em97dOmX4wJ3SrrKi1c1sa3NlbXtZH16wInOWV2TnBSsycs/e2+V7IGvbyNpSc9vS9uV9bbm5bUVZS7TXXnst+++/fz7zmc/k//yf/1O4/oIFC/KhD30oX/jCF/Lf//3fmTFjRk477bT069cvRx999FZIDACw/Zg09enccv/zqasoJanMA3c/myun/jmnjxqQiR/cZ4vnTpu7KJfe+acsXv16/bK+3Trn0uPenWOGNP6iQi09s63NlbUtZ22X//rzo9v5eyBra87aUnPb0vblfW25uW1JRalUKpU7RJJUVFQU7ol2/vnn56677srcuXPrl33yk5/MypUrM23atEY9z6pVq7LDDjvklVdeSffu3Rvct3bt2ixYsCADBw5Mp06dtuh1bLC9t7OtWXP+nrdETU1Npk6dmg9+8IOpqqra6s8P2zLbFzSfSVOfzk33L8jr83vllVnvSs2ybqnqtTo7jPxzOg9ali+MGrhFRdq0uYsy/sePZc1zvbNy1p71c3sc8ly6DFqaGz99YJO/iLfEzLY2V1ZZW2qurLK21FxZZW1N3qoraqDUSiQp/fKXv3zLdQ477LDSOeec02DZrbfeWurevXujn+eVV14pJSm98sorG933+uuvl55++unS66+/3uh5m3L3Uy+VRnx9Rmn3839d/2fE12eU7n7qpbc1l+bRXL/nLVVdXV2aMmVKqbq6uizPD9sy2xc0j3U1taWBX7mr1Ov4h0tJXSkpvelPXanX8Q+XBn7lrtK6mtomzV1fW1ca8fUZpd7Hz97k3N4nzC695+szSutr68o6s63NlVVW74GsbW2urLK2Nm/VFb1ZWQ/nbKrFixenT58+DZb16dMnq1atyuuvv57OnTtv9Jh169Zl3bp19bdXrVqV5I29FWpqahqsW1NTk1KplLq6utTV1W1RxmlzF+eM2x/P68/1zspZB9S3s68f8ly+sPqx3PCvB+SYIX23aPbW8OKLL+bQQw/NXnvtlf/6r//KEUcckT/+8Y+Nfvzzzz+fQYMGZc6cORk6dOgm19ljjz1yzjnn5JxzznnLGUmy//7757HHHmv08x9xxBG5//77k2SzGerq6lIqlVJTU5N27do1enZz2fC5++fPH/D22b6geUx+8I1DOF+Z9a4k/7wnfUVemfWudNlzWSb/fn7GHTKg0XMfXrAii1e/npWzDtjk3JUP7plFgx7MrOeWZsTAnco2s63NlVXWlporq6wtNVdWWVubxv79oU2VaFti0qRJueyyyzZafs8996RLly4NlrVv3z59+/bNq6++murq6iY/V21dKZfe+XRef653lv7PQdnw4ap+accs/cVB6X3Co7nszj9lxG6dm/3QzuXLl+eKK67IPffck2XLlqVHjx4ZMmRI/u3f/i3vec97Gj3nrrvuygknnJC+fftm5MiROe200+qLx8Z49dVXk7xxvrvNPa6uri5r167d7P0bZkyZMiX77rtvk57/hz/8YRYsWJAjjzxysxmqq6vz+uuv57e//W3Wr1/f6NnNbfr06WV7btjW2b7g7XlgQWWSytQs67bJ+2uWv7H8gcefSZ+VTzd67pzlFUnaFc6954GH8/KfSmWb2dbmyiprS82VVdaWmiurrK3NmjVrGrVemyrR+vbtmyVLljRYtmTJknTv3n2Te6ElycSJEzNhwoT626tWrUr//v0zZsyYTZ4T7a9//Wu6du26RefKeugvL2fpa+uyctae2Vw7u2TQg5m3Yn3es8fOTZ7/Vj7ykY+kuro6t912W/bYY48sWbIk9957b9auXfvWx/P+k8997nP1P5933nlNztG1a9ckyTve8Y7NPm9lZWU6deq02fs3zOjfv38GDBjQpOfv3r17Sv//af42l2Ht2rXp3Llz3ve+95XtnGjTp0/PUUcd5ZxN0MxsX9A8ljz4fB64+9lU9Vqd6pd23Oj+qp6rkySHHbB3PtiEPdF2XrAi//XnRwvnjjlsRKP/JbslZra1ubLK2lJzZZW1pebKKmtr09idd9pUiTZy5MhMnTq1wbLp06dn5MiRm31Mx44d07Fjx42WV1VVbfQXrNra2lRUVKSysjKVlU2/dPuyV9/Ye62onV32avUWzd+clStX5oEHHsjMmTMzatSoJMnAgQM32gNt5cqV+fKXv5w777wz69aty0EHHZRrrrkm+++/f5Lk0ksvzZQpU3Leeefloosuyt///vd84AMfyC233JJu3d7IPm3atHz961/P3Llz065du4wcOTLf+c536g+/3PC6it7D119/Paeddlp+/vOfZ8cdd8yFF15YX+Btbsapp56alStX5tBDD823v/3tVFdX55Of/GSuvfbaBr/LogyVlZWpqKjY5Gdgayr388O2zPYFb8+p7x2UK6f+OTuM/HOW/c/BafiPg6XsMPLPqSxV5NT3DkpV+8Z/pxm5Z+/07dY5rx/yXJb+4h977W+Y2+OQ59KvW+eM3LN3o/fab4mZbW2urLK21FxZZW2pubLK2to09u8OzdfkbIFXX301TzzxRJ544okkyYIFC/LEE09k4cKFSd7Yi+zkk0+uX/8LX/hC/vKXv+QrX/lKnnnmmdxwww352c9+li996UvliL+R3t3e2KupqtfqTd6/oZ3dsF5z6dq1a7p27ZopU6Y0OP/bP/vYxz6WpUuX5u67786cOXNy4IEH5sgjj8yKFSvq15k/f36mTJmSX//61/n1r3+d+++/P1deeWX9/a+99lomTJiQRx99NDNmzEhlZWU++tGPNvkcct/+9rdz0EEH5fHHH88ZZ5yR8ePHZ968eYWPu++++zJ//vzcd999ue222zJ58uRMnjy5Sc8NALy1Du0rc/qoAek8aFl6Hf9IOuzy91R0WJ8Ou/w9vY5/JJ0HLcvpowakQxMKtCRpV1mRS497d7oMWpreJzzaYG7vEx5Nl0FLc8lx727SF/CWmNnW5soqq/dA1rY2V1ZZ26qK0oZj38pg5syZef/737/R8lNOOSWTJ0/Oqaeemueffz4zZ85s8JgvfelLefrpp7Pbbrvloosuyqmnntro53yry5auXbs2CxYsyMCBA7foML/aulLeO+m+LHii2ybb2d4nPJo9hq7O7ya+v9k/XP/zP/+T008/Pa+//noOPPDAjBo1Kp/85Cez3377JUl+97vf5UMf+lCWLl3aYM+8PffcM1/5ylfyuc99Lpdeemm++c1vZvHixfV7nn3lK1/Jb3/72zz00EObfN7ly5enV69eeeqppzJkyJA8//zzGThwYB5//PHNXlhgwIABOeyww/KjH/0oSVIqldK3b99cdtll+cIXvrDZGaeeempmzpyZ+fPn118Q4OMf/3gqKyvz05/+tH69ogxv9/f8dtXU1GTq1Kn54Ac/aE8ZaGa2L2hek6Y+nVvuf+MiAxtUlipy+qgBmfjBfbZ47rS5i3LJlD9lyauv1y/r161zLjnu3TlmSL9WM7OtzZVV1paaK6usLTVXVllbi7fqit6srIdzHn744XmrDm9Texgdfvjhefzxx1sw1Zbb0M6OX/1Yep/waFY+uGdqlndLVc/V6XHIc/9/O3tgi7Szxx9/fD70oQ/lgQceyEMPPZS77747V111Vb7//e/n1FNPzR/+8Ie8+uqr2Xnnhudie/311zN//vz62wMGDKgv0JKkX79+Wbp0af3tP//5z7n44ovz8MMPZ/ny5fV7oC1cuDBDhgxpdN4N5V6SVFRUpG/fvg2eZ3P+5V/+pcEVNfv165ennnqq0c8LADTexA/uk1MOGZBDrrwvSXLO+/fImUcObvIeaP/smCH98t49e2bfS+9Jkkwed3AOe1evt/UdqSVmtrW5srbtrN8/6YC8/939tuv3QNbWm7Wl5ral7cv72nJz25I2dU60tuCYIf1y46cPfKOdHfRg/fI32tkDW7Sd7dSpU4466qgcddRRueiii3LaaaflkksuyamnnppXX301/fr1a7BX3wY9evSo//mf99yoqKhocKjmsccem9133z233HJLdtlll9TV1WXIkCFNvppp0fM09+MAgC3z5sLsk8P7v+0CbYM3f+EePnCnZvkC3hIz29pcWdtu1oMH7Ljdvweytu6sLTW3LW1f3teWm9tWKNEKlEqllF5/vXjFNxmzxw4ZecawHDTp3pRSkZs/fWAOG7Rz2lVWpK6Rl01NkorOnVNRseUfyH322SdTpkxJkhx44IFZvHhx2rdv3+QrXm7w8ssvZ968ebnlllty2GGHJXnjMFEAAACAbZ0SrUDp9dcz78BhW/TYX2344f8mz23B4wc/NicVXboUrvfyyy/nYx/7WD7zmc9kv/32S7du3fLoo4/mqquuynHHHZckGT16dEaOHJmxY8fmqquuyl577ZWXXnopd911Vz760Y/moIMOKnyeHXfcMTvvvHNuvvnm9OvXLwsXLswFF1ywBa8MAAAAoG1Rom0DunbtmhEjRuSaa67J/PnzU1NTk/79++f000/Pv//7vyd547DHqVOn5qtf/WrGjRuXZcuWpW/fvnnf+96XPn36NOp5NpzA/4tf/GKGDBmSwYMH57rrrsvhhx/egq8OAAAAoPyUaAUqOnfO4MfmlO25G6Njx46ZNGlSJk2a9JbrdevWLdddd12uu+66Td5/6aWX5tJLL22w7Nxzz825555bf3v06NF5+umnG6zz5otDDBgw4C0vFpG8cfXMf/bEE0+85WOSTV9o4tprry18HAAAAMDbpUQrUFFR0ahDKml+hxxySIYOHZoHH3yweOX/3wc+8IH89re/bcFUAAAAwPZIiUars9tuu+XPf/5zkjf2smuK73//+3n9/78QxDvf+c5mzwYAAABsn5RotDrt27fPnnvuuUWP3XXXXZs5DQAAAEBSWe4AAAAAANDaKdE2oejE+LRtfr8AAABAUynR3qSqqipJsmbNmjInoSVt+P1u+H0DAAAAFHFOtDdp165devTokaVLlyZJunTpkoqKijKnormUSqWsWbMmS5cuTY8ePdKuXbtyRwIAAADaCCXaP+nbt2+S1BdpbHt69OhR/3sGAAAAaAwl2j+pqKhIv3790rt379TU1JQ7Ds2sqqrKHmgAAABAkynRNqNdu3bKFgAAAACSuLAAAAAAABRSogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAgbKXaNdff30GDBiQTp06ZcSIEZk9e/Zbrn/ttddm8ODB6dy5c/r3758vfelLWbt27VZKCwAAAMD2qKwl2h133JEJEybkkksuyWOPPZb9998/Rx99dJYuXbrJ9W+//fZccMEFueSSS/KnP/0pP/jBD3LHHXfk3//937dycgAAAAC2J2Ut0a6++uqcfvrpGTduXPbZZ5/cdNNN6dKlS2699dZNrv/ggw/mve99b/71X/81AwYMyJgxY3LiiScW7r0GAAAAAG9H2Uq06urqzJkzJ6NHj/5HmMrKjB49OrNmzdrkYw455JDMmTOnvjT7y1/+kqlTp+aDH/zgVskMAAAAwPapfbmeePny5amtrU2fPn0aLO/Tp0+eeeaZTT7mX//1X7N8+fIceuihKZVKWb9+fb7whS+85eGc69aty7p16+pvr1q1KklSU1OTmpqaZngl0DQbPnc+f9D8bF/Q/Gpq1tf/vL5mfbNtX2+eW1NTk5qKUquc2dbmytqWs9q+ZG3dWVtqblvavryvLTe33Br7+ShbibYlZs6cmSuuuCI33HBDRowYkeeeey7nnHNOvva1r+Wiiy7a5GMmTZqUyy67bKPl99xzT7p06dLSkWGzpk+fXu4IsM2yfUHzWV2dbPjKeP/996dbh+aZu672H3N/85t70rFd65zZ1ubK2naz3nvvvdv9eyBr687aUnPb0vblfW25ueW2Zs2aRq1XthKtZ8+eadeuXZYsWdJg+ZIlS9K3b99NPuaiiy7KSSedlNNOOy1Jsu++++a1117L5z73uXz1q19NZeXGR6dOnDgxEyZMqL+9atWq9O/fP2PGjEn37t2b8RVB49TU1GT69Ok56qijUlVVVe44sE2xfUHzW/7qulw45/4kyahRo9J3x3c0y9w11evzldn3JkmOPnpMunR4+19LW2JmW5sra9vNesQRR2SHd3Rq9rlt6T2QtXVnbam5bWn78r623Nxy23DUYpGyvdoOHTpk2LBhmTFjRsaOHZskqaury4wZM3LWWWdt8jFr1qzZqChr1+6N2rNU2vQuhB07dkzHjh03Wl5VVeUvWJSVzyC0HNsXNJ+qqtr6n9tXtW+2bauqVPGm56hKVdXb/1raEjPb2lxZ23JW25esrTtrS81tS9uX97Xl5pZbYz8fZX21EyZMyCmnnJKDDjoow4cPz7XXXpvXXnst48aNS5KcfPLJ2XXXXTNp0qQkybHHHpurr746BxxwQP3hnBdddFGOPfbY+jINAAAAAJpbWUu0T3ziE1m2bFkuvvjiLF68OEOHDs20adPqLzawcOHCBnueXXjhhamoqMiFF16YF198Mb169cqxxx6byy+/vFwvAQAAAIDtQNn3uzvrrLM2e/jmzJkzG9xu3759LrnkklxyySVbIRkAAAAAvGHjM/EDAAAAAA0o0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAqUvUS7/vrrM2DAgHTq1CkjRozI7Nmz33L9lStX5swzz0y/fv3SsWPH7LXXXpk6depWSgsAAADA9qh9OZ/8jjvuyIQJE3LTTTdlxIgRufbaa3P00Udn3rx56d2790brV1dX56ijjkrv3r3zi1/8IrvuumteeOGF9OjRY+uHBwAAAGC7UdYS7eqrr87pp5+ecePGJUluuumm3HXXXbn11ltzwQUXbLT+rbfemhUrVuTBBx9MVVVVkmTAgAFbMzIAAAAA26GyHc5ZXV2dOXPmZPTo0f8IU1mZ0aNHZ9asWZt8zK9+9auMHDkyZ555Zvr06ZMhQ4bkiiuuSG1t7daKDQAAAMB2qGx7oi1fvjy1tbXp06dPg+V9+vTJM888s8nH/OUvf8m9996bT33qU5k6dWqee+65nHHGGampqckll1yyycesW7cu69atq7+9atWqJElNTU1qamqa6dVA42343Pn8QfOzfUHzq6lZX//z+pr1zbZ9vXluTU1NaipKrXJmW5sra1vOavuStXVnbam5bWn78r623Nxya+zno6yHczZVXV1devfunZtvvjnt2rXLsGHD8uKLL+ab3/zmZku0SZMm5bLLLtto+T333JMuXbq0dGTYrOnTp5c7AmyzbF/QfFZXJxu+Mt5///3p1qF55q6r/cfc3/zmnnRs1zpntrW5srbdrPfee+92/x7I2rqzttTctrR9eV9bbm65rVmzplHrla1E69mzZ9q1a5clS5Y0WL5kyZL07dt3k4/p169fqqqq0q7dP35L7373u7N48eJUV1enQ4eNv9VNnDgxEyZMqL+9atWq9O/fP2PGjEn37t2b6dVA49XU1GT69Ok56qij6s/tBzQP2xc0v+WvrsuFc+5PkowaNSp9d3xHs8xdU70+X5l9b5Lk6KPHpEuHt/+1tCVmtrW5srbdrEcccUR2eEenZp/blt4DWVt31paa25a2L+9ry80ttw1HLRYp26vt0KFDhg0blhkzZmTs2LFJ3tjTbMaMGTnrrLM2+Zj3vve9uf3221NXV5fKyjdO5/bss8+mX79+myzQkqRjx47p2LHjRsurqqr8BYuy8hmElmP7guZTVfWPc8+2r2rfbNtWVaniTc9Rlaqqt/+1tCVmtrW5srblrLYvWVt31paa25a2L+9ry80tt8Z+Psp2YYEkmTBhQm655Zbcdttt+dOf/pTx48fntddeq79a58knn5yJEyfWrz9+/PisWLEi55xzTp599tncddddueKKK3LmmWeW6yUAAAAAsB0oa2X4iU98IsuWLcvFF1+cxYsXZ+jQoZk2bVr9xQYWLlxYv8dZkvTv3z+/+c1v8qUvfSn77bdfdt1115xzzjk5//zzy/USAAAAANgOlH2/u7POOmuzh2/OnDlzo2UjR47MQw891MKpAAAAAOAfyno4JwAAAAC0BUo0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAltUoq1cuTLf//73M3HixKxYsSJJ8thjj+XFF19s1nAAAAAA0Bq0b+oDnnzyyYwePTo77LBDnn/++Zx++unZaaed8r//+79ZuHBh/uu//qslcgIAAABA2TR5T7QJEybk1FNPzZ///Od06tSpfvkHP/jB/Pa3v23WcAAAAADQGjS5RHvkkUfy+c9/fqPlu+66axYvXtwsoQAAAACgNWlyidaxY8esWrVqo+XPPvtsevXq1SyhAAAAAKA1aXKJ9pGPfCT/8R//kZqamiRJRUVFFi5cmPPPPz/HH398swcEAAAAgHJrcon27W9/O6+++mp69+6d119/PaNGjcqee+6Zbt265fLLL2+JjAAAAABQVk2+OucOO+yQ6dOn53e/+12efPLJvPrqqznwwAMzevTolsgHAAAAAGXX5BJtg0MPPTSHHnpoc2YBAAAAgFapUSXadddd1+iBX/ziF7c4DAAAAAC0Ro0q0a655poGt5ctW5Y1a9akR48eSZKVK1emS5cu6d27txINAAAAgG1Ooy4ssGDBgvo/l19+eYYOHZo//elPWbFiRVasWJE//elPOfDAA/O1r32tpfMCAAAAwFbX5KtzXnTRRfnud7+bwYMH1y8bPHhwrrnmmlx44YXNGg4AAAAAWoMml2iLFi3K+vXrN1peW1ubJUuWNEsoAAAAAGhNmlyiHXnkkfn85z+fxx57rH7ZnDlzMn78+IwePbpZwwEAAABAa9DkEu3WW29N3759c9BBB6Vjx47p2LFjhg8fnj59+uT73/9+S2QEAAAAgLJq1NU536xXr16ZOnVqnn322TzzzDNJkr333jt77bVXs4cDAAAAgNagySXaBnvttZfiDAAAAIDtQpNLtM985jNvef+tt966xWEAAAAAoDVqcon297//vcHtmpqazJ07NytXrswRRxzRbMEAAAAAoLVocon2y1/+cqNldXV1GT9+fAYNGtQsoQAAAACgNWny1Tk3OaSyMhMmTMg111zTHOMAAAAAoFVplhItSebPn5/169c31zgAAAAAaDWafDjnhAkTGtwulUpZtGhR7rrrrpxyyinNFgwAAAAAWosml2iPP/54g9uVlZXp1atXvv3tbxdeuRMAAAAA2qIml2j33XdfS+QAAAAAgFaryedEO+KII7Jy5cqNlq9atSpHHHFEc2QCAAAAgFalySXazJkzU11dvdHytWvX5oEHHmiWUAAAAADQmjT6cM4nn3yy/uenn346ixcvrr9dW1ubadOmZdddd23edAAAbJNq60r1Pz/8lxV531690q6yooyJAADeWqNLtKFDh6aioiIVFRWbPGyzc+fO+e53v9us4QAA2PZMm7so/zHlH/9AO27yI9mtW1UuPG7fHDOkXxmTAQBsXqNLtAULFqRUKmWPPfbI7Nmz06tXr/r7OnTokN69e6ddu3YtEhIAgG3DtLmLMv7Hc3L4/Dl5adBBSZLbfzIxtw7/aMavrs6Nnx6mSAMAWqVGl2i77757kqSurq7FwgAAsO2qrSvl63c+lSOfeyTX/uqqDJnwiyTJ0EXP5uZffC2fO+GiXH5nhxy1T1+HdgIArU6jSrRf/epX+cAHPpCqqqr86le/est1P/KRjzRLMAAAti2zF6zI31bX5LpZd6QypQb3VaaU8Q/+LMcPGp7ZC1Zk5KCdy5QSAGDTGlWijR07NosXL07v3r0zduzYza5XUVGR2tra5soGAMA2ZOnqtUmSwcte2OT9g5e/0GA9AIDWpFEl2psP4XQ4JwAAW6J3t05Jknm9ds/ey57f6P55PXdvsB4AQGtSWe4AAABsH4YP3Cm7davKDYd8InVpeM6zulTkxkM+nv7dqjJ84E5lSggAsHmN2hPtuuuua/TAL37xi1scBgCAbVe7yopceNy+Gb+6OmeNvaB++eP9BueHw8dmxqCDc+Nx+7qoAADQKjWqRLvmmmsaNayiokKJBgDAZh0zpF9u/PSwXPbL9slrb5xL91MnXpH+3apy43H75pgh/cqcEABg0xpVoi1YsKClcwAAsJ04Zki/HPDOHhlxxb1Jkv/89IEZvU9fe6ABAK3a2zonWqlUSqlUKl4RAADe5M2F2bABOyrQAIBWb4tKtB/84AcZMmRIOnXqlE6dOmXIkCH5/ve/39zZAAAAAKBVaNThnG928cUX5+qrr87ZZ5+dkSNHJklmzZqVL33pS1m4cGH+4z/+o9lDAgAAAEA5NblEu/HGG3PLLbfkxBNPrF/2kY98JPvtt1/OPvtsJRoAAAAA25wmH85ZU1OTgw46aKPlw4YNy/r165slFAAAAAC0Jk0u0U466aTceOONGy2/+eab86lPfapZQgEAAABAa9LkwzmTNy4scM899+Q973lPkuThhx/OwoULc/LJJ2fChAn161199dXNkxIAAAAAyqjJJdrcuXNz4IEHJknmz5+fJOnZs2d69uyZuXPn1q9XUeEy5QAAAABsG5pcot13330tkQMAAAAAWq0mnxMNAAAAALY3Td4Tbe3atfnud7+b++67L0uXLk1dXV2D+x977LFmCwcAAAAArUGTS7TPfvazueeee3LCCSdk+PDhzn0GAAAAwDavySXar3/960ydOjXvfe97WyIPAAAAALQ6TT4n2q677ppu3bq1RBYAAAAAaJWaXKJ9+9vfzvnnn58XXnihJfIAAAAAQKvT5MM5DzrooKxduzZ77LFHunTpkqqqqgb3r1ixotnCAQAAAEBr0OQS7cQTT8yLL76YK664In369HFhAQAAAAC2eU0u0R588MHMmjUr+++/f0vkAQAAAIBWp8nnRNt7773z+uuvt0QWAAAAAGiVmlyiXXnllTnvvPMyc+bMvPzyy1m1alWDPwAAAACwrWny4ZzHHHNMkuTII49ssLxUKqWioiK1tbXNkwwAAAAAWokml2j33XffZu976qmn3lYYAAAAAGiNmlyijRo1qsHt1atX5yc/+Um+//3vZ86cOTnrrLOaLRwAAAAAtAZNPifaBr/97W9zyimnpF+/fvnWt76VI444Ig899FBzZgMAAACAVqFJe6ItXrw4kydPzg9+8IOsWrUqH//4x7Nu3bpMmTIl++yzT0tlBAAAAICyavSeaMcee2wGDx6cJ598Mtdee21eeumlfPe7323JbAAAAADQKjR6T7S77747X/ziFzN+/Pi8613vaslMAAAAANCqNHpPtN/97ndZvXp1hg0blhEjRuR73/teli9f3pLZAAAAAKBVaHSJ9p73vCe33HJLFi1alM9//vP56U9/ml122SV1dXWZPn16Vq9e3ZI5AQAAAKBsmnx1zne84x35zGc+k9/97nd56qmnct555+XKK69M796985GPfKQlMgIAAABAWTW5RHuzwYMH56qrrsrf/va3/OQnP2muTAAAAADQqrytEm2Ddu3aZezYsfnVr37VHOMAAAAAoFVplhINAAAAALZlSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACraJEu/766zNgwIB06tQpI0aMyOzZsxv1uJ/+9KepqKjI2LFjWzYgAAAAANu1spdod9xxRyZMmJBLLrkkjz32WPbff/8cffTRWbp06Vs+7vnnn8+Xv/zlHHbYYVspKQAAAADbq7KXaFdffXVOP/30jBs3Lvvss09uuummdOnSJbfeeutmH1NbW5tPfepTueyyy7LHHntsxbQAAAAAbI/KWqJVV1dnzpw5GT16dP2yysrKjB49OrNmzdrs4/7jP/4jvXv3zmc/+9mtERMAAACA7Vz7cj758uXLU1tbmz59+jRY3qdPnzzzzDObfMzvfve7/OAHP8gTTzzRqOdYt25d1q1bV3971apVSZKamprU1NRsWXB4GzZ87nz+oPnZvqD51dSsr/95fc36Ztu+3jy3ppnmNpxZk5qK0tue2dbmytqWs7bU9tWW3gNZW3PWlprblrYv72vLzS23xn4+ylqiNdXq1atz0kkn5ZZbbknPnj0b9ZhJkyblsssu22j5Pffcky5dujR3RGi06dOnlzsCbLNsX9B8VlcnG74y3n///enWofnnzvh/M5pl7rraf8z8zW/uScd2b39mW5sra9vNeu+9927374GsrTtrS81tS9uX97Xl5pbbmjVrGrVeWUu0nj17pl27dlmyZEmD5UuWLEnfvn03Wn/+/Pl5/vnnc+yxx9Yvq6urS5K0b98+8+bNy6BBgxo8ZuLEiZkwYUL97VWrVqV///4ZM2ZMunfv3pwvBxqlpqYm06dPz1FHHZWqqqpyx4Ftiu0Lmt/yV9flwjn3J0lGjRqVvju+o9nnHjn6yPTs2vFtz1xTvT5fmX1vkuToo8ekS4fm+arblubK2nazHnHEEdnhHZ2afW5beg9kbd1ZW2puW9q+vK8tN7fcNhy1WKSsr7ZDhw4ZNmxYZsyYkbFjxyZ5oxSbMWNGzjrrrI3W33vvvfPUU081WHbhhRdm9erV+c53vpP+/ftv9JiOHTumY8eNv5RVVVX5CxZl5TMILcf2Bc2nqqq2/uf2Ve2bbdt689yqZppbVap408yqVFU1z1fdtjRX1ractRm3rzb7HsjamrO21Ny2tH15X1tubrk19vNR9lc7YcKEnHLKKTnooIMyfPjwXHvttXnttdcybty4JMnJJ5+cXXfdNZMmTUqnTp0yZMiQBo/v0aNHkmy0HAAAAACaS9lLtE984hNZtmxZLr744ixevDhDhw7NtGnT6i82sHDhwlRWlvUiogAAAABs58peoiXJWWedtcnDN5Nk5syZb/nYyZMnN38gAAAAAHgTu3gBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBALBNqK0r1f/88F9WNLgNAPB2KdEAAGjzps1dlKO/dW/97XGTH8moSdMzbe6iMqYCALYlSjQAANq0aXMXZfyP52TwHx6qX3b7TyZm7yd+n/E/nqNIAwCahRINAIA2q7aulK/f+VSOfO6RfPfOK+uXD130bG7+xddy5PxHcvmdTzm0EwB425RoAAC0WbMXrMjfVtfkjFl3pDINi7LKlDL+wZ/lr6trMnvBijIlBAC2FUo0AADarKWr1yZJBi97YZP3D17+QoP1AAC2lBINAIA2q3e3TkmSeb123+T983ru3mA9AIAtpUQDAKDNGj5wp+zWrSo3HPKJ1KWiwX11qciNh3w8/btVZfjAncqUEADYVrQvdwAAANhS7SorcuFx+2b86uqcNfaC+uWP9xucHw4fmxmDDs6Nx+2bdpUVbzEFAKCYEg0AgDbtmCH9cuOnh+WyX7ZPXqtNknzqxCvSv1tVbjxu3xwzpF+ZEwIA2wIlGgAAbd4xQ/rlgHf2yIgr7k2S/OenD8zoffraAw0AaDbOiQYAwDbhzYXZsAE7KtAAgGalRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAq2iRLv++uszYMCAdOrUKSNGjMjs2bM3u+4tt9ySww47LDvuuGN23HHHjB49+i3XBwAAAIC3q+wl2h133JEJEybkkksuyWOPPZb9998/Rx99dJYuXbrJ9WfOnJkTTzwx9913X2bNmpX+/ftnzJgxefHFF7dycgAAAAC2F2Uv0a6++uqcfvrpGTduXPbZZ5/cdNNN6dKlS2699dZNrv/f//3fOeOMMzJ06NDsvffe+f73v5+6urrMmDFjKycHAAAAYHtR1hKturo6c+bMyejRo+uXVVZWZvTo0Zk1a1ajZqxZsyY1NTXZaaedWiomAAAAANu59uV88uXLl6e2tjZ9+vRpsLxPnz555plnGjXj/PPPzy677NKgiHuzdevWZd26dfW3V61alSSpqalJTU3NFiaHLbfhc+fzB83P9gXNr6Zmff3P62vWN9v29ea5Nc00tyVmbjy3JjUVpVY7V9a2nLV1f2b9vmRtqbltafvyvrbc3HJr7OejrCXa23XllVfmpz/9aWbOnJlOnTptcp1Jkyblsssu22j5Pffcky5durR0RNis6dOnlzsCbLNsX9B8VlcnG74y3n///enWofnnzvh/M5plbkvMTJJ1tf+Y+5vf3JOO7VrvXFnbbtZ77713u38PZG3dWVtqblvavryvLTe33NasWdOo9cpaovXs2TPt2rXLkiVLGixfsmRJ+vbt+5aP/da3vpUrr7wy/+///b/st99+m11v4sSJmTBhQv3tVatW1V+MoHv37m/vBcAWqKmpyfTp03PUUUelqqqq3HFgm2L7gua3/NV1uXDO/UmSUaNGpe+O72j2uUeOPjI9u3ZslTOTZE31+nxl9r1JkqOPHpMuHZrnK3RLzJW17WY94ogjssM7Nr1jwNuZ25beA1lbd9aWmtuWti/va8vNLbcNRy0WKeur7dChQ4YNG5YZM2Zk7NixSVJ/kYCzzjprs4+76qqrcvnll+c3v/lNDjrooLd8jo4dO6Zjx42/QFVVVfkLFmXlMwgtx/YFzaeqqrb+5/ZV7Ztt23rz3KpmmtsSM5OkqlTxprlVqapqnq/QLTFX1ractXV/Zv2+ZG2puW1p+/K+ttzccmvs56Psr3bChAk55ZRTctBBB2X48OG59tpr89prr2XcuHFJkpNPPjm77rprJk2alCT5xje+kYsvvji33357BgwYkMWLFydJunbtmq5du5btdQAAAACw7Sp7ifaJT3wiy5Yty8UXX5zFixdn6NChmTZtWv3FBhYuXJjKyn9cRPTGG29MdXV1TjjhhAZzLrnkklx66aVbMzoAAAAA24myl2hJctZZZ2328M2ZM2c2uP3888+3fCAAAAAAeJPK4lUAAAAAYPumRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAgLdQW1eq//nhv6xocBsA2H4o0QAAYDOmzV2Uo791b/3tcZMfyahJ0zNt7qIypgIAykGJBgAAmzBt7qKM//GcDP7DQ/XLbv/JxOz9xO8z/sdzFGkAsJ1RogEAwD+prSvl63c+lSOfeyTfvfPK+uVDFz2bm3/xtRw5/5FcfudTDu0EgO2IEg0AAP7J7AUr8rfVNTlj1h2pTMOirDKljH/wZ/nr6prMXrCiTAkBgK1NiQYAAP9k6eq1SZLBy17Y5P2Dl7/QYD0AYNunRAMAgH/Su1unJMm8Xrtv8v55PXdvsB4AsO1TogEAwD8ZPnCn7NatKjcc8onUpaLBfXWpyI2HfDz9u1Vl+MCdypQQANja2pc7AAAAtDbtKity4XH7Zvzq6pw19oL65Y/3G5wfDh+bGYMOzo3H7Zt2lRVvMQUA2JYo0QAAYBOOGdIvN356WC77ZfvktdokyadOvCL9u1XlxuP2zTFD+pU5IQCwNSnRAABgM44Z0i8HvLNHRlxxb5LkPz99YEbv09ceaACwHXJONAAAeAtvLsyGDdhRgQYA2yklGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAAAAUUKIBAAAAQAElGgAAlEFtXan+54f/sqLBbQCg9VGiAQDAVjZt7qIc/a1762+Pm/xIRk2anmlzF5UxFQDwVpRoAACwFU2buyjjfzwng//wUP2y238yMXs/8fuM//EcRRoAtFJKNAAA2Epq60r5+p1P5cjnHsl377yyfvnQRc/m5l98LUfOfySX3/mUQzsBoBVSogEAwFYye8GK/G11Tc6YdUcq07Aoq0wp4x/8Wf66uiazF6woU0IAYHOUaAAAsJUsXb02STJ42QubvH/w8hcarAcAtB5KNAAA2Ep6d+uUJJnXa/dN3j+v5+4N1gMAWg8lGgAAbCXDB+6U3bpV5YZDPpG6VDS4ry4VufGQj6d/t6oMH7hTmRICAJvTvtwBAABge9GusiIXHrdvxq+uzlljL6hf/ni/wfnh8LGZMejg3HjcvmlXWfEWUwCAclCiAQDAVnTMkH658dPDctkv2yev1SZJPnXiFenfrSo3HrdvjhnSr8wJAYBNUaIBAMBWdsyQfjngnT0y4op7kyT/+ekDM3qfvvZAA4BWzDnRAACgDN5cmA0bsKMCDQBaOSUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAAAAABRQogEAAABAASUaAABsI2rrSvU/P/yXFQ1uAwBvjxINAAC2AdPmLsrR37q3/va4yY9k1KTpmTZ3URlTAcC2Q4kGAABt3LS5izL+x3My+A8P1S+7/ScTs/cTv8/4H89RpAFAM1CiAQBAG1ZbV8rX73wqRz73SL5755X1y4cuejY3/+JrOXL+I7n8zqcc2gkAb5MSDQAA2rDZC1bkb6trcsasO1KZhkVZZUoZ/+DP8tfVNZm9YEWZEgLAtkGJBgAAbdjS1WuTJIOXvbDJ+wcvf6HBegDAllGiAQBAG9a7W6ckybxeu2/y/nk9d2+wHgCwZZRoAADQhg0fuFN261aVGw75ROpS0eC+ulTkxkM+nv7dqjJ84E5lSggA24b25Q4AAABsuXaVFbnwuH0zfnV1zhp7Qf3yx/sNzg+Hj82MQQfnxuP2TbvKireYAgAUUaIBAEAbd8yQfrnx08Ny2S/bJ6/VJkk+deIV6d+tKjcet2+OGdKvzAkBoO1TogEAwDbgmCH9csA7e2TEFfcmSf7z0wdm9D597YEGAM3EOdEAAGAb8ebCbNiAHZutQKutK9X//PBfVjS4DQDbCyUaAACwWdPmLsrR37q3/va4yY9k1KTpmTZ3URlTAcDWp0QDAAA2adrcRRn/4zkZ/IeH6pfd/pOJ2fuJ32f8j+co0gDYrijRAACAjdTWlfL1O5/Kkc89ku/eeWX98qGLns3Nv/hajpz/SC6/8ymHdgKw3VCiAQAAG5m9YEX+tromZ8y6I5VpWJRVppTxD/4sf11dk9kLVpQpIQBsXUo0AABgI0tXr02SDF72wibvH7z8hQbrNZWLFQDQ1ijRAACAjfTu1ilJMq/X7pu8f17P3Rus1xQuVgBAW6REAwAANjJ84E7ZrVtVbjjkE6lLRYP76lKRGw/5ePp3q8rwgTs1aa6LFQDQVinRAACAjbSrrMiFx+2bGYMOzlljL6hf/ni/wfncCRdlxqCD89Xj9k27yoq3mNLQ1rhYgcNEAWgpSjQAAGCTjhnSLzd+eljm7TuiftmnTrwi84a+Nzd+eliOGdKvSfNa+mIFLXWYqGIOgESJBgAAvIVjhvTLlHNG1d/+z08fmJkTj2pygZa07MUKWuow0ZY8f9uby7hHnv97s5VzSj+AltEqSrTrr78+AwYMSKdOnTJixIjMnj37Ldf/+c9/nr333judOnXKvvvum6lTp26lpK1P9fq6/OCBv+TiO+fmBw/8JdXr61rtXFnfmPvDB5/PLxZU5ocPPr/dvgeyytpWtq+29B7I2rbmtqWskKTBIZvDBuzYpEM436ylLlbQUoeJtuT52/65nDvtR483SznX1vbGa4m5sratuVsja3OV1N5XJX1FqVQq6yu+4447cvLJJ+emm27KiBEjcu211+bnP/955s2bl969e2+0/oMPPpj3ve99mTRpUj784Q/n9ttvzze+8Y089thjGTJkSOHzrVq1KjvssENeeeWVdO/evSVe0lYzaerTueX+51NX8Y9fYWWpIqePGpCJH9ynVc2VtW3NlVXWtpS1pebKKmtLzW1LWZNk+atrc9DXZyRJZp0/Kv127LrFszY399ELj0zPrk2/wuPWmNnW5rb2rLV1pYyaND17P/H7XHvnVRky4RdJkqevPj6daqrzuRMuyryh783MiUc1qaibNf/lnHjLQ/nfH52XvZc9n30m/E/93C416zJnl71z/Enfyk9Of09GDtq5aVkf/32u/VXzZU3+Uc4dPn9O7ht0UJI3yrlbh380MwYdvEWHyrb03P+Y8mReenV9/bLdulXlwuP23aJ5LTlX1rY1V1ZZW4vGdkXtt2KmTbr66qtz+umnZ9y4cUmSm266KXfddVduvfXWXHDBBRut/53vfCfHHHNM/u3f/i1J8rWvfS3Tp0/P9773vdx0001bNXs5TZr6dG66f0Fen98rr8x6V2qWdUtVr9XZYeSfc1MWJMkWfWFuibmytq25ssralrK21FxZZW2puW0pK7SEDRcrGL+6eqOLFfxw+Ng3ip4mXqwgaZnDRDecv+26tzh/2/GDhmf2ghWNLuaShnvNvbmc27DX3OdOuCiX39khR+3Td4sv2tCcc99czL30T8Xc+NXVzVL4NddcWdvWXFllbYvKWqJVV1dnzpw5mThxYv2yysrKjB49OrNmzdrkY2bNmpUJEyY0WHb00UdnypQpLRm1ValeX5db7n8+r8/vlWX/c1A6V6xNu1Qnizrm1f/9l3Qe+1h+VPNMzhnWKx3aN/6I3er1dfnR/3smped75dUp/5J2qXjbc1tipqzeA1ll9R7I2hbntqWsb1b76rp0XL8uSVK3YkXW161r8oyiubUvr8j6dR1b5cy2NrctZB3dr0P+88N75Jt3r03HdW/M/MJHJ2a3rlX5z2P2yBH9OmT9yy83aWbv2jXpvnZ15vXaPXu+vLA+6/rKyqyvrMy8nrun+9rV6V27ptGzl/9tUbqvXZ1BL/816ysrN5o5aMVf033t6iz/26Ks79H4rI88vyKrlq3IGbPuSF1lRYO5dZUVGf/gzzJu13dn9uPP5eABO5V1bm1dKdf+9MF86JnZ+fq072XEWT9KkgxZ8lxu+N/LM+Ej5+U7P12X958zqsmFX3PPlbVtzZV128i639ss6duish7O+dJLL2XXXXfNgw8+mJEjR9Yv/8pXvpL7778/Dz/88EaP6dChQ2677baceOKJ9ctuuOGGXHbZZVmyZMlG669bty7r1v3jy96qVavSv3//LF++vM0ezvnDB5/PFXc/m0U/OiTtFnXMnL2GlTsSAAAAsB3Z9fkX0n3d6/WHzP/4MwdlxMDGl/+tyapVq9KzZ8/WfzhnS5s0aVIuu+yyjZbfc8896dKlSxkSvX0PLKhMUpmaZd3e+JdmAAAAgK2oS80bOyxtOGT+ngcezst/apsXGlizZk2j1itridazZ8+0a9duoz3IlixZkr59+27yMX379m3S+hMnTmxw+OeGPdHGjBnTZvdEW/Lg83ng7mdT1Wt1Xn+pR4Y9O6fB/VX9VqbviQ/l3w7fPZ86aNdGz/3vR1/MN2e+kMU/eU9qFvXY6P4tmdsSM2VtubmyytqWsrbUXFllbam5bSnrP6tZvz73339/Ro0alar22/y/wdKG3TdvWa6bPq/BSa936do+XzxqcN4/uNcWzZv4yz/msBcez7jZv8qgFX/N/J3654fDP5IHdj8gkz76L02eW1tXygk3/D57/vGRXP2rbzc431pdKjLhI+fluX85OL84471NPtyquefOWbgyZ9z+RCb//NLst/jPG93/h757ZdzHLskN/zo0w97Zo9FZW2KurG1rrqzbRtbKujeuAr7hyspjDhvRpvdEa5RSmQ0fPrx01lln1d+ura0t7brrrqVJkyZtcv2Pf/zjpQ9/+MMNlo0cObL0+c9/vlHP98orr5SSlF555ZUtD11m62pqSwO/clep1/EPl5K6UlJ605+6Uq/jHy4N/MpdpXU1tWWfK2vbmiurrG0pq/dA1rY2ty1l/WfV1dWlKVOmlKqrq7d4Bmwt62vrSg8+t7w05fG/lR58bnlpfW3d25p391Mvld779d+Udj//1/V/Dv36b0p3P/XS25o54Pz/W/rsCReXHt1l79LqDp1Lj+6yd+mzJ1xcGnD+/93i2c09d31tXem9X/9N6bMnXFyqTcWb/+NSqk1F6bMnXFw69Ou/afJ73BJzZW1bc2WVtbVpbFfU9LPLNrMJEybklltuyW233ZY//elPGT9+fF577bX6q3WefPLJDS48cM4552TatGn59re/nWeeeSaXXnppHn300Zx11lnleglbXYf2lTl91IB0HrQsvY5/JB12+XsqOqxPh13+nl7HP5LOg5bl9FEDmnzy4JaYK2vbmiurrG0pq/dA1rY2ty1lhbasXWVFRg7aOccN3TUjB+38tk9yfcyQfrl/4lH5yenvyXc+OTQ/Of09mTnxqLd1FbpjhvTLjZ8elmeGvjfHn/StDPnSz3P8Sd/KvKHvfVtXuGvuuRuupjpj0MH53AkXZc4ue+fVDp0zZ5e987kTLsqMQQfnq1twNdWWmCtr25orq6xtVVkvLLDB9773vXzzm9/M4sWLM3To0Fx33XUZMWJEkuTwww/PgAEDMnny5Pr1f/7zn+fCCy/M888/n3e961256qqr8sEPfrBRz7Vq1arssMMOhSeLawsmTX06t9z/fOoq/vErrCxV5PRRA97WZexbYq6sbWuurLK2pawtNVdWWVtqblvKukFNTU2mTp2aD37wg6mqqnpbs4B/qK0rZdZzS3PPAw9nzGEjMnLP3s3yl9DaulJmL1iRpavXpne3Thk+cKe3NXfa3EX5+p1P5W+ra+qX9e9Wla8et+/bKhNbYq6sbWuurLK2Fo3tilpFibY1bUslWvL/X9Z+1vN5YcWa7L5Tl5w0snn+pbkl5sr6xtzJv5+fBx5/JocdsHdOfe+g7fI9kFXWtrJ9taX3QNa2NbctZU2UaNCS2sr21dzFXEvOlbVtzW3JrM1dUntfW25uuSnRNmNbK9Foe9rKFyVoi2xf0DJsW9BybF/QcmxfNFZjuyInxwAAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAko0AAAAACigRAMAAACAAu3LHWBrK5VKSZJVq1aVOQnbq5qamqxZsyarVq1KVVVVuePANsX2BS3DtgUtx/YFLcf2RWNt6Ig2dEabs92VaKtXr06S9O/fv8xJAAAAAGgtVq9enR122GGz91eUimq2bUxdXV1eeumldOvWLRUVFeWOw3Zo1apV6d+/f/7617+me/fu5Y4D2xTbF7QM2xa0HNsXtBzbF41VKpWyevXq7LLLLqms3PyZz7a7PdEqKyuz2267lTsGpHv37v5DDi3E9gUtw7YFLcf2BS3H9kVjvNUeaBu4sAAAAAAAFFCiAQAAAEABJRpsZR07dswll1ySjh07ljsKbHNsX9AybFvQcmxf0HJsXzS37e7CAgAAAADQVPZEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEg63k+eefz2c/+9kMHDgwnTt3zqBBg3LJJZekurq6wXpPPvlkDjvssHTq1Cn9+/fPVVddVabE0HZcfvnlOeSQQ9KlS5f06NFjk+ssXLgwH/rQh9KlS5f07t07//Zv/5b169dv3aDQRl1//fUZMGBAOnXqlBEjRmT27NnljgRtzm9/+9sce+yx2WWXXVJRUZEpU6Y0uL9UKuXiiy9Ov3790rlz54wePTp//vOfyxMW2pBJkybl4IMPTrdu3dK7d++MHTs28+bNa7DO2rVrc+aZZ2bnnXdO165dc/zxx2fJkiVlSkxbpkSDreSZZ55JXV1d/vM//zN//OMfc8011+Smm27Kv//7v9evs2rVqowZMya777575syZk29+85u59NJLc/PNN5cxObR+1dXV+djHPpbx48dv8v7a2tp86EMfSnV1dR588MHcdtttmTx5ci6++OKtnBTanjvuuCMTJkzIJZdcksceeyz7779/jj766CxdurTc0aBNee2117L//vvn+uuv3+T9V111Va677rrcdNNNefjhh/OOd7wjRx99dNauXbuVk0Lbcv/99+fMM8/MQw89lOnTp6empiZjxozJa6+9Vr/Ol770pfzf//t/8/Of/zz3339/Xnrppfyf//N/ypiatqqiVCqVyh0Ctlff/OY3c+ONN+Yvf/lLkuTGG2/MV7/61SxevDgdOnRIklxwwQWZMmVKnnnmmXJGhTZh8uTJOffcc7Ny5coGy+++++58+MMfzksvvZQ+ffokSW666aacf/75WbZsWf32BmxsxIgROfjgg/O9730vSVJXV5f+/fvn7LPPzgUXXFDmdNA2VVRU5Je//GXGjh2b5I290HbZZZecd955+fKXv5wkeeWVV9KnT59Mnjw5n/zkJ8uYFtqWZcuWpXfv3rn//vvzvve9L6+88kp69eqV22+/PSeccEKSN3ZwePe7351Zs2blPe95T5kT05bYEw3K6JVXXslOO+1Uf3vWrFl53/ve1+Av9EcffXTmzZuXv//97+WICNuEWbNmZd99960v0JI3tq1Vq1blj3/8YxmTQetWXV2dOXPmZPTo0fXLKisrM3r06MyaNauMyWDbsmDBgixevLjBtrbDDjtkxIgRtjVooldeeSVJ6v+eNWfOnNTU1DTYvvbee++8853vtH3RZEo0KJPnnnsu3/3ud/P5z3++ftnixYsb/CU/Sf3txYsXb9V8sC2xbcGWWb58eWpraze5/dh2oPls2J5sa/D21NXV5dxzz8173/veDBkyJEnqj/L55/Pm2r7YEko0eJsuuOCCVFRUvOWffz4U88UXX8wxxxyTj33sYzn99NPLlBxaty3ZtgAA2H6deeaZmTt3bn7605+WOwrbqPblDgBt3XnnnZdTTz31LdfZY4896n9+6aWX8v73vz+HHHLIRhcM6Nu370ZXidlwu2/fvs0TGNqIpm5bb6Vv374bXU3QtgXFevbsmXbt2m3y/022HWg+G7anJUuWpF+/fvXLlyxZkqFDh5YpFbQtZ511Vn7961/nt7/9bXbbbbf65X379k11dXVWrlzZYG80/y9jSyjR4G3q1atXevXq1ah1X3zxxbz//e/PsGHD8sMf/jCVlQ13Bh05cmS++tWvpqamJlVVVUmS6dOnZ/Dgwdlxxx2bPTu0Zk3ZtoqMHDkyl19+eZYuXZrevXsneWPb6t69e/bZZ59meQ7YFnXo0CHDhg3LjBkz6k+AXldXlxkzZuSss84qbzjYhgwcODB9+/bNjBkz6kuzVatW5eGHH97slaeBN5RKpZx99tn55S9/mZkzZ2bgwIEN7h82bFiqqqoyY8aMHH/88UmSefPmZeHChRk5cmQ5ItOGKdFgK3nxxRdz+OGHZ/fdd8+3vvWtLFu2rP6+Df8C8q//+q+57LLL8tnPfjbnn39+5s6dm+985zu55ppryhUb2oSFCxdmxYoVWbhwYWpra/PEE08kSfbcc8907do1Y8aMyT777JOTTjopV111VRYvXpwLL7wwZ555Zjp27Fje8NDKTZgwIaecckoOOuigDB8+PNdee21ee+21jBs3rtzRoE159dVX89xzz9XfXrBgQZ544onstNNOeec735lzzz03X//61/Oud70rAwcOzEUXXZRddtmlvsAGNu3MM8/M7bffnjvvvDPdunWrP8/ZDjvskM6dO2eHHXbIZz/72UyYMCE77bRTunfvnrPPPjsjR450ZU6arKJUKpXKHQK2B5MnT97sXzjevBk++eSTOfPMM/PII4+kZ8+eOfvss3P++edvrZjQJp166qm57bbbNlp+33335fDDD0+SvPDCCxk/fnxmzpyZd7zjHTnllFNy5ZVXpn17/54ERb73ve/lm9/8ZhYvXpyhQ4fmuuuuy4gRI8odC9qUmTNn5v3vf/9Gy0855ZRMnjw5pVIpl1xySW6++easXLkyhx56aG644YbstddeZUgLbUdFRcUml//whz+sPzXI2rVrc9555+UnP/lJ1q1bl6OPPjo33HCDwzlpMiUaAAAAABRwdU4AAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwAAAIACSjQAAAAAKKBEAwDYhp166qkZO3ZsuWMAALR57csdAACALVNRUfGW919yySX5zne+k1KptJUSAQBsu5RoAABt1KJFi+p/vuOOO3LxxRdn3rx59cu6du2arl27liMaAMA2x+GcAABtVN++fev/7LDDDqmoqGiwrGvXrhsdznn44Yfn7LPPzrnnnpsdd9wxffr0yS233JLXXnst48aNS7du3bLnnnvm7rvvbvBcc+fOzQc+8IF07do1ffr0yUknnZTly5dv5VcMAFA+SjQAgO3Mbbfdlp49e2b27Nk5++yzM378+HzsYx/LIYccksceeyxjxozJSSedlDVr1iRJVq5cmSOOOCIHHHBAHn300UybNi1LlizJxz/+8TK/EgCArUeJBgCwndl///1z4YUX5l3velcmTpyYTp06pWfPnjn99NPzrne9KxdffHFefvnlPPnkk0mS733veznggANyxRVXZO+9984BBxyQW2+9Nffdd1+effbZMr8aAICtwznRAAC2M/vtt1/9z+3atcvOO++cfffdt35Znz59kiRLly5NkvzhD3/Ifffdt8nzq82fPz977bVXCycGACg/JRoAwHamqqqqwe2KiooGyzZc9bOuri5J8uqrr+bYY4/NN77xjY1m9evXrwWTAgC0Hko0AADe0oEHHpj/+Z//yYABA9K+va+PAMD2yTnRAAB4S2eeeWZWrFiRE088MY888kjmz5+f3/zmNxk3blxqa2vLHQ8AYKtQogEA8JZ22WWX/P73v09tbW3GjBmTfffdN+eee2569OiRykpfJwGA7UNFqVQqlTsEAAAAALRm/ukQAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACggBINAAAAAAoo0QAAAACgwP8HW4Xv/igjEgkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(15, 10))\n", "plt.xlabel('Time')\n", "plt.ylabel('Amplitude')\n", "markerline1, stemlines1, baseline1 = plt.stem(nx-position*duration, x, label='Señal x[n]') \n", "markerline1.set_markerfacecolor('red')\n", "markerline2, stemlines2, baseline2 = plt.stem(nx-position*duration, h, label='Señal h[n]') \n", "markerline2.set_markerfacecolor('blue') \n", "plt.grid()\n", "plt.legend(loc='best')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 16, "id": "8fe8e27f-1109-4707-b042-c87c116301a3", "metadata": {}, "outputs": [], "source": [ "y=signal.convolve(x, h, mode='same', method='direct')" ] }, { "cell_type": "code", "execution_count": 17, "id": "5742feaa-a524-4d8e-b8ce-c4553291de76", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABNoAAAMtCAYAAABJuxxlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgRUlEQVR4nO3dfZyVdZ0//tcAwwwooKjDDIWKeVNESmoQ3pQSAmqUW1n6/ZpK5bd1pdbFtqJSxG5Qu9Es0/UubFvT/H7LTTOEhcjcUFbINTJd9YexKQMqwXATMDDz+8NlcgRkBq7D4cDz+XjM7lzX9Tnv877OnE+c8/K6qWptbW0NAAAAALBDupS7AQAAAADYHQjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAAChAt3I3sCtqaWnJCy+8kF69eqWqqqrc7QAAAABQRq2trVm5cmX69++fLl22ftyaoG0LXnjhhQwYMKDcbQAAAACwC/nv//7vvPGNb9zqdkHbFvTq1SvJKy9e7969y9wNFKO5uTnTp0/PqFGjUl1dXe52YLdifkHpmF9QGuYWlI75tXtqamrKgAED2jKjrRG0bcGm00V79+4taGO30dzcnJ49e6Z3797+xx4KZn5B6ZhfUBrmFpSO+bV729YlxtwMAQAAAAAKIGgDAAAAgAII2gAAAACgAK7RBgAAANBBLS0tWb9+/Va3Nzc3p1u3blm7dm02bty4EztjR1RXV6dr1647XEfQBgAAANAB69evz8KFC9PS0rLVMa2tramvr89///d/b/PC+exa9tlnn9TX1+/Q303QBgAAALANra2tWbx4cbp27ZoBAwakS5ctX42rpaUlq1atyt57773VMexaWltbs2bNmixdujRJ0tDQsN21BG0AAAAA27Bhw4asWbMm/fv3T8+ePbc6btOppbW1tYK2CtKjR48kydKlS1NXV7fdp5H6iwMAAABsw6brrXXv3r3MnVAqmwLU5ubm7a4haAMAAADoINdd230V8bd16igAAADATrKxpTVzFy7L0pVrU9erNkMH9k3XLsK73YWgDQAAAGAnmLZgcSbf+0QWr1jbtq6hT20mjR2UMYO3/wL87DqcOgoAAABQYtMWLM6FP5zfLmRLksYVa3PhD+dn2oLFZeqsY55//vkcdNBBGTVqVJYsWZK3vOUtnXr8c889l6qqqjz22GPb3cP555+fqqqqVFVV5Z577unw42bPnt32uDPOOGO7n78jBG0AAAAAJbSxpTWT730irVvYtmnd5HufyMaWLY3YMS+++GIuvPDCHHjggampqUl9fX1Gjx6df//3f+9UnVmzZuWcc87J+9///gwfPjyf+MQnCu+1I8aMGZPFixfn1FNP7fBjjjvuuCxevDgf/vCHS9jZK5w6CgAAAFBCcxcu2+xItldrTbJ4xdrMXbgsw9+0X6HP/cEPfjDr16/P7bffnkMOOSRLlizJzJkz8/LLL3eqzkc/+tG23y+66KJCe+yMTWFhZ3Tv3j319fXp0aNH1q1bV6LOXuGINgAAAIASWrpy6yHb9ozrqOXLl+fXv/51rrrqqpx88sk56KCDMnTo0EycODHve9/72o37xCc+kQMOOCC9e/fOiBEj8p//+Z9t2y+//PIMGTIk//zP/5yDDz44ffr0yVlnnZWVK1e2jZk2bVpOOOGE7LPPPtlvv/3y3ve+N88++2yHe73iiisyePDgzdYPGTIkl1566VYft+mU1J/85Cc5+eST07Nnzxx11FGZM2dOh5+7SII2AAAAgBKq61Vb6LiO2nvvvbP33nvnnnvued0juc4888wsXbo0v/jFLzJv3rwcffTRec973pNly5a1jXn22Wdzzz335L777st9992XX/3qV7nyyivbtq9evToTJkzIo48+mpkzZ6ZLly75m7/5m7S0tHSo14997GP5wx/+kP/4j/9oW/fb3/42jz/+eMaNG7fNx3/xi1/MZz7zmTz22GM5/PDDc/bZZ2fDhg0deu4iCdoAAAAASmjowL5p6FObqq1sr8ordx8dOrBvoc/brVu3TJ06Nbfffnv22WefHH/88fnCF76Qxx9/vG3MQw89lLlz5+buu+/Osccem8MOOyzf+MY3ss8+++T//t//2zaupaUlU6dOzeDBg3PiiSfmox/9aGbOnNm2/YMf/GA+8IEP5NBDD82QIUNy22235Xe/+12eeOKJDvX6xje+MaNHj873v//9tnXf//738+53vzuHHHLINh//mc98JqeffnoOP/zwTJ48OX/84x/zzDPPdOi5iyRoAwAAACihrl2qMmnsoCTZLGzbtDxp7KB07bK1KG77ffCDH8wLL7yQn/3sZxkzZkxmz56do48+OlOnTk2S/Od//mdWrVqV/fbbr+0IuL333jsLFy5sd+rnwQcfnF69erUtNzQ0ZOnSpW3LTz/9dM4+++wccsgh6d27dw4++OAkyaJFizrc6wUXXJAf/ehHWbt2bdavX5877rgjH/vYxzr02COPPLJdb0na9bezuBkCAAAAQImNGdyQG845OpN+9vssafrraZz1fWozaeygjBncULLnrq2tzSmnnJJTTjkll156aT7xiU9k0qRJOf/887Nq1ao0NDRk9uzZmz1un332afu9urq63baqqqp2p4WOHTs2Bx10UG6++eb0798/LS0tGTx4cNavX9/hPseOHZuampr89Kc/Tffu3dPc3JwPfehDHXrsq/urqnolsOzoaatFErQBAAAAdFJra2ta//KXzda3tLSk5S9/SUu3bkmX9icSjjqkT4b/7Tty7JRZaU1Vbjrn6Jz4pv3StUtVWtas6fBzV/Xo0RYmbY9BgwblnnvuSZIcffTRaWxsTLdu3dqOQuusl19+OU899VRuvvnmnHjiiUleOSW1s7p165bzzjsv3//+99O9e/ecddZZ6dGjx3b1VC6CNgAAAIBOav3LX/LU0cdsdfuS13nszzb9cm+yPVcRO2L+vFT17LnNcS+//HLOPPPMfOxjH8uRRx6ZXr165dFHH83VV1+d97///UmSkSNHZvjw4TnjjDNy9dVX5/DDD88LL7yQn//85/mbv/mbHHvssdt8nn333Tf77bdfbrrppjQ0NGTRokX5/Oc/vx17lnziE5/IW97yliTJv//7v29XjXIStAEAAADshvbee+8MGzYs11xzTZ599tk0NzdnwIABueCCC/KFL3whySunWd5///354he/mHHjxuXFF19MfX193vWud6Vfv34dep4uXbrkzjvvzKc//ekMHjw4RxxxRK677rqcdNJJne75sMMOy3HHHZdly5Zl2LBhnX58uQnaAAAAADqpqkePHDF/3mbrW1pa0rRyZXr36pUuXUpzD8qqDp5OWVNTkylTpmTKlCmvO65Xr1657rrrct11121x++WXX57LL7+83bqLL744F198cdvyyJEjN7vDaGtra9vvBx98cLvlrWltbc0LL7yQv/u7v9vm2K3V3WeffTr0XKUgaAMAAADopKqqqi2fvtnSki4bNqRLz54lC9p2Vy+++GLuvPPONDY2Zty4cVscc99992XvvffOnXfemfe+970dqvvrX/86p556atatW5fTTz+9yJY3I2gDAAAAoOzq6uqy//7756abbsq+++672farr746X/rSl5IkDQ0dv0vrsccem8ceeyzJK6fTlpKgDQAAAICy29bpnnV1damrq+t03R49euTQQw/d3rY6xTGMAAAAAFAAR7QBAACwwza2tGbuwmVZunJt6nrVZujAvunapWqXq1lpdfW66/X6ekddtba2ZvX6jVndnHRdvzF711SlqmrHX4PW1tasXrcxG1pa0q1Ll+xV03WH65aiZinr7gwtLS07XKOsQduUKVPyk5/8JE8++WR69OiR4447LldddVWOOOKI133c3XffnUsvvTTPPfdcDjvssFx11VU57bTT2ra3trZm0qRJufnmm7N8+fIcf/zxueGGG3LYYYeVepcAAAAKU6qA4ZGFyzLvparst3BZhh9at8M1py1YnMn3PpHFK9a2rWvoU5tJYwdlzOCOX0ep1DUrra5ed61eq6urU1VVlRdffDEHHHDAZuHRyrXrs7RpfTb8T1jz0ur16dalS+p6d0+v2u7b1euW6ibZ4bqlqFnKuqXW2tqa9evX58UXX0yXLl3Svfv291rVWq77nSYZM2ZMzjrrrLzjHe/Ihg0b8oUvfCELFizIE088kb322muLj/nNb36Td73rXZkyZUre+9735o477shVV12V+fPnZ/DgwUmSq666KlOmTMntt9+egQMH5tJLL83vfve7PPHEE6mtrd1mX01NTenTp09WrFiR3r17F7rPUC7Nzc25//77c9ppp6W6urrc7cBuxfyC0jG/qBSlCMR2pYBhWzUv/OH8vPaL5aa9v+GcoztduxQ1K62uXnfNXletWpU//elPmx3V9pf1G7Ns9fqt1u27V/f06N61U72Wqm4l9bqz9ezZMw0NDVsM2jqaFZU1aHutF198MXV1dfnVr36Vd73rXVsc85GPfCSrV6/Offfd17bune98Z4YMGZIbb7wxra2t6d+/fy655JJ85jOfSZKsWLEi/fr1y9SpU3PWWWdtsw9BG7sjX1SgdMwvKB3zi1IoOhTbk8OrjS2tOeGqWe32/bW16/vU5qHPjejwa1yKmpVWV6+7dq8bN25Mc3Nzu7r/++aH8+KqdVt9zAF71+RfLnhnp1+DoutWUq87W9euXdOtW7etnuba0axol7pG24oVK5Ikffv23eqYOXPmZMKECe3WjR49Ovfcc0+SZOHChWlsbMzIkSPbtvfp0yfDhg3LnDlzthi0rVu3LuvW/fXN0NTUlOSVD3avnjxQyTa9l72noXjmF5SO+UXRHvj9knzl/ifT2PTXz//1vWvypdPenNFv7bdd9T51539uFl41rlibC384P98566hO193Y0prLf/b7zWomSWteCQMm3/v7nHTYfp36cl10zSR5ZOGyrYYWm2ovXrE2c55ZmmEDt/49r9Q1K62uXnf9Xrt2/euRWY8uWpbHFq953fHPr1yT3/6pqVOvQSnqVlKv5bBhw4atbuvoZ5FdJmhraWnJxRdfnOOPP77tFNAtaWxsTL9+7f+h6tevXxobG9u2b1q3tTGvNWXKlEyePHmz9dOnT0/Pnj07tR+wq5sxY0a5W4DdlvkFpWN+UYT/fLkqt/1Xl/9Z+muY1Ni0NuPvfCwfO7wlR+3X8RN+WlqTyfO7/k941T6cav2f//ulnzyW5uc2pjMHcDy9oiqNTVs/veqVMGBdvnvXtBzWp2P9lqJmksx7qSrJtk8Fm/7rR/LyHzpWtxQ1K62uXvVaqrqV1OuuZs2a1w8SN9llgraLLrooCxYsyEMPPbTTn3vixIntjpJramrKgAEDMmrUKKeOsttobm7OjBkzcsoppzj1BgpmfkHpmF97to0trXn0j3/O0pXrUterJscetO92n3K0saU1U775YJItndZUlaokv1jSM5/93+/q8HM8snBZlj/86OuMqMry9ckBg97ZqSM47n18cfLE77Y57pC3DslpR3bsVM9S1EyS/RYuyw+efr3X4BWjThzW4degFDUrra5e9VqqupXU665m09mP27JLBG3jx4/PfffdlwcffDBvfOMbX3dsfX19lixZ0m7dkiVLUl9f37Z907qGhoZ2Y4YMGbLFmjU1NampqdlsfXV1tQ907Ha8r6F0zC8oHfNrz1P0dc8effbldqeLvtamI7p++6eVGf6m/TpU8+U1Wz/F6LXjOvP+bdhnyzeG29K4jtYtRc0kGX5oXRr61KZxxdotnpa66ZpXnbmzaSlqVlpdveq1VHUrqdddTUf/t7HLtoeUTmtra8aPH5+f/vSnmTVrVgYOHLjNxwwfPjwzZ85st27GjBkZPnx4kmTgwIGpr69vN6apqSmPPPJI2xgAAGDXtemi/a+9ltKm655NW7C40zWXrtz6dZm2Z1yS1PWqLXTcJkMH9k1Dn9ps7atoVV4JHYd24qiQUtRMkq5dqjJp7KC2Gq+tmSSTxg7q1BfrUtSstLp61Wup6lZSr5WqrEHbRRddlB/+8Ie544470qtXrzQ2NqaxsTF/+ctf2sace+65mThxYtvy3//932fatGn55je/mSeffDKXX355Hn300YwfPz5JUlVVlYsvvjhf+cpX8rOf/Sy/+93vcu6556Z///4544wzdvYuAgAAnbCxpTWT731iqxftT5LJ9z6RjS2du8ZPKUIx4dUrxgxuyA3nHJ263u3PEqrvU7tddzItVc1Kq6tXvZaqbiX1WomqWltby3YVuq3dMvX73/9+zj///CTJSSedlIMPPjhTp05t23733XfnS1/6Up577rkcdthhufrqq3Paaae1bW9tbc2kSZNy0003Zfny5TnhhBPyve99L4cffniH+uroLVuhkjQ3N+f+++/Paaed5tQbKJj5BaVjfu155jz7cs6++eFtjvvRBe/s8CmeySsB3glXzdrmaU0PfW5Ep8KmTUffJWlXd1OFHflyOW3B4kz62e+z5FWnvO7I6bOlqrnJyrXNedvl05MkU8e9IycedsAOH71SipqVVlevldvrLR99e05+S8Me/RoUWbfcOpoVlfUabR3J+GbPnr3ZujPPPDNnnnnmVh9TVVWVK664IldcccWOtAcAAHTAxpbWzF24LEtXrk1dr1eO4NreL1WlOMUz+esRXRf+cH6qsuVQbHuO6Np0BMdrw6v6AsKrMYMbcvyh+xf6hfW1NYsMAl5dY0feA6WuWWl19Vq5vb7j4O2/gcvr1a2k16DIupVil7gZAgAAUJmKvmlBqa57lpQuFCtFILZJqb9cFxkEAFDma7QBAACVqxQ3LSjVdc82GTO4If824d1ty1PHvSMPfW7EDp82uacfwQHAKwRtAABAp5XqpgU74851QjEASkXQBgAAdNrchcs2O5Lt1VqTLF6xNnMXLut0bXeuA6BSuUYbAADQaaW6acEmpbzuGQCUiiPaAACATivlTQs2cYonAJVG0AYAAHRaqW9aAACVSNAGAAB02s64aQEAVBpBGwAAsF3ctAAA2nMzBAAAYLu5aQEA/JWgDQAA9iAbW1ozd+GyLF25NnW9agu5yYCbFgDAKwRtAACwh5i2YHEm3/tEFq9Y27auoU9tJo0d5DRPACiAa7QBAMAeYNqCxbnwh/PbhWxJ0rhibS784fxMW7C4TJ0BwO5D0AYAALu5jS2tmXzvE2ndwrZN6ybf+0Q2tmxpBADQUYI2AADYzc1duGyzI9lerTXJ4hVrM3fhsp3XFADshgRtAACwm1u6cush2/aMAwC2TNAGAAC7ubpetYWOAwC2TNAGAAC7uaED+6ahT22qtrK9Kq/cfXTowL47sy0A2O0I2gAAYDfXtUtVJo0dlCSbhW2blieNHZSuXbYWxQEAHSFoAwCAPcCYwQ254ZyjU9e7pt36+j61ueGcozNmcEOZOgOA3Ue3cjcAAADsHGMGN+T4Q/fP2y6fniSZOu4dOfGwAxzJBgAFcUQbAADsQV4dqg0d2FfIBgAFErQBAAAAQAEEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAQRtAAAAAFCAbuVuAAAA2NzGltbMXbgsS1euTV2v2gwd2Dddu1SVuy0A4HUI2gAAYBczbcHiTL73iSxesbZtXUOf2kwaOyhjBjeUsTMA4PU4dRQAAHYh0xYszoU/nN8uZEuSxhVrc+EP52fagsVl6gwA2BZBGwAA7CI2trRm8r1PpHUL2zatm3zvE9nYsqURAEC5CdoAAGAXMXfhss2OZHu11iSLV6zN3IXLdl5TAECHCdoAAGAXsXTl1kO27RkHAOxcgjYAANhF1PWqLXQcALBzCdoAAGAXMXRg3zT0qU3VVrZX5ZW7jw4d2HdntgUAdJCgDQAAdhFdu1Rl0thBSbJZ2LZpedLYQenaZWtRHABQToI2AADYhYwZ3JAbzjk6db1r2q2v71ObG845OmMGN5SpMwBgW7qVuwEAAKC9MYMbcvyh++dtl09Pkkwd946ceNgBjmQDgF2cI9oAAGAX9OpQbejAvkI2AKgAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoADdyt0AAABUuo0trZm7cFmWrlybul61GTqwb7p2qSp3WwDATlbWI9oefPDBjB07Nv37909VVVXuueee1x1//vnnp6qqarOft771rW1jLr/88s22v/nNby7xngAAsKeatmBxTrhqVs6++eH8/Z2P5eybH84JV83KtAWLy90aALCTlTVoW716dY466qhcf/31HRr/7W9/O4sXL277+e///u/07ds3Z555Zrtxb33rW9uNe+ihh0rRPgAAe7hpCxbnwh/Oz+IVa9utb1yxNhf+cL6wDQD2MGU9dfTUU0/Nqaee2uHxffr0SZ8+fdqW77nnnvz5z3/OuHHj2o3r1q1b6uvrC+sTAABea2NLaybf+0Rat7CtNUlVksn3PpFTBtU7jRQA9hAVfY22W2+9NSNHjsxBBx3Ubv3TTz+d/v37p7a2NsOHD8+UKVNy4IEHbrXOunXrsm7durblpqamJElzc3Oam5tL0zzsZJvey97TUDzzC0pnV55fjyxcttmRbK/WmmTxirWZ88zSDBvYt9P1m5s3vOr35jRXbSnS67xS1K2kXktVt3J73VDY/NrTX9dS1dVrJfdqfhVZt9w6+res2KDthRdeyC9+8Yvccccd7dYPGzYsU6dOzRFHHJHFixdn8uTJOfHEE7NgwYL06tVri7WmTJmSyZMnb7Z++vTp6dmzZ0n6h3KZMWNGuVuA3Zb5BaWzK86veS9VJem6zXHTf/1IXv5D579krNuYbPq4/sAD01Oz7acqW91K6rVUdSu111mzZlVMr7v661qqunqt3F7Nr2LrltuaNWs6NK5ig7bbb789++yzT84444x26199KuqRRx6ZYcOG5aCDDsqPf/zjfPzjH99irYkTJ2bChAlty01NTRkwYEBGjRqV3r17l6R/2Nmam5szY8aMnHLKKamuri53O7BbMb+gdHbl+bXfwmX5wdOPbnPcqBOHbdcRbWvWb8hn585KkowePSo9uxfz0b0UdSup11LVrdReR4wYkT571e5wzdfW3RNf11LV1Wvl9mp+FVu33Dad/bgtFbm3ra2tue222/LRj3403bt3f92x++yzTw4//PA888wzWx1TU1OTmpqazdZXV1fvch/oYEd5X0PpmF9QOrvi/Bp+aF0a+tSmccXaLV6nrSpJfZ/aDD+0bruu0Vbd+tfHvLL/xXx0L0XdSuq1VHUrt9duhc2tPf11LVVdvVZyr+ZXkXXLraN/y7LedXR7/epXv8ozzzyz1SPUXm3VqlV59tln09DQsBM6AwBgT9G1S1UmjR2U5JVQ7dU2LU8aO8iNEABgD1LWoG3VqlV57LHH8thjjyVJFi5cmMceeyyLFi1K8sopneeee+5mj7v11lszbNiwDB48eLNtn/nMZ/KrX/0qzz33XH7zm9/kb/7mb9K1a9ecffbZJd0XAAD2PGMGN+SGc45OXe/2Z0fU96nNDeccnTGD/cdeANiTlPX4vUcffTQnn3xy2/Km66Sdd955mTp1ahYvXtwWum2yYsWK/L//9//y7W9/e4s1//SnP+Xss8/Oyy+/nAMOOCAnnHBCHn744RxwwAGl2xEAAPZYYwY35PhD98/bLp+eJJk67h058bADHMkGAHugsgZtJ510Ulpbt34HpqlTp262rk+fPq97p4c777yziNYAAKDDXh2qDR3YV8gGAHuoirxGGwAAAADsagRtAAAAAFAAQRsAAAAAFEDQBgAAAAAFELQBAAAAQAEEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAQRtAAAAAFAAQRsAAAAAFEDQBgAAAAAFELQBAAAAQAEEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAQRtAAAAAFAAQRsAAAAAFEDQBgAAAAAFELQBAAAAQAEEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAQRtAAAAAFAAQRsAAAAAFEDQBgAAAAAFELQBAAAAQAEEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAQRtAAAAAFAAQRsAAAAAFEDQBgAAAAAFELQBAAAAQAEEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAQRtAAAAAFAAQRsAAAAAFEDQBgAAAAAFELQBAAAAQAEEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAQRtAAAAAFAAQRsAAAAAFKBbuRsAAICdZWNLa+YuXJalK9emrldthg7sm65dqsrdFgCwmyjrEW0PPvhgxo4dm/79+6eqqir33HPP646fPXt2qqqqNvtpbGxsN+7666/PwQcfnNra2gwbNixz584t4V4AAFAJpi1YnBOumpWzb344f3/nYzn75odzwlWzMm3B4nK3BgDsJsoatK1evTpHHXVUrr/++k497qmnnsrixYvbfurq6tq23XXXXZkwYUImTZqU+fPn56ijjsro0aOzdOnSotsHAKBCTFuwOBf+cH4Wr1jbbn3jirW58IfzhW0AQCHKeuroqaeemlNPPbXTj6urq8s+++yzxW3f+ta3csEFF2TcuHFJkhtvvDE///nPc9ttt+Xzn//8jrQLAEAF2tjSmsn3PpHWLWxrTVKVZPK9T+SUQfVOIwUAdkhFXqNtyJAhWbduXQYPHpzLL788xx9/fJJk/fr1mTdvXiZOnNg2tkuXLhk5cmTmzJmz1Xrr1q3LunXr2pabmpqSJM3NzWlubi7RXsDOtem97D0NxTO/oHSKmF+PLFy22ZFsr9aaZPGKtZnzzNIMG9h3u56juXnDq35vTnPVlmK98tcsVd1K6rVUdSu31w2F/fu1p7+upaqr10ru1fwqsm65dfRvWVFBW0NDQ2688cYce+yxWbduXW655ZacdNJJeeSRR3L00UfnpZdeysaNG9OvX792j+vXr1+efPLJrdadMmVKJk+evNn66dOnp2fPnoXvB5TTjBkzyt0C7LbMLyidHZlf816qStJ1m+Om//qRvPyH7fsysG5jsumj9QMPTE/Ntp+uLDVLVbeSei1V3UrtddasWRXT667+upaqrl4rt1fzq9i65bZmzZoOjauooO2II47IEUcc0bZ83HHH5dlnn80111yTf/7nf97uuhMnTsyECRPalpuamjJgwICMGjUqvXv33qGeYVfR3NycGTNm5JRTTkl1dXW524HdivkFpVPE/Npv4bL84OlHtzlu1InDtvuItjXrN+Szc2clSUaPHpWe3Xf8Y3YpapaqbiX1Wqq6ldrriBEj0mev2h2u+dq6e+LrWqq6eq3cXs2vYuuW26azH7el4vd26NCheeihh5Ik+++/f7p27ZolS5a0G7NkyZLU19dvtUZNTU1qamo2W19dXe0LE7sd72soHfMLSmdH5tfwQ+vS0Kc2jSvWbvE6bVVJ6vvUZvihddt9jbbq1r8+7pVed/xjdilqlqpuJfVaqrqV22u3wv7t2tNf11LV1Wsl92p+FVm33Dr6tyzrXUeL8Nhjj6WhoSFJ0r179xxzzDGZOXNm2/aWlpbMnDkzw4cPL1eLAACUUdcuVZk0dlCSV0K1V9u0PGnsIDdCAAB2WFljxVWrVuWZZ55pW164cGEee+yx9O3bNwceeGAmTpyY559/Pj/4wQ+SJNdee20GDhyYt771rVm7dm1uueWWzJo1K9OnT2+rMWHChJx33nk59thjM3To0Fx77bVZvXp1211IAQDY84wZ3JAbzjk6k372+yxp+utNsOr71GbS2EEZM7ihjN0BALuLsgZtjz76aE4++eS25U3XSTvvvPMyderULF68OIsWLWrbvn79+lxyySV5/vnn07Nnzxx55JH5t3/7t3Y1PvKRj+TFF1/MZZddlsbGxgwZMiTTpk3b7AYJAADsWcYMbsjxh+6ft13+yn+knTruHTnxsAMcyQYAFKasQdtJJ52U1tat39lp6tSp7ZY/+9nP5rOf/ew2644fPz7jx4/f0fYAANjNvDpUGzqwr5ANAChUxV+jDQAAAAB2BYI2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoABlDdoefPDBjB07Nv37909VVVXuueee1x3/k5/8JKecckoOOOCA9O7dO8OHD88DDzzQbszll1+eqqqqdj9vfvObS7gXAAAAAFDmoG316tU56qijcv3113do/IMPPphTTjkl999/f+bNm5eTTz45Y8eOzW9/+9t249761rdm8eLFbT8PPfRQKdoHAAAAgDbdyvnkp556ak499dQOj7/22mvbLX/ta1/Lv/7rv+bee+/N29/+9rb13bp1S319fVFtAgAAAMA2lTVo21EtLS1ZuXJl+vbt2279008/nf79+6e2tjbDhw/PlClTcuCBB261zrp167Ju3bq25aampiRJc3NzmpubS9M87GSb3sve01A88wtKp+j51dy8oV3t5qrWXbauXiurbuX2umGXnl+V9LqWqq5eK7lX86vIuuXW0b9lRQdt3/jGN7Jq1ap8+MMfbls3bNiwTJ06NUcccUQWL16cyZMn58QTT8yCBQvSq1evLdaZMmVKJk+evNn66dOnp2fPniXrH8phxowZ5W4BdlvmF5ROUfNr3cZk00fgBx6YnpquhZQtSV29VlbdSu111qxZFdPrrv66lqquXiu3V/Or2LrltmbNmg6Nq9ig7Y477sjkyZPzr//6r6mrq2tb/+pTUY888sgMGzYsBx10UH784x/n4x//+BZrTZw4MRMmTGhbbmpqyoABAzJq1Kj07t27dDsBO1Fzc3NmzJiRU045JdXV1eVuB3Yr5heUTtHza836Dfns3FlJktGjR6Vn92I+Dpeirl4rq26l9jpixIj02at2h2u+tu6e+LqWqq5eK7dX86vYuuW26ezHbanIvb3zzjvziU98InfffXdGjhz5umP32WefHH744XnmmWe2OqampiY1NTWbra+urvaFid2O9zWUjvkFpVPU/KpurXpNzWI+Dpeirl4rq27l9tqtsH+79vTXtVR19VrJvZpfRdYtt47+Lct619Ht8aMf/Sjjxo3Lj370o5x++unbHL9q1ao8++yzaWho2AndAQAAALCnKmusuGrVqnZHmi1cuDCPPfZY+vbtmwMPPDATJ07M888/nx/84AdJXjld9Lzzzsu3v/3tDBs2LI2NjUmSHj16pE+fPkmSz3zmMxk7dmwOOuigvPDCC5k0aVK6du2as88+e+fvIAAAAAB7jLIe0fboo4/m7W9/e97+9rcnSSZMmJC3v/3tueyyy5IkixcvzqJFi9rG33TTTdmwYUMuuuiiNDQ0tP38/d//fduYP/3pTzn77LNzxBFH5MMf/nD222+/PPzwwznggAN27s4BAAAAsEcp6xFtJ510Ulpbt36b16lTp7Zbnj179jZr3nnnnTvYFQAAAAB0XsVdow0AAAAAdkWCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACbFfQtnz58txyyy2ZOHFili1bliSZP39+nn/++UKbAwAAAIBK0a2zD3j88cczcuTI9OnTJ88991wuuOCC9O3bNz/5yU+yaNGi/OAHPyhFnwAAAACwS+v0EW0TJkzI+eefn6effjq1tbVt60877bQ8+OCDhTYHAAAAAJWi00Hbf/zHf+STn/zkZuvf8IY3pLGxsZCmAAAAAKDSdDpoq6mpSVNT02br/+u//isHHHBAIU0BAAAAQKXpdND2vve9L1dccUWam5uTJFVVVVm0aFE+97nP5YMf/GDhDQIAAABAJeh00PbNb34zq1atSl1dXf7yl7/k3e9+dw499ND06tUrX/3qV0vRIwAAAADs8jp919E+ffpkxowZeeihh/L4449n1apVOfroozNy5MhS9AcAAAAAFaHTQdsmJ5xwQk444YQiewEAAACAitWhoO26667rcMFPf/rT290MAAAAAFSqDgVt11xzTbvlF198MWvWrMk+++yTJFm+fHl69uyZuro6QRsAAAAAe6QO3Qxh4cKFbT9f/epXM2TIkPzhD3/IsmXLsmzZsvzhD3/I0UcfnS9/+cul7hcAAAAAdkmdvuvopZdemu985zs54ogj2tYdccQRueaaa/KlL32p0OYAAAAAoFJ0OmhbvHhxNmzYsNn6jRs3ZsmSJYU0BQAAAACVptNB23ve85588pOfzPz589vWzZs3LxdeeGFGjhxZaHMAAAAAUCk6HbTddtttqa+vz7HHHpuamprU1NRk6NCh6devX2655ZZS9AgAAAAAu7wO3XX01Q444IDcf//9+a//+q88+eSTSZI3v/nNOfzwwwtvDgAAAAAqRaeDtk0OP/xw4RoAAAAA/I9OB20f+9jHXnf7bbfdtt3NAAAAAECl6nTQ9uc//7ndcnNzcxYsWJDly5dnxIgRhTUGAAAAAJWk00HbT3/6083WtbS05MILL8yb3vSmQpoCAAAAgErT6buObrFIly6ZMGFCrrnmmiLKAQAAAEDFKSRoS5Jnn302GzZsKKocAAAAAFSUTp86OmHChHbLra2tWbx4cX7+85/nvPPOK6wxAAAAAKgknQ7afvvb37Zb7tKlSw444IB885vf3OYdSQEAAABgd9XpoO2Xv/xlKfoAAAAAgIrW6Wu0jRgxIsuXL99sfVNTU0aMGFFETwAAAABQcTodtM2ePTvr16/fbP3atWvz61//upCmAABgY0trHlm4LPNeqsojC5dlY0truVsCAHhdHQ7aHn/88Tz++ONJkieeeKJt+fHHH89vf/vb3HrrrXnDG97QqSd/8MEHM3bs2PTv3z9VVVW55557tvmY2bNn5+ijj05NTU0OPfTQTJ06dbMx119/fQ4++ODU1tZm2LBhmTt3bqf6AgCgvKYtWJwTrpqVc257ND94umvOue3RnHDVrExbsLjcrQEAbFWHr9E2ZMiQVFVVpaqqaouniPbo0SPf+c53OvXkq1evzlFHHZWPfexj+cAHPrDN8QsXLszpp5+ev/3bv82//Mu/ZObMmfnEJz6RhoaGjB49Okly1113ZcKECbnxxhszbNiwXHvttRk9enSeeuqp1NXVdao/AAB2vmkLFufCH87Pa49fa1yxNhf+cH5uOOfojBncUJbeAABeT4eDtoULF6a1tTWHHHJI5s6dmwMOOKBtW/fu3VNXV5euXbt26slPPfXUnHrqqR0ef+ONN2bgwIH55je/mSR5y1vekoceeijXXHNNW9D2rW99KxdccEHGjRvX9pif//znue222/L5z3++U/0BALBzbWxpzeR7n9gsZEuS1iRVSSbf+0ROGVSfrl2qdnJ3AACvr8NB20EHHZQkaWlpKVkz2zJnzpyMHDmy3brRo0fn4osvTpKsX78+8+bNy8SJE9u2d+nSJSNHjsycOXO2WnfdunVZt25d23JTU1OSpLm5Oc3NzQXuAZTPpvey9zQUz/yC4jyycFkWr1i71e2tSRavWJs5zyzNsIF9O12/uXnDq35vTnNVMdd9K0VdvVZW3crtdUNh/37t6a9rqerqtZJ7Nb+KrFtuHf1bdiho+9nPfpZTTz011dXV+dnPfva6Y9/3vvd16Im3R2NjY/r169duXb9+/dLU1JS//OUv+fOf/5yNGzduccyTTz651bpTpkzJ5MmTN1s/ffr09OzZs5jmYRcxY8aMcrcAuy3zC3bcvJeqkmz7LInpv34kL/+h8x/c121MNn0EfuCB6anp3AkZO7WuXiurbqX2OmvWrIrpdVd/XUtVV6+V26v5VWzdcluzZk2HxnUoaDvjjDPS2NiYurq6nHHGGVsdV1VVlY0bN3boiXclEydOzIQJE9qWm5qaMmDAgIwaNSq9e/cuY2dQnObm5syYMSOnnHJKqqury90O7FbMLyjOfguX5QdPP7rNcaNOHLZdR7StWb8hn507K0kyevSo9Oze4RM8dnpdvVZW3UrtdcSIEemzV+0O13xt3T3xdS1VXb1Wbq/mV7F1y23T2Y/b0qG9ffXpouU8dbS+vj5Llixpt27JkiXp3bt3evToka5du6Zr165bHFNfX7/VujU1NampqdlsfXV1tS9M7Ha8r6F0zC/YccMPrUtDn9o0rli7xeu0VSWp71Ob4YfWbdc12qpb//qYV+ZsMR/+S1FXr5VVt3J77VbYv117+utaqrp6reReza8i65ZbR/+WXUrcR6GGDx+emTNntls3Y8aMDB8+PMkrN2U45phj2o1paWnJzJkz28YAALDr6tqlKpPGDkrySqj2apuWJ40d5EYIAMAuqUOx4nXXXdfhgp/+9Kc7PHbVqlV55pln2pYXLlyYxx57LH379s2BBx6YiRMn5vnnn88PfvCDJMnf/u3f5rvf/W4++9nP5mMf+1hmzZqVH//4x/n5z3/eVmPChAk577zzcuyxx2bo0KG59tprs3r16ra7kAIAsGsbM7ghN5xzdCb97PdZ0vTXG1bV96nNpLGDMmZwQxm7AwDYug4Fbddcc02HilVVVXUqaHv00Udz8sknty1vuk7aeeedl6lTp2bx4sVZtGhR2/aBAwfm5z//ef7hH/4h3/72t/PGN74xt9xyS0aPHt025iMf+UhefPHFXHbZZWlsbMyQIUMybdq0zW6QAADArmvM4IYcf+j+edvl05Mkt3z07Tn5LQ2OZAMAdmkdCtoWLlxYkic/6aST0tq69btFTZ06dYuP+e1vf/u6dcePH5/x48fvaHsAAJTRq0O1dxy8r5ANANjl7dA12lpbW183KAMAAACAPcV2BW233nprBg8enNra2tTW1mbw4MG55ZZbiu4NAAAAACpGp++xetlll+Vb3/pWPvWpT7XdyXPOnDn5h3/4hyxatChXXHFF4U0CAAAAwK6u00HbDTfckJtvvjlnn31227r3ve99OfLII/OpT31K0AYAAADAHqnTp442Nzfn2GOP3Wz9Mccckw0bNhTSFAAAAABUmk4HbR/96Edzww03bLb+pptuyv/+3/+7kKYAAAAAoNJ0+tTR5JWbIUyfPj3vfOc7kySPPPJIFi1alHPPPTcTJkxoG/etb32rmC4BAAAAYBfX6aBtwYIFOfroo5Mkzz77bJJk//33z/77758FCxa0jauqqiqoRQAAAADY9XU6aPvlL39Zij4AAAAAoKJ1+hptAAAAAMDmOn1E29q1a/Od73wnv/zlL7N06dK0tLS02z5//vzCmgMAAACAStHpoO3jH/94pk+fng996EMZOnSoa7EBAAAAQLYjaLvvvvty//335/jjjy9FPwAAAABQkTp9jbY3vOEN6dWrVyl6AQAAAICK1emg7Zvf/GY+97nP5Y9//GMp+gEAAACAitTpU0ePPfbYrF27Noccckh69uyZ6urqdtuXLVtWWHMAAAAAUCk6HbSdffbZef755/O1r30t/fr1czMEAAAAAMh2BG2/+c1vMmfOnBx11FGl6AcAAAAAKlKnr9H25je/OX/5y19K0QsAAAAAVKxOB21XXnllLrnkksyePTsvv/xympqa2v0AAAAAwJ6o06eOjhkzJknynve8p9361tbWVFVVZePGjcV0BgAAAAAVpNNB2y9/+cutbvvd7363Q80AAAAAQKXqdND27ne/u93yypUr86Mf/Si33HJL5s2bl/HjxxfWHAAAAABUik5fo22TBx98MOedd14aGhryjW98IyNGjMjDDz9cZG8AAAAAUDE6dURbY2Njpk6dmltvvTVNTU358Ic/nHXr1uWee+7JoEGDStUjAAAAAOzyOnxE29ixY3PEEUfk8ccfz7XXXpsXXngh3/nOd0rZGwAAAABUjA4f0faLX/win/70p3PhhRfmsMMOK2VPAAAAAFBxOnxE20MPPZSVK1fmmGOOybBhw/Ld7343L730Uil7AwAAAICK0eGg7Z3vfGduvvnmLF68OJ/85Cdz5513pn///mlpacmMGTOycuXKUvYJAAAAALu0Tt91dK+99srHPvaxPPTQQ/nd736XSy65JFdeeWXq6uryvve9rxQ9AgAAAMAur9NB26sdccQRufrqq/OnP/0pP/rRj4rqCQAAAAAqzg4FbZt07do1Z5xxRn72s58VUQ4AAAAAKk4hQRsAAAAA7OkEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAQRtAAAAAFAAQRsAAAAAFEDQBgAAAAAFELQBAAAAQAEEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAQRtAAAAAFAAQRsAAAAAFEDQBgAAAAAFELQBAAAAQAEEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAQRtAAAAAFAAQRsAAAAAFEDQBgAAAAAFELQBAAAAQAEEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAXaJoO3666/PwQcfnNra2gwbNixz587d6tiTTjopVVVVm/2cfvrpbWPOP//8zbaPGTNmZ+wKAAAAAHuobuVu4K677sqECRNy4403ZtiwYbn22mszevToPPXUU6mrq9ts/E9+8pOsX7++bfnll1/OUUcdlTPPPLPduDFjxuT73/9+23JNTU3pdgIAAACAPV7Zj2j71re+lQsuuCDjxo3LoEGDcuONN6Znz5657bbbtji+b9++qa+vb/uZMWNGevbsuVnQVlNT027cvvvuuzN2BwAAAIA9VFmPaFu/fn3mzZuXiRMntq3r0qVLRo4cmTlz5nSoxq233pqzzjore+21V7v1s2fPTl1dXfbdd9+MGDEiX/nKV7Lffvttsca6deuybt26tuWmpqYkSXNzc5qbmzu7W7BL2vRe9p6G4plfUBrNzRva/V7EHGtfsznNVa07XLNUdfVaWXUrt9di5tbmdfe817VUdfVayb2aX0XWLbeO/i3LGrS99NJL2bhxY/r169dufb9+/fLkk09u8/Fz587NggULcuutt7ZbP2bMmHzgAx/IwIED8+yzz+YLX/hCTj311MyZMyddu3bdrM6UKVMyefLkzdZPnz49PXv27ORewa5txowZ5W4BdlvmFxRr3cZk08fVWbNmpWbzj3E7VPOBB6YXUrNUdfVaWXUrtdei5tZr6+6Jr2up6uq1cns1v4qtW25r1qzp0LiyX6NtR9x6661529velqFDh7Zbf9ZZZ7X9/ra3vS1HHnlk3vSmN2X27Nl5z3ves1mdiRMnZsKECW3LTU1NGTBgQEaNGpXevXuXbgdgJ2pubs6MGTNyyimnpLq6utztwG7F/ILSWLN+Qz47d1aSZMSIEemzV22hNUePHpWe3Yv5OFyKunqtrLqV2mtRc+u1dffE17VUdfVaub2aX8XWLbdNZz9uS1n3dv/990/Xrl2zZMmSduuXLFmS+vr6133s6tWrc+edd+aKK67Y5vMccsgh2X///fPMM89sMWirqanZ4s0SqqurfWFit+N9DaVjfkGxqlur/vp7dbdC5lf7mtWpri7m43Ap6uq1supWbq/FzK3N6+55r2up6uq1kns1v4qsW24d/VuW9WYI3bt3zzHHHJOZM2e2rWtpacnMmTMzfPjw133s3XffnXXr1uWcc87Z5vP86U9/yssvv5yGhoYd7hkAAAAAtqTsdx2dMGFCbr755tx+++35wx/+kAsvvDCrV6/OuHHjkiTnnntuu5slbHLrrbfmjDPO2OwGB6tWrco//uM/5uGHH85zzz2XmTNn5v3vf38OPfTQjB49eqfsEwAAAAB7nrIfv/eRj3wkL774Yi677LI0NjZmyJAhmTZtWtsNEhYtWpQuXdrngU899VQeeuihTJ8+fbN6Xbt2zeOPP57bb789y5cvT//+/TNq1Kh8+ctf3uLpoQAAAABQhLIHbUkyfvz4jB8/fovbZs+evdm6I444Iq2tW749bI8ePfLAAw8U2R4AAAAAbFPZTx0FAAAAgN2BoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoAC7RNB2/fXX5+CDD05tbW2GDRuWuXPnbnXs1KlTU1VV1e6ntra23ZjW1tZcdtllaWhoSI8ePTJy5Mg8/fTTpd4NAAAAAPZgZQ/a7rrrrkyYMCGTJk3K/Pnzc9RRR2X06NFZunTpVh/Tu3fvLF68uO3nj3/8Y7vtV199da677rrceOONeeSRR7LXXntl9OjRWbt2bal3BwAAAIA9VNmDtm9961u54IILMm7cuAwaNCg33nhjevbsmdtuu22rj6mqqkp9fX3bT79+/dq2tba25tprr82XvvSlvP/978+RRx6ZH/zgB3nhhRdyzz337IQ9AgAAAGBP1K2cT75+/frMmzcvEydObFvXpUuXjBw5MnPmzNnq41atWpWDDjooLS0tOfroo/O1r30tb33rW5MkCxcuTGNjY0aOHNk2vk+fPhk2bFjmzJmTs846a7N669aty7p169qWm5qakiTNzc1pbm7e4f2EXcGm97L3NBTP/ILSaG7e0O73IuZY+5rNaa5q3eGapaqr18qqW7m9FjO3Nq+7572upaqr10ru1fwqsm65dfRvWdag7aWXXsrGjRvbHZGWJP369cuTTz65xcccccQRue2223LkkUdmxYoV+cY3vpHjjjsuv//97/PGN74xjY2NbTVeW3PTtteaMmVKJk+evNn66dOnp2fPntuza7DLmjFjRrlbgN2W+QXFWrcx2fRxddasWanpWmzNBx6YXkjNUtXVa2XVrdRei5pbr627J76upaqr18rt1fwqtm65rVmzpkPjyhq0bY/hw4dn+PDhbcvHHXdc3vKWt+Sf/umf8uUvf3m7ak6cODETJkxoW25qasqAAQMyatSo9O7de4d7hl1Bc3NzZsyYkVNOOSXV1dXlbgd2K+YXlMaa9Rvy2bmzkiQjRoxIn71qt/GIztUcPXpUenYv5uNwKerqtbLqVmqvRc2t19bdE1/XUtXVa+X2an4VW7fcNp39uC1l3dv9998/Xbt2zZIlS9qtX7JkSerr6ztUo7q6Om9/+9vzzDPPJEnb45YsWZKGhoZ2NYcMGbLFGjU1NampqdlibV+Y2N14X0PpmF9QrOrWqr/+Xt2tkPnVvmZ1qquL+Thcirp6ray6ldtrMXNr87p73utaqrp6reReza8i65ZbR/+WZb0ZQvfu3XPMMcdk5syZbetaWloyc+bMdketvZ6NGzfmd7/7XVuoNnDgwNTX17er2dTUlEceeaTDNQEAAACgs8oeK06YMCHnnXdejj322AwdOjTXXnttVq9enXHjxiVJzj333LzhDW/IlClTkiRXXHFF3vnOd+bQQw/N8uXL8/Wvfz1//OMf84lPfCLJK3ckvfjii/OVr3wlhx12WAYOHJhLL700/fv3zxlnnFGu3QQAAABgN1f2oO0jH/lIXnzxxVx22WVpbGzMkCFDMm3atLabGSxatChduvz1wLs///nPueCCC9LY2Jh99903xxxzTH7zm99k0KBBbWM++9nPZvXq1fk//+f/ZPny5TnhhBMybdq01NYWc240AAAAALxW2YO2JBk/fnzGjx+/xW2zZ89ut3zNNdfkmmuued16VVVVueKKK3LFFVcU1SIAAAAAvK6yXqMNAAAAAHYXgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgALtE0Hb99dfn4IMPTm1tbYYNG5a5c+dudezNN9+cE088Mfvuu2/23XffjBw5crPx559/fqqqqtr9jBkzptS7AQAAAMAerOxB21133ZUJEyZk0qRJmT9/fo466qiMHj06S5cu3eL42bNn5+yzz84vf/nLzJkzJwMGDMioUaPy/PPPtxs3ZsyYLF68uO3nRz/60c7YHQAAAAD2UGUP2r71rW/lggsuyLhx4zJo0KDceOON6dmzZ2677bYtjv+Xf/mX/N3f/V2GDBmSN7/5zbnlllvS0tKSmTNnthtXU1OT+vr6tp999913Z+wOAAAAAHuobuV88vXr12fevHmZOHFi27ouXbpk5MiRmTNnTodqrFmzJs3Nzenbt2+79bNnz05dXV323XffjBgxIl/5yley3377bbHGunXrsm7durblpqamJElzc3Oam5s7u1uwS9r0XvaehuKZX1Aazc0b2v1exBxrX7M5zVWtO1yzVHX1Wll1K7fXYubW5nX3vNe1VHX1Wsm9ml9F1i23jv4tyxq0vfTSS9m4cWP69evXbn2/fv3y5JNPdqjG5z73ufTv3z8jR45sWzdmzJh84AMfyMCBA/Pss8/mC1/4Qk499dTMmTMnXbt23azGlClTMnny5M3WT58+PT179uzkXsGubcaMGeVuAXZb5hcUa93GZNPH1VmzZqVm849xO1TzgQemF1KzVHX1Wll1K7XXoubWa+vuia9rqerqtXJ7Nb+KrVtua9as6dC4sgZtO+rKK6/MnXfemdmzZ6e2trZt/VlnndX2+9ve9rYceeSRedOb3pTZs2fnPe95z2Z1Jk6cmAkTJrQtNzU1tV37rXfv3qXdCdhJmpubM2PGjJxyyimprq4udzuwWzG/oDTWrN+Qz86dlSQZMWJE+uxVu41HdK7m6NGj0rN7MR+HS1FXr5VVt1J7LWpuvbbunvi6lqquXiu3V/Or2Lrltunsx20p697uv//+6dq1a5YsWdJu/ZIlS1JfX/+6j/3GN76RK6+8Mv/2b/+WI4888nXHHnLIIdl///3zzDPPbDFoq6mpSU1NzWbrq6urfWFit+N9DaVjfkGxqlur/vp7dbdC5lf7mtWpri7m43Ap6uq1supWbq/FzK3N6+55r2up6uq1kns1v4qsW24d/VuW9WYI3bt3zzHHHNPuRgabbmwwfPjwrT7u6quvzpe//OVMmzYtxx577Daf509/+lNefvnlNDQ0FNI3AAAAALxW2e86OmHChNx88825/fbb84c//CEXXnhhVq9enXHjxiVJzj333HY3S7jqqqty6aWX5rbbbsvBBx+cxsbGNDY2ZtWqVUmSVatW5R//8R/z8MMP57nnnsvMmTPz/ve/P4ceemhGjx5dln0EAAAAYPdX9uP3PvKRj+TFF1/MZZddlsbGxgwZMiTTpk1ru0HCokWL0qXLX/PAG264IevXr8+HPvShdnUmTZqUyy+/PF27ds3jjz+e22+/PcuXL0///v0zatSofPnLX97i6aEAAAAAUISyB21JMn78+IwfP36L22bPnt1u+bnnnnvdWj169MgDDzxQUGcAAAAA0DFlP3UUAAAAAHYHgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAK0K3cDVB6G1taM3fhsixduTZ1vWozdGDfdO1StcvVrLS6ldbrIwuXZd5LVdlv4bIMP7Rul+61Ul7XUtXVa+X1an7pVa+lqQsAUGkEbbu5aQsWZ/K9T2TxirVt6xr61GbS2EEZM7hhl6lZaXUrt9eu+cHTj1ZIr8XUrLS6eq3kXs0vveq1yLoAAJVolzh19Prrr8/BBx+c2traDBs2LHPnzn3d8XfffXfe/OY3p7a2Nm9729ty//33t9ve2tqayy67LA0NDenRo0dGjhyZp59+upS7sEuatmBxLvzh/HYffJOkccXaXPjD+Zm2YPEuUbPS6upVr6Wqq1e9lqquXvVaSb0CAFSysh/Rdtddd2XChAm58cYbM2zYsFx77bUZPXp0nnrqqdTV1W02/je/+U3OPvvsTJkyJe9973tzxx135Iwzzsj8+fMzePDgJMnVV1+d6667LrfffnsGDhyYSy+9NKNHj84TTzyR2tranb2LZbGxpTWT730irUnS2pqajevbba9KMuUnv817Du7d4VM7Nra0ZspPfpvuG9Ztcfv21Ky0unrVa6nq6lWvpaqrV71WUq+v1bJ+Q2r+p37LX/6SlqrW7aqz1Zpr1qRlQzEfh0tRV6+VVbdiey1obm1Wdw98XUtVV68V3Kv5ldbWYva/klS1lnmvhw0blne84x357ne/myRpaWnJgAED8qlPfSqf//znNxv/kY98JKtXr859993Xtu6d73xnhgwZkhtvvDGtra3p379/LrnkknzmM59JkqxYsSL9+vXL1KlTc9ZZZ21Wc926dVm37q8fEpuamjJgwIC89NJL6d27d9G7vFM8snBZzrnt0SRJzYZ1uee+L5a5IwAAAGBPUv/Qv2fvPr3K3UYhmpqasv/++2fFihWvmxWV9Yi29evXZ968eZk4cWLbui5dumTkyJGZM2fOFh8zZ86cTJgwod260aNH55577kmSLFy4MI2NjRk5cmTb9j59+mTYsGGZM2fOFoO2KVOmZPLkyZutnz59enr27Lk9u1Z2816qStK13G0AAAAAe6hf/3JmWrt3L3cbhVizZk2HxpU1aHvppZeycePG9OvXr936fv365cknn9ziYxobG7c4vrGxsW37pnVbG/NaEydObBfebTqibdSoURV7RNt+C5flB0+/ckTbuq7dc8Z7v7rFcbeee3TecdC+Har5H3/8cz7+g/nbHNeZmpVWV696LVVdveq1VHX1qtdK6nVLmjdsyKxZszJixIhUdyv7VU9gt2FuQemYX3/1ph49UlW1e9yJvKmpqUPj9uy/+P+oqalJTU3NZuurq6tTXV1dho523PBD69LQpzaNK9amtaoq67q137+qJPV9ajN88EEdvm7K8MG903e/Z1+puYXt21Oz0urqVa+lqqtXvZaqrl71Wkm9bkmX5ua0du+emt69K/ZzGeyKzC0oHfNr99TRv2VZ7zq6//77p2vXrlmyZEm79UuWLEl9ff0WH1NfX/+64zf9/87U3B117VKVSWMHJXnlg+6rbVqeNHZQpz74lqJmpdXVq15LVVevei1VXb3qtZJ6BQCodGUN2rp3755jjjkmM2fObFvX0tKSmTNnZvjw4Vt8zPDhw9uNT5IZM2a0jR84cGDq6+vbjWlqasojjzyy1Zq7qzGDG3LDOUenvk/7O63W96nNDeccnTGDG3aJmpVWV696LVVdveq1VHX1qtdK6hUAoJKV/a6jd911V84777z80z/9U4YOHZprr702P/7xj/Pkk0+mX79+Offcc/OGN7whU6ZMSZL85je/ybvf/e5ceeWVOf3003PnnXfma1/7WubPn5/BgwcnSa666qpceeWVuf322zNw4MBceumlefzxx/PEE0+ktrb29dpJ8kow16dPn23eSaJSbGxpzdyFy7J05drU9arN0IF9d/i/LpeiZqXVrbRe5zyzNNN//UhGnTgsww+t26V7rZTXtVR19Vp5vZpfetVraeomSXNzc+6///6cdtppTr+BAplbUDrm1+6po1lR2YO2JPnud7+br3/962lsbMyQIUNy3XXXZdiwYUmSk046KQcffHCmTp3aNv7uu+/Ol770pTz33HM57LDDcvXVV+e0005r297a2ppJkyblpptuyvLly3PCCSfke9/7Xg4//PAO9bO7BW2Q+B97KCXzC0rH/ILSMLegdMyv3VNHs6Jd4mYI48ePz/jx47e4bfbs2ZutO/PMM3PmmWdutV5VVVWuuOKKXHHFFUW1CAAAAACvq6zXaAMAAACA3YWgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAK0K3cDeyKWltbkyRNTU1l7gSK09zcnDVr1qSpqSnV1dXlbgd2K+YXlI75BaVhbkHpmF+7p00Z0abMaGsEbVuwcuXKJMmAAQPK3AkAAAAAu4qVK1emT58+W91e1bqtKG4P1NLSkhdeeCG9evVKVVVVuduBQjQ1NWXAgAH57//+7/Tu3bvc7cBuxfyC0jG/oDTMLSgd82v31NrampUrV6Z///7p0mXrV2JzRNsWdOnSJW984xvL3QaURO/evf2PPZSI+QWlY35BaZhbUDrm1+7n9Y5k28TNEAAAAACgAII2AAAAACiAoA32EDU1NZk0aVJqamrK3QrsdswvKB3zC0rD3ILSMb/2bG6GAAAAAAAFcEQbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGu7nnnnsuH//4xzNw4MD06NEjb3rTmzJp0qSsX7++3bjHH388J554YmprazNgwIBcffXVZeoYKstXv/rVHHfccenZs2f22WefLY5ZtGhRTj/99PTs2TN1dXX5x3/8x2zYsGHnNgoV6Prrr8/BBx+c2traDBs2LHPnzi13S1BxHnzwwYwdOzb9+/dPVVVV7rnnnnbbW1tbc9lll6WhoSE9evTIyJEj8/TTT5enWaggU6ZMyTve8Y706tUrdXV1OeOMM/LUU0+1G7N27dpcdNFF2W+//bL33nvngx/8YJYsWVKmjtlZBG2wm3vyySfT0tKSf/qnf8rvf//7XHPNNbnxxhvzhS98oW1MU1NTRo0alYMOOijz5s3L17/+9Vx++eW56aabytg5VIb169fnzDPPzIUXXrjF7Rs3bszpp5+e9evX5ze/+U1uv/32TJ06NZdddtlO7hQqy1133ZUJEyZk0qRJmT9/fo466qiMHj06S5cuLXdrUFFWr16do446Ktdff/0Wt1999dW57rrrcuONN+aRRx7JXnvtldGjR2ft2rU7uVOoLL/61a9y0UUX5eGHH86MGTPS3NycUaNGZfXq1W1j/uEf/iH33ntv7r777vzqV7/KCy+8kA984ANl7Jqdoaq1tbW13E0AO9fXv/713HDDDfn//r//L0lyww035Itf/GIaGxvTvXv3JMnnP//53HPPPXnyySfL2SpUjKlTp+biiy/O8uXL263/xS9+kfe+97154YUX0q9fvyTJjTfemM997nN58cUX2+Yc0N6wYcPyjne8I9/97neTJC0tLRkwYEA+9alP5fOf/3yZu4PKVFVVlZ/+9Kc544wzkrxyNFv//v1zySWX5DOf+UySZMWKFenXr1+mTp2as846q4zdQmV58cUXU1dXl1/96ld517velRUrVuSAAw7IHXfckQ996ENJXjkI4i1veUvmzJmTd77znWXumFJxRBvsgVasWJG+ffu2Lc+ZMyfvete72n3hHz16dJ566qn8+c9/LkeLsNuYM2dO3va2t7WFbMkr86upqSm///3vy9gZ7LrWr1+fefPmZeTIkW3runTpkpEjR2bOnDll7Ax2LwsXLkxjY2O7udanT58MGzbMXINOWrFiRZK0fc+aN29empub282vN7/5zTnwwAPNr92coA32MM8880y+853v5JOf/GTbusbGxnYhQJK25cbGxp3aH+xuzC/ovJdeeikbN27c4twxb6A4m+aTuQY7pqWlJRdffHGOP/74DB48OEnazhZ67TV8za/dn6ANKtTnP//5VFVVve7Pa0/7fP755zNmzJiceeaZueCCC8rUOez6tmd+AQCwZ7rooouyYMGC3HnnneVuhV1At3I3AGyfSy65JOeff/7rjjnkkEPafn/hhRdy8skn57jjjtvsJgf19fWb3f1m03J9fX0xDUMF6ez8ej319fWb3SnR/ILXt//++6dr165b/LfJvIHibJpPS5YsSUNDQ9v6JUuWZMiQIWXqCirL+PHjc9999+XBBx/MG9/4xrb19fX1Wb9+fZYvX97uqDb/lu3+BG1QoQ444IAccMABHRr7/PPP5+STT84xxxyT73//++nSpf3BrMOHD88Xv/jFNDc3p7q6OkkyY8aMHHHEEdl3330L7x12dZ2ZX9syfPjwfPWrX83SpUtTV1eX5JX51bt37wwaNKiQ54DdTffu3XPMMcdk5syZbRdtb2lpycyZMzN+/PjyNge7kYEDB6a+vj4zZ85sC9aampryyCOPbPVu2sArWltb86lPfSo//elPM3v27AwcOLDd9mOOOSbV1dWZOXNmPvjBDyZJnnrqqSxatCjDhw8vR8vsJII22M09//zzOemkk3LQQQflG9/4Rl588cW2bZv+S8r/+l//K5MnT87HP/7xfO5zn8uCBQvy7W9/O9dcc0252oaKsWjRoixbtiyLFi3Kxo0b89hjjyVJDj300Oy9994ZNWpUBg0alI9+9KO5+uqr09jYmC996Uu56KKLUlNTU97mYRc2YcKEnHfeeTn22GMzdOjQXHvttVm9enXGjRtX7tagoqxatSrPPPNM2/LChQvz2GOPpW/fvjnwwANz8cUX5ytf+UoOO+ywDBw4MJdeemn69+/fFnIDW3bRRRfljjvuyL/+67+mV69ebddd69OnT3r06JE+ffrk4x//eCZMmJC+ffumd+/e+dSnPpXhw4e74+hurqq1tbW13E0ApTN16tStfil59fR//PHHc9FFF+U//uM/sv/+++dTn/pUPve5z+2sNqFinX/++bn99ts3W//LX/4yJ510UpLkj3/8Yy688MLMnj07e+21V84777xceeWV6dbNf++C1/Pd7343X//619PY2JghQ4bkuuuuy7Bhw8rdFlSU2bNn5+STT95s/XnnnZepU6emtbU1kyZNyk033ZTly5fnhBNOyPe+970cfvjhZegWKkdVVdUW13//+99vuwTJ2rVrc8kll+RHP/pR1q1bl9GjR+d73/ueU0d3c4I2AAAAACiAu44CAAAAQAEEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAQRtAAAAAFAAQRsAAAAAFOD/BybJJqDyE4nrAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(15, 10))\n", "plt.ylabel('Amplitude')\n", "plt.stem(nx-round(position*duration+1), y, label='Señal y[n]') \n", "plt.legend(loc='best')\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "7e287a9e-c6e3-42ef-b303-7b819c7d8998", "metadata": {}, "source": [ " Veamos algunos sistemas LTI descriptos por ecuaciones en diferencias: " ] }, { "cell_type": "markdown", "id": "01633881-aca7-4410-8825-d6c1ff71d3f8", "metadata": {}, "source": [ "Consideremos este tipo de ecuaciones\n", "\n", "$$ \\sum_{k=0}^N a_ky[n-k]=\\sum_{k=0}^M b_k x[n-k] $$" ] }, { "cell_type": "markdown", "id": "c44dcdbb-9aa7-4ad9-9b92-7acd2bea1c9f", "metadata": {}, "source": [ "Para realizar la convolución vamos a usar el método [lfilter](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter.html) de [scipy.signal](https://docs.scipy.org/doc/scipy/reference/signal.html). \n", "Miren un poco la documentación para entender como usarlo. Hay cosas que todavía no van a entender pero a medida que avancemos con la materia muchas cosas quedarán más claras!" ] }, { "cell_type": "markdown", "id": "2519ed26-f838-43d4-9b41-107a4cf929bc", "metadata": {}, "source": [ "Implementemos la siguiente ecuación en diferencias $y[n]= 0.9 y[n-1]+x[n]$. Para ello vamos a definir los coeficientes $a[k]$ y los coeficientes $b[k]$ de esta ecuación." ] }, { "cell_type": "code", "execution_count": 18, "id": "acbeb4b2-b4bd-4f60-8ba9-8405fe2a6725", "metadata": {}, "outputs": [], "source": [ "a=[1, -0.9]\n", "b= [1]" ] }, { "cell_type": "markdown", "id": "69a03f89-a3f7-49b6-a792-eae717e2aafa", "metadata": {}, "source": [ "Notar que para la definición de los coeficientes $a[k]$ se considera la siguiente forma de la ecuación:\n", " $$a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[M]*x[n-M]\n", " - a[1]*y[n-1] - ... - a[N]*y[n-N] $$\n", "\n", "Vamos a usar como señal de entrada un impulso, o sea $x[n]=\\delta[n]$." ] }, { "cell_type": "code", "execution_count": 19, "id": "32e624c4-6622-4870-8e62-e43e54bdfa25", "metadata": {}, "outputs": [], "source": [ "# Signal duration in samples\n", "D = 50\n", "# Sampling rate in Hz\n", "fs = 1 \n", "#Sampling period\n", "T = 1/fs\n" ] }, { "cell_type": "code", "execution_count": 20, "id": "52d65643-40a0-485a-9ec1-44cd1e2782bd", "metadata": {}, "outputs": [], "source": [ "amplitude = 1\n", "sample_rate = fs\n", "duration = D\n", "position = 0 #Position of impulse. Value between 0 a 1. The start of exponential will be positioned in the index closer \n", " #to duration*position \n", "n,x = generate_impulse(amplitude, sample_rate, duration, position)" ] }, { "cell_type": "code", "execution_count": 21, "id": "95b6a1ce-81a7-4251-aced-0d885657357b", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABNEAAAMtCAYAAACxW+eSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFU0lEQVR4nO3df5iVdZ34/9fMMMyAMigBM4Aomqi5BCwQOKttSvxQC7NtWy+zQHPdNMgfU6vSKkg/xDQRNYPSXOoq09xdW1MjJhDNFcEgvmqJqUGUMvyQcPghM8PM+f7hh8kJ8D0Dczgzw+NxXVzNuc993+d1wDd0Pa9znzsvk8lkAgAAAADYp/xcDwAAAAAAbZ2IBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkdMr1AAdbQ0NDvP7669GtW7fIy8vL9TgAAAAA5FAmk4mtW7dG3759Iz9/3583O+Qi2uuvvx79+/fP9RgAAAAAtCF/+tOf4qijjtrn84dcROvWrVtEvP0bU1JSkuNpWkddXV0sWLAgxo0bF4WFhbkeBzoU6wuyw9qC7LG+IHusL8ieXK6v6urq6N+/f2Mz2pdDLqLtvoSzpKSkQ0W0rl27RklJib/IoZVZX5Ad1hZkj/UF2WN9Qfa0hfWV+tovNxYAAAAAgAQRDQAAAAASRDQAAAAASDjkvhMNAAAA6JgaGhqitrY212OwH+rq6qJTp06xc+fOqK+vb9VzFxYWRkFBwQGfR0QDAAAA2r3a2tpYvXp1NDQ05HoU9kMmk4mysrL405/+lPyC//1xxBFHRFlZ2QGdW0QDAAAA2rVMJhPr1q2LgoKC6N+/f+Tn+/aq9qahoSG2bdsWhx9+eKv++WUymdixY0ds2LAhIiL69Omz3+cS0QAAAIB2bdeuXbFjx47o27dvdO3aNdfjsB92X4pbXFzc6hG0S5cuERGxYcOG6N27935f2inNAgAAAO3a7u/Q6ty5c44noa3aHVfr6ur2+xwiGgAAANAhZOO7tOgYWuO/DZdzAgAAAEREfUMmlq3eHBu27oze3Ypj5LE9oiBfmONtIhoAAABwyJv/wrqY8bPfxbo3dzZu69O9OKZPODnOHLT/X0ZPx+FyTgAAAOCQNv+FdXHZD1c0CWgREVVv7ozLfrgi5r+wLkeTtQ3z5s2LI444IquvsXjx4jjyyCOjoKAgzj333BYdO2DAgMjLy4u8vLzYsmVLVuaLENEAAACAQ1h9QyZm/Ox3kdnLc7u3zfjZ76K+YW97HJgLL7ywMf6889eZZ57Z7HMsXrw46/HoYHrxxRdj3rx5LTrm2Wefjf/+7//OzkDv4HJOAAAA4JC1bPXmPT6B9k6ZiFj35s5YtnpzlL/3Pa3++meeeWb853/+Z5NtRUVFrf46tbW17eLupb17927xp9569eoVPXr0yM5A7+CTaAAAAMAha8PWfQe0/dmvpYqKiqKsrKzJryOPPLLx+by8vLjnnnvi4x//eHTt2jUGDhwYDz/8cERErFmzJs4444yIiDjyyCMjLy8vLrzwwoiIOP3002PKlClx5ZVXRs+ePWP8+PERETFr1qx4//vfH4cddlj0798/Pv/5z8e2bduazDRv3rw4+uijo2vXrvHxj3883njjjSbPv/rqq/Gxj30sSktL4/DDD48PfOAD8ctf/nKf7zGTycSYMWNi/Pjxkcm8/Ym+zZs3x1FHHRXTpk1719+f008/PS6//PK4+uqro0ePHlFWVhY33HBD+jc2C0Q0AAAA4JDVu1txq+6XDTNmzIh/+Zd/ieeeey7OPvvsuOCCC2Lz5s3Rv3//xssYX3rppVi3bl3cfvvtjcd9//vfj86dO8f//d//xdy5cyMiIj8/P+6444747W9/G9///vdj0aJFcfXVVzces3Tp0rj44otjypQpsXLlyjjjjDPia1/7WpN5tm3bFmeffXYsXLgwfvOb38SZZ54ZEyZMiLVr1+51/ry8vPj+978fzz77bNxxxx0REXHppZdGv379khFt9/s47LDDYunSpXHzzTfHV77ylaisrGzZb2IrcDknAAAAcMgaeWyP6NO9OKre3LnX70XLi4iy7sUx8tjsXC74yCOPxOGHH95k25e//OX48pe/3Pj4wgsvjPPPPz8iIm688ca44447YtmyZXHmmWc2Xsa4t8sgBw4cGDfffHOTbVdeeWXjzwMGDIivfe1rcemll8a3v/3tiIi4/fbb48wzz2wMayeccEI8/fTTMX/+/MbjhgwZEkOGDGl8/NWvfjUeeuihePjhh2PKlCl7fZ/9+vWL73znOzFx4sSoqqqKxx57LH7zm99Ep07pNDV48OCYPn1643v61re+FQsXLoyxY8cmj21NIhoAAABwyCrIz4vpE06Oy364IvIimoS0vP/3v9MnnBwF+Xl7OfrAnXHGGTFnzpwm2/72+70GDx7c+PNhhx0WJSUlsWHDhuS5hw8fvse2X/7ylzFz5sxYtWpVVFdXx65du2Lnzp2xY8eO6Nq1a7z44ovx8Y9/vMkx5eXlTSLatm3b4oYbbohHH3001q1bF7t27Yq33nprn59E2+2Tn/xkPPTQQ3HTTTfFnDlzYuDAgcn3ENH0/UdE9OnTp1nvv7W5nBMAAAA4pJ05qE/M+fSw6F3S9Av9y7oXx5xPD4szB/XJ2msfdthhcfzxxzf59bcRrbCwsMnjvLy8aGhoaNa532nNmjXx0Y9+NAYPHhz//d//HcuXL4+77rorIt6+8UBzfelLX4qHHnoobrzxxvjVr34VK1eujPe///3Jc+zYsSOWL18eBQUF8fLLLzf79fb3/bc2n0QDAAAAOpRMJhOZt95q0THjjuse5Zd+IEbMXBSZyIvvfnpYfPC974mC/Lxo2LGj2efJ69Il8vKy86m1vdl9x836+vrkvsuXL4+Ghoa49dZbIz//7c9V/eQnP2myz/ve975YunRpk23PPPNMk8f/93//FxdeeGHjJ9a2bdsWa9asSb7+F7/4xcjPz4+f//zncfbZZ8dHPvKRGD16dPK4tkJEAwAAADqUzFtvxUvD9ryUsTke3v3DzyJe2Y/jT1yxPPK6dm32/jU1NVFVVdVkW6dOnaJnz57NOv6YY46JvLy8eOSRR+Lss8+OLl267PEda7sdf/zxUVdXF3feeWdMmDChyQ0Hdrv88svj1FNPjW9+85vxsY99LH7xi180uZQz4u3vJfuf//mfmDBhQuTl5cX111+f/GTYo48+Gvfee28sWbIkhg0bFv/+7/8ekyZNiueee67J3UjbMpdzAgAAAOTI/Pnzo0+fPk1+nXbaac0+vl+/fjFjxoy49tpro7S0dJ9f7B/x9g0BZs2aFd/4xjdi0KBB8aMf/ShmzpzZZJ9TTjkl7r777rj99ttjyJAhsWDBgrjuuuua7DNr1qw48sgj4x/+4R9iwoQJMX78+Bg2bNg+X3fjxo1x8cUXxw033NC434wZM6K0tDQuvfTSZr/XXMvLZDJ7u/lEh1VdXR3du3ePN998M0pKSnI9Tquoq6uLxx57LM4+++w9rhMGDoz1BdlhbUH2WF+QPdZX27Vz585YvXp1HHvssVFcXLxfl3O2loN9OWdHsWjRovjwhz8cb7zxxh7fCdccixcvjjPOOCP+8pe/7HGX0og9/xt5p+a2IpdzAgAAAB1KXl5eiy6ppO04+uijY8KECfHjH/+42cf83d/9XfzhD3/I4lRvE9EAAAAAyKlRo0bF8uXL4/DDD2/xlYOPPfZY1NXVRURk9apDEQ0AAACAnOrSpUscd9xxUVJS0njn0OY65phjsjRVU24sAAAAAAAJIlo7V9+QiaWrN8fyTXmxdPXmqG84pO4TAQAAAI0OsXsn0gINDQ0HfI6cXs755JNPxi233BLLly+PdevWxUMPPRTnnnvuux6zePHiqKioiN/+9rfRv3//uO666+LCCy88KPO2NfNfWBczfva7WPfmzogoiB+8/Ovo0704pk84Oc4c1CfX4wEAAMBBUVhYGHl5ebFx48bo1auXu2O2Qw0NDVFbWxs7d+5s8eWc7yaTyURtbW1s3Lgx8vPzo3Pnzvt9rpxGtO3bt8eQIUPis5/9bPzTP/1Tcv/Vq1fHRz7ykbj00kvjRz/6USxcuDD+9V//Nfr06RPjx48/CBO3HfNfWBeX/XBF/G1jr3pzZ1z2wxUx59PDhDQAAAAOCQUFBXHUUUfFn//851izZk2ux2E/ZDKZeOutt6JLly5ZiaBdu3aNo48++oACXU4j2llnnRVnnXVWs/efO3duHHvssXHrrbdGRMT73ve+eOqpp+K22247pCJafUMmZvzsd3sEtIiITETkRcSMn/0uxp5cFgX56jsAAAAd3+GHHx4DBw5svEsj7UtdXV08+eST8Y//+I9RWFjYqucuKCiITp06HXCca1d351yyZEmMGTOmybbx48fHlVdeuc9jampqoqampvFxdXV1RLz9h9NeF9bS1Zv/3yWce5eJiHVv7owlr2yIUcf2OHiDQQe0+++J9vr3BbRV1hZkj/UF2WN9tQ8FBQW5HoH90NDQELt27YqCgoKs/Bnu2rVrn881d023q4hWVVUVpaWlTbaVlpZGdXV140f+/tbMmTNjxowZe2xfsGBBdO3aNWuzZtPyTXkRkf4PasGvlsYbL/pSRWgNlZWVuR4BOiRrC7LH+oLssb4ge3Kxvnbs2NGs/dpVRNsfU6dOjYqKisbH1dXV0b9//xg3blyUlJTkcLL9957Vm+MHL/86ud+4D47ySTQ4QHV1dVFZWRljx45t9Y8Uw6HM2oLssb4ge6wvyJ5crq/dVy2mtKuIVlZWFuvXr2+ybf369VFSUrLXT6FFRBQVFUVRUdEe2wsLC9vtX3rlx/eOPt2Lo+rNnXv9XrS8iCjrXhzlx/f2nWjQStrz3xnQlllbkD3WF2SP9QXZk4v11dzXa717hh4E5eXlsXDhwibbKisro7y8PEcT5UZBfl5Mn3ByRLwdzN5p9+PpE04W0AAAAABaSU4j2rZt22LlypWxcuXKiIhYvXp1rFy5MtauXRsRb1+KOXHixMb9L7300vjDH/4QV199daxatSq+/e1vx09+8pO46qqrcjF+Tp05qE/M+fSw6F3S9FN2Zd2LY86nh8WZg/rkaDIAAACAjienl3P++te/jjPOOKPx8e7vLps0aVLMmzcv1q1b1xjUIiKOPfbYePTRR+Oqq66K22+/PY466qi45557Yvz48Qd99rbgzEF94tTje8b7b1gQERH3fObv44z39fEJNAAAAIBWltOIdvrpp0cms++7R86bN2+vx/zmN7/J4lTtyzuD2QcGHCmgAQAAAGRBu/pONAAAAADIBRENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASch7R7rrrrhgwYEAUFxfHqFGjYtmyZe+6/+zZs+PEE0+MLl26RP/+/eOqq66KnTt3HqRpAQAAADgU5TSiPfDAA1FRURHTp0+PFStWxJAhQ2L8+PGxYcOGve5/3333xbXXXhvTp0+PF198Mb73ve/FAw88EF/+8pcP8uQAAAAAHEo65fLFZ82aFZdccklcdNFFERExd+7cePTRR+Pee++Na6+9do/9n3766Tj11FPjU5/6VEREDBgwIM4///xYunTpPl+jpqYmampqGh9XV1dHRERdXV3U1dW15tvJibq6XU1+7gjvCdqS3WvK2oLWZW1B9lhfkD3WF2RPLtdXc18zZxGttrY2li9fHlOnTm3clp+fH2PGjIklS5bs9Zh/+Id/iB/+8IexbNmyGDlyZPzhD3+Ixx57LD7zmc/s83VmzpwZM2bM2GP7ggULomvXrgf+RnKspj5i9x/jokWLoqggp+NAh1VZWZnrEaBDsrYge6wvyB7rC7InF+trx44dzdovZxFt06ZNUV9fH6WlpU22l5aWxqpVq/Z6zKc+9anYtGlTnHbaaZHJZGLXrl1x6aWXvuvlnFOnTo2KiorGx9XV1dG/f/8YN25clJSUtM6byaEdtbvi6mWLIiJi9OjR0f2w4hxPBB1LXV1dVFZWxtixY6OwsDDX40CHYW1B9lhfkD3WF2RPLtfX7qsWU3J6OWdLLV68OG688cb49re/HaNGjYpXXnklrrjiivjqV78a119//V6PKSoqiqKioj22FxYWdoi/9AozeX/9ubBTh3hP0BZ1lL8zoK2xtiB7rC/IHusLsicX66u5r5eziNazZ88oKCiI9evXN9m+fv36KCsr2+sx119/fXzmM5+Jf/3Xf42IiPe///2xffv2+Ld/+7f4j//4j8jPz/nNRgEAAADogHJWnTp37hzDhw+PhQsXNm5raGiIhQsXRnl5+V6P2bFjxx6hrKDg7S8By2Qy2RsWAAAAgENaTi/nrKioiEmTJsWIESNi5MiRMXv27Ni+fXvj3TonTpwY/fr1i5kzZ0ZExIQJE2LWrFnx93//942Xc15//fUxYcKExpgGAAAAAK0tpxHtvPPOi40bN8a0adOiqqoqhg4dGvPnz2+82cDatWubfPLsuuuui7y8vLjuuuvitddei169esWECRPi61//eq7eAgAAAACHgJzfWGDKlCkxZcqUvT63ePHiJo87deoU06dPj+nTpx+EyQAAAADgbb6JHwAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAICEnEe0u+66KwYMGBDFxcUxatSoWLZs2bvuv2XLlpg8eXL06dMnioqK4oQTTojHHnvsIE0LAAAAwKGoUy5f/IEHHoiKioqYO3dujBo1KmbPnh3jx4+Pl156KXr37r3H/rW1tTF27Njo3bt3/Nd//Vf069cv/vjHP8YRRxxx8IcHAAAA4JCR04g2a9asuOSSS+Kiiy6KiIi5c+fGo48+Gvfee29ce+21e+x/7733xubNm+Ppp5+OwsLCiIgYMGDAwRwZAAAAgENQziJabW1tLF++PKZOndq4LT8/P8aMGRNLlizZ6zEPP/xwlJeXx+TJk+N///d/o1evXvGpT30qrrnmmigoKNjrMTU1NVFTU9P4uLq6OiIi6urqoq6urhXfUW7U1e1q8nNHeE/QluxeU9YWtC5rC7LH+oLssb4ge3K5vpr7mjmLaJs2bYr6+vooLS1tsr20tDRWrVq112P+8Ic/xKJFi+KCCy6Ixx57LF555ZX4/Oc/H3V1dTF9+vS9HjNz5syYMWPGHtsXLFgQXbt2PfA3kmM19RG7/xgXLVoURXtvicABqqyszPUI0CFZW5A91hdkj/UF2ZOL9bVjx45m7ZfTyzlbqqGhIXr37h3f/e53o6CgIIYPHx6vvfZa3HLLLfuMaFOnTo2KiorGx9XV1dG/f/8YN25clJSUHKzRs2ZH7a64etmiiIgYPXp0dD+sOMcTQcdSV1cXlZWVMXbs2MbLyIEDZ21B9lhfkD3WF2RPLtfX7qsWU3IW0Xr27BkFBQWxfv36JtvXr18fZWVlez2mT58+UVhY2OTSzfe9731RVVUVtbW10blz5z2OKSoqiqKioj22FxYWdoi/9AozeX/9ubBTh3hP0BZ1lL8zoK2xtiB7rC/IHusLsicX66u5r5ef5Tn2qXPnzjF8+PBYuHBh47aGhoZYuHBhlJeX7/WYU089NV555ZVoaGho3Pb73/8++vTps9eABgAAAACtIWcRLSKioqIi7r777vj+978fL774Ylx22WWxffv2xrt1Tpw4scmNBy677LLYvHlzXHHFFfH73/8+Hn300bjxxhtj8uTJuXoLAAAAABwCcvqdaOedd15s3Lgxpk2bFlVVVTF06NCYP39+480G1q5dG/n5f+18/fv3j1/84hdx1VVXxeDBg6Nfv35xxRVXxDXXXJOrtwAAAADAISDnNxaYMmVKTJkyZa/PLV68eI9t5eXl8cwzz2R5KgAAAAD4q5xezgkAAAAA7YGIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkiGgAAAAAkCCiAQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkiGgAAAAAkCCiAQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAk7FdE27JlS9xzzz0xderU2Lx5c0RErFixIl577bVWHQ4AAAAA2oJOLT3gueeeizFjxkT37t1jzZo1cckll0SPHj3if/7nf2Lt2rXxgx/8IBtzAgAAAEDOtPiTaBUVFXHhhRfGyy+/HMXFxY3bzz777HjyySdbdTgAAAAAaAtaHNGeffbZ+NznPrfH9n79+kVVVVWrDAUAAAAAbUmLI1pRUVFUV1fvsf33v/999OrVq1WGAgAAAIC2pMUR7ZxzzomvfOUrUVdXFxEReXl5sXbt2rjmmmviE5/4RKsPCAAAAAC51uKIduutt8a2bduid+/e8dZbb8WHPvShOP7446Nbt27x9a9/PRszAgAAAEBOtfjunN27d4/Kysp46qmn4rnnnott27bFsGHDYsyYMdmYDwAAAAByrsURbbfTTjstTjvttNacBQAAAADapGZFtDvuuKPZJ7z88sv3exgAAAAAaIuaFdFuu+22Jo83btwYO3bsiCOOOCIiIrZs2RJdu3aN3r17i2gAAAAAdDjNurHA6tWrG399/etfj6FDh8aLL74Ymzdvjs2bN8eLL74Yw4YNi69+9avZnhcAAAAADroW353z+uuvjzvvvDNOPPHExm0nnnhi3HbbbXHddde16nAAAAAA0Ba0OKKtW7cudu3atcf2+vr6WL9+fasMBQAAAABtSYsj2oc//OH43Oc+FytWrGjctnz58rjssstizJgxrTocAAAAALQFLY5o9957b5SVlcWIESOiqKgoioqKYuTIkVFaWhr33HNPNmYEAAAAgJxq1t0536lXr17x2GOPxe9///tYtWpVREScdNJJccIJJ7T6cAAAAADQFrQ4ou12wgknCGcAAAAAHBJaHNE++9nPvuvz9957734PAwAAAABtUYsj2l/+8pcmj+vq6uKFF16ILVu2xOjRo1ttMAAAAABoK1oc0R566KE9tjU0NMRll10W733ve1tlKAAAAABoS1p8d869niQ/PyoqKuK2225rjdMBAAAAQJvSKhEtIuLVV1+NXbt2tdbpAAAAAKDNaPHlnBUVFU0eZzKZWLduXTz66KMxadKkVhsMAAAAANqKFke03/zmN00e5+fnR69eveLWW29N3rkTAAAAANqjFke0xx9/PBtzAAAAAECb1eLvRBs9enRs2bJlj+3V1dUxevTo1pgJAAAAANqUFke0xYsXR21t7R7bd+7cGb/61a9aZSgAAAAAaEuafTnnc8891/jz7373u6iqqmp8XF9fH/Pnz49+/fq17nQAAAAA0AY0O6INHTo08vLyIi8vb6+XbXbp0iXuvPPOVh0OAAAAANqCZke01atXRyaTieOOOy6WLVsWvXr1anyuc+fO0bt37ygoKMjKkAAAAACQS82OaMccc0xERDQ0NGRtGAAAAABoi5oV0R5++OE466yzorCwMB5++OF33fecc85plcEAAAAAoK1oVkQ799xzo6qqKnr37h3nnnvuPvfLy8uL+vr61poNAAAAANqEZkW0d17C6XJOAAAAAA41+bkeAAAAAADaumZ9Eu2OO+5o9gkvv/zy/R4GAAAAANqiZkW02267rVkny8vLE9EAAAAA6HCaFdFWr16d7TkAAAAAoM06oO9Ey2QykclkWmsWAAAAAGiT9iuife9734tBgwZFcXFxFBcXx6BBg+Kee+5p7dkAAAAAoE1o1uWc7zRt2rSYNWtWfOELX4jy8vKIiFiyZElcddVVsXbt2vjKV77S6kMCAAAAQC61OKLNmTMn7r777jj//PMbt51zzjkxePDg+MIXviCiAQAAANDhtPhyzrq6uhgxYsQe24cPHx67du1qlaEAAAAAoC1pcUT7zGc+E3PmzNlj+3e/+9244IILWmUoAAAAAGhLWnw5Z8TbNxZYsGBBnHLKKRERsXTp0li7dm1MnDgxKioqGvebNWtW60wJAAAAADnU4oj2wgsvxLBhwyIi4tVXX42IiJ49e0bPnj3jhRdeaNwvLy+vlUYEAAAAgNxqcUR7/PHHszEHAAAAALRZLf5ONAAAAAA41LT4k2g7d+6MO++8Mx5//PHYsGFDNDQ0NHl+xYoVrTYcAAAAALQFLY5oF198cSxYsCD++Z//OUaOHOm7zwAAAADo8Foc0R555JF47LHH4tRTT83GPAAAAADQ5rT4O9H69esX3bp1y8YsAAAAANAmtTii3XrrrXHNNdfEH//4x2zMAwAAAABtTosv5xwxYkTs3LkzjjvuuOjatWsUFhY2eX7z5s2tNhwAAAAAtAUtjmjnn39+vPbaa3HjjTdGaWmpGwsAAAAA0OG1OKI9/fTTsWTJkhgyZEg25gEAAACANqfF34l20kknxVtvvZWNWQAAAACgTWpxRLvpppvii1/8YixevDjeeOONqK6ubvILAAAAADqaFl/OeeaZZ0ZExIc//OEm2zOZTOTl5UV9fX3rTAYAAAAAbUSLI9rjjz++z+eef/75AxoGAAAAANqiFke0D33oQ00eb926NX784x/HPffcE8uXL48pU6a02nAAAAAA0Ba0+DvRdnvyySdj0qRJ0adPn/jmN78Zo0ePjmeeeaY1ZwMAAACANqFFn0SrqqqKefPmxfe+972orq6Of/mXf4mampr46U9/GieffHK2ZgQAAACAnGr2J9EmTJgQJ554Yjz33HMxe/bseP311+POO+/M5mwAAAAA0CY0+5NoP//5z+Pyyy+Pyy67LAYOHJjNmQAAAACgTWn2J9Geeuqp2Lp1awwfPjxGjRoV3/rWt2LTpk3ZnA0AAAAA2oRmR7RTTjkl7r777li3bl187nOfi/vvvz/69u0bDQ0NUVlZGVu3bs3mnAAAAACQMy2+O+dhhx0Wn/3sZ+Opp56K559/Pr74xS/GTTfdFL17945zzjknGzMCAAAAQE61OKK904knnhg333xz/PnPf44f//jHrTUTAAAAALQpBxTRdisoKIhzzz03Hn744dY4HQAAAAC0Ka0S0QAAAACgIxPRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACAhDYR0e66664YMGBAFBcXx6hRo2LZsmXNOu7++++PvLy8OPfcc7M7IAAAAACHtJxHtAceeCAqKipi+vTpsWLFihgyZEiMHz8+NmzY8K7HrVmzJr70pS/FBz/4wYM0KQAAAACHqpxHtFmzZsUll1wSF110UZx88skxd+7c6Nq1a9x77737PKa+vj4uuOCCmDFjRhx33HEHcVoAAAAADkWdcvnitbW1sXz58pg6dWrjtvz8/BgzZkwsWbJkn8d95Stfid69e8fFF18cv/rVr971NWpqaqKmpqbxcXV1dURE1NXVRV1d3QG+g9yrq9vV5OeO8J6gLdm9pqwtaF3WFmSP9QXZY31B9uRyfTX3NXMa0TZt2hT19fVRWlraZHtpaWmsWrVqr8c89dRT8b3vfS9WrlzZrNeYOXNmzJgxY4/tCxYsiK5du7Z45rampj5i9x/jokWLoqggp+NAh1VZWZnrEaBDsrYge6wvyB7rC7InF+trx44dzdovpxGtpbZu3Rqf+cxn4u67746ePXs265ipU6dGRUVF4+Pq6uro379/jBs3LkpKSrI16kGzo3ZXXL1sUUREjB49OrofVpzjiaBjqauri8rKyhg7dmwUFhbmehzoMKwtyB7rC7LH+oLsyeX62n3VYkpOI1rPnj2joKAg1q9f32T7+vXro6ysbI/9X3311VizZk1MmDChcVtDQ0NERHTq1CleeumleO9739vkmKKioigqKtrjXIWFhR3iL73CTN5ffy7s1CHeE7RFHeXvDGhrrC3IHusLssf6guzJxfpq7uvl9MYCnTt3juHDh8fChQsbtzU0NMTChQujvLx8j/1POumkeP7552PlypWNv84555w444wzYuXKldG/f/+DOT4AAAAAh4icX85ZUVERkyZNihEjRsTIkSNj9uzZsX379rjooosiImLixInRr1+/mDlzZhQXF8egQYOaHH/EEUdEROyxHQAAAABaS84j2nnnnRcbN26MadOmRVVVVQwdOjTmz5/feLOBtWvXRn5+Tj8wBwAAAMAhLucRLSJiypQpMWXKlL0+t3jx4nc9dt68ea0/EAAAAAC8g494AQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkiGgAAAAAkCCiAQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkiGgAAAAAkCCiAQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkiGgAAAAAkCCiAQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkiGgAAAAAkCCiAQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkiGgAAAAAkCCiAQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkiGgAAAAAkCCiAQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkiGgAAAAAkCCiAQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkiGgAAAAAkCCiAQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkiGgAAAAAkCCiAQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAgogGAAAAAAkiGgAAAAAkiGgAAAAAkCCiAQAAAECCiAYAAAAACSIaAAAAACSIaAAAAACQIKIBAAAAQIKIBgAAAAAJIhoAAAAAJIhoAAAAAJAgogEAAABAQpuIaHfddVcMGDAgiouLY9SoUbFs2bJ97nv33XfHBz/4wTjyyCPjyCOPjDFjxrzr/gAAAABwoHIe0R544IGoqKiI6dOnx4oVK2LIkCExfvz42LBhw173X7x4cZx//vnx+OOPx5IlS6J///4xbty4eO211w7y5AAAAAAcKnIe0WbNmhWXXHJJXHTRRXHyySfH3Llzo2vXrnHvvffudf8f/ehH8fnPfz6GDh0aJ510Utxzzz3R0NAQCxcuPMiTAwAAAHCo6JTLF6+trY3ly5fH1KlTG7fl5+fHmDFjYsmSJc06x44dO6Kuri569Oix1+dramqipqam8XF1dXVERNTV1UVdXd0BTN821NXtavJzR3hP0JbsXlPWFrQuawuyx/qC7LG+IHtyub6a+5o5jWibNm2K+vr6KC0tbbK9tLQ0Vq1a1axzXHPNNdG3b98YM2bMXp+fOXNmzJgxY4/tCxYsiK5du7Z86Dampj5i9x/jokWLoqggp+NAh1VZWZnrEaBDsrYge6wvyB7rC7InF+trx44dzdovpxHtQN10001x//33x+LFi6O4uHiv+0ydOjUqKioaH1dXVzd+j1pJScnBGjVrdtTuiquXLYqIiNGjR0f3w/b++wDsn7q6uqisrIyxY8dGYWFhrseBDsPaguyxviB7rC/Inlyur91XLabkNKL17NkzCgoKYv369U22r1+/PsrKyt712G9+85tx0003xS9/+csYPHjwPvcrKiqKoqKiPbYXFhZ2iL/0CjN5f/25sFOHeE/QFnWUvzOgrbG2IHusL8ge6wuyJxfrq7mvl9MbC3Tu3DmGDx/e5KYAu28SUF5evs/jbr755vjqV78a8+fPjxEjRhyMUQEAAAA4hOX8cs6KioqYNGlSjBgxIkaOHBmzZ8+O7du3x0UXXRQRERMnTox+/frFzJkzIyLiG9/4RkybNi3uu+++GDBgQFRVVUVExOGHHx6HH354zt4HAAAAAB1XziPaeeedFxs3boxp06ZFVVVVDB06NObPn994s4G1a9dGfv5fPzA3Z86cqK2tjX/+539ucp7p06fHDTfccDBHBwAAAOAQkfOIFhExZcqUmDJlyl6fW7x4cZPHa9asyf5AAAAAAPAOOf1ONAAAAABoD0Q0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACAhE65HoC2qb4hE8tWb44NW3dG727FMfLYHlGQn9fmzmnW7J3XrG+fd+nqzbF8U168Z/XmKD++d5uetT39vraX85o1e7O29trK1qzZOq9ZzZqt87an9dXefl/by6zZOq9Z/X/DbJ3XrGZtT0Q09jD/hXUx42e/i3Vv7mzc1qd7cUyfcHKcOahPmzmnWbN3XrP+7XkL4gcv/7qdzNo6521Ps2brvGY9GLO2ztrK1qzZOq9ZzZqt87an9dV+f1/b9qzZOq9Z/X/DbJ3XrGZtb/IymUwm10Pcddddccstt0RVVVUMGTIk7rzzzhg5cuQ+93/wwQfj+uuvjzVr1sTAgQPjG9/4Rpx99tnNeq3q6uro3r17vPnmm1FSUtJabyFndtTuipOn/SIiIv6/60dH98O6HND55r+wLi774Yr42/8odnflOZ8e1uLFkY1zmjV75zWrWdvTrNk6r1nNmq3zmtWs2TqvWc2arfOa1azZOq9Zzfq36urq4rHHHouzzz47CgsLD+hcLdXcVpTziPbAAw/ExIkTY+7cuTFq1KiYPXt2PPjgg/HSSy9F796999j/6aefjn/8x3+MmTNnxkc/+tG477774hvf+EasWLEiBg0alHy9jhbRttfUxbD/+FlERDxz7enRvWvxfp+rviETY2Y9EVXVO/f6fF5ElJYUxy8rPtTsj2tm45xmzd55zWrW9jRrts5rVrNm67xmNWu2zmtWs2brvGY1a7bOa9aOMWtNQeeIvLzIi4iy7sXx1DWjD+jSThGtGUaNGhUf+MAH4lvf+lZERDQ0NET//v3jC1/4Qlx77bV77H/eeefF9u3b45FHHmncdsopp8TQoUNj7ty5e+xfU1MTNTU1jY+rq6ujf//+sWnTpg4R0ba9uTWqTjs112MAAAAAh5BzP/r1qOlU1Pj4h58dEaOO7bHf56urq4vKysoYO3ZsTiJaz549kxEtp9+JVltbG8uXL4+pU6c2bsvPz48xY8bEkiVL9nrMkiVLoqKiosm28ePHx09/+tO97j9z5syYMWPGHtsXLFgQXbt23f/h24i82toYmOshAAAAgEPagl8tjTdePPDPaVVWVrbCNC2zY8eOZu2X04i2adOmqK+vj9LS0ibbS0tLY9WqVXs9pqqqaq/7V1VV7XX/qVOnNoluuz+JNm7cuA7xSbRMJhO1o0fHokWLYvTo0VHYaf//SJ/941/i4h+sSO73vYnD4gPHHJmzc2brvO1p1myd16xmbU+zZuu8ZjVrts5rVrNm67xmNWu2zmtWs2brvGbtGLPWFHRu8njcB0e160+iNUeHvztnUVFRFBUV7bG9sLDwoP+hZEteSUlkOneOopKSA3pP5YNKosd7Xo2qN3fu8WWBEdF4nXP5oGOafZ1zNs5p1uyd16xmbU+zZuu8ZjVrts5rVrNm67xmNWu2zmtWs2brvGbtoLMe3/uAvhNtt1z0mua+Xn6W53hXPXv2jIKCgli/fn2T7evXr4+ysrK9HlNWVtai/Wm+gvy8mD7h5Ij46x02dtv9ePqEk1u0KLJxTrNm77xmNWt7mjVb5zWrWbN1XrOaNVvnNatZs3Ves5o1W+c1q1nbq5xGtM6dO8fw4cNj4cKFjdsaGhpi4cKFUV5evtdjysvLm+wf8fb1svvan5Y5c1CfmPPpYVHWveldPsu6F+/3LWuzcU6zZu+8ZjVre5o1W+c1q1mzdV6zmjVb5zWrWbN1XrOaNVvnNatZ26Oc353zgQceiEmTJsV3vvOdGDlyZMyePTt+8pOfxKpVq6K0tDQmTpwY/fr1i5kzZ0ZExNNPPx0f+tCH4qabboqPfOQjcf/998eNN94YK1asiEGDBiVfr7m3LW1PsnEb2PqGTCxbvTk2bN0ZvbsVx8hjexxwVc7GOc2avfOa9e3zLnllQyz41dIY98FRrfLxZL+v7eu8Zs3erK29trI1a7bOa1azZuu87Wl9tbff1/Yya7bOa1b/3zBb5zWrWXfLRttorua2opxHtIiIb33rW3HLLbdEVVVVDB06NO64444YNWpUREScfvrpMWDAgJg3b17j/g8++GBcd911sWbNmhg4cGDcfPPNcfbZZzfrtUQ0oCWsL8gOawuyx/qC7LG+IHvaQ0RrEzcWmDJlSkyZMmWvzy1evHiPbZ/85Cfjk5/8ZJanAgAAAIC35fQ70QAAAACgPRDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACChU64HONgymUxERFRXV+d4ktZTV1cXO3bsiOrq6igsLMz1ONChWF+QHdYWZI/1BdljfUH25HJ97W5Eu5vRvhxyEW3r1q0REdG/f/8cTwIAAABAW7F169bo3r37Pp/Py6QyWwfT0NAQr7/+enTr1i3y8vJyPU6rqK6ujv79+8ef/vSnKCkpyfU40KFYX5Ad1hZkj/UF2WN9Qfbkcn1lMpnYunVr9O3bN/Lz9/3NZ4fcJ9Hy8/PjqKOOyvUYWVFSUuIvcsgS6wuyw9qC7LG+IHusL8ieXK2vd/sE2m5uLAAAAAAACSIaAAAAACSIaB1AUVFRTJ8+PYqKinI9CnQ41hdkh7UF2WN9QfZYX5A97WF9HXI3FgAAAACAlvJJNAAAAABIENEAAAAAIEFEAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0TqAu+66KwYMGBDFxcUxatSoWLZsWa5HgnbnySefjAkTJkTfvn0jLy8vfvrTnzZ5PpPJxLRp06JPnz7RpUuXGDNmTLz88su5GRbakZkzZ8YHPvCB6NatW/Tu3TvOPffceOmll5rss3Pnzpg8eXK85z3vicMPPzw+8YlPxPr163M0MbQPc+bMicGDB0dJSUmUlJREeXl5/PznP2983rqC1nPTTTdFXl5eXHnllY3brDHYPzfccEPk5eU1+XXSSSc1Pt/W15aI1s498MADUVFREdOnT48VK1bEkCFDYvz48bFhw4Zcjwbtyvbt22PIkCFx11137fX5m2++Oe64446YO3duLF26NA477LAYP3587Ny58yBPCu3LE088EZMnT45nnnkmKisro66uLsaNGxfbt29v3Oeqq66Kn/3sZ/Hggw/GE088Ea+//nr80z/9Uw6nhrbvqKOOiptuuimWL18ev/71r2P06NHxsY99LH77299GhHUFreXZZ5+N73znOzF48OAm260x2H9/93d/F+vWrWv89dRTTzU+1+bXVoZ2beTIkZnJkyc3Pq6vr8/07ds3M3PmzBxOBe1bRGQeeuihxscNDQ2ZsrKyzC233NK4bcuWLZmioqLMj3/84xxMCO3Xhg0bMhGReeKJJzKZzNtrqbCwMPPggw827vPiiy9mIiKzZMmSXI0J7dKRRx6Zueeee6wraCVbt27NDBw4MFNZWZn50Ic+lLniiisymYx/u+BATJ8+PTNkyJC9Ptce1pZPorVjtbW1sXz58hgzZkzjtvz8/BgzZkwsWbIkh5NBx7J69eqoqqpqsta6d+8eo0aNstaghd58882IiOjRo0dERCxfvjzq6uqarK+TTjopjj76aOsLmqm+vj7uv//+2L59e5SXl1tX0EomT54cH/nIR5qspQj/dsGBevnll6Nv375x3HHHxQUXXBBr166NiPaxtjrlegD236ZNm6K+vj5KS0ubbC8tLY1Vq1blaCroeKqqqiIi9rrWdj8HpDU0NMSVV14Zp556agwaNCgi3l5fnTt3jiOOOKLJvtYXpD3//PNRXl4eO3fujMMPPzweeuihOPnkk2PlypXWFRyg+++/P1asWBHPPvvsHs/5twv236hRo2LevHlx4oknxrp162LGjBnxwQ9+MF544YV2sbZENADgoJg8eXK88MILTb73Ath/J554YqxcuTLefPPN+K//+q+YNGlSPPHEE7keC9q9P/3pT3HFFVdEZWVlFBcX53oc6FDOOuusxp8HDx4co0aNimOOOSZ+8pOfRJcuXXI4WfO4nLMd69mzZxQUFOxxp4r169dHWVlZjqaCjmf3erLWYP9NmTIlHnnkkXj88cfjqKOOatxeVlYWtbW1sWXLlib7W1+Q1rlz5zj++ONj+PDhMXPmzBgyZEjcfvvt1hUcoOXLl8eGDRti2LBh0alTp+jUqVM88cQTcccdd0SnTp2itLTUGoNWcsQRR8QJJ5wQr7zySrv490tEa8c6d+4cw4cPj4ULFzZua2hoiIULF0Z5eXkOJ4OO5dhjj42ysrIma626ujqWLl1qrUFCJpOJKVOmxEMPPRSLFi2KY489tsnzw4cPj8LCwibr66WXXoq1a9daX9BCDQ0NUVNTY13BAfrwhz8czz//fKxcubLx14gRI+KCCy5o/Nkag9axbdu2ePXVV6NPnz7t4t8vl3O2cxUVFTFp0qQYMWJEjBw5MmbPnh3bt2+Piy66KNejQbuybdu2eOWVVxofr169OlauXBk9evSIo48+Oq688sr42te+FgMHDoxjjz02rr/++ujbt2+ce+65uRsa2oHJkyfHfffdF//7v/8b3bp1a/w+i+7du0eXLl2ie/fucfHFF0dFRUX06NEjSkpK4gtf+EKUl5fHKaeckuPpoe2aOnVqnHXWWXH00UfH1q1b47777ovFixfHL37xC+sKDlC3bt0av7tzt8MOOyze8573NG63xmD/fOlLX4oJEybEMcccE6+//npMnz49CgoK4vzzz28X/36JaO3ceeedFxs3boxp06ZFVVVVDB06NObPn7/HF6AD7+7Xv/51nHHGGY2PKyoqIiJi0qRJMW/evLj66qtj+/bt8W//9m+xZcuWOO2002L+/Pm+JwMS5syZExERp59+epPt//mf/xkXXnhhRETcdtttkZ+fH5/4xCeipqYmxo8fH9/+9rcP8qTQvmzYsCEmTpwY69ati+7du8fgwYPjF7/4RYwdOzYirCvINmsM9s+f//znOP/88+ONN96IXr16xWmnnRbPPPNM9OrVKyLa/trKy2QymVwPAQAAAABtme9EAwAAAIAEEQ0AAAAAEkQ0AAAAAEgQ0QAAAAAgQUQDAAAAgAQRDQAAAAASRDQAAAAASBDRAAAAACBBRAMAAACABBENAAAAABJENAAAAABI+P8BHU68E50VMCkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(15, 10))\n", "plt.ylabel('Amplitude')\n", "plt.stem(x, label='Entrada x[n]') \n", "plt.legend(loc='best')\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "8b0bdd93-3ffe-48a7-b20b-7d239432afad", "metadata": {}, "source": [ "Implementemos la ecuación para obtener su salida" ] }, { "cell_type": "code", "execution_count": 22, "id": "a6a52c05-510e-4289-b139-2c0dea63b3b8", "metadata": {}, "outputs": [], "source": [ "y = signal.lfilter(b, a, x, axis=-1, zi=None)" ] }, { "cell_type": "markdown", "id": "aa91cc5c-477c-43e7-a0e5-8b1bbd3ed009", "metadata": {}, "source": [ "La opción axis=-1 es default y se puede obviar si se quiere cuando se trabajan con array 1D como es nuestro caso. zi=None también es default y lo que indica es que se usará la condición de reposo inicial. \n", "En general zi es un array cuyas componentes se relacionan con la condiciones iniciales que deseemos para la ecuación en diferencias. Si dichas condiciones son los valores $y[-N], \\dots, y[-1]$ es necesario usar la función \n", "[lfiltic](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfiltic.html#scipy.signal.lfiltic) para construir el zi adecuado. Esto es porque zi en realidad representa un estado interno de la maáquina de estados que implementa la ecuación en diferencias. \n" ] }, { "cell_type": "code", "execution_count": 23, "id": "198bdff2-740d-4ac7-9c88-ceffb95cd706", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABNEAAAMtCAYAAACxW+eSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgV0lEQVR4nO39f3jeZX03/j+T9EeotMFQ0gasEgXB3OGHBdJ1yJyMH3FbHNNtftAi4Oa2DpzS7VDZrYRsc1U3kelcuYWxzqNzuu2+dXa62K6IjolktOOrtf5eHA7SFshoK5g2JNf3j66xsQnvpM2VK0kfj+PoceR9vs/rvF5X0jOVp+f5PqtKpVIpAAAAAMCYqitdAAAAAABMd0I0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAnMqXcBUGxoayqOPPpqFCxemqqqq0uUAAAAAUEGlUin79u3LqaeemurqsdebHXch2qOPPpply5ZVugwAAAAAppHvf//7ed7znjfm/eMuRFu4cGGSg9+YRYsWVbiayTEwMJBNmzbliiuuyNy5cytdDswq5heUh7kF5WN+QfmYX1A+lZxfe/fuzbJly4Yzo7EcdyHaoS2cixYtmlUh2oIFC7Jo0SK/yGGSmV9QHuYWlI/5BeVjfkH5TIf5VfTYLwcLAAAAAEABIRoAAAAAFBCiAQAAAECB4+6ZaAAAAACHDA4OZmBgoNJlHPcGBgYyZ86c9Pf3Z3BwcFLHnjt3bmpqao55HCEaAAAAcNwplUrZuXNnnnzyyUqXQg7+PJYuXZrvf//7hQ/4PxonnXRSli5dekxjC9EAAACA486hAK2hoSELFiwoS3DD+A0NDeUHP/hBTjzxxFRXT97Tx0qlUp5++uns3r07SdLY2HjUYwnRAAAAgOPK4ODgcIB28sknV7occjBEO3DgQGprayc1REuSE044IUmye/fuNDQ0HPXWTgcLAAAAAMeVQ89AW7BgQYUrYaoc+lkfy/PvhGgAAADAcckWzuPHZPysbecEAAAAOAqDQ6V09/Rl977+NCysTWtTfWqqBXOzlRANAAAAYIK6tvemc+OO9O7pH25rrKtNR3tz2lqO/uH1TF+2cwIAAABMQNf23qzesG1EgJYkO/f0Z/WGbena3luhyoqtX78+J5100vD1rbfemvPPP/9ZX3PdddflqquuKmtdnZ2dee5zn5uamprcfvvt437d9773vVRVVaWqqqrwcxwrIRoAAADAOA0OldK5cUdKo9w71Na5cUcGh0brcWwee+yxrF69Os9//vMzf/78LF26NFdeeWX+9V//9ajH/N3f/d1s2bJlEqs8emeffXYeeeSR/Pqv//q4X7Ns2bL09vbmd37nd8pY2UG2cwIAAACMU3dP3xEr0A5XStK7pz/dPX1Z+aKTJ/W9X/Oa1+TAgQP5q7/6q7zwhS/Mrl27smXLljzxxBNHPeaJJ56YE088cRKrPHpz5szJ0qVLU109/jVfNTU1Wbp06ZR8BivRAAAAAMZp976xA7Sj6TdeTz75ZP7lX/4l733ve/OKV7wiL3jBC9La2pqbb745r3rVq4b73XbbbTnnnHPynOc8J8uWLctv/dZv5Qc/+MGY4/74ds7BwcGsWbMmJ510Uk4++eS87W1vS6k0clVdV1dXXvaylw33+fmf//l897vfHfM9PvrRj+bkk0/O/v37R7RfddVVueaaa571c1dVVeWuu+7KL/7iL2bBggU588wz8+lPf/pZX1MuQjQAAACAcWpYWDup/cbr0IqxT33qU0eEUYerrq7OBz/4wXzta1/LX/3VX+Wee+7J2972tnG/z/vf//6sX78+d999d+6777709fXlk5/85Ig+Tz31VNasWZMHH3wwW7ZsSXV1dX7xF38xQ0NDo475y7/8yxkcHBwRfu3evTuf+cxn8sY3vrGwps7OzvzKr/xKvvKVr+Rnf/Zn8/rXvz59fX3j/kyTRYgGAAAAME6tTfVprKtN1Rj3q3LwlM7WpvpJfd85c+Zk/fr1+au/+qucdNJJufjii/N7v/d7+cpXvjKi31vf+ta84hWvyOmnn55LL700f/iHf5i//du/Hff73H777bn55pvz6le/Oi95yUtyxx13pK6ubkSf17zmNXn1q1+dM844I+eff37uvvvufPWrX82OHTtGHfOEE07I6173uvzlX/7lcNuGDRvy/Oc/Pz/90z9dWNN1112Xq6++OmeccUb+6I/+KD/4wQ/S3d097s80WYRoAAAAAONUU12VjvbmJDkiSDt03dHenJrqsWK2o/ea17wmjz76aD796U+nra0t9957b5YvX57169cP9/nnf/7n/MzP/ExOO+20LFy4MNdcc02eeOKJPP3004Xj79mzJ729vVmxYsVw25w5c3LhhReO6Pftb387V199dV74whdm0aJFOf3005MkDz/88Jhjv+lNb8qmTZvyyCOPJDl4Suh1112Xqqri79O55547/PVznvOcLFq0KLt37y583WQTogEAAABMQFtLY9atWp6GRfNHtC+tq826VcvT1tJYtveura3N5Zdfnne961350pe+lOuuuy4dHR1Jku9973v5+Z//+Zx77rn5v//3/2br1q358Ic/nCQ5cODApNXQ3t6evr6+3HnnnXnggQfywAMPFL7HS1/60px33nn56Ec/mq1bt+ZrX/tarrvuunG939y5c0dcV1VVjbl1tJyczgkAAAAc10qlUko//OGEXnPFC+uy8jcvyoVr70kpVfnIquW55EUnp6a6KkPjWPV1SNUJJ4xrNdZYmpub86lPfSpJsnXr1gwNDeX973//8AmXE9nKWVdXl8bGxjzwwAP5qZ/6qSTJM888k61bt2b58uVJkieeeCLf/OY3c+edd+aSSy5Jktx3333jGv/Xfu3Xcvvtt+eRRx7JZZddlmXLlo27tulAiAYAAAAc10o//GG+ufyCo3rt8KPyNybfOYrXn7Vta6oWLCjs98QTT+SXf/mX88Y3vjHnnntuFi5cmAcffDDve9/78gu/8AtJkjPOOCMDAwP50Ic+lPb29vzrv/5r7rjjjgnV85a3vCXvec97cuaZZ+bss8/ObbfdlieffHL4/nOf+9ycfPLJ+chHPpLGxsY8/PDDecc73jGusV/3utfld3/3d3PnnXfmox/96ITqmg5s5wQAAACY5k488cSsWLEiH/jAB/JTP/VTaWlpybve9a686U1vyp/92Z8lSc4777zcdtttee9735uWlpb89V//ddauXTuh9/md3/mdXHPNNbn22muzcuXKLFy4ML/4i784fL+6ujof//jHs3Xr1rS0tOSmm27KH//xH49r7Lq6urzmNa/JiSeemKuuumpCdU0HVqIBAAAAx7WqE07IWdu2Vuy9x2P+/PlZu3ZtYSh200035aabbhrRds011wx/fd111414Ftmtt96aW2+9dfh6zpw5uf3223P77beP+R6XXXbZESdxlkql4g+R5JFHHsnrX//6zJ8/v7jzGOMevjJuKgnRAAAAgONaVVXVuLZUcvT++7//O/fee2/uvffe/Pmf//mofXbs2JFFixblfe97X37rt35rXOM+/PDDaW5uzoEDB9Lc3DyZJR9BiAYAAABAWb30pS/Nf//3f+e9731vzjrrrCPuv/nNb84v/MIv5MQTT8ySJUvGPe6pp56ahx56KEnGvbrtaAnRAAAAACir733ve896v76+PnPmzMmiRYuGTxYdjzlz5uSMM844xurGx8ECAAAAAFBAiDbDDQ6V8kBPX7Y+XpUHevoyODS+B/kBAADA8W5oaKjSJTBFJuNnXdHtnF/84hfzx3/8x9m6dWt6e3vzyU9+svCI03vvvTdr1qzJ1772tSxbtizvfOc7R5wqcTzp2t6bzo070runP0lNPvrtB9NYV5uO9ua0tTRWujwAAACYlubNm5fq6uo8+uijOeWUUzJv3rxUVVVVuqzj2tDQUA4cOJD+/v4JbecsUiqVcuDAgTz22GOprq7OvHnzjnqsioZoTz31VM4777y88Y1vzKtf/erC/j09Pfm5n/u5/OZv/mb++q//Olu2bMmv/dqvpbGxMVdeeeUUVDx9dG3vzeoN2/Lj68527unP6g3bsm7VckEaAAAAjKK6ujpNTU3p7e3No48+WulyyMGw64c//GFOOOGEsgSaCxYsyPOf//xjCugqGqK98pWvzCtf+cpx97/jjjvS1NSU97///UmSl7zkJbnvvvvygQ984LgK0QaHSuncuOOIAC1JSkmqknRu3JHLm5emplqSDgAAAD9u3rx5ef7zn59nnnkmg4ODlS7nuDcwMJAvfvGL+amf+qnMnTt3UseuqanJnDlzjjmcm1Gnc95///257LLLRrRdeeWVeetb3zrma/bv35/9+/cPX+/duzfJwR/OwMBAWeostwd6+v5nC+foSkl69/Tn/u/szoqm+qkrDGahQ78nZurvC5iuzC0oH/MLysf8mr1qamoqXcJxb2hoKM8880xqamrK8vN45plnxrw33jk9o0K0nTt3ZsmSJSPalixZkr179w4v+ftxa9euTWdn5xHtmzZtyoIFC8pWazltfbwqSfFfqE3/8kCe+LqDBmAybN68udIlwKxkbkH5mF9QPuYXlE8l5tfTTz89rn4zKkQ7GjfffHPWrFkzfL13794sW7YsV1xxRRYtWlTByo7eyT19+ei3Hyzsd8UlK6xEg2M0MDCQzZs35/LLL5/0JcVwPDO3oHzMLygf8wvKp5Lz69CuxSIzKkRbunRpdu3aNaJt165dWbRo0air0JJk/vz5mT9//hHtc+fOnbG/9Fae0ZDGutrs3NM/6nPRqpIsravNyjMaPBMNJslM/p0B05m5BeVjfkH5mF9QPpWYX+N9v8k7M3QKrFy5Mlu2bBnRtnnz5qxcubJCFVVGTXVVOtqbkxwMzA536LqjvVmABgAAADBJKhqi/eAHP8hDDz2Uhx56KEnS09OThx56KA8//HCSg1sx3/CGNwz3/83f/M38x3/8R972trflG9/4Rv78z/88f/u3f5ubbrqpEuVXVFtLY9atWp6GRSNX2S2tq826VcvT1tJYocoAAAAAZp+Kbud88MEH84pXvGL4+tCzy6699tqsX78+vb29w4FakjQ1NeUzn/lMbrrppvzpn/5pnve85+Wuu+7KlVdeOeW1TwdtLY25+IzFOefWTUmSu655aV7xkkYr0AAAAAAmWUVDtJ/+6Z9OqTT26ZHr168f9TX//u//XsaqZpbDA7OLTn+uAA0AAACgDGbUM9EAAAAAoBKEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQQIgGAAAAAAWEaAAAAABQYE6lC2B6GhwqpbunL7v39adhYW1am+pTU11V6bIAAAAAKkKIxhG6tvemc+OO9O7pH25rrKtNR3tz2loaK1gZAAAAQGXYzskIXdt7s3rDthEBWpLs3NOf1Ru2pWt7b4UqAwAAAKgcIRrDBodK6dy4I6VR7h1q69y4I4NDo/UAAAAAmL2EaAzr7uk7YgXa4UpJevf0p7unb+qKAgAAAJgGhGgM271v7ADtaPoBAAAAzBZCNIY1LKyd1H4AAAAAs4UQjWGtTfVprKtN1Rj3q3LwlM7WpvqpLAsAAACg4oRoDKuprkpHe3OSHBGkHbruaG9OTfVYMRsAAADA7CREY4S2lsasW7U8DYvmj2hfWlebdauWp62lsUKVAQAAAFTOnEoXwPTT1tKYi89YnHNu3ZQkWX/9RbnkzFOsQAMAAACOW1aiMarDA7PWpnoBGgAAAHBcE6IBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQIE5lS6A48fgUCndPX3Zva8/DQtr09pUn5rqqkqXBQAAAFBIiMaU6Nrem86NO9K7p3+4rbGuNh3tzWlraaxgZQAAAADFbOek7Lq292b1hm0jArQk2bmnP6s3bEvX9t4KVQYAAAAwPkI0ympwqJTOjTtSGuXeobbOjTsyODRaDwAAAIDpQYhGWXX39B2xAu1wpSS9e/rT3dM3dUUBAAAATJAQjbLavW/sAO1o+gEAAABUghCNsmpYWDup/QAAAAAqQYhGWbU21aexrjZVY9yvysFTOlub6qeyLAAAAIAJEaJRVjXVVelob06SI4K0Q9cd7c2pqR4rZgMAAACovIqHaB/+8Idz+umnp7a2NitWrEh3d/ez9r/99ttz1lln5YQTTsiyZcty0003pb/f87Sms7aWxqxbtTwNi+aPaF9aV5t1q5anraWxQpUBAAAAjM+cSr75Jz7xiaxZsyZ33HFHVqxYkdtvvz1XXnllvvnNb6ahoeGI/h/72Mfyjne8I3fffXd+8id/Mt/61rdy3XXXpaqqKrfddlsFPgHj1dbSmIvPWJxzbt2UJFl//UW55MxTrEADAAAAZoSKhmi33XZb3vSmN+X6669Pktxxxx35zGc+k7vvvjvveMc7juj/pS99KRdffHFe97rXJUlOP/30XH311XnggQfGfI/9+/dn//79w9d79+5NkgwMDGRgYGAyP05FDAw8M+LryfpMI8cdyEBV6ZjHHBr80Zgvfd7CDA0+k6HBYx4WyurQnJoNvy9gOjG3oHzMLygf8wvKp5Lza7zvWbEQ7cCBA9m6dWtuvvnm4bbq6upcdtlluf/++0d9zU/+5E9mw4YN6e7uTmtra/7jP/4jn/3sZ3PNNdeM+T5r165NZ2fnEe2bNm3KggULjv2DVNj+weTQj/Gee+7J/JrJH/dzn9s0KeOWY0yYKps3b650CTArmVtQPuYXlI/5BeVTifn19NNPj6tfxUK0xx9/PIODg1myZMmI9iVLluQb3/jGqK953etel8cffzwve9nLUiqV8swzz+Q3f/M383u/93tjvs/NN9+cNWvWDF/v3bs3y5YtyxVXXJFFixZNzoepoKcPPJO3dd+TJLn00ktT95zaSR/3yiuvyIJ5x/5XpRxjQrkNDAxk8+bNufzyyzN37txKlwOzhrkF5WN+QfmYX1A+lZxfh3YtFplRKca9996bP/qjP8qf//mfZ8WKFfnOd76Tt7zlLfmDP/iDvOtd7xr1NfPnz8/8+fOPaJ87d+6s+KU3t/SjZ4rNnTtn0j7TyHHnZu7cY/+rUo4xYarMlt8ZMN2YW1A+5heUj/kF5VOJ+TXe96tYirF48eLU1NRk165dI9p37dqVpUuXjvqad73rXbnmmmvya7/2a0mSc845J0899VR+/dd/Pf/7f//vVFdX/LBRAAAAAGahiqVO8+bNywUXXJAtW7YMtw0NDWXLli1ZuXLlqK95+umnjwjKamoOPlirVDr2B98DAAAAwGgqup9uzZo1ufbaa3PhhRemtbU1t99+e5566qnh0zrf8IY35LTTTsvatWuTJO3t7bntttvy0pe+dHg757ve9a60t7cPh2kAAAAAMNkqGqK99rWvzWOPPZZbbrklO3fuzPnnn5+urq7hwwYefvjhESvP3vnOd6aqqirvfOc788gjj+SUU05Je3t73v3ud1fqIwAAAABwHKj4k91vvPHG3HjjjaPeu/fee0dcz5kzJx0dHeno6JiCygAAAADgIE/iBwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACcypdAByrwaFSunv6sntffxoW1qa1qT411VWVLgsAAACYRYRozGhd23vTuXFHevf0D7c11tWmo705bS2NFawMAAAAmE1s52TG6trem9Ubto0I0JJk557+rN6wLV3beytUGQAAADDbCNGYkQaHSuncuCOlUe4dauvcuCODQ6P1AAAAAJgYIRozUndP3xEr0A5XStK7pz/dPX1TVxQAAAAwawnRmJF27xs7QDuafgAAAADPRojGjNSwsHZS+wEAAAA8GyEaM1JrU30a62pTNcb9qhw8pbO1qX4qywIAAABmKSEaM1JNdVU62puT5Igg7dB1R3tzaqrHitkAAAAAxk+IxozV1tKYdauWp2HR/BHtS+tqs27V8rS1NFaoMgAAAGC2mVPpAuBYtLU05uIzFuecWzclSdZff1EuOfMUK9AAAACASWUlGjPe4YFZa1O9AA0AAACYdEI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACggRAMAAACAAkI0AAAAACgwp9IFwHQ0OFRKd09fdu/rT8PC2rQ21aemuqrSZQEAAAAVIkSDH9O1vTedG3ekd0//cFtjXW062pvT1tJYwcoAAACASrGdEw7Ttb03qzdsGxGgJcnOPf1ZvWFburb3VqgyAAAAoJKEaPA/BodK6dy4I6VR7h1q69y4I4NDo/UAAAAAZjMhGvyP7p6+I1agHa6UpHdPf7p7+qauKAAAAGBaEKLB/9i9b+wA7Wj6AQAAALOHEA3+R8PC2kntBwAAAMweQjT4H61N9Wmsq03VGPercvCUztam+qksCwAAAJgGhGjwP2qqq9LR3pwkRwRph6472ptTUz1WzAYAAADMVkI0OExbS2PWrVqehkXzR7QvravNulXL09bSWKHKAAAAgEqaU+kCYLppa2nMxWcszjm3bkqSrL/+olxy5ilWoAEAAMBxzEo0GMXhgVlrU70ADQAAAI5zQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACFQ/RPvzhD+f0009PbW1tVqxYke7u7mft/+STT+aGG25IY2Nj5s+fnxe/+MX57Gc/O0XVAgAAAHA8mlPJN//EJz6RNWvW5I477siKFSty++2358orr8w3v/nNNDQ0HNH/wIEDufzyy9PQ0JC///u/z2mnnZb//M//zEknnTT1xQMAAABw3KhoiHbbbbflTW96U66//vokyR133JHPfOYzufvuu/OOd7zjiP533313+vr68qUvfSlz585Nkpx++ulTWTIAAAAAx6GKhWgHDhzI1q1bc/PNNw+3VVdX57LLLsv9998/6ms+/elPZ+XKlbnhhhvyD//wDznllFPyute9Lm9/+9tTU1Mz6mv279+f/fv3D1/v3bs3STIwMJCBgYFJ/ESVMTDwzIivJ+szjRx3IANVpWk5ZrnGLVetzDyH5tRs+H0B04m5BeVjfkH5mF9QPpWcX+N9z4qFaI8//ngGBwezZMmSEe1LlizJN77xjVFf8x//8R+555578vrXvz6f/exn853vfCe/9Vu/lYGBgXR0dIz6mrVr16azs/OI9k2bNmXBggXH/kEqbP9gcujHeM8992T+6FniMY37uc9tmpRxyzFmucYtV63MXJs3b650CTArmVtQPuYXlI/5BeVTifn19NNPj6tfRbdzTtTQ0FAaGhrykY98JDU1NbngggvyyCOP5I//+I/HDNFuvvnmrFmzZvh67969WbZsWa644oosWrRoqkovm6cPPJO3dd+TJLn00ktT95zaSR/3yiuvyIJ5x/5XpRxjlmvcctXKzDMwMJDNmzfn8ssvH95GDhw7cwvKx/yC8jG/oHwqOb8O7VosUrFkYPHixampqcmuXbtGtO/atStLly4d9TWNjY2ZO3fuiK2bL3nJS7Jz584cOHAg8+bNO+I18+fPz/z5849onzt37qz4pTe3VPWjr+fOmbTPNHLcuZk799j/qpRjzHKNW65aB4dK6e7py+59/WlYWJvWpvrUVFcVv5CKmy2/M2C6MbegfMwvKB/zC8qnEvNrvO9XsRBt3rx5ueCCC7Jly5ZcddVVSQ6uNNuyZUtuvPHGUV9z8cUX52Mf+1iGhoZSXV2dJPnWt76VxsbGUQM0mE66tvemc+OO9O7pH25rrKtNR3tz2loaK1gZAAAAUKS6km++Zs2a3Hnnnfmrv/qrfP3rX8/q1avz1FNPDZ/W+YY3vGHEwQOrV69OX19f3vKWt+Rb3/pWPvOZz+SP/uiPcsMNN1TqI8C4dG3vzeoN20YEaEmyc09/Vm/Ylq7tvRWqDAAAABiPij7o6bWvfW0ee+yx3HLLLdm5c2fOP//8dHV1DR828PDDDw+vOEuSZcuW5XOf+1xuuummnHvuuTnttNPylre8JW9/+9sr9RGg0OBQKZ0bd2S08z1LSaqSdG7ckcubl9raCQAAANNUxZ+WfuONN465ffPee+89om3lypX58pe/XOaqYPJ09/QdsQLtcKUkvXv6093Tl5UvOnnqCgMAAADGraLbOeF4sHvf2AHa0fQDAAAApp4QDcqsYWHtpPYDAAAApp4QDcqstak+jXW1GetpZ1U5eEpna1P9VJYFAAAATIAQDcqsproqHe3NSXJEkHbouqO92aECAAAAMI0J0WAKtLU0Zt2q5WlYNH9E+9K62qxbtTxtLY0VqgwAAAAYj4qfzgnHi7aWxlx8xuKcc+umJMn66y/KJWeeYgUaAAAAzABWosEUOjwwa22qF6ABAADADCFEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKCBEAwAAAIACQjQAAAAAKHBUIdqTTz6Zu+66KzfffHP6+vqSJNu2bcsjjzwyqcUBAAAAwHQwZ6Iv+MpXvpLLLrssdXV1+d73vpc3velNqa+vz//7f/8vDz/8cD760Y+Wo04AAAAAqJgJr0Rbs2ZNrrvuunz7299ObW3tcPvP/uzP5otf/OKkFgcAAAAA08GEQ7R/+7d/y2/8xm8c0X7aaadl586dk1IUAAAAAEwnEw7R5s+fn7179x7R/q1vfSunnHLKpBQFAAAAANPJhEO0V73qVfn93//9DAwMJEmqqqry8MMP5+1vf3te85rXTHqBQLHBoVLu/+4T+YeHHsn9330ig0OlSpcEAAAAs8qEDxZ4//vfn1/6pV9KQ0NDfvjDH+blL395du7cmZUrV+bd7353OWoEnkXX9t50btyR3j39w22NdbXpaG9OW0tjBSsDAACA2WPCIVpdXV02b96c++67L1/5ylfygx/8IMuXL89ll11WjvqAZ9G1vTerN2zLj68727mnP6s3bMu6VcsFaQAAADAJJhyiHfKyl70sL3vZyyazFmACBodK6dy444gALUlKSaqSdG7ckcubl6amumqKqwMAAIDZZVwh2gc/+MFxD/jbv/3bR10MMH7dPX0jtnD+uFKS3j396e7py8oXnTx1hQEAAMAsNK4Q7QMf+MCI68ceeyxPP/10TjrppCTJk08+mQULFqShoUGIBlNk976xA7Sj6QcAAACMbVync/b09Az/efe7353zzz8/X//619PX15e+vr58/etfz/Lly/MHf/AH5a4X+B8NC2sntR8AAAAwtnGFaId717velQ996EM566yzhtvOOuusfOADH8g73/nOSS0OGFtrU30a62oz1tPOqnLwlM7WpvqpLAsAAABmpQmHaL29vXnmmWeOaB8cHMyuXbsmpSigWE11VTram5PkiCDt0HVHe7NDBQAAAGASTDhE+5mf+Zn8xm/8RrZt2zbctnXr1qxevTqXXXbZpBYHPLu2lsasW7U8DYvmj2hfWlebdauWp62lsUKVAQAAwOwy4RDt7rvvztKlS3PhhRdm/vz5mT9/flpbW7NkyZLcdddd5agReBZtLY355zUvH75ef/1Fue/tlwrQAAAAYBKN63TOw51yyin57Gc/m29961v5xje+kSQ5++yz8+IXv3jSiwPG5/Atm61N9bZwAgAAwCSbcIh2yItf/GLBGQAAAADHhQmHaG984xuf9f7dd9991MUAAAAAwHQ04RDtv//7v0dcDwwMZPv27XnyySdz6aWXTlphAAAAADBdTDhE++QnP3lE29DQUFavXp0XvehFk1IUAAAAAEwnEz6dc9RBqquzZs2afOADH5iM4QAAAABgWpmUEC1Jvvvd7+aZZ56ZrOEAAAAAYNqY8HbONWvWjLgulUrp7e3NZz7zmVx77bWTVhgAAAAATBcTDtH+/d//fcR1dXV1TjnllLz//e8vPLkTAAAAAGaiCYdon//858tRBwAAAABMWxN+Jtqll16aJ5988oj2vXv35tJLL52MmgAAAABgWplwiHbvvffmwIEDR7T39/fnX/7lXyalKAAAAACYTsa9nfMrX/nK8Nc7duzIzp07h68HBwfT1dWV0047bXKrAwAAAIBpYNwh2vnnn5+qqqpUVVWNum3zhBNOyIc+9KFJLQ4AAAAApoNxh2g9PT0plUp54QtfmO7u7pxyyinD9+bNm5eGhobU1NSUpUgAAAAAqKRxh2gveMELkiRDQ0NlKwYAAAAApqNxhWif/vSn88pXvjJz587Npz/96Wft+6pXvWpSCgMAAACA6WJcIdpVV12VnTt3pqGhIVddddWY/aqqqjI4ODhZtQEAAADAtDCuEO3wLZy2cwIAAABwvKmudAEAAAAAMN2NayXaBz/4wXEP+Nu//dtHXQwAAAAATEfjCtE+8IEPjGuwqqoqIRoAAAAAs864QrSenp5y1wEAAAAA09YxPROtVCqlVCpNVi0AAAAAMC0dVYj2F3/xF2lpaUltbW1qa2vT0tKSu+66a7JrAwAAAIBpYVzbOQ93yy235Lbbbsub3/zmrFy5Mkly//3356abbsrDDz+c3//935/0IgEAAACgkiYcoq1bty533nlnrr766uG2V73qVTn33HPz5je/WYgGs8TgUCndPX3Zva8/DQtr09pUn5rqqkqXBQAAABUx4RBtYGAgF1544RHtF1xwQZ555plJKQqorK7tvencuCO9e/qH2xrratPR3py2lsYKVgYAAACVMeFnol1zzTVZt27dEe0f+chH8vrXv35SigIqp2t7b1Zv2DYiQEuSnXv6s3rDtnRt761QZQAAAFA5E16Jlhw8WGDTpk35iZ/4iSTJAw88kIcffjhveMMbsmbNmuF+t9122+RUCUyJwaFSOjfuyGhn7paSVCXp3LgjlzcvtbUTAACA48qEQ7Tt27dn+fLlSZLvfve7SZLFixdn8eLF2b59+3C/qir/gQ0zTXdP3xEr0A5XStK7pz/dPX1Z+aKTp64wAAAAqLAJh2if//zny1EHMA3s3jd2gHY0/QAAAGC2mPAz0YDZq2Fh7aT2AwAAgNliwivR+vv786EPfSif//zns3v37gwNDY24v23btkkrDpharU31aayrzc49/aM+F60qydK62rQ21U91aQAAAFBREw7RfvVXfzWbNm3KL/3SL6W1tdWzz2AWqamuSkd7c1Zv2JaqZESQdmimd7Q3O1QAAACA486EQ7R//Md/zGc/+9lcfPHF5agHqLC2lsasW7U8HZ/+Wnbt3T/cvrSuNh3tzWlraaxgdQAAAFAZEw7RTjvttCxcuLActQDTRFtLYy4+Y3HOuXVTkmT99RflkjNPsQINAACA49aEDxZ4//vfn7e//e35z//8z3LUA0wThwdmrU31AjQAAACOaxNeiXbhhRemv78/L3zhC7NgwYLMnTt3xP2+vr5JKw4AAAAApoMJh2hXX311HnnkkfzRH/1RlixZ4mABAAAAAGa9CYdoX/rSl3L//ffnvPPOK0c9AAAAADDtTPiZaGeffXZ++MMflqMWAAAAAJiWJhyivec978nv/M7v5N57780TTzyRvXv3jvgDAAAAALPNhLdztrW1JUl+5md+ZkR7qVRKVVVVBgcHJ6cyAAAAAJgmJhyiff7znx/z3le/+tVjKgYAAAAApqMJh2gvf/nLR1zv27cvf/M3f5O77rorW7duzY033jhpxQEAAADAdDDhZ6Id8sUvfjHXXnttGhsb8yd/8ie59NJL8+Uvf3kyawMAAACAaWFCK9F27tyZ9evX5y/+4i+yd+/e/Mqv/Er279+fT33qU2lubi5XjQAAAABQUeNeidbe3p6zzjorX/nKV3L77bfn0UcfzYc+9KFy1gYAAAAA08K4V6L90z/9U377t387q1evzplnnlnOmgAAAABgWhn3SrT77rsv+/btywUXXJAVK1bkz/7sz/L444+XszYAAAAAmBbGHaL9xE/8RO6888709vbmN37jN/Lxj388p556aoaGhrJ58+bs27evnHUCAAAAQMVM+HTO5zznOXnjG9+Y++67L1/96lfzO7/zO3nPe96ThoaGvOpVrypHjQAAAABQURMO0Q531lln5X3ve1/+67/+K3/zN38zWTUBAAAAwLRyTCHaITU1Nbnqqqvy6U9/ejKGAwAAAIBpZVJCNAAAAACYzYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABeZUugDg+DI4VEp3T1927+tPw8LatDbVp6a6qtJlAQAAwLMSogFTpmt7bzo37kjvnv7htsa62nS0N6etpbGClQEAAMCzs50TmBJd23uzesO2EQFakuzc05/VG7ala3tvhSoDAACAYkI0oOwGh0rp3LgjpVHuHWrr3Lgjg0Oj9QAAAIDKE6IBZdfd03fECrTDlZL07ulPd0/f1BUFAAAAEyBEA8pu976xA7Sj6QcAAABTTYgGlF3DwtpJ7QcAAABTTYgGlF1rU30a62pTNcb9qhw8pbO1qX4qywIAAIBxE6IBZVdTXZWO9uYkOSJIO3Td0d6cmuqxYjYAAACoLCEaMCXaWhqzbtXyNCyaP6J9aV1t1q1anraWxgpVBgAAAMXmVLoA4PjR1tKYi89YnHNu3ZQkWX/9RbnkzFOsQAMAAGDasxINmFKHB2atTfUCNAAAAGYEIRoAAAAAFBCiAQAAAEABIRoAAAAAFBCiAQAAAEABIRoAAAAAFBCiAQAAAEABIRoAAAAAFBCiAQAAAEABIRoAAAAAFBCiAQAAAECBaRGiffjDH87pp5+e2trarFixIt3d3eN63cc//vFUVVXlqquuKm+BAAAAABzXKh6ifeITn8iaNWvS0dGRbdu25bzzzsuVV16Z3bt3P+vrvve97+V3f/d3c8kll0xRpQAAAAAcryoeot12221505velOuvvz7Nzc254447smDBgtx9991jvmZwcDCvf/3r09nZmRe+8IVTWC0AAAAAx6M5lXzzAwcOZOvWrbn55puH26qrq3PZZZfl/vvvH/N1v//7v5+Ghob86q/+av7lX/7lWd9j//792b9///D13r17kyQDAwMZGBg4xk9QeQMDz4z4erI+08hxBzJQVZqWY5Zr3JlUa7nGnUm1ltOhOTUbfl/AdGJuQfmYX1A+5heUTyXn13jfs6Ih2uOPP57BwcEsWbJkRPuSJUvyjW98Y9TX3HffffmLv/iLPPTQQ+N6j7Vr16azs/OI9k2bNmXBggUTrnm62T+YHPox3nPPPZlfM/njfu5zmyZl3HKMWa5xZ1Kt5Rp3JtU6FTZv3lzpEmBWMregfMwvKB/zC8qnEvPr6aefHle/ioZoE7Vv375cc801ufPOO7N48eJxvebmm2/OmjVrhq/37t2bZcuW5YorrsiiRYvKVeqUefrAM3lb9z1JkksvvTR1z6md9HGvvPKKLJh37H9VyjFmucadSbWWa9yZVGs5DQwMZPPmzbn88sszd+7cSpcDs4a5BeVjfkH5mF9QPpWcX4d2LRap6H+9Ll68ODU1Ndm1a9eI9l27dmXp0qVH9P/ud7+b733ve2lvbx9uGxoaSpLMmTMn3/zmN/OiF71oxGvmz5+f+fPnHzHW3LlzZ8Uvvbmlqh99PXfOpH2mkePOzdy5x/5XpRxjlmvcmVRrucadSbVOhdnyOwOmG3MLysf8gvIxv6B8KjG/xvt+FT1YYN68ebnggguyZcuW4bahoaFs2bIlK1euPKL/2Wefna9+9at56KGHhv+86lWvyite8Yo89NBDWbZs2VSWDwAAAMBxouJLQNasWZNrr702F154YVpbW3P77bfnqaeeyvXXX58kecMb3pDTTjsta9euTW1tbVpaWka8/qSTTkqSI9qB48fgUCndPX3Zva8/DQtr09pUn5rqquIXAgAAwDhVPER77Wtfm8ceeyy33HJLdu7cmfPPPz9dXV3Dhw08/PDDqa6u6II5YBrr2t6bzo070runf7itsa42He3NaWtprGBlAAAAzCYVD9GS5MYbb8yNN9446r177733WV+7fv36yS8ImBG6tvdm9YZtKf1Y+849/Vm9YVvWrVouSAMAAGBSWOIFzEiDQ6V0btxxRICWZLitc+OODA6N1gMAAAAmRogGzEjdPX0jtnD+uFKS3j396e7pm7qiAAAAmLWEaMCMtHvf2AHa0fQDAACAZyNEA2akhoW1k9oPAAAAno0QDZiRWpvq01hXm6ox7lfl4CmdrU31U1kWAAAAs5QQDZiRaqqr0tHenCRHBGmHrjvam1NTPVbMBgAAAOMnRANmrLaWxqxbtTwNi+aPaF9aV5t1q5anraWxQpUBAAAw28ypdAEAx6KtpTEXn7E459y6KUmy/vqLcsmZp1iBBgAAwKSyEg2Y8Q4PzFqb6gVoAAAATDohGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBjGFwqJQHevqy9fGqPNDTl8GhUqVLAgAAoELmVLoAgOmoa3tvOjfuSO+e/iQ1+ei3H0xjXW062pvT1tJY6fIAAACYYlaiAfyYru29Wb1h2/8EaD+yc09/Vm/Ylq7tvRWqDAAAgEoRogEcZnColM6NOzLaxs1DbZ0bd9jaCQAAcJwRogEcprun74gVaIcrJend05/unr6pKwoAAICKE6IBHGb3vrEDtKPpBwAAwOwgRAM4TMPC2kntBwAAwOwgRAM4TGtTfRrralM1xv2qJI11tWltqp/KsgAAAKgwIRrAYWqqq9LR3pwkRwRph6472ptTUz1WzAYAAMBsJEQD+DFtLY1Zt2p5GhbNH9G+tK4261YtT1tLY4UqAwAAoFLmVLoAgOmoraUxF5+xOOfcuilJctc1L80rXtJoBRoAAMBxyko0gDEcHphddPpzBWgAAADHMSEaAAAAABQQogEAAABAASEaAAAAABQQogEAAABAASEaAAAAABQQogEAAABAASEaAAAAABQQogEAAABAASEaAAAAABQQogEAAABAASEaAAAAABQQogEAAABAASEaAAAAABSYU+kCAI4ng0OldPf0Zfe+/jQsrE1rU31qqqsqXRYAAAAFhGgAU6Rre286N+5I757+4bbGutp0tDenraWxgpUBAABQxHZOgCnQtb03qzdsGxGgJcnOPf1ZvWFburb3VqgyAAAAxkOIBlBmg0OldG7ckdIo9w61dW7ckcGh0XoAAAAwHQjRAMqsu6fviBVohysl6d3Tn+6evqkrCgAAgAkRogGU2e59YwdoR9MPAACAqSdEAyizhoW1k9oPAACAqSdEAyiz1qb6NNbVpmqM+1U5eEpna1P9VJYFAADABAjRAMqsproqHe3NSXJEkHbouqO9OTXVY8VsAAAAVJoQDWAKtLU0Zt2q5WlYNH9E+9K62qxbtTxtLY0VqgwAAIDxmFPpAgCOF20tjbn4jMU559ZNSZL111+US848xQo0AACAGcBKNIApdHhg1tpUL0ADAACYIYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABeZUugAAjt3gUCndPX3Zva8/DQtr09pUn5rqqkqXBQAAMGsI0QBmuK7tvencuCO9e/qH2xrratPR3py2lsYKVgYAADB72M4JMIN1be/N6g3bRgRoSbJzT39Wb9iWru29FaoMAABgdhGiAcxQg0OldG7ckdIo9w61dW7ckcGh0XoAAAAwEUI0gBmqu6fviBVohysl6d3Tn+6evqkrCgAAYJYSogHMULv3jR2gHU0/AAAAxiZEA5ihGhbWTmo/AAAAxiZEA5ihWpvq01hXm6ox7lfl4CmdrU31U1kWAADArCREA5ihaqqr0tHenCRHBGmHrjvam1NTPVbMBgAAwHgJ0QBmsLaWxqxbtTwNi+aPaF9aV5t1q5anraWxQpUBAADMLnMqXQAAx6atpTEXn7E459y6KUmy/vqLcsmZp1iBBgAAMImsRAOYBQ4PzFqb6gVoAAAAk0yIBgAAAAAFhGgAAAAAUECIBgAAAAAFhGgAAAAAUECIBgAAAAAFhGgAAAAAUECIBgAAAAAF5lS6AACmp8GhUrp7+rJ7X38aFtamtak+NdVVlS4LAACgIoRoAByha3tvOjfuSO+e/uG2xrradLQ3p62lsYKVAQAAVIbtnACM0LW9N6s3bBsRoCXJzj39Wb1hW7q291aoMgAAgMoRogEwbHColM6NO1Ia5d6hts6NOzI4NFoPAACA2UuIBsCw7p6+I1agHa6UpHdPf7p7+qauKAAAgGlAiAbAsN37xg7QjqYfAADAbCFEA2BYw8LaSe0HAAAwWwjRABjW2lSfxrraVI1xvyoHT+lsbaqfyrIAAAAqTogGwLCa6qp0tDcnyRFB2qHrjvbm1FSPFbMBAADMTkI0AEZoa2nMulXL07Bo/oj2pXW1WbdqedpaGitUGQAAQOXMqXQBAEw/bS2NufiMxTnn1k1JkvXXX5RLzjzFCjQAAOC4ZSUaAKM6PDBrbaoXoAEAAMc1IRoAAAAAFBCiAQAAAEABIRoAAAAAFBCiAQAAAEABIRoAAAAAFBCiAQAAAECBOZUuAIDjy+BQKd09fdm9rz8NC2vT2lSfmuqqSpcFAADwrIRoAEyZru296dy4I717+ofbGutq09HenLaWxgpWBgAA8Oxs5wRgSnRt783qDdtGBGhJsnNPf1Zv2Jau7b0VqgwAAKCYEA2AshscKqVz446URrl3qK1z444MDo3WAwAAoPKEaACUXXdP3xEr0A5XStK7pz/dPX1TVxQAAMAECNEAKLvd+8YO0I6mHwAAwFQTogFQdg0Laye1HwAAwFQTogFQdq1N9Wmsq03VGPercvCUztam+qksCwAAYNyEaACUXU11VTram5PkiCDt0HVHe3NqqseK2QAAACpLiAbAlGhracy6VcvTsGj+iPaldbVZt2p52loaK1QZAABAsTmVLgCA40dbS2MuPmNxzrl1U5Jk/fUX5ZIzT7ECDQAAmPasRANgSh0emLU21QvQAACAGUGIBgAAAAAFhGgAAAAAUECIBgAAAAAFhGgAAAAAUMDpnADMCoNDpXT39GX3vv40LKx1aAEAADCphGgAzHhd23vTuXFHevf0D7c11tWmo705bS2NFawMAACYLWznBGBG69rem9Ubto0I0JJk557+rN6wLV3beytUGQAAMJsI0QCYsQaHSuncuCOlUe4dauvcuCODQ6P1AAAAGD8hGgAzVndP3xEr0A5XStK7pz/dPX1TVxQAADArTYsQ7cMf/nBOP/301NbWZsWKFenu7h6z75133plLLrkkz33uc/Pc5z43l1122bP2B2D22r1v7ADtaPoBAACMpeIh2ic+8YmsWbMmHR0d2bZtW84777xceeWV2b1796j977333lx99dX5/Oc/n/vvvz/Lli3LFVdckUceeWSKKweg0hoW1k5qPwAAgLFUPES77bbb8qY3vSnXX399mpubc8cdd2TBggW5++67R+3/13/91/mt3/qtnH/++Tn77LNz1113ZWhoKFu2bJniygGotNam+jTW1aZqjPtVOXhKZ2tT/VSWBQAAzEJzKvnmBw4cyNatW3PzzTcPt1VXV+eyyy7L/fffP64xnn766QwMDKS+fvT/QNq/f3/2798/fL13794kycDAQAYGBo6h+ulhYOCZEV9P1mcaOe5ABqqO/aHc5RizXOPOpFrLNa5ayzO/fF8nf9z//cqz8uaP//9SlYw4YKDqsPtDg89kaPCY3oZJdmg+zYZ/i2G6Mb+gfMwvKJ9Kzq/xvmdFQ7THH388g4ODWbJkyYj2JUuW5Bvf+Ma4xnj729+eU089NZdddtmo99euXZvOzs4j2jdt2pQFCxZMvOhpZv9gcujHeM8992R+zeSP+7nPbZqUccsxZrnGnUm1lmtctZZnfvm+lmfc619clf/7versOfCjNWl180p59elDGfzPrfnsfx77e1AemzdvrnQJMGuZX1A+5heUTyXm19NPPz2ufhUN0Y7Ve97znnz84x/Pvffem9ra0Z93c/PNN2fNmjXD13v37h1+jtqiRYumqtSyefrAM3lb9z1JkksvvTR1z5mc5/4cPu6VV16RBfOO/a9KOcYs17gzqdZyjavW8swv39fyjPuzSW7sH8jyd38+SXLXNS/Ny85YnJrqsTZ6UmkDAwPZvHlzLr/88sydO7fS5cCsYn5B+ZhfUD6VnF+Hdi0WqWiItnjx4tTU1GTXrl0j2nft2pWlS5c+62v/5E/+JO95z3vyz//8zzn33HPH7Dd//vzMnz//iPa5c+fOil96c0s/+g/EuXPnTNpnGjnu3Myde+x/VcoxZrnGnUm1lmtctZZnfvm+lm/c2sPG/ckzG1I7SaEf5TVb/j2G6cj8gvIxv6B8KjG/xvt+FT1YYN68ebngggtGHApw6JCAlStXjvm6973vffmDP/iDdHV15cILL5yKUgEAAAA4jlX8/6Zfs2ZNrr322lx44YVpbW3N7bffnqeeeirXX399kuQNb3hDTjvttKxduzZJ8t73vje33HJLPvaxj+X000/Pzp07kyQnnnhiTjzxxIp9DgAAAABmr4qHaK997Wvz2GOP5ZZbbsnOnTtz/vnnp6ura/iwgYcffjjV1T9aMLdu3bocOHAgv/RLvzRinI6Ojtx6661TWToAAAAAx4mKh2hJcuONN+bGG28c9d6999474vp73/te+QsCgCSDQ6V09/Rl977+NCysTWtTvcMKAADgODUtQjQAmG66tvemc+OO9O7pH25rrKtNR3tz2loaK1gZAABQCRU9WAAApqOu7b1ZvWHbiAAtSXbu6c/qDdvStb23QpUBAACVIkQDgMMMDpXSuXFHSqPcO9TWuXFHBodG6wEAAMxWQjQAOEx3T98RK9AOV0rSu6c/3T19U1cUAABQcUI0ADjM7n1jB2hH0w8AAJgdhGgAcJiGhbWT2g8AAJgdhGgAcJjWpvo01tWmaoz7VTl4SmdrU/1UlgUAAFSYEA0ADlNTXZWO9uYkOSJIO3Td0d6cmuqxYjYAAGA2EqIBwI9pa2nMulXL07Bo/oj2pXW1WbdqedpaGitUGQAAUClzKl0AAExHbS2NufiMxTnn1k1JkvXXX5RLzjzFCjQAADhOWYkGAGM4PDBrbaoXoAEAwHFMiAYAAAAABWznBIApNjhUSndPX3bv60/Dwlqr3AAAYAYQogHAFOra3pvOjTvSu6d/uK2xrjYd7c0OLAAAgGnMdk4AmCJd23uzesO2EQFakuzc05/VG7ala3tvhSoDAACKCNEAYAoMDpXSuXFHSqPcO9TWuXFHBodG6wEAAFSaEA0ApkB3T98RK9AOV0rSu6c/3T19U1cUAAAwbkI0AJgCu/eNHaAdTT8AAGBqCdEAYAo0LKyd1H4AAMDUEqIBwBRobapPY11tqsa4X5WDp3S2NtVPZVkAAMA4CdEAYArUVFelo705SY4I0g5dd7Q3p6Z6rJgNAACoJCEaAEyRtpbGrFu1PA2L5o9oX1pXm3WrlqetpbFClQEAAEXmVLoAADietLU05uIzFuecWzclSdZff1EuOfMUK9AAAGCaE6IBwBQ7PDBrbaqflABtcKiU7p6+7N7Xn4aFtZM2LgAAcJAQDQBmuK7tvencuCO9e/qH2xrratPR3myLKAAATBLPRAOAGaxre29Wb9g2IkBLkp17+rN6w7Z0be+tUGUAADC7CNEAYIYaHCqlc+OOlEa5d6itc+OODA6N1gMAAJgIIRoAzFDdPX1HrEA7XClJ757+dPf0TV1RAAAwSwnRAGCG2r1v7ADtaPoBAABjE6IBwAzVsLB2UvsBAABjE6IBwAzV2lSfxrraVI1xvyoHT+lsbaqfyrIAAGBWEqIBwAxVU12VjvbmJDkiSDt03dHenJrqsWI2AABgvIRoADCDtbU0Zt2q5WlYNH9E+9K62qxbtTxtLY0VqgwAAGaXOZUuAAA4Nm0tjbn4jMU559ZNSZL111+US848xQo0AACYREI0AJgFDg/MWpvqJy1AGxwqpbunL7v39adhYe2kjg0AADOJEA0AGFXX9t50btyR3j39w22NdbXpaG+2TRQAgOOOZ6IBAEfo2t6b1Ru2jQjQkmTnnv6s3rAtXdt7K1QZAABUhhANABhhcKiUzo07Uhrl3qG2zo07Mjg0Wg8AAJidhGgAwAjdPX1HrEA7XClJ757+dPf0TV1RAABQYUI0AGCE3fvGDtCOph8AAMwGQjQAYISGhbWT2g8AAGYDIRoAMEJrU30a62pTNcb9qhw8pbO1qX4qywIAgIoSogEAI9RUV6WjvTlJjgjSDl13tDenpnqsmA0AAGYfIRoAcIS2lsasW7U8DYvmj2hfWlebdauWp62l8ajHHhwq5YGevmx9vCoP9PQ55RMAgBlhTqULAACmp7aWxlx8xuKcc+umJMn66y/KJWeeckwr0Lq296Zz447/Of2zJh/99oNprKtNR3vzMQVzAABQblaiAQBjOjwwa22qP+YAbfWGbf8ToP3Izj39Wb1hW7q29x712AAAUG5CNACg7AaHSuncuCOjbdw81Na5cYetnQAATFtCNACg7Lp7+o5YgXa4UpLePf3p7umbuqIAAGAChGgAQNnt3jd2gHY0/QAAYKoJ0QCAsmtYWDup/QAAYKoJ0QCAsmttqk9jXW3GOpagKkljXW1am+qnsiwAABg3IRoAUHY11VXpaG9OkiOCtEPXHe3Nx3T6JwAAlJMQDQCYEm0tjVm3ankaFs0f0b60rjbrVi1PW0vjMY0/OFTK/d99Iv/w0CO5/7tPOOkTAIBJNafSBQAAx4+2lsZcfMbinHPrpiTJXde8NK94SeMxr0Dr2t6bzo07RpwA2lhXm4725mMO5wAAILESDQCYYocHZhed/txJCdBWb9g2IkBLkp17+rN6w7Z0be89pvEBACARogEAM9jgUCmdG3dktI2bh9o6N+6wtRMAgGMmRAMAZqzunr4jVqAdrpSkd09/unv6pq4oAABmJSEaADBj7d43doB2NP0AAGAsQjQAYMZqWFg7qf0AAGAsTucEAGas1qb6NNbVZuee/lGfi1aVZGldbVqb6o/6PQaHSunu6cvuff1pWHhwrGM9DAEAgJlHiAYAzFg11VXpaG/O6g3bUpWMCNIOxVwd7c1HHXp1be9N58YdI5671lhXm4725rS1NB513QAAzDy2cwIAM1pbS2PWrVqehkXzR7QvravNulXLjzrs6trem9Ubth1xcMHOPf1ZvWFburb3HnXNAADMPFaiAQAzXltLYy4+Y3HOuXVTkmT99RflkjNPOeoVaINDpXRu3DHqFtFSDq5y69y4I5c3L7W1EwDgOGElGgAwKxweZh3rc8u6e/qOWIF2uFKS3j396e7pO+r3AABgZhGiAQD8mN37xg7QjqYfAAAznxANAODHNCysndR+AADMfJ6JBgDwY1qb6tNYV5ude/pHfS5aVQ4eXNDaVH9U4w8OldLd05fd+/rTsLD2mLefAgBQfkI0AIAfU1NdlY725qzesC1VyYgg7VDU1dHefFTBV9f23nRu3DHimWuNdbXpaG8+6pNEAQAoP9s5AQBG0dbSmHWrlqdh0fwR7UvrarNu1fKjCry6tvdm9YZtRxxasHNPf1Zv2Jau7b3HVDMAAOVjJRoAwBjaWhpz8RmLc86tm5Ik66+/KJececpRrUAbHCqlc+OOUbeHlnJwhVvnxh25vHmprZ0AANOQlWgAAM/i8EDrWJ5d1t3Td8QKtMOVkvTu6U93T99RjQ8AQHkJ0QAApsDufWMHaEfTDwCAqWU7JwDAFGhYWDup/Ubj1E8AgPIRogEATIHWpvo01tVm557+UZ+LVpWDhxa0NtUf1fhO/QQAKC/bOQEApkBNdVU62puTHAzMDnfouqO9+ahWjjn1EwCg/IRoAABTpK2lMetWLU/Dovkj2pfW1WbdquVHtWKs6NTP5OCpn4NDo/UAAGC8bOcEAJhCbS2NufiMxTnn1k1JkvXXX5RLzjxlSk79XPmik4/qPQAAsBINAGDKHR6YHevD/536CQAwNaxEAwCYwcp96qcTPwEADhKiAQDMYOU89dOJnwAAP2I7JwDADFauUz+d+AkAMJIQDQBghpvsUz+d+AkAcCTbOQEAZoHJPPXTiZ8AAEcSogEAzBKTdernVJz46cACAGCmEaIBADBCuU/8dGABADATeSYaAAAjHDrxc6x1YVU5GHod7YmfDiwAAGYiIRoAACOU68RPBxYAADOZEA0AgCNM9omfycQOLAAAmG48Ew0AgFFN5omfSfkPLHBYAQBQTkI0AADGNFknfiblPbDAYQUAQLnZzgkAwJQo14EFDisAAKaCEA0AgClRjgMLHFYAAEwVIRoAAFNmsg8smIrDCgaHSrn/u0/kHx56JPd/9wmBHAAcpzwTDQCAKTWZBxaU+7ACz1oDAA6xEg0AgCk3WQcWlPuwAs9aAwAOEaIBADBjleuwgql41pptogAws9jOCQDAjHXosILVG7alKhkReh3tYQXJxJ61tvJFJ0+0bNtEAWAGshINAIAZbbIPK0jK+6w120QBYGayEg0AgBlvMg8rSMr3rLWibaJVObhN9PLmpUddOwBQHlaiAQAwK0zWYQWHXl+OZ61NZJvo0RgcKuWBnr5sfbwqD/T0ec4aAEwiK9EAAODHlOtZa+XeJvqj56zV5KPfftBz1gBgElmJBgAAoyjHs9bKtU3Uc9YAoPysRAMAgDFM9rPWDm0T3bmnf9TnolXlYEg3kW2iU/GctcGhUrp7+rJ7X38aFtYe83ZZAJiJhGgAAPAsJvNZa+XYJjqR56ytfNHJE6555DbRg2wTBeB4ZDsnAABMocneJlru56yVa5vo4FAp93/3ifzDQ4/k/u8+4RAEAKY9K9EAAGCKTeY20XI9Z62c20StbgNgJrISDQAAKmCytokees7aWK+uysGAaiLPWUsmtk10IhyCAMBMJUQDAIAZ7NBz1pIcEaQd7XPWkvJsEy1a3ZYcXN12LFs7bRMFoFxs5wQAgBnu0HPWOj79tezau3+4fekxbJEsxzZRhyAAMJNZiQYAALNAW0tj/nnNy4ev77rmpbnv7ZcedXhUjm2iDkEAYCazEg0AAGaJw7dsXnT6c4/6OWuHxupob87qDdtSlYzYgnm020QdggDATGYlGgAAMKpD20QbFs0f0b60rjbrVi2fcIjkEISRrHADmFmsRAMAAMbU1tKYi89YnHNu3ZQkWX/9RbnkzFOOapVbOVa3JZU5BOFYVrclVrgBzERWogEAAM/q8JCotan+mLaJTvbqtqTyhyBMlBVuADOTlWgAAMCUmszVbcmPtonu3NM/6sqxqhwM6abDIQgzdYXb4FAp3T192b2vPw0La485TAWYiYRoAADAlJvM1W0z6RCEiaxwW/mikyc09qEVbj8e0B1a4Xa0K/1sPQU4yHZOAABgxpsphyBUaoVbcnCF20S3dtp6CvAjVqIBAACzwkw4BGEmrXCz9RRgJCvRAACAWWO6H4Iwk1a4zcTDFbq29+Zl770nV9/55bzl4w/l6ju/nJe9955jXjGXHAznHujpy9bHq/JAT59Vc3AcEqIBAACMoa2lMf+85uXD1+uvvyj3vf3So14pdWiFW5IjgrTptsLN1tORY7/svfdk1d0P5qPfrsmqux+clHDOdlaYWYRoAAAAz2IyV7clM2eF23TYejpe5Qrmkpm7ak44B5PPM9EAAACm2GQ+vy0pzzPcDgVzO/f0jxpOVeVg8DfTtp5O5NTTcj0XrlwnqR4au1ynqZbjeXOeYcdMIkQDAACogHKtcOv49Neya+/+4falRxmgzKTDFcq19XSmHdgw08K5mRb4gRANAABglpjsFW6THcwl5VnhVq6tp1bNHVSOcG6mBX5J+YI5gd/MIUQDAACYRcqxwu143Xp6vK+aS8oTzs20wO/QuOUI5gR+M4uDBQAAAHhW0/1whXKdejqTDmyYDuFcJcdMZt7JrzPt0IpyHoYxUwjRAAAAmHJtLY355zUvH75ef/1Fue/tlx716ptynHpajnCuHMFcMrPCuZkU+JUrmBP4zUxCNAAAACqiHCvcJjOYOzTm8bpqLilPODeTAr9yrZoT+M1MQjQAAABmjckO5pIjw7m7rnnpcbFqLilPODeTAr9yrZo73gO/mUqIBgAAAAUOD58uOv25x8WquaQ84dxMCvzKtWrueA/8ZqppEaJ9+MMfzumnn57a2tqsWLEi3d3dz9r/7/7u73L22WentrY255xzTj772c9OUaUAAAAwOaZi1dx0DedmSuBXrlVzx3vgN1PNqXQBn/jEJ7JmzZrccccdWbFiRW6//fZceeWV+eY3v5mGhoYj+n/pS1/K1VdfnbVr1+bnf/7n87GPfSxXXXVVtm3blpaWlgp8gsoqlUqZ/8z+JMnQD3+YoarJ2YM8dOCZH4379NMZeubY/6qUY8xyjTuTai3XuGr9sXEnaX75vs6scdU6BbVO83+7yjWuWtVarnFn0vyasd/XaV5rucZV68z634ZVh4174ZLaVPX/MEPHOOYVL6zLytUXpfXdW5Ik/+eaC3LxixanproqQ08/Pa3GvOOXXpI//MzXs3vf/uH2pYtq83s/e3Yuf2HdhMauSnLr5U15y8cfSpIRzwU7FIDdevlLJvw9Lse4Fy6pzQsWVGXX3v5Rn19WlWTJotpcuKR2Qt+DscbdXzMvqapKVQ6GnxMNEmeiqlKpVNEnv61YsSIXXXRR/uzP/ixJMjQ0lGXLluXNb35z3vGOdxzR/7WvfW2eeuqp/OM//uNw20/8xE/k/PPPzx133HFE//3792f//h9NnL1792bZsmV5/PHHs2jRojJ8oqn1gz37svNlF1e6DAAAAOA4ctXPvzsH5hxcSfih/++8XPm/lhzTeAMDA9m8eXMuv/zyzJ07dzJKHLe9e/dm8eLF2bNnz7NmRRVdiXbgwIFs3bo1N99883BbdXV1Lrvsstx///2jvub+++/PmjVrRrRdeeWV+dSnPjVq/7Vr16azs/OI9k2bNmXBggVHX/w0UXXgQM6sdBEAAADAcaduXimvPn0og/+5NZ/9z8kZc/PmzZMz0AQ8Pc6VeRUN0R5//PEMDg5myZKRaeWSJUvyjW98Y9TX7Ny5c9T+O3fuHLX/zTffPCJ0O7QS7YorrpgVK9FKpVIOXHpp7rnnnlx66aWZO6fiO3RhVhl45hnzC8rA3ILyMb+gfMwvZorBoVK2ff/JPLbvQE5ZOC/Ll500Kc/cO3zcv1i8KBeePjnP8ksqvxJtPGb9rJ8/f37mz59/RPvcuXOn/IdSLlWLFqU0b17mL1o0az4TTBfVAwPmF5SBuQXlY35B+ZhfzCQve+5JM2rcQyqR14z3/Sp6OufixYtTU1OTXbt2jWjftWtXli5dOuprli5dOqH+AAAAAHCsKhqizZs3LxdccEG2bNky3DY0NJQtW7Zk5cqVo75m5cqVI/onB/fLjtUfAAAAAI5VxbdzrlmzJtdee20uvPDCtLa25vbbb89TTz2V66+/Pknyhje8IaeddlrWrl2bJHnLW96Sl7/85Xn/+9+fn/u5n8vHP/7xPPjgg/nIRz5SyY8BAAAAwCxW8RDtta99bR577LHccsst2blzZ84///x0dXUNHx7w8MMPp7r6RwvmfvInfzIf+9jH8s53vjO/93u/lzPPPDOf+tSn0tLSUqmPAAAAAMAsV/EQLUluvPHG3HjjjaPeu/fee49o++Vf/uX88i//cpmrAgAAAICDKvpMNAAAAACYCYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBAiAYAAAAABYRoAAAAAFBgTqULmGqlUilJsnfv3gpXMnkGBgby9NNPZ+/evZk7d26ly4FZxfyC8jC3oHzMLygf8wvKp5Lz61BGdCgzGstxF6Lt27cvSbJs2bIKVwIAAADAdLFv377U1dWNeb+qVBSzzTJDQ0N59NFHs3DhwlRVVVW6nEmxd+/eLFu2LN///vezaNGiSpcDs4r5BeVhbkH5mF9QPuYXlE8l51epVMq+ffty6qmnprp67CefHXcr0aqrq/O85z2v0mWUxaJFi/wihzIxv6A8zC0oH/MLysf8gvKp1Px6thVohzhYAAAAAAAKCNEAAAAAoIAQbRaYP39+Ojo6Mn/+/EqXArOO+QXlYW5B+ZhfUD7mF5TPTJhfx93BAgAAAAAwUVaiAQAAAEABIRoAAAAAFBCiAQAAAEABIRoAAAAAFBCiAQAAAEABIdos8OEPfzinn356amtrs2LFinR3d1e6JJhxvvjFL6a9vT2nnnpqqqqq8qlPfWrE/VKplFtuuSWNjY054YQTctlll+Xb3/52ZYqFGWTt2rW56KKLsnDhwjQ0NOSqq67KN7/5zRF9+vv7c8MNN+Tkk0/OiSeemNe85jXZtWtXhSqGmWHdunU599xzs2jRoixatCgrV67MP/3TPw3fN69g8rznPe9JVVVV3vrWtw63mWNwdG699dZUVVWN+HP22WcP35/uc0uINsN94hOfyJo1a9LR0ZFt27blvPPOy5VXXpndu3dXujSYUZ566qmcd955+fCHPzzq/fe973354Ac/mDvuuCMPPPBAnvOc5+TKK69Mf3//FFcKM8sXvvCF3HDDDfnyl7+czZs3Z2BgIFdccUWeeuqp4T433XRTNm7cmL/7u7/LF77whTz66KN59atfXcGqYfp73vOel/e85z3ZunVrHnzwwVx66aX5hV/4hXzta19LYl7BZPm3f/u3/J//839y7rnnjmg3x+Do/a//9b/S29s7/Oe+++4bvjft51aJGa21tbV0ww03DF8PDg6WTj311NLatWsrWBXMbElKn/zkJ4evh4aGSkuXLi398R//8XDbk08+WZo/f37pb/7mbypQIcxcu3fvLiUpfeELXyiVSgfn0ty5c0t/93d/N9zn61//eilJ6f77769UmTAjPfe5zy3ddddd5hVMkn379pXOPPPM0ubNm0svf/nLS295y1tKpZJ/u+BYdHR0lM4777xR782EuWUl2gx24MCBbN26NZdddtlwW3V1dS677LLcf//9FawMZpeenp7s3LlzxFyrq6vLihUrzDWYoD179iRJ6uvrkyRbt27NwMDAiPl19tln5/nPf775BeM0ODiYj3/843nqqaeycuVK8womyQ033JCf+7mfGzGXEv92wbH69re/nVNPPTUvfOEL8/rXvz4PP/xwkpkxt+ZUugCO3uOPP57BwcEsWbJkRPuSJUvyjW98o0JVweyzc+fOJBl1rh26BxQbGhrKW9/61lx88cVpaWlJcnB+zZs3LyeddNKIvuYXFPvqV7+alStXpr+/PyeeeGI++clPprm5OQ899JB5Bcfo4x//eLZt25Z/+7d/O+Kef7vg6K1YsSLr16/PWWedld7e3nR2duaSSy7J9u3bZ8TcEqIBAFPihhtuyPbt20c89wI4emeddVYeeuih7NmzJ3//93+fa6+9Nl/4whcqXRbMeN///vfzlre8JZs3b05tbW2ly4FZ5ZWvfOXw1+eee25WrFiRF7zgBfnbv/3bnHDCCRWsbHxs55zBFi9enJqamiNOqti1a1eWLl1aoapg9jk0n8w1OHo33nhj/vEf/zGf//zn87znPW+4fenSpTlw4ECefPLJEf3NLyg2b968nHHGGbnggguydu3anHfeefnTP/1T8wqO0datW7N79+4sX748c+bMyZw5c/KFL3whH/zgBzNnzpwsWbLEHINJctJJJ+XFL35xvvOd78yIf7+EaDPYvHnzcsEFF2TLli3DbUNDQ9myZUtWrlxZwcpgdmlqasrSpUtHzLW9e/fmgQceMNegQKlUyo033phPfvKTueeee9LU1DTi/gUXXJC5c+eOmF/f/OY38/DDD5tfMEFDQ0PZv3+/eQXH6Gd+5mfy1a9+NQ899NDwnwsvvDCvf/3rh782x2By/OAHP8h3v/vdNDY2zoh/v2znnOHWrFmTa6+9NhdeeGFaW1tz++2356mnnsr1119f6dJgRvnBD36Q73znO8PXPT09eeihh1JfX5/nP//5eetb35o//MM/zJlnnpmmpqa8613vyqmnnpqrrrqqckXDDHDDDTfkYx/7WP7hH/4hCxcuHH6eRV1dXU444YTU1dXlV3/1V7NmzZrU19dn0aJFefOb35yVK1fmJ37iJypcPUxfN998c175ylfm+c9/fvbt25ePfexjuffee/O5z33OvIJjtHDhwuFndx7ynOc8JyeffPJwuzkGR+d3f/d3097enhe84AV59NFH09HRkZqamlx99dUz4t8vIdoM99rXvjaPPfZYbrnlluzcuTPnn39+urq6jngAOvDsHnzwwbziFa8Yvl6zZk2S5Nprr8369evztre9LU899VR+/dd/PU8++WRe9rKXpaury3MyoMC6deuSJD/90z89ov0v//Ivc9111yVJPvCBD6S6ujqvec1rsn///lx55ZX58z//8ymuFGaW3bt35w1veEN6e3tTV1eXc889N5/73Ody+eWXJzGvoNzMMTg6//Vf/5Wrr746TzzxRE455ZS87GUvy5e//OWccsopSab/3KoqlUqlShcBAAAAANOZZ6IBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQAEhGgAAAAAUEKIBAAAAQIH/P0Dt14hrsI6BAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(15, 10))\n", "plt.ylabel('Amplitude')\n", "plt.stem(y, label='Salida y[n]') \n", "plt.legend(loc='best')\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "8bd782de-e48a-44ae-b4f7-e400fabb72ba", "metadata": {}, "source": [ "Consideremos ahora el caso de un sistema no lineal. Sea un caso sencillo en el cual la salida del sistema se encuentra dada por:\n", "\n", "$$y[n]= 0.9 y[n] + |x[n]|^2 $$\n", "\n", "Usando la condición de reposo inicial $y[-1]=0$ podemos calcular la respuesta al impulso ( Ojo! no podemos usar el comando lfilter! <\\b>). Por su sencillez podemos hacer como hicimos en clase para $y[n]= 0.9 y[n] + x[n]$:\n", "\n", "$$y[0]=|x[0]|^2=|\\delta[0]|^2 = 1$$\n", "$$y[1]=0.9 y[0]= 0.9$$\n", "$$y[2]= 0.9 y[1]=0.9^2$$\n", "$$y[3]= 0.9 y[2]=0.9^3$$\n", "$$ \\vdots $$\n", "\n", "O sea la solución es $h[n]=0.9^n u[n]$." ] }, { "cell_type": "markdown", "id": "637585fd-04d1-495e-9323-3a6435f4d098", "metadata": {}, "source": [ "Vamos a usar esta respuesta al impulso para calcular la respuesta a una exponencial compleja que comienza en tiempo $n=0$, o sea cuando $x[n]= Ae^{j2\\pi f_0 n}u[n]$. Para ello usamos la función convolve. Generemos\n", "primero el escalón:" ] }, { "cell_type": "code", "execution_count": 24, "id": "6ae768ab-2f3f-4ce6-9523-e67681014357", "metadata": {}, "outputs": [], "source": [ "# Signal duration in samples\n", "D = 120\n", "# Sampling rate in Hz\n", "fs = 1 \n", "#Sampling period\n", "T = 1/fs\n", "\n", "amplitude = 1\n", "freq = 0.1\n", "sample_rate = fs\n", "duration = D\n", "phase = 0 \n", "nx,x=generate_complex_exponential(amplitude,freq, sample_rate, duration, phase)\n", "\n", "#Generemos también h[n]\n", "\n", "alpha_c = np.log(0.9)\n", "position = 0.5 #Position of impulse. Value between 0 a 1. The start of exponential will be positioned in the index closer \n", " #to duration*position \n", "nh,h=generate_right_exponential(amplitude,alpha_c, sample_rate, duration, position) " ] }, { "cell_type": "code", "execution_count": 25, "id": "5547d833-fdee-4056-ba24-8ffe39afa1fb", "metadata": {}, "outputs": [], "source": [ "y=signal.convolve(h, x, mode='same', method='direct')" ] }, { "cell_type": "code", "execution_count": 26, "id": "83df1eb5-ca0f-42e2-b1a0-67b9ee3c71c6", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAANECAYAAACEnFmOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADTv0lEQVR4nOzdfVhUdf7/8deAA4gMGgoCiYjoQi6kqVBibTfeUbuulqa1WVqu7mJtme6vcjdKQzO327VNzNyy2027Wa22Jcmb2szCaC0tY9MlrcRbVkEJGZn5/dGXSQIR5JwzNzwf1+V1Oed8zsxnXr41ffc552Nzu91uAQAAAAAAADBMkLcnAAAAAAAAAAQamm4AAAAAAACAwWi6AQAAAAAAAAaj6QYAAAAAAAAYjKYbAAAAAAAAYDCabgAAAAAAAIDBaLoBAAAAAAAABqPpBgAAAAAAABiMphsAAAAAAABgMJpuAAAAAAAAgMH8puk2f/58ZWRkyOFwKCYmRqNHj1ZJSckpr3vppZeUmpqqsLAwpaen680337RgtgAAAAAAAGjLbG632+3tSTRHdna2rrrqKmVkZOj48eP6wx/+oK1bt+rzzz9Xhw4dGr3m/fff189+9jPNnz9fv/jFL/TCCy9owYIF+vjjj5WWltasz3W5XNq9e7ccDodsNpuRXwkAAAAAAAB+xO12q7KyUvHx8QoKanotm9803X5s//79iomJ0TvvvKOf/exnjY4ZP368jh49qjfeeMNz7LzzzlO/fv20ePHiZn3ON998o4SEBEPmDAAAAAAAAP/39ddfq1u3bk2OaWfRXAx3+PBhSVJUVNRJx2zcuFEzZsyod2zEiBFauXLlSa85duyYjh075nld15MsLS2Vw+FoxYx9h9Pp1Lp163TxxRfLbrd7ezrAaaOWESioZQQKahmBglpGoKCWESh8qZYrKyuVlJTUrB6RX650c7lc+uUvf6lDhw7pvffeO+m4kJAQPf3007r66qs9xxYtWqQ5c+Zo7969jV4ze/ZszZkzp8HxF154QeHh4a2fPAAAAAAAAPxSVVWVfvWrX+nw4cOKjIxscqxfrnS78cYbtXXr1iYbbqdr1qxZ9VbHVVRUKCEhQcOHDz9lmP7C6XSqsLBQw4YN83qHGGgNahmBglpGoKCWESioZQQKahmBwpdquaKiotlj/a7pdtNNN+mNN97Qu+++e8p7Z2NjYxusaNu7d69iY2NPek1oaKhCQ0MbHLfb7V7/hTVaIH4ntE3UMgIFtYxAQS0jUFDLCBTUMgKFL9RySz6/6W0WfIjb7dZNN92kv//971q7dq2SkpJOec2gQYO0Zs2aescKCws1aNAgs6YJAAAAAAAA+M9KtxtvvFEvvPCCVq1aJYfDoT179kiSOnbsqPbt20uSrrvuOp155pmaP3++JOmWW27RhRdeqAcffFA///nP9eKLL+qjjz7SkiVLvPY9AAAAAABoy9xut44fP67a2lpvTwV+wul0ql27dqqurrakbux2u4KDg1v9Pn7TdMvPz5ckXXTRRfWOP/XUU5o0aZIkadeuXQoK+mHxXlZWll544QXdeeed+sMf/qDevXtr5cqVSktLs2raAAAAAADg/9TU1KisrExVVVXengr8iNvtVmxsrL7++mvZbDbTP89ms6lbt26KiIho1fv4TdOtOZusrl+/vsGxK6+8UldeeaUJMwIAAAAAAM3lcrlUWlqq4OBgxcfHKyQkxJIGCvyfy+XSkSNHFBERUW+xlRncbrf279+vb775Rr17927Vije/aboBAAAAAAD/VVNTI5fLpYSEBIWHh3t7OvAjLpdLNTU1CgsLM73pJknR0dH66quv5HQ6W9V085uNFAAAAAAAgP+zomkCtIZRKzBZ6YbTUutyq6i0XPsqqxXjCFNmUpSCg1gWDAAAAAAAINF0w2ko2Fqmuau26JtKp+dYN4ddd45KV3ZanBdnBgAAAABoC1gIAn/Amk60SMHWMuU8V6zUf2/Qq8/O1GcPjdWrz85U6uYNynmuWAVby7w9RQAAAABAACvYWqYL5xfq6ic+0C0vbtbVT3ygC+cX8u9Rk0yaNEmjR49u0TXLli1Tp06dTJnPiZ9hs9lks9k0ffr0Fl1bd53Zc6Tphmardbk1d9UWDdm+SUteyVP/3SXq4KxW/90lWvJynobs2KR5q7ao1nXqnWYBAAAAAGgpby0EmTRpkqdRExISol69eumee+7R8ePHW/2+LW1o4QeRkZEqKytTXl5ei64rKyvTI488Ys6kTkDTDc1WVFqubyqdmrZxuYJUv7EWJLdy3l+hryudKiot99IMAQAAAACBytsLQbKzs1VWVqYvv/xSM2fO1OzZs3X//fef1nvV1tbK5XIZPMMfuN3uVjcE/YHNZlNsbKwcDkeLrouNjVXHjh1NmtUPaLqh2fZVVkuSUvbvbPR8yoGd9cYBAAAAAGAUby8ECQ0NVWxsrBITE5WTk6OhQ4fqtddekyQ99NBDSk9PV4cOHZSQkKBp06bpyJEjnmvrbrd87bXX1KdPH4WGhuqGG27Q008/rVWrVnlW0a1fv16S9PXXX2vcuHHq1KmToqKiNGrUKH311Vcnndv69etls9n0z3/+UwMGDFBoaKjee+89uVwuzZ8/X0lJSWrfvr369u2rl19+2XNdbW2tJk+e7DmfkpKiP//5zy3OZtmyZerevbvCw8N1+eWX6+DBgw3GrFq1Sv3791dYWJh69uypOXPmnLQx+O6778put2vPnj31jt9666264IILmpxLjx49dO+99+qGG26Qw+FQ9+7dtWTJkhZ/JyPQdEOzxTjCJEkl0YmNni/pklhvHAAAAAAARvG1hSDt27dXTU2NJCkoKEgLFy7UZ599pqefflpr167VbbfdVm98VVWVFixYoKVLl+qzzz7TwoULNW7cOM8KurKyMmVlZcnpdGrEiBFyOBz617/+pQ0bNigiIkLZ2dmezzuZO+64Q/fdd5+2bdums88+W/Pnz9czzzyjxYsX67PPPtOtt96qCRMm6J133pEkuVwudevWTS+99JI+//xz3XXXXfrDH/6gFStWNDuHDz/8UJMnT9ZNN92kzZs36+KLL9bcuXPrjfnXv/6l6667Trfccos+//xzPf7441q2bJnmzZvX6Hv+7Gc/U8+ePfXss896jjmdTr3wwgu64YYbTjmnBx98UAMHDtS///1vTZs2TTk5OSopKWn2dzIKTTc0W2ZSlLo57FqUNV4u1d8VxiWb8rPGKcFhV2ZSlJdmCAAAAAAIVL6yEMTtduvtt9/WW2+9pUsuuUSSNH36dF188cXq0aOHLrnkEs2dO7dB48rpdGrRokXKyspSSkqKIiMj1b59e88KutjYWIWEhGj58uVyuVxaunSp0tPTddZZZ+mpp57Srl27PCvhTuaee+7RsGHDlJycrA4dOujee+/Vk08+qREjRqhnz56aNGmSJkyYoMcff1ySZLfbNWfOHA0cOFBJSUm65pprdP3117eo6fbnP/9Z2dnZuu222/STn/xEN998s0aMGFFvzJw5c3THHXdo4sSJ6tmzp4YNG6a8vDzPPBozefJkPfXUU57XBQUFqq6u1rhx4045p8suu0zTpk1Tr169dPvtt6tLly5at25ds7+TUWi6odmCg2y6c1S61iRnaMrYXBXHp+pISHsVx6dq6thcrUnO0B9HpbNNMwAAAADAcN5eCPLGG28oIiJCYWFhuvTSSzV+/HjNnj1bkvT2229ryJAhOvPMM+VwOHTttdfq4MGDqqqq8lwfEhKis88++5Sf88knn2j79u1yOByKiIhQRESEoqKiVF1drR07djR57cCBAz0/3759u6qqqjRs2DDP+0REROiZZ56p9z6PPfaYBgwYoOjoaEVERGjJkiXatWtXs3PZtm2bzj333HrHBg0a1OA73XPPPfXmMWXKFJWVldXL6ESTJk3S9u3b9cEHH0iSXnjhBV155ZXq0KHDKed0Ys51z33bt29fs7+TUdpZ/onwa9lpccqfMEB5K+0ak5zpOZ7gsCt/VLqy0+K8ODsAAAAAQKCqWwiSU1mjKWNzNe39FUo5sFMlXRKVnzVOa5IzlG/iQpCLL75Y+fn5CgkJUXx8vNq1+76l8tVXX+kXv/iFcnJyNG/ePEVFRem9997T5MmTVVNTo/DwcEnf345qs516bkeOHNGAAQP0/PPPNzgXHR3d5LUnNqTqnin3j3/8Q2eeeWa9caGhoZKkF198Ub///e/14IMPatCgQXI4HLr//vv14YcfnnKeLXHkyBHNmTNHV1xxRYNzYWGNr0yMiYnRyJEj9dRTTykxMVFvv/221q5d26zPs9vt9V7bbDZTN644GZpuaLHstDgN7tVF6bNXS5KWXZ+hC3pHs8INAAAAANAibrdb7u++a/b44T076rEr0zXvzXb1F4JEtNNjl6ZqeM+Ocp1k5dSP2ZrZBKvToUMH9erVq8Hx4uJiuVwuPfjggwoK+v6GwubenhkSEqLa2tp6x/r376/ly5crJiZGkZGRzZ7fj9Vt2LBr1y5deOGFjY7ZsGGDsrKyNG3aNM+xU62m+7GzzjqrQZOubnVanf79+6ukpKTR/Jry61//WldffbXOPPNMJSUlafDgwS263ttouuG0nNhgy0yKouFmglqXW0Wl5dpXWa0YRxg5AwAAAAg47u++U0n/AS26JknS47Lpsy49VR7qUNSxSv30wH8V/JxbLXlUfsrHxbL93yq01ujVq5ecTqceffRRjRw5Uhs2bNDixYubdW2PHj301ltvqaSkRJ07d1bHjh11zTXX6P7779eoUaN0zz33qFu3btq5c6deffVV3XbbberWrVuz3tvhcOj3v/+9br31VrlcLp1//vk6fPiwNmzYoMjISE2cOFG9e/fWM888o7feektJSUl69tlntWnTJiUlJTX7+998880aPHiwHnjgAY0aNUpvvfWWCgoK6o2566679Itf/ELdu3fX2LFjFRQUpE8++URbt25tsOnCiUaMGKHIyEjNmzdPs2bNavacfAXPdEMDtS63Nu44qFWbv9XGHQdV63Kf+iIYqmBrmS6cX6irn/hAt7y4WVc/8YEunF+ogq1l3p4aAAAAAHhdsNw6+8AOXfTtZp19YIeC5b1/t/bt21cPPfSQFixYoLS0ND3//POaP39+s66dMmWKUlJSNHDgQEVHR2vDhg0KDw/Xu+++q+7du+uKK67QWWedpcmTJ6u6urrFK9/y8vKUm5ur+fPn66yzzlJ2drb+8Y9/eJpqv/nNb3TFFVdo/PjxOvfcc3Xw4MF6q96a47zzztMTTzyhP//5z+rbt69Wr16tO++8s96YESNG6I033tDq1auVkZGh8847Tw8//LASExvfFKNOUFCQJk2apNraWl111VUtmpcvsLndbjoqTaioqFDHjh11+PDhVi3r9CVOp1NvvvmmLrvssgb3ORdsLdPcVVv0TaXTc6ybw647f/S8tqqa4+pz11uSpM/vGaHwEBZNGqVga5lynivWkO2bNG3jcqXs36mS6EQtyhr//TMKJgzg2Xn/p6laBvwJtYxAQS0jUFDLCBS+VsvV1dUqLS1VUlKS5zleLb291Egtvb0U3jF58mTt27dPzz77rCIjIz238C5btkzTp0/XoUOHTut9m7q+sVqt05I+EZ0SeJzY7Fn4o2ZPTmUNzR4L1Lrcmrtqi4Zs36Qlr+Qp6P/+b03/3SVa8nKepo7N1bxVIRrWJ5ZbTQEAAAD4PZvNZsgtngg8hw8f1pYtW/TCCy9o5cqVJx0TERGhG2+8UQsWLGj2e0dEROj48eMn3cTBKDTdIIlmj68oKi3XN5VOLdy43PNrUCdIbuW8v0JjkjNVVFquQcmdvTTLwMKz8wAAAADA94waNUpFRUX67W9/q2HDhqmioqLe+TFjxuj888+XJHXq1KlF771582ZJUnBwsBFTPSmabpBEs8dX7KusliSl7N/Z6PmUAzvrjUPrNPd2arQOjU1rkDMAAAACyfr16z0/d7lcDc47HA45HI7Teu+W7qJ6umi6QRLNHl8R4/h+aWtJdKL67264705Jl8R643D6uJ3aGjQ2rUHO1qCxaQ1ytgY5m4+MrUHO5iNja7jdbh09VqvjLpfaBQWpQ2gwz5sLADTdIIlmj6/ITIpSN4ddi7LGa8nLefVWHbpkU37WOCU47MpMivLiLP0ft1Nbg8amNcjZGjQ2rUHO1iBn85GxNcjZfGZlzH6O9R3+rkZlh75TTe0PuYQE2xTXqb06tg/x4szaLqNqlKYbJNHs8RXBQTbdOSpdOZU1mjI2V9PeX6GUAztV0iVR+Vnjvt+9dFQ6jaBW4nZq89HYtAY5W4PGpjXI2RrkbD4ytgY5m8+MjOt2UK2qqlL79u3NmLbfOfxdjXYerFLksaNKOPI/hR0/pup2odofcYZ21rqV2Fk03rygpqZGUuuf+UbTDZJo9viS7LQ45U8YoLyVdo1JzvQcT3DYlc//tTMEt1Obj8amNcjZfDQ2rUHO1iBn85GxNcjZfGZlHBwcrE6dOmnfvn2SpPDw8DZ9C6Xb7da3+4+oQ3WVulbsl02SU1Kws1pd/1em2shofetyKiQ6ok3nJH3/TLeamhpVV1crKCjI9M/av3+/wsPD1a5d69pmNN3gQbPHd2SnxWlwry5Kn71akrTs+gxd0DuavzQYhNupzUdj0xrkbD4am9YgZ2uQs/nI2BrkbD4zM46NjZUkT+OtLTvmrNX+IzWKOfo/fVXrbHC+5n+Hta/DGao5FKJQu7m7bPo6t9ut7777Tu3bt7ekARkUFKTu3bu3+rNouqEemj2+48TMeVipsbid2nw0Nq1BzuajsWkNcrYGOZuPjK1BzuYzM2Obzaa4uDjFxMTI6WzYaGpL1mzbq3vXbdPry25RuPNYg/NHQ8I0beIj+sNlZ2nIT7p6YYa+w+l06t1339XPfvYzz23KZgoJCTFkRR1NNzRAsweBjtupzUdj0xrkbD4am9YgZ2uQs/nI2BrkbD4rMg4ODm7187L8XVRkhL6trNVXVTb1392wwflZfKq+raxVVGSEwsLadj0HBwfr+PHjCgsLs6TpZhRzb4QF0Khal1sbdxzUqs3fauOOg6p1sXuP1epup/6ib5bGXPuA0m59SWOufUAl/Qbz4F0D1DU21yRnaMrYXBXHp+pISHsVx6dq6thcrUnO0B9pbLYaOZvvxMamS/VzpLFpHHK2Bjmbj4ytQc7mI2NrkHPgY6UbYDG2Nvcd3E5tLp4TaQ1yNhcrY61BztYgZ/ORsTXI2XxkbA1yDnw03QALsbW57+F2anPR2LQGOZuLxqY1yNka5Gw+MrYGOZuPjK1BzoGNphtgEbY2R1tFY9Ma5GwuGpvWIGdrkLP5yNga5Gw+MrYGOQcunukGWKRu2+1pTWy7/XWlU0Wl5V6aIQCgKTQ2rUHO1iBn85GxNcjZfGRsDXIOTKx0AyzC1ubWq3W5VVRarn2V1YpxhPEfLwAAAACAZWi6ARZha3NrsWGFNWhsAgAAAEDjaLoBFjlxO+glL+fVu8WU7aCNxYYV1qCxaR2am9YgZ/ORsTXI2XxkbA1yNh8ZW4Oc2y6/arq9++67uv/++1VcXKyysjL9/e9/1+jRo086fv369br44osbHC8rK1NsbKyJMwUaYjtoa7BhhTVobFqH5qY1yNl8ZGwNcjYfGVuDnM1HxtYg57bNr5puR48eVd++fXXDDTfoiiuuaPZ1JSUlioyM9LyOiYkxY3rAKbEdtPnqNqxY2MSGFWOSM1VUWq5ByZ29NEv/RmPTOjQ3rUHO5iNja5Cz+cjYGuRsPjK2BjnDr3YvvfTSSzV37lxdfvnlLbouJiZGsbGxnh9BQX71tRFgstPiVPD7Szyvl12fofWzhvGHrUHYsMJ87MRrjR83N/vvLlEHZ7WnuTlkxybNW7VFtS73qd8MJ0XO5iNja5Cz+cjYGuRsPjK2BjlD8rOVbqerX79+OnbsmNLS0jR79mwNHjz4pGOPHTumY8eOeV5XVFRIkpxOp5xO58ku8yt13+Nk38fpPF5vrNPW8A+B5ozByblqf8jvnG4OuWqPy1VbfwwZn1pjtdw5/Ps/1k61YUXn8Hb/9/uanFuq7NBRSadubJYdOiqnM5KMm6GxWv6wmas2N27fp3OTosj5NLUk5/Qzf1g1T8aNo5a9h5yNRS17Dzkbi1r2HnI21qn6GFZqyRwCuukWFxenxYsXa+DAgTp27JiWLl2qiy66SB9++KH69+/f6DXz58/XnDlzGhxfvXq1wsPDzZ6ypQoLCxs9fqxWqiuNt95ardDg0xuDkyNjY51Yyy631Lmd9Nig8XrilYYbViwaNE5d2h3X/s8/0JvbyPl0/PewTVLwKRub//1ss9785t9k3AIn1nLxge9zPlVzc/W/PtTBbW5yPk0tyXn3GW6RcfNQy9YjZ3NQy9YjZ3NQy9YjZ3OcrI9hpaqqqmaPDeimW0pKilJSUjyvs7KytGPHDj388MN69tlnG71m1qxZmjFjhud1RUWFEhISNHz48HrPhfNnTqdThYWFGjZsmOx2e4PzVTXHdVvRWknSiBHDFR7SsEyaMwYnR8bGOFkt23vs1e9eDG6wYcWirHFam5yhR8f204ifdpVEzqej1uXWyvvX6bGs8XqikZ14F2WNU7eIdrpp/DAFB9nIuBkaq+XOpeV65suPTtncHH7BuTo3KYqcT1NLck4/M5KMT4Fa9h5yNha17D3kbCxq2XvI2Vin6mNYqe6OyOZoc7+KmZmZeu+99056PjQ0VKGhoQ2O2+12r//CGu1k38nutv1oTMMyac4YnBwZG+vHtfyLft3Url1wszasIOeWs0u6c/TZyjnibHQn3rXJGcoffbbCQkO+H0/GzXZiLQ/qFaNuDrsWZY3Xkkaam/lZ45TgsGtQrxgFB9nI+TS1JOdjx394DgAZN41ath45m4Nath45m4Nath45m8MXejMt+fw296u4efNmxcXxwHog0GWnxWlwry5Kn71a0vcbVlzQO5rdNA3CTrzmCw6y6c5R6cqprGm0ubkmOUP5o9Kp6VYiZ/ORsTXI2XxkbA1yNh8ZW4OcIflZ0+3IkSPavn2753Vpaak2b96sqKgode/eXbNmzdK3336rZ555RpL0yCOPKCkpST/96U9VXV2tpUuXau3atVq9erW3vgIAC534H7DMpCj+g2YwGpvmo7lpDXI2Hxlbg5zNR8bWIGfzkbE1yBl+1XT76KOPdPHFF3te1z17beLEiVq2bJnKysq0a9cuz/mamhrNnDlT3377rcLDw3X22Wfr7bffrvceAIDTR2PTfDQ3rUHO5iNja5Cz+cjYGuRsPjK2Bjm3bX7VdLvooovkdp9829xly5bVe33bbbfptttuM3lWAACYi+amNcjZfGRsDXI2Hxlbg5zNR8bWIOe2K8jbEwAAAAAAAAACjV+tdIN/qXW5VVRarn2V1YpxhNHRBwAAAAAAbQZNN5iiYGuZ5q7aom8qnZ5j3Rx23cnDIgEAAAAAQBtA0w2GK9happznijVk+yYt3LhcKft3qiQ6UYuyxiunskb5EwbQeAMAAAAAAAGNZ7rBULUut+au2qIh2zdpySt56r+7RB2c1eq/u0RLXs7TkB2bNG/VFtW6Tr4hBgAAAAAAgL+j6QZDFZWW65tKp6ZtXK4g1W+sBcmtnPdX6OtKp4pKy700QwAAAAAAAPPRdIOh9lVWS5JS9u9s9HzKgZ31xgEAAAAAAAQimm4wVIwjTJJUEp3Y6PmSLon1xgEAAAAAAAQimm4wVGZSlLo57FqUNV4u2eqdc8mm/KxxSnDYlZkU5aUZAgAAAAAAmI+mGwwVHGTTnaPStSY5Q1PG5qo4PlVHQtqrOD5VU8fmak1yhv44Kl3BQbZTvxkAAAAAAICfauftCSDwZKfFKX/CAOWttGtMcqbneILDrvxR6cpOi/Pi7AAAAAAAAMxH0w2myE6L0+BeXZQ+e7Ukadn1GbqgdzQr3AxW63KrqLRc+yqrFeMIU2ZSFBkDAAAAAOADaLrBNCc2f2gGGa9ga5nmrtqibyqdnmPdHHbdyWpCAAAAAAC8jqYb4IcKtpYp57liDdm+SQs3LlfK/p0qiU7UoqzxyqmsUf6EATTeAAAAAADwIjZSAPxMrcutuau2aMj2TVrySp767y5RB2e1+u8u0ZKX8zRkxybNW7VFtS63t6cKAAAAAECbRdMN8DNFpeX6ptKpaRuXK0j1G2tBcivn/RX6utKpotJyL80w8NS63Nq446BWbf5WG3ccpKEJAAAAADglbi8F/My+ympJUsr+nY2eTzmws944tA7PzrMGm4IAAAAACDQ03QA/E+MIkySVRCeq/+6SBudLuiTWG4fTx7PzrEFj0zo0N81HxtYgZ2uQs/nI2BrkbD4ytgY5+x+aboCfyUyKUjeHXYuyxmvJy3n1bjF1yab8rHFKcNiVmRTlxVn6vx8/O68u57pn500dm6t5q0I0rE8s/6FrBRqb1qG5aT4ytgY5W4OczUfG1iBn85GxNcjZP9F0A/xMcJBNd45KV05ljaaMzdW091co5cBOlXRJVH7WOK1JzlD+qHQaQa1U9+y8hU08O29McqaKSss1KLmzl2bp32hsWofmpvnI2BrkbA1yNh8ZW4OczUfG1iBn/8VGCoAfyk6LU/6EAfqib5bGXPuA0m59SWOufUAl/QbzB65BeHae+dgUxBrseGw+MrYGOVuDnM1HxtYgZ/ORsTXI2b/RdAP8VHZanAp+f4nn9bLrM7R+1jAabgY58dl5jeHZea1HY9MaNDfNR8bWIGdrkLP5yNga5Gw+MrYGOfs3mm6AHzvxljseommsE5+d51L9XHl2njFobFqD5qb5yNga5GwNcjYfGVuDnM1HxtYgZ/9G0w0AGlH37Lw1yRmaMjZXxfGpOhLSXsXxqZo6NldrkjP0R56d1yo0Nq1Bc9N8ZGwNcrYGOZuPjK1BzuYjY2uQs3+j6QYAJ8Gz88xFY9MaNDfNR8bWIGdrkLP5yNga5Gw+MrYGOfs3di8FgCZkp8VpcK8uSp+9WtL3z867oHc0jSCD1DU281baNSY503M8wWFXPtufG4Idj81HxtYgZ2uQs/nI2BrkbD4ytgY5+zeabgBwCjw7z1w0Ns1Hc9N8ZGwNcrYGOZuPjK1BzuYjY2uQs/+i6QYA8Doam+ajuWk+MrYGOVuDnM1HxtYgZ/ORsTXI2T/xTDcAANoImpvmI2NrkLM1yNl8ZGwNcjYfGVuDnP0PTTcAAAAAAADAYDTdAAAAAAAAAIPRdAMAAAAAAAAMRtMNAAAAAAAAMBhNNwAAAAAAAMBgNN3amFqXWx+Wlqv4gE0flpar1uX29pQAAAAAAAACjl813d59912NHDlS8fHxstlsWrly5SmvWb9+vfr376/Q0FD16tVLy5YtM32evqpga5kunF+oCU9+pGe+DNaEJz/ShfMLVbC1zNtTAwAAAAAACCh+1XQ7evSo+vbtq8cee6xZ40tLS/Xzn/9cF198sTZv3qzp06fr17/+td566y2TZ+p7CraWKee5YqX+e4NefXamPntorF59dqZSN29QznPFNN4AAAAAAAAM1M7bE2iJSy+9VJdeemmzxy9evFhJSUl68MEHJUlnnXWW3nvvPT388MMaMWKEWdP0ObUut+au2qIh2zdpySt5CtL3t5T2312iJS/naerYXM1bFaJhfWIVHGTz8mwBAAAAAAD8n1813Vpq48aNGjp0aL1jI0aM0PTp0096zbFjx3Ts2DHP64qKCkmS0+mU0+k0ZZ5m+7C0XN9UOrVw43JPw61OkNzKeX+FxiRnauP2fTo3KUpO53HPeafTKaet4XPfjBrTVpGxMep+T57s9yY5m4+MjUEt+4ZT5UPGp0Yt+wZybj1q2TeQc+tRy76BnFvvVLVspZbMIaCbbnv27FHXrl3rHevatasqKir03XffqX379g2umT9/vubMmdPg+OrVqxUeHm7aXM1UfMAmKVgp+3c2ej7lwPfHV//rQx3c5taxWqmuNN56a7VCgxteY9SYtoqMjVVYWNjocXI2Hxkbi1r2rlPlQ8bNRy17Fzkbh1r2LnI2DrXsXeRsnJPVspWqqqqaPTagm26nY9asWZoxY4bndUVFhRISEjR8+HBFRkZ6cWanr3NpuZ758iOVRCeq/+6SBudLuiRKkoZfcK7OTYpSVc1x3Va0VpI0YsRwhYc0LBOjxrRVZGwMp9OpwsJCDRs2THa7vcF5cjYfGRuDWvYNp8qHjE+NWvYN5Nx61LJvIOfWo5Z9Azm33qlq2Up1d0Q2R0D/CsXGxmrv3r31ju3du1eRkZGNrnKTpNDQUIWGhjY4brfbvf4Le7oG9YpRN4ddi7LGa8nLefVuMXXJpvyscUpw2DWoV4yCg2yyu394rtv337thmRg1pq0iY2Od7PcnOZuPjI1FLXvXqfIh4+ajlr2LnI1DLXsXORuHWvYucjaOL/RmWvL5frV7aUsNGjRIa9asqXessLBQgwYN8tKMvCM4yKY7R6VrTXKGpozNVXF8qo6EtFdxfKqmjs3VmuQM/XFUOpsoAAAAAAAAGMSv2qJHjhzR9u3bPa9LS0u1efNmRUVFqXv37po1a5a+/fZbPfPMM5Kk3/72t/rLX/6i2267TTfccIPWrl2rFStW6B//+Ie3voLXZKfFKX/CAOWttGtMcqbneILDrvxR6cpOi/Pi7AAAAAAAAAKLXzXdPvroI1188cWe13XPXps4caKWLVumsrIy7dq1y3M+KSlJ//jHP3Trrbfqz3/+s7p166alS5dqxIgRls/dF2SnxWlwry5Kn71akrT02nN08VlxrHADAAAAAAAwmF813S666CK53SffEnfZsmWNXvPvf//bxFn5lxMbbBk9zqDhBgAAAAAAYIKAfqYbAAAAAAAA4A1+tdIN8Ae1LreKSsu1r7JaMY4wZSZFsaIQAAAAAIA2hqYbYKCCrWWau2qLvql0eo51c9h1J5tVAAAAAADQptB0AwxSsLVMOc8Va8j2TVq4cblS9u9USXSiFmWNV05ljfInDKDxBgAAAABAG8Ez3QAD1Lrcmrtqi4Zs36Qlr+Sp/+4SdXBWq//uEi15OU9DdmzSvFVbVOs6+UYgAAAAAAAgcNB0AwxQVFqubyqdmrZxuYJUv7EWJLdy3l+hryudKiot99IMAQAAAACAlWi6AQbYV1ktSUrZv7PR8ykHdtYbh9ardbn1YWm5ig/Y9GFpOasIAQAAAAA+hWe6AQaIcYRJkkqiE9V/d0mD8yVdEuuNQ+vU37AiWM98+REbVgAAAAAAfAor3QADZCZFqZvDrkVZ4+WSrd45l2zKzxqnBIddmUlRXpph4KjbsCL13xv06rMz9dlDY/XqszOVunmDcp4rVsHWMm9PMWDUutzauOOgVm3+Vht3HGQ1oUlYtWkN6hkAAABWY6UbYIDgIJvuHJWunMoaTRmbq2nvr1DKgZ0q6ZKo/KxxWpOcofxR6QoOsp36zXBSP96wou75eXUbVkwdm6t5q0I0rE8sWbdS/dWE32M1ofFYtWkN6tkaJzaQO5eWa1CvGP4sNkGty62i0nLtq6xWjCNMmUlR5Gwwatka1LL5qGVrUMtoCk03wCDZaXHKnzBAeSvtGpOc6Tme4LArn3/YGaJuw4qFTWxYMSY5U0Wl5RqU3NlLs/R/dasJh2zfpIUblytl/06VRCdqUdZ45VTWKH/CAOrZAORsDXK2Bg1ka9BANh+1bA1q2XzUsjWoZZwKTTfAQNlpcRrcq4vSZ6+WJC27PkMX9I7m/3QYhA0rzMdqQmuQszXI2Ro0Nq1BzuYjY2uQs/nI2BrkjObgmW6AwU78hxtLi4114oYVjWHDitarW004rYnVhF9XOlVUWu6lGQYGcrYGOZvvx43N/rtL1MFZ7WlsDtmxSfNWbeEZeq1EzuYjY2uQs/nI2BrkjOai6QbAb7BhhflYTWgNcrYGOZuPxqY1yNl8ZGwNcjYfGVuDnNFcNN0A+I26DSvWJGdoythcFcen6khIexXHp2rq2FytSc7QH9mwolVYTWgNcrYGOZuPxqY1yNl8ZGwNcjYfGVuDnNFcNN0A+JW6DSu+6JulMdc+oLRbX9KYax9QSb/BPDfBAKwmtAY5W4OczUdj0xrkbD4ytgY5m4+MrUHOaC6abgD8TnZanAp+f4nn9dJrz9H6WcNouBmA1YTWIGdrkLP5aGxag5zNR8bWIGfzkbE1yBnNxe6lAPzSif9IzuhxBv9oNlDdasK8lXaNSc70HE9w2JXP9ueGIWdrkLO56hqbOZU1mjI2V9PeX6GUAztV0iVR+VnjtCY5Q/k0NluNnM1HxtYgZ/ORsTXIGc1F0w0A0EB2WpwG9+qi9NmrJUnLrs/QBb2j+YuDwX6c89Jrz9HFZ8WRs8GoZ3PR2LQGOZuPjK1BzuYjY2uQM5qDphsAoFEnNiQyk6JoUJiEVZvWoJ7NRQPZGjSQzUctW4NaNh+1bA1qGafCM90AAADQajSQrUED2XzUsjWoZfNRy9agltEUmm4AAAAAAACAwWi6AQAAAAAAAAaj6QYAAAAAAAAYjKYbAAAAAAAAYDCabgAAAAAAAIDBaLoBAAAAAAAABqPpBgAAAAAAABiMphsAAAAAAABgMJpuAAAAAAAAgMFougEAAAAAAAAGo+kGAAAAAAAAGIymGwAAAAAAAGAwmm4AAAAAAACAwfyu6fbYY4+pR48eCgsL07nnnquioqKTjl22bJlsNlu9H2FhYRbOFgAAAAAAAG2RXzXdli9frhkzZujuu+/Wxx9/rL59+2rEiBHat2/fSa+JjIxUWVmZ58fOnTstnDEAAAAAAADaIr9quj300EOaMmWKrr/+evXp00eLFy9WeHi4nnzyyZNeY7PZFBsb6/nRtWtXC2cMAAAAAACAtqidtyfQXDU1NSouLtasWbM8x4KCgjR06FBt3LjxpNcdOXJEiYmJcrlc6t+/v+6991799Kc/Pen4Y8eO6dixY57XFRUVkiSn0ymn02nAN/Eup/N4vZ839p3qj3HKaXObNiYQWZlfW81YopatQC1bg1q2hhH5kHHTqGVr8Gez+ahla1DL5qOWrUEtW6Oufn2hL9OSOfhN0+3AgQOqra1tsFKta9eu+uKLLxq9JiUlRU8++aTOPvtsHT58WA888ICysrL02WefqVu3bo1eM3/+fM2ZM6fB8dWrVys8PLz1X8TLjtVKdb/sa9euVWhw02Peemu1qWMCkZX5tdWMJWrZCtSyNahlaxiRDxk3jVq2Bn82m49atga1bD5q2RrUsrUKCwu9PQVVVVU1e6zfNN1Ox6BBgzRo0CDP66ysLJ111ll6/PHHlZeX1+g1s2bN0owZMzyvKyoqlJCQoOHDhysyMtL0OZutqua4bitaK0m65JJL1LFDw40lThwzYsRwhYc0LBOjxgQiK/NrqxlL1LIVqGVrUMvWMCIfMm4atWwN/mw2H7VsDWrZfNSyNahlazidThUWFmrYsGGy2+1enUvdHZHN4Te/Ql26dFFwcLD27t1b7/jevXsVGxvbrPew2+0655xztH379pOOCQ0NVWhoaKPXevsX1gh2t+2Hn9vbNfqd6o+xy25vWCZGjQlEVubXVjOWqGUrUMvWoJatYUQ+ZNw0atka/NlsPmrZGtSy+ahla1DL1vKF3kxLPt9vNlIICQnRgAEDtGbNGs8xl8ulNWvW1FvN1pTa2lpt2bJFcXFxZk0TLVTrcmvjjoNatflbbdxxULWutnNPOgAAAAAACFyn1RY9dOiQXn75Ze3YsUP/7//9P0VFRenjjz9W165ddeaZZxo9R48ZM2Zo4sSJGjhwoDIzM/XII4/o6NGjuv766yVJ1113nc4880zNnz9fknTPPffovPPOU69evXTo0CHdf//92rlzp37961+bNkc0X8HWMs1dtUXfVP7wEMJuDrvuHJWu7DQaowAAAAAAwH+1uOn26aefaujQoerYsaO++uorTZkyRVFRUXr11Ve1a9cuPfPMM2bMU5I0fvx47d+/X3fddZf27Nmjfv36qaCgwLO5wq5duxQU9MPivf/973+aMmWK9uzZozPOOEMDBgzQ+++/rz59+pg2RzRPwdYy5TxXrCHbN2nhxuVK2b9TJdGJWpQ1XjmVNcqfMIDGGwAAAAAA8FstbrrNmDFDkyZN0p/+9Cc5HA7P8csuu0y/+tWvDJ1cY2666SbddNNNjZ5bv359vdcPP/ywHn74YdPnhJapdbk1d9UWDdm+SUteyVOQvr+ltP/uEi15OU9Tx+Zq3qoQDesTq+Ag2yneDQAAAAAAwPe0+JlumzZt0m9+85sGx88880zt2bPHkEkhsBWVluubSqembVzuabjVCZJbOe+v0NeVThWVlntphgAAAAAAAK3T4qZbaGhoo9uj/uc//1F0dLQhk0Jg21dZLUlK2b+z0fMpB3bWGwcAAAAAAOBvWtx0++Uvf6l77rlHTuf3D7+32WzatWuXbr/9do0ZM8bwCSLwxDjCJEkl0YmNni/pklhvHAAAAAAAgL9pcdPtwQcf1JEjRxQTE6PvvvtOF154oXr16iWHw6F58+aZMUcEmMykKHVz2LUoa7xcqv/MNpdsys8apwSHXZlJUV6aIQAAAAAAQOu0eCOFjh07qrCwUO+9954+/fRTHTlyRP3799fQoUPNmB8CUHCQTXeOSldOZY2mjM3VtPdXKOXATpV0SVR+1jitSc5Q/qh0NlEAAAAAAAB+q8VNtzrnn3++zj//fCPngjYkOy1O+RMGKG+lXWOSMz3HExx25Y9KV3ZanBdnF1hqXW4VlZZrX2W1YhxhykyKoqEJAAAAAIDJmtV0W7hwYbPf8Oabbz7tyaBtyU6L0+BeXZQ+e7Ukadn1GbqgdzQNIQMVbC3T3FVb9E2l03Osm8OuO2lsAgAAAABgqmY13R5++OF6r/fv36+qqip16tRJknTo0CGFh4crJiaGphta5MQGGyuwjFWwtUw5zxVryPZNWrhxuVL271RJdKIWZY1XTmWN8icMoPEGAAAAAIBJmrWRQmlpqefHvHnz1K9fP23btk3l5eUqLy/Xtm3b1L9/f+Xl5Zk9XwDNUOtya+6qLRqyfZOWvJKn/rtL1MFZrf67S7Tk5TwN2bFJ81ZtUa3L7e2pBoxal1sbdxzUqs3fauOOg2QLAAAAAG1ci5/plpubq5dfflkpKSmeYykpKXr44Yc1duxYXXPNNYZOEEDLFZWW65tKpxZuXK4g1W/+BMmtnPdXaExypopKyzUoubOXZhk4uI3XGjyfEAAAAIA/aXHTraysTMePH29wvLa2Vnv37jVkUgBaZ19ltSQpZf/ORs+nHNhZbxxOH7fxWoPGpnVobpqPjK1BzuYjY2uQszXI2XxkbA1y9i0tbroNGTJEv/nNb7R06VL1799fklRcXKycnBwNHTrU8AkCaLkYR5gkqSQ6Uf13lzQ4X9Ilsd44nJ4f38Zbt6qw7jbeqWNzNW9ViIb1ieU/dK1AY9M6NDfNR8bWIGfzkbE1yNka5Gw+MrYGOfueFjfdnnzySU2cOFEDBw6U3W6XJB0/flwjRozQ0qVLDZ8ggJbLTIpSN4ddi7LGa8nLefVuMXXJpvyscUpw2JWZFOXFWfo/buM1H41N69DcNB8ZW4OczUfG1iBna5Cz+cjYGuTsm5q1kcKJoqOj9eabb+qLL77QSy+9pJdeeknbtm3Tm2++qZiYGDPmCKCFgoNsunNUutYkZ2jK2FwVx6fqSEh7FcenaurYXK1JztAfR6XTpGglbuM1X11jc1oTjc2vK50qKi330gwDA5uvmI+MrUHO5iNja5CzNcjZfGRsDXL2XS1uutX5yU9+ol/+8pf65S9/qZ/85CdGzgmAAbLT4pQ/YYC+6JulMdc+oLRbX9KYax9QSb/B/F8Og5x4G29juI239WhsWoPmpvnI2BrkbD4ytgY5W4OczUfG1iBn39Xi20tvuOGGJs8/+eSTpz0ZAMbKTovT4F5dlD57tSRp2fUZuqB3NCvcDMJtvObj+YTWoLlpPjK2Bjmbj4ytQc7WIGfzkbE1yNl3tXil2//+9796P/bt26e1a9fq1Vdf1aFDh0yYIoDWOLHBxs41xuI2XvOd2Nh0qX6ONDaNw6pN85GxNcjZfGRsDXK2Bjmbj4ytQc6+q8VNt7///e/1frzxxhv673//q/Hjx+u8884zY44A4LO4jddcNDatQXPTfGRsDXI2Hxlbg5ytQc7mI2NrkLPvavHtpY0JCgrSjBkzdNFFF+m2224z4i0BwG9wG6+56hqbeSvtGpOc6Tme4LArn+3PDVHX3MyprNGUsbma9v4KpRzYqZIuicrPGqc1yRnKp7nZKmRsDXI2Hxlbg5ytQc7mI2NrkLPvMqTpJkk7duzQ8ePHjXo7APAr3MZrLhqb5qO5aT4ytgY5m4+MrUHO1iBn85GxNcjZN7W46TZjxox6r91ut8rKyvSPf/xDEydONGxiAACciMam+Whumo+MrUHO5iNja5CzNcjZfGRsDXL2PS1uuv373/+u9zooKEjR0dF68MEHT7mzKQAA8G00N81HxtYgZ/ORsTXI2RrkbD4ytgY5+5YWN93WrVtnxjwAAAAAAACAgNHi3UsvueQSHTp0qMHxiooKXXLJJUbMCQAAAAAAAPBrLW66rV+/XjU1NQ2OV1dX61//+pchkwIAAAAAAAD8WbNvL/300089P//888+1Z88ez+va2loVFBTozDPPNHZ2AAAAAAAAgB9qdtOtX79+stlsstlsjd5G2r59ez366KOGTg4AAAAAAADwR81uupWWlsrtdqtnz54qKipSdHS051xISIhiYmIUHBxsyiQBAAAAAAAAf9LspltiYqIkyeVymTYZAAAAAAAAIBA0q+n22muv6dJLL5Xdbtdrr73W5Nhf/vKXhkwMAAAAAAAA8FfNarqNHj1ae/bsUUxMjEaPHn3ScTabTbW1tUbNDQAAAAAAAPBLzWq6nXhLKbeXAgAAAAAAAE0L8vYEAAAAAAAAgEDTrJVuCxcubPYb3nzzzac9GQAAAAAAACAQNKvp9vDDDzfrzWw2m+lNt8cee0z333+/9uzZo759++rRRx9VZmbmSce/9NJLys3N1VdffaXevXtrwYIFuuyyy0ydIwAAAAAAANq2ZjXdSktLzZ5HsyxfvlwzZszQ4sWLde655+qRRx7RiBEjVFJSopiYmAbj33//fV199dWaP3++fvGLX+iFF17Q6NGj9fHHHystLc0L3wAAAAAAAABtQbOabifjdrslfb/CzQoPPfSQpkyZouuvv16StHjxYv3jH//Qk08+qTvuuKPB+D//+c/Kzs7W//t//0+SlJeXp8LCQv3lL3/R4sWLLZmzr3G73Qo9fkyS5PruO7ls7gZjXDXHfxhTVSXX8YZlYuUYf+Nr+QVixtKPvhe1bApfyy8QM5aoZasY8d3JuGnUsjV8KcM2kTG1bBpfyzAQc6aWreFrGfpyzrb27S3rH/kKm7uuc9YCf/3rX/Xwww/ryy+/lCT17t1b06dP169//WvDJ1inpqZG4eHhevnllzV69GjP8YkTJ+rQoUNatWpVg2u6d++uGTNmaPr06Z5jd999t1auXKlPPvmk0c85duyYjh075nldUVGhhIQEHThwQJGRkYZ9H285crhSe84f7O1pAAAAAACANqTnhx8oKDz8tK51Op0qLCzUsGHDZLfbDZ5Zy1RUVKhLly46fPjwKftELW553nXXXXrooYf0u9/9ToMGDZIkbdy4Ubfeeqt27dqle+655/RmfQoHDhxQbW2tunbtWu94165d9cUXXzR6zZ49exodv2fPnpN+zvz58zVnzpwGx1evXq3w0ywOX2KrqVFvb08CAAAAAAC0Ka/9c7VC2oe06j0KCwsNms3pq6qqavbYFjfd8vPz9cQTT+jqq6/2HPvlL3+ps88+W7/73e9Ma7pZZdasWZoxY4bndd1Kt+HDhwfESje3262aSy7R2rVrdckll8jezneWmp5MlbNW5923XpL0wR0XKdwe3KLzVo/xR76WYXNzdh4/HlC1bOUYatl3xkjUshVj/I2v5Uct+84Yf+Nr+VHLvjPGH1n1dzBqeb0k36hTatnYMR/+IlsdQk9vlZqvrXRrrhb/rnM6nRo4cGCD4wMGDNDx48db+nbN1qVLFwUHB2vv3r31ju/du1exsbGNXhMbG9ui8ZIUGhqq0NDQBsftdrvXf2GNYouMlDskRKGRkX7xnWprjutYu+9/TUIjIxUa0q5F560e4498LcPm5hzkdAZULVs5hlr2nTEStWzFGH/ja/lRy74zxt/4Wn7Usu+M8UdW/R2MWvadOqWWjR0TEhIiu711GfpCb6Ylnx/U0je/9tprlZ+f3+D4kiVLdM0117T07ZotJCREAwYM0Jo1azzHXC6X1qxZ47nN9ccGDRpUb7z0/VLEk40HAAAAAAAAjHBaLca//vWvWr16tc477zxJ0ocffqhdu3bpuuuuq3dr5kMPPWTMLP/PjBkzNHHiRA0cOFCZmZl65JFHdPToUc9uptddd53OPPNMzZ8/X5J0yy236MILL9SDDz6on//853rxxRf10UcfacmSJYbOCwAAAAAAADhRi5tuW7duVf/+/SVJO3bskPT9rZ9dunTR1q1bPePM2AZ2/Pjx2r9/v+666y7t2bNH/fr1U0FBgWezhF27diko6IfFe1lZWXrhhRd055136g9/+IN69+6tlStXKi0tzfC5AQAAAAAAAHVa3HRbt26dGfNotptuukk33XRTo+fWr1/f4NiVV16pK6+80uRZAQAAAAAAAD9o8TPdAAAAAAAAADStxSvdqqur9eijj2rdunXat2+fXC5XvfMff/yxYZMDAAAAAAAA/FGLm26TJ0/W6tWrNXbsWGVmZpry7DYAAAAAAADAn7W46fbGG2/ozTff1ODBg82YD+DTal1uz8+LSst1Qe9oBQfReAYAAAAAAPW1+JluZ555phwOhxlzAXxawdYyZT+w1vN60lObdOH8QhVsLfPirAAAAAAAgC9qcdPtwQcf1O23366dO3eaMR/AJxVsLVPOc8VK3fy+Xn12pj57aKxefXamUjdvUM5zxTTeAAAAAABAPS2+vXTgwIGqrq5Wz549FR4eLrvdXu98eXm5YZMDfEGty625q7ZoyPZNWvJKnoL0/S2m/XeXaMnLeZo6NlfzVoVoWJ9YbjUFAAAAAACSTqPpdvXVV+vbb7/Vvffeq65du7KRAgJeUWm5vql0auHG5Z6GW50guZXz/gqNSc5UUWm5BiV39tIsAQAAAACAL2lx0+3999/Xxo0b1bdvXzPmA/icfZXVkqSU/Y3fUp1yYGe9cQAAAAAAAC1+pltqaqq+++47M+YC+KQYR5gkqSQ6sdHzJV0S641D6/14l9gTXwMAAAAA4A9a3HS77777NHPmTK1fv14HDx5URUVFvR9AoMlMilI3h12LssbLpfq3U7tkU37WOCU47MpMivLSDAMLu8QCAAAAAAJBi28vzc7OliQNGTKk3nG32y2bzaba2lpjZgb4iOAgm+4cla6cyhpNHZurnPdXKOXATpV0SVR+1jitSc5Q/qh0NlEwQN0usZds36RHNy5Xyv6dKolO1KKs8cqprFH+hAHKTovz9jQDwo9XE17QO5oaNgE5W4OcAQAA4Ita3HRbt27dSc9t2bKlVZMBfFV2WpzyJwzQ3FUhGpOc6Tme4LArf1Q6jSADsEusdQq2lilv5aee15Oe2qRuDrvupJYNRc7WIGdr0Ni0Bjmbj4ytQc7mI2NrkDNaq8VNtwsvvLDe68rKSv3tb3/T0qVLVVxcrJtuusmwyQG+JDstTsP6xKqotFz7KqsV4whTZlIUf+gahF1ircFqQmuQszXI2Ro0Nq1BzuYjY2uQs/nI2BrkDCO0uOlW591339Vf//pXvfLKK4qPj9cVV1yhxx57zMi5AT4nOMhGw8ck7BJrPlYTWoOcrUHO1qCxaQ1yNh8ZW4OczUfG1iBnGKVFGyns2bNH9913n3r37q0rr7xSkZGROnbsmFauXKn77rtPGRkZZs0TQIBjl1jz1a0mnNbEasKvK50qKi330gwDAzlbg5zNd2Jj84lX8tR/d4k6OKs9jc0hOzZp3qot7DDdSuRsPjK2Bjmbj4ytQc4wUrObbiNHjlRKSoo+/fRTPfLII9q9e7ceffRRM+cGoA1hl1jzsZrQGuRsDXI2H41Na5Cz+cjYGuRsPjK2BjnDSM1uuv3zn//U5MmTNWfOHP385z9XcHCwmfMC0MbU7RK7JjlDU8fmqjg+VUdC2qs4PlVTx+ZqTXKG/sgusa3CakJrkLM1yNl8NDatQc7mI2NrkLP5yNga5AwjNbvp9t5776myslIDBgzQueeeq7/85S86cOCAmXMD0MbU7RL7Rb/BGnPtA0q79SWNufYBlfQbzHMTDMBqQmuQszXI2Xw0Nq1BzuYjY2uQs/nI2BrkDCM1u+l23nnn6YknnlBZWZl+85vf6MUXX1R8fLxcLpcKCwtVWVlp5jwBtBHZaXF6Z9Yw/W3KefrzVf30tynnaf2sYTTcDMBqQmuQszXI2Xw0Nq1BzuYjY2uQs/nI2BrkDCO1ePfSDh066IYbbtANN9ygkpIS/fWvf9V9992nO+64Q8OGDdNrr71mxjwBtCHsEmueutWEc1eFaExypud4gsOufLY/Nww5W4OczVXX2MyprNHUsbnKeX+FUg7sVEmXROVnjdOa5Azl09hsNXI2Hxlbg5zNR8bWIGcYqcVNtxOlpKToT3/6k+bPn6/XX39dTz75pFHzAgCYJDstTsP6xKqotFz7KqsV4whTZlIUf3EwGDlbg5zNRWPTGuRsPjK2Bjmbj4ytQc4wSquabnWCg4M1evRojR492oi3AwCYjNWE1iBna5CzuWhsWoOczUfG1iBn85GxNcgZRjCk6QYAAIDARWPTGuRsPjK2Bjmbj4ytQc5orWZvpAAAAAAAAACgeWi6AQAAAAAAAAaj6QYAAAAAAAAYjKYbAAAAAAAAYDCabgAAAAAAAIDBaLoBAAAAAAAABqPpBgAAAAAAABiMphsAAAAAAABgMJpuAAAAAAAAgMFougEAAAAAAAAGo+kGAAAAAAAAGMxvmm7l5eW65pprFBkZqU6dOmny5Mk6cuRIk9dcdNFFstls9X789re/tWjGAAAAAAAAaKvaeXsCzXXNNdeorKxMhYWFcjqduv766zV16lS98MILTV43ZcoU3XPPPZ7X4eHhZk8VAAAAAAAAbZxfNN22bdumgoICbdq0SQMHDpQkPfroo7rsssv0wAMPKD4+/qTXhoeHKzY21qqpAgAAAAAAAP7RdNu4caM6derkabhJ0tChQxUUFKQPP/xQl19++Umvff755/Xcc88pNjZWI0eOVG5ubpOr3Y4dO6Zjx455XldUVEiSnE6nnE6nAd/G++q+h798H6fz+Ak/d8ppc7fovJFjApWVGRqZc6DVstVjApG/ZkwtU8s/5q8ZU8vU8o/5a8bUMrXcGCPyoZabRi1bwx9z9qVabskc/KLptmfPHsXExNQ71q5dO0VFRWnPnj0nve5Xv/qVEhMTFR8fr08//VS33367SkpK9Oqrr570mvnz52vOnDkNjq9evTrgbk0tLCz09hSa5VitVFeqb721WqHBLTtv5JhAZWWGZuQcKLVs9ZhA5O8ZU8unNyYQ+XvG1PLpjQlE/p4xtXx6YwKVEflQy02jlq3hzzn7Qi1XVVU1e6xXm2533HGHFixY0OSYbdu2nfb7T5061fPz9PR0xcXFaciQIdqxY4eSk5MbvWbWrFmaMWOG53VFRYUSEhI0fPhwRUZGnvZcfInT6VRhYaGGDRsmu93u7emcUlXNcd1WtFaSNGLEcIWHtGvReSPHBCorMzQy50CrZavHBCJ/zZhappZ/zF8zppap5R/z14ypZWq5MUbkQy03jVq2hj/m7Eu1XHdHZHN4tapmzpypSZMmNTmmZ8+eio2N1b59++odP378uMrLy1v0vLZzzz1XkrR9+/aTNt1CQ0MVGhra4Ljdbvf6L6zR/OU72d22H35ut8tub9ei80aOCVRWZmhGzoFSy1aPCUT+njG1TC3X8feMqWVquY6/Z0wtU8snMiIfarlp1LI1/DlnX6jllny+V6sqOjpa0dHRpxw3aNAgHTp0SMXFxRowYIAkae3atXK5XJ5GWnNs3rxZkhQXF3da8wUAAAAAAACaI8jbE2iOs846S9nZ2ZoyZYqKioq0YcMG3XTTTbrqqqs8O5d+++23Sk1NVVFRkSRpx44dysvLU3Fxsb766iu99tpruu666/Szn/1MZ599tje/DgAAAAAAAAKcXzTdpO93IU1NTdWQIUN02WWX6fzzz9eSJUs8551Op0pKSjwPtAsJCdHbb7+t4cOHKzU1VTNnztSYMWP0+uuve+srAAAAAAAAoI3wm5uWo6Ki9MILL5z0fI8ePeR2/7D1bEJCgt555x0rpgYAAAAAAADU4zcr3dB21bp+aKYWlZbXew0AAAAAAOCLaLrBpxVsLVP2A2s9ryc9tUkXzi9UwdYyL84KAAAAAACgaX5zeynanoKtZcp5rliXbN+kRzcuV8r+nSqJTtSirPHKqaxR/oQByk5jJ1oAAAAAAOB7WOkGn1Trcmvuqi0asn2TnnglT/13l6iDs1r9d5doyct5GrJjk+at2sKtpgAAAAAAwCfRdINPKiot1zeVTk3buFxBqt9YC5JbOe+v0NeVThWVlntphgAAAAAAACdH0w0+aV9ltSQpZf/ORs+nHNhZbxwAAAAAAIAvoekGnxTjCJMklUQnNnq+pEtivXEAAAAAAAC+hKYbfFJmUpS6OexalDVeLtnqnXPJpvyscUpw2JWZFOWlGQIAAAAAAJwcTTf4pOAgm+4cla41yRmaOjZXxfGpOhLSXsXxqZo6NldrkjP0x1HpCg6ynfrNcEonbkhRVFrOBhUAAAAAALRSO29PADiZ7LQ45U8YoLmrQjQmOdNzPMFhV/6odGWnxXlxdoGjYGuZ8lZ+6nk96alN6uaw604yBgAAAADgtNF0g0/LTovTsD6xKiot177KasU4wpSZFMUKN4MUbC1TznPFumT7Jj26cblS9u9USXSiFmWNV05ljfInDKDxZqAfryi8oHc0tQwAAAAAAYrbS+HzgoNsGpTcWaP6nalByZ1pUhik1uXW3FVbNGT7Jj3xSp767y5RB2e1+u8u0ZKX8zRkxybNW7WFW00NUrC1TNkPrPW8nvTUJl04v1AFW8u8OKvAw63SAAAAAHwFTTegjSoqLdc3lU5N27hcQarfmAiSWznvr9DXlU4VlZZ7aYaBo25FYerm9/XqszP12UNj9eqzM5W6eYNynium8WYQGpvWoblpPjK2Bjmbj4ytQc7WIGfzkbE1yNk6NN2ANmpfZbUkKWX/zkbPpxzYWW8cTg8rCq1BY9M6NDfNR8bWIGfzkbE1yNka5Gw+MrYGOVuLZ7oBbVSMI0ySVBKdqP67SxqcL+mSWG8cTk/disKFTawoHJOcqaLScg1K7uylWfq3ExubS17J8+Rc19icOjZX81aFaFifWG5PbyWeA2k+MrYGOZuPjK1BztYgZ/ORsTXI2XqsdAPaqMykKHVz2LUoa7xcqt+IcMmm/KxxSnDYlZkU5aUZBgZWFJqPW6WtwapN85GxNcjZfGRsDXK2Bjmbj4ytQc7eQdMNaKOCg2y6c1S61iRnaOrYXBXHp+pISHsVx6dq6thcrUnO0B9HpbMyqJVOXFHYGFYUth6NTWvQ3DQfGVuDnM1HxtYgZ2uQs/nI2Brk7B3cXgq0YdlpccqfMEBzV4VoTHKm53iCw678UeksLTbAiSsKl7ycV+8/cKwoNAa3SluD5qb5yNga5Gw+MrYGOVuDnM1HxtYgZ+9gpRvQxmWnxemdWcP0tynn6c9X9dPfppyn9bOG0XAzCCsKzcet0tZg1ab5yNga5Gw+MrYGOVuDnM1HxtYgZ++g6QZAwUE2DUrurFH9ztSg5M40gAxWt6Lwi36DNebaB5R260sac+0DKuk3mIeVGoDGpjVobpqPjK1BzuYjY2uQszXI2XxkbA1y9g5uLwUAC2SnxWlYn1gVlZZrX2W1YhxhykyKohFkEG6VNl9dczOnskZTx+Yq5/0VSjmwUyVdEpWfNU5rkjOUT3OzVcjYGuRsPjK2Bjlbg5zNR8bWIGfvoOkGABapW1EIc9DYNB/NTfORsTXI2XxkbA1ytgY5m4+MrUHO1qPpBgAIGDQ2zUdz03xkbA1yNh8ZW4OcrUHO5iNja5CztWi6AQCAFqG5aT4ytgY5m4+MrUHO1iBn85GxNcjZOmykAAAAAAAAABiMphsAAAAAAABgMJpuAAAAAAAAgMFougEAAAAAAAAGo+kGAAAAAAAAGIymGwAAAAAAAGAwmm4AAAAAAACAwWi6AQAAAAAAAAaj6QYAAAAAAAAYjKYbAAAAAAAAYDC/abrNmzdPWVlZCg8PV6dOnZp1jdvt1l133aW4uDi1b99eQ4cO1ZdffmnuRAEAAAAAANDm+U3TraamRldeeaVycnKafc2f/vQnLVy4UIsXL9aHH36oDh06aMSIEaqurjZxpgAAAAAAAGjr2nl7As01Z84cSdKyZcuaNd7tduuRRx7RnXfeqVGjRkmSnnnmGXXt2lUrV67UVVddZdZUAQAAAAAA0Mb5TdOtpUpLS7Vnzx4NHTrUc6xjx44699xztXHjxpM23Y4dO6Zjx455XldUVEiSnE6nnE6nuZO2SN33CJzvc/yEnzvltLlNG9OW+WLOgVbLkm/mHGh8MWNqmVo+Hb6YMbVMLZ8OX8yYWqaWT9ep8qGWW49atoav5exLtdySOQRs023Pnj2SpK5du9Y73rVrV8+5xsyfP9+zqu5Eq1evVnh4uLGT9LLCwkJvT8EQx2qlulJ+663VCg02b0xb5ss5B0otS76dc6Dw5Yyp5dMb01b5csbU8umNaat8OWNq+fTGtGWnyodabj1q2Rq+mrMv1HJVVVWzx3q16XbHHXdowYIFTY7Ztm2bUlNTLZqRNGvWLM2YMcPzuqKiQgkJCRo+fLgiIyMtm4eZnE6nCgsLNWzYMNntdm9Pp9Wqao7rtqK1kqQRI4YrPKRhWRs1pi3zxZwDrZYl38w50PhixtQytXw6fDFjaplaPh2+mDG1TC2frlPlQy23HrVsDV/L2Zdque6OyObwalXNnDlTkyZNanJMz549T+u9Y2NjJUl79+5VXFyc5/jevXvVr1+/k14XGhqq0NDQBsftdrvXf2GNFijfye62/fBzu112e8OyNmpMW+bLOQdKLUu+nXOg8OWMqWVquSV8OWNqmVpuCV/OmFqmllvqVPlQy61HLVvDV3P2hVpuyed7taqio6MVHR1tynsnJSUpNjZWa9as8TTZKioq9OGHH7ZoB1S0HbWuH+4tLyot1wW9oxUcZGviCgAAAAAAgMYFeXsCzbVr1y5t3rxZu3btUm1trTZv3qzNmzfryJEjnjGpqan6+9//Lkmy2WyaPn265s6dq9dee01btmzRddddp/j4eI0ePdpL3wK+qmBrmbIfWOt5PempTbpwfqEKtpZ5cVYAAAAAAMBf+c36ybvuuktPP/205/U555wjSVq3bp0uuugiSVJJSYkOHz7sGXPbbbfp6NGjmjp1qg4dOqTzzz9fBQUFCgsLs3Tu8G0FW8uU81yxLtm+SY9uXK6U/TtVEp2oRVnjlVNZo/wJA5SdFnfqNwIAAAAAAPg/ftN0W7ZsmZYtW9bkGLe7/tazNptN99xzj+655x4TZwZ/Vutya+6qLRqyfZOWvJKnIH1fQ/13l2jJy3maOjZX81aFaFifWG41BQAAAAAAzeY3t5cCZigqLdc3lU5N27jc03CrEyS3ct5foa8rnSoqLffSDAEAAAAAgD+i6YY2bV9ltSQpZf/ORs+nHNhZbxwAAAAAAEBz0HRDmxbj+P75fiXRiY2eL+mSWG8cWu/Hu8Se+BoAAAAAgEBB0w1tWmZSlLo57FqUNV4u1X9mm0s25WeNU4LDrsykKC/NMLCwSywAAAAAoK2g6YY2LTjIpjtHpWtNcoamjs1VcXyqjoS0V3F8qqaOzdWa5Az9cVQ6mygYoG6X2NTN7+vVZ2fqs4fG6tVnZyp18wblPFdM481grCg0HxkDAAAAaApNN7R52Wlxyp8wQF/0G6wx1z6gtFtf0phrH1BJv8HKnzBA2Wlx3p6i3ztxl9gnXslT/90l6uCs9uwSO2THJs1btYWmhUFYUWg+MrYOzU3zkbE1yNl8ZGwNcjYfGVuDnK3R1nNu5+0JAL4gOy1Ow/rEqqi0XPsqqxXjCFNmUhQr3AxSt0vswiZ2iR2TnKmi0nINSu7spVkGhroVhZds36RHNy5Xyv6dKolO1KKs8cqprKGRbAAytk7B1jLlrfzU83rSU5vUzWHXnaPSydggZGwNcjYfGVuDnM1HxtYgZ2uQM003wCM4yEbDxyTsEmuNE1cULnklz9PgrFtROHVsruatCtGwPrE0lE8TGVuH5qb5yNga5Gw+MrYGOZuPjK1BztYg5+9xeykA07FLrDXqVhROa2JF4deVThWVlntphv6PjK3BLenmI2NrkLP5yNga5Gw+MrYGOVuDnH9A0w2A6dgl1hqsKDQfGVuD5qb5yNga5Gw+MrYGOZuPjK1BztYg5x/QdANgOnaJtQYrCs1HxtaguWk+MrYGOZuPjK1BzuYjY2uQszXI+Qc03QBYgl1izceKQvORsTVobpqPjK1BzuYjY2uQs/nI2BrkbA1y/gFNNwCWyU6L0zuzhulvU87Tn6/qp79NOU/rZw2j4WYQVhSaj4ytQXPTfGRsDXI2Hxlbg5zNR8bWIGdrkPMP2L0UgKXYJdZcdSsK564K0ZjkTM/xBIdd+W1oa24zkbH56pqbOZU1mjo2Vznvr1DKgZ0q6ZKo/KxxWpOcoXyam61CxtYgZ/ORsTXI2XxkbA1ytgY5/4CmGwAEmOy0OA3rE6ui0nLtq6xWjCNMmUlRbeI/alYhY/PR3DQfGVuDnM1HxtYgZ/ORsTXI2Rrk/D2abgAQgFhRaD4yNh/NTfORsTXI2XxkbA1yNh8ZW4OcrUHONN0AAIAPo7lpPjK2Bjmbj4ytQc7mI2NrkLM12nrObKQAAAAAAAAAGIymGwAAAAAAAGAwmm4AAAAAAACAwWi6AQAAAAAAAAaj6QYAAAAAAAAYjKYb/F6ty+35eVFpeb3XAAAAAAAA3kDTDX6tYGuZsh9Y63k96alNunB+oQq2lnlxVgAAAAAAoK1r5+0JAKerYGuZcp4r1iXbN+nRjcuVsn+nSqITtShrvHIqa5Q/YYCy0+K8PU0AAAAAANAGsdINfqnW5dbcVVs0ZPsmPfFKnvrvLlEHZ7X67y7RkpfzNGTHJs1btYVbTQEAAAAAgFfQdINfKiot1zeVTk3buFxBqt9YC5JbOe+v0NeVThWVlntphgAAAAAAoC2j6Qa/tK+yWpKUsn9no+dTDuysNw4AAAAAAMBKNN3gl2IcYZKkkujERs+XdEmsNw4AAAAAAMBKNN3glzKTotTNYdeirPFyyVbvnEs25WeNU4LDrsykKC/NEAAAAAAAtGU03eCXgoNsunNUutYkZ2jq2FwVx6fqSEh7FcenaurYXK1JztAfR6UrOMh26jdDs5y4KUVRaTmbVAAAAAAA0IR23p4AcLqy0+KUP2GA5q4K0ZjkTM/xBIdd+aPSlZ0W58XZBZaCrWXKW/mp5/Wkpzapm8OuO8kZAAAAAIBG0XSDX8tOi9OwPrEqKi3XvspqxTjClJkUxQo3AxVsLVPOc8W6ZPsmPbpxuVL271RJdKIWZY1XTmWN8icMoPFmoB+vKLygdzT1DAAAAAB+iNtL4feCg2walNxZo/qdqUHJnWlQGKjW5dbcVVs0ZPsmPfFKnvrvLlEHZ7X67y7RkpfzNGTHJs1btYVbTQ1SsLVM2Q+s9bye9NQmXTi/UAVby7w4q8DDrdLWIGfzkbE1yNl8ZGwNcrYGOZuPjK1Bzsag6QbgpIpKy/VNpVPTNi5XkOr/IRskt3LeX6GvK50qKi330gwDR92KwtTN7+vVZ2fqs4fG6tVnZyp18wblPFdM480gNDatQc7mI2NrkLP5yNga5GwNcjYfGVuDnI3jN7eXzps3T//4xz+0efNmhYSE6NChQ6e8ZtKkSXr66afrHRsxYoQKCgpMmiUQWPZVVkuSUvbvbPR8yoGd9cbh9Jy4onDJK3meBmfdisKpY3M1b1WIhvWJZSVnK3CrtDXI2XxkbA1yNh8ZW4OcrUHO5iNja5CzsfxmpVtNTY2uvPJK5eTktOi67OxslZWVeX787W9/M2mGQOCJcYRJkkqiExs9X9Ilsd44nB5WFJqPW6WtQc7mI2NrkLP5yNga5GwNcjYfGVuDnI3nNyvd5syZI0latmxZi64LDQ1VbGxss8cfO3ZMx44d87yuqKiQJDmdTjmdzhZ9tq+q+x6B8n2aw+k8fsLPnXLa+EOiOc7p5lC3iHZ6LGu8nng5r15DyCWbFmWNU7eIdjqnm+P/fo9Ym3Og1HLZoaOSTr2isOzQUTmdkdTzafjw/xqbC5tobI5JztTG7ft0blIUtXyafD3nQODrGVPL1HJz+XrG1DK13BItyTn9zEjPOWq5+ahla/hyzr5Uyy2Zg9803U7X+vXrFRMTozPOOEOXXHKJ5s6dq86dO590/Pz58z0NvhOtXr1a4eHhZk7VcoWFhd6egmW+Oy7VlfuilwqV2skt7tJrnuHxNj1VmaEpY3I1beMKpRzYqZIuiVo0aJzW9szQ9fHH9FbBPyVJx2qlupzfemu1QoOtmaO/1/J/D9skBaskOlH9d5c0OF+3ovC/n23Wm9/822s5+7PiA99nfKrG5up/faiD29zU8mnyl5z9mb9kTC1bM09/5i8ZU8vWzNPftSTn3We4RS23HLVsDX/I2RdquaqqqtljA7rplp2drSuuuEJJSUnasWOH/vCHP+jSSy/Vxo0bFRzceDXMmjVLM2bM8LyuqKhQQkKChg8frsjIyEav8TdOp1OFhYUaNmyY7Ha7t6djurc+26uFr38m6fsu/ONfBKtbRDvd8YufasRPu3p3cn7gMkn9P9ur+96wa0yvTM/xbhHt9OiPMqyqOa7bir5/4OaIEcMVHmLuHzGBUsu1LrdW3r/ulCsKbxo/TMFBNstzDgSdS8v1zJcfnbKxOfyCc3VuUhS1fJp8PedA4OsZU8vUcnP5esbUMrXcEi3JOf3MSGr5NFDL1vDlnH2pluvuiGwOr1beHXfcoQULFjQ5Ztu2bUpNTT2t97/qqqs8P09PT9fZZ5+t5ORkrV+/XkOGDGn0mtDQUIWGhjY4brfbvf4La7RA/E4/VrC1TL97cbMu2b5Jf/nRQyB/d8TJQyCb6Rf9uunSs89UUWm59lVWK8YRpsykqAYP9be7f3j9fX1Z80eMv9eyXdKdo89WzhGnpo7NVc77P6wozM8ap7XJGcoffbbCQkO+H++lnP3ZoF4x6uawa1HWeC1ppLGZnzVOCQ67BvWKUXCQjVo+Tf6Ssz/zl4ypZWr5VPwlY2qZWm6OluR87Hit5xy13HzUsjX8IWdfqOWWfL5XK2/mzJmaNGlSk2N69uxp2Of17NlTXbp00fbt20/adEPgYEdIYwUH2TQo+eS3ZqN1stPilD9hgOauCtGY5B9WFCY47MoflU5zuJWCg2y6c1S6ciprGm1srknOUP6odP4saCVyNh8ZW4OczUfG1iBna5Cz+cjYGuRsPK823aKjoxUdHW3Z533zzTc6ePCg4uL4x2tbUNTMh0AWlZbTTIJPyE6L07A+sadcUYjTQ2PTGuRsPjK2Bjmbj4ytQc7WIGfzkbE1yNlYfrPGcteuXSovL9euXbtUW1urzZs3S5J69eqliIgISVJqaqrmz5+vyy+/XEeOHNGcOXM0ZswYxcbGaseOHbrtttvUq1cvjRgxwovfBFbZV1kt6dQ7QtaNA3wBKwrNRWPTGuRsPjK2Bjmbj4ytQc7WIGfzkbE1yNk4ftN0u+uuu/T00097Xp9zzjmSpHXr1umiiy6SJJWUlOjw4cOSpODgYH366ad6+umndejQIcXHx2v48OHKy8tr9JltCDwxjjBJOuVDIOvGofVqXT+sKCwqLdcFvaP5gxk+h8amNcjZfGRsDXI2Hxlbg5ytQc7mI2NrkLMx/KbptmzZMi1btqzJMW73D//gb9++vd566y2TZwVflpkU1ayHQGYmRXlxloGjYGuZ8lZ+6nk96alN6uaw606WIAMAAAAA2iC/aboBLcVDIK1TsLVMOc8V65Ltm/Toj3aJzamsYZdYAAAAAECbQ9MNAY2HQJqPXWKtx2285iNjAAAAAK0V5O0JAGbLTovTO7OG6W9TztOfr+qnv005T+tnDaPhZpC6XWKnNbFL7NeVThWVlntphoGlYGuZsh9Y63k96alNunB+oQq2lnlxVoGFjK3z4+bmia9hDDK2Bjmbj4ytQc7mI2NrkLM1yPnUWOmGNoGHQJqHXWKtw2285iNj6/AcSPORsTXI2XxkbA1yNh8ZW4OcrUHOzUPTDUCrsEusNbiN13xkbB2am+YjY2uQs/nI2BrkbD4ytgY5W4Ocm4/bSwG0yom7xLpUvxHBLrHG4TZe85GxNU5sbj7xSp767y5RB2e1p7k5ZMcmzVu1hdsTWoGMrUHO5iNja5Cz+cjYGuRsDXJuGZpuAFqlbpfYNckZmjo2V8XxqToS0l7F8amaOjZXa5Iz9Ed2iW01buM1Hxlbg+am+cjYGuRsPjK2Bjmbj4ytQc7WIOeW4fZSAK3GLrHm4zZe85GxNWhumo+MrUHO5iNja5Cz+cjYGuRsDXJuGVa6ATAEu8Sai9t4zUfG1jixudkYmputR8bWIGfzkbE1yNl8ZGwNcrYGObcMTTcAhqnbJXZUvzM1KLkzt5QaiNt4zUfG1qC5aT4ytgY5m4+MrUHO5iNja5CzNci5Zbi9FAD8BLfxmo+MzVfX3MyprNHUsbnKeX+FUg7sVEmXROVnjdOa5Azl09xsFTK2Bjmbj4ytQc7mI2NrkLM1yLllaLoBgB/JTovTsD6xKiot177KasU4wpSZFMV/1AxExuajuWk+MrYGOZuPjK1BzuYjY2uQszXIuflougGAn6m7jRfmIWPz0dw0Hxlbg5zNR8bWIGfzkbE1yNka5Nw8NN0AAIBX0Nw0Hxlbg5zNR8bWIGfzkbE1yNka5HxqbKQAAAAAAAAAGIymGwAAAAAAAGAwmm4AAAAAAACAwWi6AQAAAAAAAAaj6QYAAAAAAAAYjKYbAAAAAAAAYDCabgAAAAAAAIDBaLoBAAAAAAAABmvn7Qn4OrfbLUmqqKjw8kyM43Q6VVVVpYqKCtntdm9PBzht1DICBbWMQEEtI1BQywgU1DIChS/Vcl1/qK5f1BSabqdQWVkpSUpISPDyTAAAAAAAAOALKisr1bFjxybH2NzNac21YS6XS7t375bD4ZDNZvP2dAxRUVGhhIQEff3114qMjPT2dIDTRi0jUFDLCBTUMgIFtYxAQS0jUPhSLbvdblVWVio+Pl5BQU0/tY2VbqcQFBSkbt26eXsapoiMjPR6sQJGoJYRKKhlBApqGYGCWkagoJYRKHyllk+1wq0OGykAAAAAAAAABqPpBgAAAAAAABiMplsbFBoaqrvvvluhoaHengrQKtQyAgW1jEBBLSNQUMsIFNQyAoW/1jIbKQAAAAAAAAAGY6UbAAAAAAAAYDCabgAAAAAAAIDBaLoBAAAAAAAABqPpBgAAAAAAABiMplsb89hjj6lHjx4KCwvTueeeq6KiIm9PCWjS/PnzlZGRIYfDoZiYGI0ePVolJSX1xlRXV+vGG29U586dFRERoTFjxmjv3r1emjHQPPfdd59sNpumT5/uOUYtw198++23mjBhgjp37qz27dsrPT1dH330kee82+3WXXfdpbi4OLVv315Dhw7Vl19+6cUZAw3V1tYqNzdXSUlJat++vZKTk5WXl6cT95mjluGr3n33XY0cOVLx8fGy2WxauXJlvfPNqd3y8nJdc801ioyMVKdOnTR58mQdOXLEwm8BNF3LTqdTt99+u9LT09WhQwfFx8fruuuu0+7du+u9hy/XMk23NmT58uWaMWOG7r77bn388cfq27evRowYoX379nl7asBJvfPOO7rxxhv1wQcfqLCwUE6nU8OHD9fRo0c9Y2699Va9/vrreumll/TOO+9o9+7duuKKK7w4a6BpmzZt0uOPP66zzz673nFqGf7gf//7nwYPHiy73a5//vOf+vzzz/Xggw/qjDPO8Iz505/+pIULF2rx4sX68MMP1aFDB40YMULV1dVenDlQ34IFC5Sfn6+//OUv2rZtmxYsWKA//elPevTRRz1jqGX4qqNHj6pv37567LHHGj3fnNq95ppr9Nlnn6mwsFBvvPGG3n33XU2dOtWqrwBIarqWq6qq9PHHHys3N1cff/yxXn31VZWUlOiXv/xlvXE+XctutBmZmZnuG2+80fO6trbWHR8f754/f74XZwW0zL59+9yS3O+8847b7Xa7Dx065Lbb7e6XXnrJM2bbtm1uSe6NGzd6a5rASVVWVrp79+7tLiwsdF944YXuW265xe12U8vwH7fffrv7/PPPP+l5l8vljo2Ndd9///2eY4cOHXKHhoa6//a3v1kxRaBZfv7zn7tvuOGGeseuuOIK9zXXXON2u6ll+A9J7r///e+e182p3c8//9wtyb1p0ybPmH/+859um83m/vbbby2bO3CiH9dyY4qKityS3Dt37nS73b5fy6x0ayNqampUXFysoUOHeo4FBQVp6NCh2rhxoxdnBrTM4cOHJUlRUVGSpOLiYjmdznq1nZqaqu7du1Pb8Ek33nijfv7zn9erWYlahv947bXXNHDgQF155ZWKiYnROeecoyeeeMJzvrS0VHv27KlXyx07dtS5555LLcOnZGVlac2aNfrPf/4jSfrkk0/03nvv6dJLL5VELcN/Nad2N27cqE6dOmngwIGeMUOHDlVQUJA+/PBDy+cMNNfhw4dls9nUqVMnSb5fy+28PQFY48CBA6qtrVXXrl3rHe/atau++OILL80KaBmXy6Xp06dr8ODBSktLkyTt2bNHISEhnj9063Tt2lV79uzxwiyBk3vxxRf18ccfa9OmTQ3OUcvwF//973+Vn5+vGTNm6A9/+IM2bdqkm2++WSEhIZo4caKnXhv7Owe1DF9yxx13qKKiQqmpqQoODlZtba3mzZuna665RpKoZfit5tTunj17FBMTU+98u3btFBUVRX3DZ1VXV+v222/X1VdfrcjISEm+X8s03QD4jRtvvFFbt27Ve++95+2pAC329ddf65ZbblFhYaHCwsK8PR3gtLlcLg0cOFD33nuvJOmcc87R1q1btXjxYk2cONHLswOab8WKFXr++ef1wgsv6Kc//ak2b96s6dOnKz4+nloGAB/jdDo1btw4ud1u5efne3s6zcbtpW1Ely5dFBwc3GAXvL179yo2NtZLswKa76abbtIbb7yhdevWqVu3bp7jsbGxqqmp0aFDh+qNp7bha4qLi7Vv3z71799f7dq1U7t27fTOO+9o4cKFateunbp27Uotwy/ExcWpT58+9Y6dddZZ2rVrlyR56pW/c8DX/b//9/90xx136KqrrlJ6erquvfZa3XrrrZo/f74kahn+qzm1Gxsb22BDvePHj6u8vJz6hs+pa7jt3LlThYWFnlVuku/XMk23NiIkJEQDBgzQmjVrPMdcLpfWrFmjQYMGeXFmQNPcbrduuukm/f3vf9fatWuVlJRU7/yAAQNkt9vr1XZJSYl27dpFbcOnDBkyRFu2bNHmzZs9PwYOHKhrrrnG83NqGf5g8ODBKikpqXfsP//5jxITEyVJSUlJio2NrVfLFRUV+vDDD6ll+JSqqioFBdX/51BwcLBcLpckahn+qzm1O2jQIB06dEjFxcWeMWvXrpXL5dK5555r+ZyBk6lruH355Zd6++231blz53rnfb2Wub20DZkxY4YmTpyogQMHKjMzU4888oiOHj2q66+/3ttTA07qxhtv1AsvvKBVq1bJ4XB47svv2LGj2rdvr44dO2ry5MmaMWOGoqKiFBkZqd/97ncaNGiQzjvvPC/PHviBw+HwPIuwTocOHdS5c2fPcWoZ/uDWW29VVlaW7r33Xo0bN05FRUVasmSJlixZIkmy2WyaPn265s6dq969eyspKUm5ubmKj4/X6NGjvTt54AQjR47UvHnz1L17d/30pz/Vv//9bz300EO64YYbJFHL8G1HjhzR9u3bPa9LS0u1efNmRUVFqXv37qes3bPOOkvZ2dmaMmWKFi9eLKfTqZtuuklXXXWV4uPjvfSt0BY1VctxcXEaO3asPv74Y73xxhuqra31/HswKipKISEhvl/L3t4+FdZ69NFH3d27d3eHhIS4MzMz3R988IG3pwQ0SVKjP5566inPmO+++849bdo09xlnnOEODw93X3755e6ysjLvTRpopgsvvNB9yy23eF5Ty/AXr7/+ujstLc0dGhrqTk1NdS9ZsqTeeZfL5c7NzXV37drVHRoa6h4yZIi7pKTES7MFGldRUeG+5ZZb3N27d3eHhYW5e/bs6f7jH//oPnbsmGcMtQxftW7dukb/jjxx4kS329282j148KD76quvdkdERLgjIyPd119/vbuystIL3wZtWVO1XFpaetJ/D65bt87zHr5cyza32+22sskHAAAAAAAABDqe6QYAAAAAAAAYjKYbAAAAAAAAYDCabgAAAAAAAIDBaLoBAAAAAAAABqPpBgAAAAAAABiMphsAAAAAAABgMJpuAAAAAAAAgMFougEAAAAAAAAGo+kGAAAASdKkSZM0evRob08DAAAgILTz9gQAAABgPpvN1uT5u+++W3/+85/ldrstmhEAAEBgo+kGAADQBpSVlXl+vnz5ct11110qKSnxHIuIiFBERIQ3pgYAABCQuL0UAACgDYiNjfX86Nixo2w2W71jERERDW4vveiii/S73/1O06dP1xlnnKGuXbvqiSee0NGjR3X99dfL4XCoV69e+uc//1nvs7Zu3apLL71UERER6tq1q6699lodOHDA4m8MAADgXTTdAAAAcFJPP/20unTpoqKiIv3ud79TTk6OrrzySmVlZenjjz/W8OHDde2116qqqkqSdOjQIV1yySU655xz9NFHH6mgoEB79+7VuHHjvPxNAAAArEXTDQAAACfVt29f3Xnnnerdu7dmzZqlsLAwdenSRVOmTFHv3r1111136eDBg/r0008lSX/5y190zjnn6N5771VqaqrOOeccPfnkk1q3bp3+85//ePnbAAAAWIdnugEAAOCkzj77bM/Pg4OD1blzZ6Wnp3uOde3aVZK0b98+SdInn3yidevWNfp8uB07dugnP/mJyTMGAADwDTTdAAAAcFJ2u73ea5vNVu9Y3a6oLpdLknTkyBGNHDlSCxYsaPBecXFxJs4UAADAt9B0AwAAgGH69++vV155RT169FC7dvxVEwAAtF080w0AAACGufHGG1VeXq6rr75amzZt0o4dO/TWW2/p+uuvV21trbenBwAAYBmabgAAADBMfHy8NmzYoNraWg0fPlzp6emaPn26OnXqpKAg/uoJAADaDpvb7XZ7exIAAAAAAABAIOF/NwIAAAAAAAAGo+kGAAAAAAAAGIymGwAAAAAAAGAwmm4AAAAAAACAwWi6AQAAAAAAAAaj6QYAAAAAAAAYjKYbAAAAAAAAYDCabgAAAAAAAIDBaLoBAAAAAAAABqPpBgAAAAAAABiMphsAAAAAAABgMJpuAAAAAAAAgMFougEAAAAAAAAGo+kGAAAAAAAAGIymGwAAAAAAAGAwmm4AAAAAAACAwWi6AQAAAAAAAAaj6QYAAAAAAAAYjKYbAAAAAAAAYDCabgAAAAAAAIDBaLoBAAAAAAAABqPpBgAAAAAAABiMphsAAAAAAABgMJpuAAAAAAAAgMFougEAAAAAAAAGo+kGAAAAAAAAGIymGwAAAAAAAGCwdt6egK9zuVzavXu3HA6HbDabt6cDAAAAAAAAL3G73aqsrFR8fLyCgppey0bT7RR2796thIQEb08DAAAAAAAAPuLrr79Wt27dmhxD0+0UHA6HpO/DjIyM9PJsjOF0OrV69WoNHz5cdrvd29MBThu1jEBBLSNQUMsIFNQyAgW1jEDhS7VcUVGhhIQET7+oKTTdTqHultLIyMiAarqFh4crMjLS68UKtAa1jEBBLSNQUMsIFNQyAgW1jEDhi7XcnEeQsZECAAAAAAAAYDCabgAAAAAAAIDBaLoBAAAAAAAABuOZbgAAAAAA+BG3263jx4+rtra2yXFOp1Pt2rVTdXX1KccCvszqWrbb7QoODm71+9B0AwAAAADAT9TU1KisrExVVVWnHOt2uxUbG6uvv/66WQ99B3yV1bVss9nUrVs3RUREtOp9aLoBAAAAAOAHXC6XSktLFRwcrPj4eIWEhDTZgHC5XDpy5IgiIiIUFMTTpeC/rKxlt9ut/fv365tvvlHv3r1bteKNphsAAAAAAH6gpqZGLpdLCQkJCg8PP+V4l8ulmpoahYWF0XSDX7O6lqOjo/XVV1/J6XS2qunG7zoAAAAAAPwIDTTAXEbdwspKN3hVrcutotJy7ausVowjTJlJUQoO4lkDAAAAAADAv9F0g9cUbC3T7Ne3aM9hp+dYbEe7Zo9MV3ZanBdnBgAAAACBjQUQgPlYkwqvKNhappznilV6ZIPKQmdqV9hYlYXOVOmRDcp5rlgFW8u8PUUAAAAACEgFW8s0eEGhrn7iA93y4mZd/cQHGrygsE3/O2z9+vWy2Ww6dOiQt6eiZcuWqVOnTn79WbNnz1a/fv0Mf98ff4bNZpPNZtMjjzzS7Ou++uorz3Vmz5GmGyxX63Jr9utbVBW8SfvseaoJKpHbVq2aoBLts+epKniT5ry+RbUut7enCgAAAAABxVsLICZNmuRpdISEhKhXr1665557dPz48Va/7+jRo1s9v6ysLJWVlaljx46tfq/WGj9+vP7zn/8E3GeZ4ac//anKyso0derUZl+TkJCgsrIyzZw508SZfY+mGyxXVFquPYedOtRuuWT7UWPN5tah4BUqO+xUUWm5dyYIAAAAAAHI2wsgsrOzVVZWpi+//FIzZ87U7Nmzdf/995/We9XW1srlchk2t5CQEMXGxhr2AP3WaN++vWJiYkz/HKfTadlnmaVdu3aKjY1t1m6+dYKDgxUbG6uIiAgTZ/Y9mm6w3L7KakmS07az0fPOoJ31xgEAAAAAWs/bCyBCQ0MVGxurxMRE5eTkaOjQoXrttdckSQ899JDS09PVoUMHJSQkaNq0aTpy5Ijn2rrbIF977TX16dNHoaGhuuGGG/T0009r1apVnlV069evlyR9/fXXGjdunDp16qSoqCiNGjVKX3311Unn9uPbS+s+74033lBKSorCw8M1duxYVVVV6emnn1aPHj10xhln6Oabb1Ztba3nfZ599lkNHDhQDodDsbGx+tWvfqV9+/bV+6zXXntNvXv3VlhYmC6++GI9/fTTjX52nbpbNZ999ln16NFDHTt21FVXXaXKykrPmIKCAp1//vnq1KmTOnfurF/84hfasWOH53zdLZXLly/XhRdeqLCwMD3//PMNPmvHjh0aNWqUunbtqoiICGVkZOjtt98+5a/tfffdp65du8rhcGjy5Mmqrm747/mlS5fqrLPOUlhYmFJTU7Vo0aKTvt8zzzyjzp0769ixY/WOX3755br22mubnIvNZtPSpUt1+eWXKzw8XL179/bUmdVousFyMY4wSZLdndjoebsrsd44AAAAAEDr+doCiPbt26umpkaSFBQUpIULF+qzzz7T008/rbVr1+q2226rN76qqkoLFizQ0qVL9dlnn2nhwoUaN26cZwVdWVmZsrKy5HQ6NWLECDkcDv3rX//Shg0bFBERoezsbM/nNUdVVZUWLlyoF198UQUFBVq/fr0uv/xyvfnmm3rzzTf17LPP6vHHH9fLL7/sucbpdCovL0+ffPKJVq5cqa+++kqTJk3ynC8tLdXYsWM1evRoffLJJ/rNb36jP/7xj6ecy44dO7Ry5Uq98cYbeuONN/TOO+/ovvvu85w/evSoZsyYoY8++khr1qxRUFCQLr/88garAe+44w7dcsst2rZtm0aMGNHgc44cOaLLLrtMa9as0b///W9lZ2dr5MiR2rVr10nntmLFCs2ePVv33nuvPvroI8XFxTVoqD3//PO66667NG/ePG3btk333nuvcnNz9fTTTzf6nldeeaVqa2vrNcv279+vN998UzfccMMp85ozZ47GjRunTz/9VJdddpmuueYalZdbfzcdu5fCcplJUYrtaNd3R8Zrnz2v/v9hcdvUqXac4jralZkU5b1JAgAAAECAOXEBRI2tpMF5qxZAuN1urVmzRm+99ZZ+97vfSZKmT5/uOd+jRw/NnTtXv/3tb+s1b5xOpxYtWqS+fft6jrVv317Hjh1TbGys59hzzz0nl8ulpUuXem4Xfeqpp9SpUyetX79ew4cPb9Y8nU6n8vPzlZycLEkaO3asnn32We3du1cRERHq06ePLr74Yq1bt07jx4+XpHoNoZ49e2rhwoXKyMjQkSNHFBERoccff1wpKSme22pTUlK0detWzZs3r8m5uFwuLVu2TA6HQ5J07bXXas2aNZ7rxowZU2/8k08+qejoaH3++edKS0vzHJ8+fbquuOKKk35O37596+Wbl5env//973rttdd00003NXrNI488osmTJ2vy5MmSpLlz5+rtt9+ut9rt7rvv1oMPPuj57KSkJH3++ed6/PHHNXHixAbv2b59e/3qV7/SU089pSuvvFLS98297t2766KLLjrp/OtMmjRJV199tSTp3nvv1cKFC1VUVKTs7OxTXmskVrrBcsFBNs0ema7w2gzFOHMVUpsqm7u9QmpTFePMVXhthu4emc521QAAAABgoLoFEJ2Oj5fcP/r3lgULIN544w1FREQoLCxMl156qcaPH6/Zs2dLkt5++20NGTJEZ555phwOh6699lodPHhQVVVVnutDQkJ09tlnn/JzPvnkE23fvl0Oh0MRERGKiIhQVFSUqqur691yeSrh4eGehpskde3aVT169Kj3LLCuXbvWu320uLhYI0eOVPfu3eVwOHThhRdKkmelWElJiTIyMup9TmZm5inn0qNHD0/DTZLi4uLqfe6XX36pq6++Wj179lRkZKR69OhR73PrDBw4sMnPOXLkiH7/+9/rrLPOUqdOnRQREaFt27Y1udJt27ZtOvfcc+sdGzRokOfnR48e1Y4dOzR58mTPr0dERITmzp3b5K/HlClTtHr1an377beSpBdeeEETJ05s1nP3TqyTDh06KDIyssFtvlZgpRu8IjstTvkTBuju1+zaW/HDHzBxHe26e2S6stPivDg7AAAAAAg8dQsgcp6rUYxydSh4hZxBO2V3JapT7TjTF0BcfPHFys/PV0hIiOLj49Wu3fctia+++kq/+MUvlJOTo3nz5ikqKkrvvfeeJk+erJqaGs9D8tu3b9+shsuRI0c0YMAAPf/88w3ORUdHN3u+dru93mubzdbosbpbOI8ePaoRI0ZoxIgRev755xUdHa1du3ZpxIgRLbqttblzOfHW0ZEjRyoxMVFPPPGE4uPj5XK5lJaW1uBzO3To0OTn/P73v1dhYaEeeOAB9erVS+3bt9fYsWNbNf+6Z/M98cQTDZpzwcHBJ73unHPOUd++ffXMM89o6NCh+uKLLxpdFdeYU+VlFZpu8JrstDgN7tVF6bNXS5KWXZ+hC3pHs8INAAAAAJrJ7XbL/d13jZ5zuVxyffedXO3aSUHf3+g2vGdHPXZluuYUtNPeyhMWQES2U+6IVA3v2VGuE1aXNcXWzCZYnQ4dOqhXr14NjhcXF8vlcunBBx9U0P/Nc8WKFc16z5CQkHobGUhS//79tXz5csXExCgyMrLZ82utL774QgcPHtR9992nhIQESdJHH31Ub0xKSorefPPNesc2bdrUqs89ePCgSkpK9MQTT+iCCy6QJL333nun9V4bNmzQpEmTdPnll0v6vmHW1AYUknTWWWfpww8/1HXXXec59sEHH3h+3rVrV8XHx+u///2vrrnmmhbN59e//rUeeeQRffPNN7rooos8ufoLmm7wqhMbbJlJUTTcAAAAAKAF3N99p5L+A5ocs/dHr5Mk/VU2fdalp8pDHYo6VqmfHvivgp9xq+GT3k4u5eNi2f5vFVpr9OrVS06nU48++qhGjhypDRs2aPHixc26tkePHnrrrbdUUlKizp07q2PHjrrmmmt0//33a9SoUbrnnnvUrVs37dy5U6+++qpuu+02devWrdVzbkz37t0VEhKiRx99VL/97W+1detW5eXl1Rvzm9/8Rg899JBuv/12TZ48WZs3b9ayZcskqUUNzBOdccYZ6ty5s5YsWaK4uDjt2rVLd9xxx2m9V+/evfXqq69q5MiRstlsys3NPeUKsVtuuUWTJk3SwIEDNXjwYD3//PP67LPP1LNnT8+YOXPm6Oabb1bHjh2VnZ2tY8eO6aOPPtL//vc/zZgx46Tv/atf/Uq///3vtXTpUuXn55/Wd/ImnukGAAAAAEAbEyy3zj6wQxd9u1lnH9ihYLlPfZFJ+vbtq4ceekgLFixQWlqann/+ec2fP79Z106ZMkUpKSkaOHCgoqOjtWHDBoWHh+vdd99V9+7ddcUVV+iss87S5MmTVV1dberKt+joaC1btkwvvfSS+vTpo/vuu08PPPBAvTFJSUl6+eWX9eqrr+rss89Wfn6+Z/fS0NDQ0/rcoKAgvfjiiyouLlZaWppuvfVWz0YNLfXQQw/pjDPOUFZWlkaOHKkRI0aof//+TV4zfvx45ebm6rbbbtOAAQO0c+dO5eTk1Bvz61//WkuXLtVTTz2l9PR0XXjhhVq2bJmSkpKafO+OHTtqzJgxioiI0M9//vPT+k7eZHO73d77neUHKioq1LFjRx0+fNjSZalmcjqdevPNN3XZZZc1uM/ZalU1x9XnrrckSZ/fM0LhISy+RPP5Ui0DrUEtI1BQywgU1DJ8VXV1tUpLS5WUlKSwsO93GD3V7aUVlZWKdDg8t20aqaW3l6Jx8+bN0+LFi/X11197eyo+aciQIerTp4/y8vIUGRnpqeXZs2dr5cqV2rx582m9b1PXN/Z7rU5L+kR0OAAAAAAA8FM2m+3kt3i6XAo6flxB4eGmNN1wehYtWqSMjAx17txZGzZs0P3336+bbrrJ29PyOf/73/+0fv16rV+/Xn/5y18aHbNlyxZFREToT3/6k6ZNm9as9921a5f69Omjmpoa9enTx8gpN0DTDQAAAAAAwCJffvml5s6dq/LycnXv3l0zZ87UrFmzvD0tn3POOefof//7nxYsWKCUlBRVVFTUO3/zzTdrwoQJklq2K218fLxnddvp3tLbXDTdAAAAAAAALPLwww/r4Ycf9vY0fN6Ju6Y2tplDVFSUoqKiWvy+7dq1a3QXXTOwvhQAAAAAAAAwGE03AAAAAAD8CPshAuYy6vcYt5fC59W63CoqLde+ymrFOMKUmRSl4CB2yAEAAADQttTtpltVVaX27dt7eTZA4KqpqZEkBQcHt+p9aLrBpxVsLdPs17doz2Gn51hsR7tmj0xXdlqcF2cGAAAAANYKDg5Wp06dtG/fPklSeHi4bLaTL0hwuVyqqalRdXU1u5fCr1lZyy6XS/v371d4eLjatWtd24ymG3xWwdYy5TxXrKrgTToUulxO207Z3Yn67sh45TxXo/wJA2i8AQAAAGhTYmNjJcnTeGuK2+3Wd999p/bt2zfZnAN8ndW1HBQUpO7du7f6s2i6wSfVutya/foWVQVv0j57nmT7/n7qGluJ9tnzFKNczXk9RMP6xHKrKQAAAIA2w2azKS4uTjExMXI6nU2OdTqdevfdd/Wzn/3Mc2sq4I+sruWQkBBDVtTRdINPKiot157DTh0KXe5puHnY3DoUvEJlhzNVVFquQcmdvTNJAAAAAPCS4ODgUz5vKjg4WMePH1dYWBhNN/g1f61lbuqGT9pXWS1Jctp2NnreGbSz3jgAAAAAAABfQtMNPinGESZJsrsTGz1vdyXWGwcAAAAAAOBLaLrBNLUutzbuOKhVm7/Vxh0HVetyn/qi/5OZFKXYjnZ1Oj5ecv/omW1umzrVjlNcR7syk6IMnjUAAAAAAEDr8Uw3mKJga5lmv75Few7/8GDP2I52zR6Z3qwdR4ODbJo9Ml05z9UoRrk6FLxCzqCdsrsS1al2nMJrM3T3yHQ2UQAAAAAAAD6JphsMV7C1TDnPFasqeJMOhS6X07ZTdneivjsyXjnP1Sh/woBmNd6y0+KUP2GA7n7Nrr0VmZ7jcR3turuZzTsAAAAAAABvoOkGQ9W63Jr9+hZVBW/SPnueZ+fRGluJ9tnzFKNczXk9RMP6xDZrlVp2WpwG9+qi9NmrJUnLrs/QBb2jWeEGAAAAAAB8Gs90g6GKSsu157BTh9ot9zTcPGxuHQpeobLDThWVljf7PU9ssGUmRdFwAwAAAAAAPo+mGwy1r7JakuS07Wz0vDNoZ71xAAAAAAAAgYimGwwV4wiTJNndiY2et7sS640DAAAAAAAIRDTdYKjMpCjFdrSr0/HxkvtHt4G6bepUO05xHe3KTIryzgQBAAAAAAAsQNMNhgoOsmn2yHSF12YoxpmrkNpU2dztFVKbqhhnrsJrM3T3yHSeywYAAAAAAAIau5fCcNlpccqfMEB3v2bX3opMz/G4jnbdPTJd2WlxXpwdAAAAAACA+Wi6wRTZaXEa3KuL0mevliQtuz5DF/SOZoUbAAAAAABoE7i9FKY5scGWmRRFww0AAAAAALQZNN0AAAAAAAAAg9F0AwAAAAAAAAxG0w0AAAAAAAAwGE03AAAAAAAAwGA03QAAAAAAAACD0XQDAAAAAAAADEbTDQAAAAAAADAYTTcAAAAAAADAYDTdAAAAAAAAAIO18/YEAJir1uVWUWm59lVWK8YRpsykKAUH2bw9LQAAAAAAAlpAN93mz5+vV199VV988YXat2+vrKwsLViwQCkpKd6eGmCJgq1lmv36Fu057PQci+1o1+yR6cpOi/PizAAAAAAACGwBfXvpO++8oxtvvFEffPCBCgsL5XQ6NXz4cB09etTbUwNMV7C1TDnPFf//9u4/Our6wPf/6zPDJxMiIWmAIYOVGIFKbVJFIIrUW78KGLc3rrdroa60ar3ee3LRauHcVXc3Jixrra613doe3Nqqt5vbFry3rcStKanSulo0EepKtja23mnYYxNSSfPLEGaY+Xz/oBmZ8CvAvN/z6/k4x3OcmQ+Zd16+M8aX7/fnrfDIy+oJbNDewuvVE9ig8MjLqm/epdbOnnQPEQAAAACAnJXTK91aW1uTHj/11FMKBoPatWuX/tN/+k9pGhVgXizuqallj0b9HepzN0mOJ0mKOF3qczcpqAZtbCnQygvK2WoKAAAAAIABOV26TTQ4OChJKisrO+41Bw8e1MGDBxOPh4aGJEnRaFTRaPR4fyyrjH8fpr+faPRQ0ntG/1T8mLgGyV4N96t3MKqBwJZE4ZbgeBrwb1XPYI12/rZPl1Qe/+ch09may4BpzGXkCuYycgVzGbmCuYxckUlz+VTG4HielxcNRjwe17XXXquBgQG99NJLx72uqalJGzduPOr57373uyoqKjI5xJxzMCb9VfvhXvehmkMK+M1dg2S73nX0nd/4tbfwennO2FGvO95UzR17Wp9dENPimXnxEQAAAAAAwBkbHR3VX/7lX2pwcFDTp08/4bV5s9Jt3bp16uzsPGHhJkn33nuv1q9fn3g8NDSkc845R6tWrTppmNkiGo2qra1NK1eulOu6xt5nNHJIf9X+giTp6qtXqajg6OmWqmuQbEa4X9/5zWtyvQpFnK6jXnfjFZKkVZdfkvUr3WzMZcA05jJyBXMZuYK5jFzBXEauyKS5PL4jcjLyor24/fbb9eyzz+rFF1/UBz/4wRNeGwgEFAgEjnredd20/4NNNdPfk+u9f6+ww+919HRL1TVItmx+UOUlrg6MrEm6p5skyXNUGlutUImrZfODOXFPt1z8+UR+Yi4jVzCXkSuYy8gVzGXkikyYy6fy/jl9eqnnebr99tv1wx/+UC+88IIqKyvTPSTACr/PUVNdtYpiSxWMNqggtlCON1UFsYUKRhtUFFuqxrrqnCjcAAAAAADIRDm9ZGjdunX67ne/q2eeeUbFxcXq7e2VJJWUlGjq1KlpHh1gVm1VSJvXLlbjNlf7hmoSz4dKXDXWVau2KpTG0QEAAAAAkNtyunTbvHmzJOmKK65Iev7JJ5/UzTffbH9AgGW1VSEtnz9T1U3bJUlP3bJUly+YxQo3AAAAAAAMy+nSLU8OZgVO6MiCraayjMINAAAAAAALcvqebgAAAAAAAEA6ULoBAAAAAAAAKUbpBgAAAAAAAKRYTt/TDcDkxOKe2sP96hseU7C4kHu/AQAAAABwhijdgDzX2tmjppY96h2MJp4rL3HVVFet2qpQGkeWXSguAQAAAABHonQD8lhrZ4/qm3dp1N+hgcAWRZ1uuV6FDoysUX1zRJvXLqZ4mwSKSwAAAADARNzTDchTsbinppY9GvV3qM/dpIivS54zpoivS33uJo36O7SxZY9icS/dQ81o48VleORl9QQ2aG/h9eoJbFB45GXVN+9Sa2dPuocIAAAAAEgDSjcgT7WH+9U7GNXAlC2SM6FYczwN+LeqZzCq9nB/egaYBSguAQAAAADHQ+kG5Km+4TFJUtTpPubrUV930nU4GsUlAAAAAOB4KN2APBUsLpQkuV7FMV934xVJ1+FoFJcAAAAAgOOhdAPyVE1lmcpLXJUeWiN5E07Z9ByVxlYrVOKqprIsPQPMAhSXdsXinna+vV/PvP6Odr69n227AAAAADIap5cCecrvc9RUV6365oiCatCAf6uivm658QqVxlarKLZUjXXV8vuck3+xPDVeXB4YWaM+d1PyFlOKy5TihFgAAAAA2YbSDchjtVUhbV67WI3bXO0bqkk8Hypx1UiZcVIUl3aMnxA76u/QQGCLok63XK9CB0bWqL45os1rFzNXUygW99Qe7lff8JiCxYWqqSxjDgMAAACngdINyHO1VSEtnz9T1U3bJUlP3bJUly+YxX9kTxLFpVkTT4gdX00YcQ6fEBtUgza2FGjlBeXM2RRgRaEdFJt2kLN5ZGwHOdtBzuaRsR3knFko3QAkfQjzoXzqKC7NSZwQGzjRCbE1ag/3a9m8GekZZI5gRaEdFJt2kLN5ZGwHOdtBzuaRsR3knHko3QAgBSguzeCEWDtYUWgHxaYd5GweGdtBznaQs3lkbAc5ZyZOLwUAZCxOiLUjsaJwyolWFEbVHu5PzwBzwMRiM+LrkueMKeI7XGyO+ju0sWUPp/KeIXI2j4ztIGc7yNk8MraDnDMXpRsAIGONnxBbemiN5E1YYcUJsSnDikLzKDbtIGfzyNgOcraDnM0jYzvIOXNRugGAJbG4p51v79czr7+jnW/v5/80TcL4CbFFsaUKRhtUEFsox5uqgthCBaMNnBCbIqwoNI9i0w5yNo+M7SBnO8jZPDK2g5wzF/d0AwALuKnp6eOEWPPGVxQeGFmTdE83SawoTJEji82I03XU6xSbqUHO5pGxHeRsBzmbR8Z2kHPmYqUbkMVYOZUdxm9qGh55WT2BDdpbeL16AhsUHnlZ9c271NrZk+4hZrzaqpB+uv7KxOOnblmql+5eSeGWIqwoNI+t0naQs3lkbAc520HO5pGxHeScuSjdkPXytXhq7ezR8gfbdMPjr+jO77+uGx5/RcsfbKPAyTDc1DR1OCHWrPEVheeedZlCkYc1d+xphSIP67xpyzntKgUoNu0gZ/PI2A5ytoOczSNjO8g5c7G9FFktX7fscRx09kjc1DRwopua1qg93K9l82akZ5DAn9RWhbR8/kxVN22XdHhF4eULZvELWoqwVdoOcjaPjO0gZzvI2TwytoOcMxOlG7JWvhZPE1dOjRc5EefwyqmgGrSxpUArLyjnP5QzADc1tSsW99Qe7lff8JiCxYWsiDsNrCg0i2LTDnI2j4ztIGc7yNk8MraDnDMPpRuyUj4XT6ycyi7c1NSefF35iuxDsWkHOZtHxnaQsx3kbB4Z20HOmYV7uiErJYqnKScqnqJqD/enZ4AGsXIqu3BTUzs4rMKufL2Xpk1kDAAAkP1Y6YaslM/FEyunssv4TU3rmyMKqkED/q2K+rrlxitUGlvNTU1TIJ9XvqYDKwrNI2N72JJuHhnbQc52kLN5ZGwHOdtD6YbTku4f0nwunsZXTh0YWZNUMEhi5VSG4qamZrHl2p58vZemTWRsD+WmeWRsBznbQc7mkbEd5GwXpRtOWSb8kOZz8cTKqezETU3NyeeVrzaxotA8MraHctM8MraDnO0gZ/PI2A5yto97uuGUZMp9k8aLp6LYUgWjDSqILZTjTVVBbKGC0YacL57GV06de9ZlCkUe1tyxpxWKPKzzpi3ngzKDcVNTM45c+Xosubzy1aZ8vpemLWRsx8RyM+LrkueMKeI7XG6O+ju0sWUP99E7A2RsBznbQc7mkbEd5JwelG6YtEz7Ic334qm2KqSfrr8y8fipW5bqpbtX5vz3DUzEYRV2sKLQPDK2g3LTPDK2g5ztIGfzyNgOck4PSjdMWib+kOZ78cTKKYCVr7awotA8MraDctM8MraDnO0gZ/PI2A5yTg9KN0xapv6QUjwByPeVrzawotA8MraDctM8MraDnO0gZ/PI2A5yTg9KN0waP6QAMlm+r3w1jRWF5pGxHZSb5pGxHeRsBzmbR8Z2kHN6ULph0vghBZDpWPlqFisKzSNj8yg3zSNjO8jZDnI2j4ztIOf0mJLuASB7jP+Q1jdHFFSDBvxbFfV1y41XqDS2mh9SAMgDtVUhLZ8/U9VN2yUdXlF4+YJZfPanEBmbN15uNm5ztW+oJvF8qMRVY1015WYKkLEd5GwHOZtHxnaQs32Ubjgl/JACAFhRaB4Zm0e5aR4Z20HOdpCzeWRsBznbRemGU8YPKQAAyAWUm+aRsR3kbAc5m0fGdpCzPZRuOC38kCKfxOKe2sP96hseU7C4kDkPAAAAADgpSjcAOIHWzh41texR72A08Vx5iasmtlMDAAAAAE6A0g0AjqO1s0f1zbs06u/QQGCLok63XK9CB0bWqL45wkmCAAAAAIDj8qV7AACQiWJxT00tezTq71Cfu0kRX5c8Z0wRX5f63E0a9XdoY8sexeJeuocKAAAAAMhAlG4AcAzt4X71DkY1MGWL5Ewo1hxPA/6t6hmMqj3cn54BAgAAAAAyGqUbABxD3/CYJCnqdB/z9aivO+k6AAAAAACOxD3dAOAYgsWFkiTXq1DE6TrqdTdekXQdzgwnxAIAAADINZRuAHAMNZVlKi9xdWBkjfrcTclbTD1HpbHVCpW4qqksS98gcwQnxAIAAADIRWwvBYBj8PscNdVVqyi2VMFogwpiC+V4U1UQW6hgtEFFsaVqrKtmNdYZGj8hNjzysnoCG7S38Hr1BDYoPPKy6pt3qbWzJ91DBAAAAIDTwko3ADiO2qqQNq9drMZtrvYN1SSeD5W4amQV1hmbeELs+GrCiHP4hNigGrSxpUArLyin3EwRtvGaR8YAAAAYR+kGACdQWxXS8vkzVd20XZL01C1LdfmCWfxHdAokTogNnOiE2Bq1h/u1bN6M9Awyh7CN1zwytody0w5yNo+M7SBn88jYDnLOPpRuAHASR/6LjH+xpQ4nxNozvo131N+hgcAWRZ1uuV6FDoysUX1zRJvXLqYUOkNkbA/lph3kbB4Z20HO5pGxHeScnSjdAABpwQmxdrCN1zwytody0w5yNo+M7SBn88jYDnLOXhykAABIi/ETYksPrZG8CUUEJ8SmTGIb75QTbeONqj3cn54B5gAytmNiuRnxdclzxhTxHS43R/0d2tiyR7G4d/IvhuMiZ/PI2A5yNo+M7SDn7EbpBgBIC06ItYNtvOaRsR2Um3aQs3lkbAc5m0fGdpBzdmN7KQAgbTgh1jy28ZpHxnZQbtpxajmX2BpWTmEu20HO5pGxHeSc3VjpBgBIq9qqkH66/srE46duWaqX7l5J4ZYibOM1j4ztOLLcPBbKzdQgZ/PI2A5yNo+M7SDn7EbpBgBIO06INYdtvOaRsR2Um3aQs3lkbAc5m0fGdpBzdqN0AwAgx41v4z33rMsUijysuWNPKxR5WOdNW85pVylCxuZRbtpBzuaRsR3kbB4Z20HO2Y17ugEAkAdqq0JaPn+mqpu2Szq8jffyBbP4BS2FyNg87gNpBzmbR8Z2kLN5ZGwHOWcvSjcAAPIE23jNI2PzKDftIGfzyNgOcjaPjO0g5+zE9lIAAABkFcpNO8jZPDK2g5zNI2M7yDn7sNINwKTE4p7aw/3qGx5TsLiQD3kAAAAAAE6A0g3ASbV29qipZY96B6OJ58pLXDVx/wAAAAAAAI6J0g3ACbV29qi+eZdG/R0aCGxR1OmW61XowMga1TdHOJUPAAAAAIBjyPl7ur344ouqq6vTnDlz5DiOfvSjH6V7SEDWiMU9NbXs0ai/Q33uJkV8XfKcMUV8XepzN2nU36GNLXsUi3vpHioAAAAAABkl50u39957TxdeeKG+8Y1vpHsoQNZpD/erdzCqgSlbJGdCseZ4GvBvVc9gVO3h/vQMEAAAAACADJXz20uvueYaXXPNNekeBpCV+obHJElRp/uYr0d93UnXAQAAAACAw3K+dDtVBw8e1MGDBxOPh4aGJEnRaFTRaPR4fyyrjH8fZ/L9RKOHkr5edOIqKIvXTOZr5CrTGc8oOvwR4XoVijhdR/05N16RuC4dPx+pmMuTex978z1f5XvGzOXcke8ZM5dzSyp+B8vWjJnLuSWfc2Yu55Z8ztnWXJ6MUxkDpdsEDzzwgDZu3HjU89u3b1dRUVEaRmROW1vbaf/ZgzFpfPr85CfbFfCn75rJfI1cZTrjuCeVFEgHomvUV7ApeYup56j00GqVFhzSH371in78Zoq+qdNwJnN5MmzO93xFxocxl7MfGR/GXM4NqfgdLNszZi7nBnJmLucKcjY/lydjdHR00tdSuk1w7733av369YnHQ0NDOuecc7Rq1SpNnz49jSNLnWg0qra2Nq1cuVKu657W1xiNHNJftb8gSbr66lUqKjh6Ktm6ZjJfI1fZyNg9d59u/75fwWiDBvxbFfV1y41XqDS2WlPjS/X3n7xIV39ktolv76RSMZcnw+Z8z1f5njFzOXfke8bM5dySit/BsjVj5nJuyeecmcu5JZ9ztjWXJ2N8R+RkZH6ylgUCAQUCgaOed1037f9gU+1MvifXcyZ8naOnkq1rJvM1cpWNjP/zRR/UlCl+NW5ztW+oJvF8qMRVY121aqtCZ/x9nCnTP58253u+IuPDmMvZj4wPYy7nhlT8DpbtGTOXcwM5M5dzBTlnRjdzKu+fPckCSJvaqpCWz5+p6qbtkqSnblmqyxfMkt/nnORPAgAAAACQn3K+dBsZGdFvf/vbxONwOKzXX39dZWVlmjt3bhpHBmSXIwu2msoyCjcAAAAAAE7AZ+uNBgYG9K1vfUv33nuv+vv7JUm7d+/WO++8Y/R9X3vtNS1atEiLFi2SJK1fv16LFi3SfffdZ/R9AQAAAAAAkL+srHR74403tGLFCpWUlOh3v/udbrvtNpWVlekHP/iB9u7dq+985zvG3vuKK66Q52X+8bcAIEmxuKf2cL/6hscULC5kVSEAAAAAZCkrpdv69et1880366GHHlJxcXHi+T/7sz/TX/7lX9oYAgBkvNbOHjW17FHvYDTxXHmJq6YMObACAAAAADB5Vkq3jo4O/dM//dNRz5999tnq7e21MQQAyGitnT2qb96lUX+HBgJbFHW65XoVOjCyRvXNEW1eu5jiDQAAAACyiJV7ugUCAQ0NDR31/FtvvaVZs2bZGAIAZKxY3FNTyx6N+jvU525SxNclzxlTxNelPneTRv0d2tiyR7E4W+UBAAAAIFtYKd2uvfZa/d3f/Z2i0cNbphzH0d69e3X33XfrL/7iL2wMAQAyVnu4X72DUQ1M2SI5E4o1x9OAf6t6BqNqD/enZ4AAAAAAgFNmpXT78pe/rJGREQWDQR04cEAf//jHNX/+fBUXF+v++++3MQQAyFh9w2OSpKjTfczXo77upOtwZmJxTzvf3q9nXn9HO9/ezwpCAAAAAEZYuadbSUmJ2tra9NJLL+mNN97QyMiILr74Yq1YscLG2wNARgsWF0qSXK9CEafrqNfdeEXSdTh9HFZhDyfxAgAAIN9ZKd3GfexjH9PHPvYxm28JABmvprJM5SWuDoysUZ+7KXmLqeeoNLZaoRJXNZVl6RtkDuCwCnsoN+2g2LSDnM0jYzvI2Q5yNo+M7SDn1DBWun3ta1+b9LWf//znTQ0DADKe3+eoqa5a9c0RBdWgAf9WRX3dcuMVKo2tVlFsqRrrqvmX3BmYeFjFeLEZcQ4fVhFUgza2FGjlBeXkfIYoN+2g2LSDnM0jYzvI2Q5yNo+M7SDn1DFWun3lK19JevyHP/xBo6OjKi0tlSQNDAyoqKhIwWCQ0g1A3qutCmnz2sVq3OZq31BN4vlQiatG/uV2xhKHVQROdFhFjdrD/Vo2b0Z6BpkDKDftoNi0g5zNI2M7yNkOcjaPjO0g59QydpBCOBxO/HX//ffroosu0ptvvqn+/n719/frzTff1MUXX6xNmzaZGgIAZJXaqpB+uv7KxOOnblmql+5eyb/UUoDDKuzgJF7zJhabEV+XPGdMEd/hYnPU36GNLXs4IOQMkbN5ZGwHOdtBzuaRsR3knHpWTi9taGjQo48+qvPPPz/x3Pnnn6+vfOUr+tu//VsbQwCArHDk6h/um5A6Rx5WcSwcVpEalJvmUWzaQc7mkbEd5GwHOZtHxnaQc+pZKd16enp06NCho56PxWLat2+fjSEAWScW97Tz7f165vV3tPPt/fzfBOAMjB9WUXpojeRNKDI5rCJlKDfNo9i0g5zNI2M7yNkOcjaPjO0g59SzUrpdddVV+u///b9r9+7died27dql+vp6rVixwsYQgKzS2tmj5Q+26YbHX9Gd339dNzz+ipY/2KbWzp50Dw3ISuOHVRTFlioYbVBBbKEcb6oKYgsVjDZwWEWKUG6aR7FpBzmbR8Z2kLMd5GweGdtBzqlnpXR74oknVF5eriVLligQCCgQCKimpkazZ8/Wt771LRtDALLG+I0rwyMvqyewQXsLr1dPYIPCIy+rvnkXxRtwmsYPqzj3rMsUijysuWNPKxR5WOdNW84NYVOEctM8ik07yNk8MraDnO0gZ/PI2A5yTj0rpdusWbP04x//WL/+9a/19NNP6+mnn9abb76pH//4xwoGgzaGAGQFblwJmMVhFeZRbppFsWkHOZtHxnaQsx3kbB4Z20HOqTfF5pt96EMf0oc+9CGbbwlklcSNKwMnunFljdrD/Vo2b0Z6BglkOQ6rMK+2KqTl82equmm7pMPl5uULZpF1iowXm43bXO0bqkk8Hypx1VhXTbGZIuRsHhnbQc52kLN5ZGwHOaeWldLtc5/73Alff+KJJ2wMA8h43LgSQK6g3DSLYtMOcjaPjO0gZzvI2TwytoOcU8dK6fbHP/4x6XE0GlVnZ6cGBgZ05ZVXHudPAfnnyBtXRpyuo17nxpUAgHEUm3aQs3lkbAc520HO5pGxHeScGlZKtx/+8IdHPRePx1VfX6958+bZGAKQFcZvXHlgZI363E3JW0y5cSUAAAAAAFnDykEKx3xjn0/r16/XV77ylXQNAccRi3va+fZ+PfP6O9r59n5u2m8RN64EAAAAACA3WD1IYaK3335bhw4dSucQMEFrZ4+aWvaodzCaeK68xFUTN0y0hhtXAgAAAACQ/ayUbuvXr0967Hmeenp69C//8i+66aabbAwBk9Da2aP65l0a9XdoILBFUadbrlehAyNrVN8c0ea1iyl8LOHGlQAAAAAAZDcrpdsvf/nLpMc+n0+zZs3Sl7/85ZOebAo7YnFPTS17NOrvSLqXWMTpUp+7SUE1aGNLgVZeUE7xYwk3rgQAAAAAIHtZKd127Nhh421wBtrD/eodjGogsCX55v2S5Hga8G9Vz2CN2sP9WjZvRnoGCQAAAAAAkCWsHKRw5ZVXamBg4Kjnh4aGdOWVV9oYAk6ib3hMkhR1uo/5etTXnXQdAAAAAAAAjs9K6fazn/1MkUjkqOfHxsb0r//6rzaGgJMIFhdKklyv4pivu/GKpOsAAAAAAABwfEa3l77xxhuJv//Vr36l3t7exONYLKbW1ladffbZJoeASaqpLFN5iasDI2uS7ukmSfIclcZWK1TiqqayLH2DBAAAAAAAyBJGS7eLLrpIjuPIcZxjbiOdOnWqHn30UZNDwCT5fY6a6qpV3xxRUA0a8G9V1NctN16h0thqFcWWqrGumpv5AwAAAAAATILR0i0cDsvzPJ133nlqb2/XrFmzEq8VFBQoGAzK7/ebHAJOQW1VSJvXLlbjNlf7hmoSz4dKXDXWVau2KpTG0QEAAAAAAGQPo6VbRcXh+4DF43GTb4MUqq0Kafn8mapu2i5JeuqWpbp8waysX+EWi3tqD/erb3hMweJC1VSWZf33BAAAAAAAMpex0m3btm265ppr5Lqutm3bdsJrr732WlPDwGk4sozKhXKqtbNHTS171DsYTTxXXuKqidV7AAAAAADAEGOl23XXXafe3l4Fg0Fdd911x73OcRzFYjFTw0Cea+3sUX3zLo36OzQQ2KKo0y3Xq9CBkTWqb45o89rFFG95jlWQAAAAAAATjJVuR24pZXsp0iEW99TUskej/o6kE1kjTpf63E0KqkEbWwq08oJySpY8xSpIAAAAAIApvnQPADClPdyv3sGoBqZsSRRuCY6nAf9W9QxG1R7uT88AkVbjqyDDIy+rJ7BBewuvV09gg8IjL6u+eZdaO3vSPUQAAAAAQBYzttLta1/72qSv/fznP29qGMhjfcNjkqSo033M16O+7qTrkD9YBQkAAAAAMM1Y6faVr3xlUtc5jkPpBiOCxYWSJNerUMTpOup1N16RdB3yR2IVZOBEqyBr1B7u17J5M9IzSAAAAABAVjNWuoXDYVNfGpiUmsoylZe4OjCyJmk1kyTJc1QaW61QiauayrL0DRJpwSpIAAAAAIBp1u/p5nmePM87+YXAGfL7HDXVVasotlTBaIMKYgvleFNVEFuoYLRBRbGlaqyrZvtgHjpyFeSxsAoSAAAAAHCmrJVu3/72t1VVVaXCwkIVFhaqqqpK3/rWt2y9PfJUbVVIm9cu1rlnXaZQ5GHNHXtaocjDOm/acm1eu5gTKvPU+CrI0kNrJG9C6coqyJSLxT3tfHu/nnn9He18e79icf7HCwAAAIDcZ2x76ZHuu+8+PfLII7rjjju0bNkySdLOnTv1hS98QXv37tXf/d3f2RgG8lRtVUjL589UddN2SdJTtyzV5QtmscItj42vgqxvjiioBg34tyrq65Ybr1BpbDWrIFOotbNHTS171DsYTTxXXuKqqa6a0hsAAABATrNSum3evFmPP/64brjhhsRz1157rT760Y/qjjvuoHSDcUeWJzWVZZQpSKyCbNzmat9QTeL5UImrRgqhlGjt7FF98y6N+js0ENiiqNMt16vQgZE1qm+OsNoUAAAAQE6zUrpFo1EtWbLkqOcXL16sQ4cO2RgCAByFVZDmxOKemlr2aNTfkXSQScTpUp+7SUE1aGNLgVZeUE7eKRKLe2oP96tveEzB4kL+BwMAAACQZlZKt8985jPavHmzHnnkkaTnv/nNb+rGG2+0MQQAOCZWQZrRHu5X72BUA4EtyScHS5LjacC/VT2DNWoP92vZvBnpGWQOYRuvHRSbdpCzHeRsHhnbQc7mkbEd5JybrJRu0uGDFLZv365LL71UkvTqq69q7969+uxnP6v169cnrptYzAEAsk/f8JgkKep0H/P1qK876TqcPrbx2kGxaQc520HO5pGxHeRsHhnbQc65y0rp1tnZqYsvvliS9Pbbb0uSZs6cqZkzZ6qzszNxnePQ4gJALggWF0qSXK9CEafrqNfdeEXSdTg9bOO1g2LTDnK2g5zNI2M7yNk8MraDnHObldJtx44dNt4GAJAhairLVF7i6sDImqQySJLkOSqNrVaoxFVNZVn6BpkD2MZrHsWmHeRsBzmbR8Z2kLN5ZGwHOec+X7oHAADIPX6fo6a6ahXFlioYbVBBbKEcb6oKYgsVjDaoKLZUjXXV/PJwhtjGa16i2JxyomIzqvZwf3oGmCPI2Q5yNo+M7SBn88jYDnLOfVZWuo2NjenRRx/Vjh071NfXp3g8nvT67t27bQwDAGBRbVVIm9cuVuM2V/uGahLPh0pcNXJ/ipRgG695FJt2kLMd5GweGdtBzuaRsR3knPuslG633nqrtm/fruuvv141NTXcuw0A8kRtVUjL589UddN2SdJTtyzV5QtmscItRdjGax7Fph3kbAc5m0fGdpCzeWRsBznnPiul27PPPqsf//jHWr58uY23AwBkkCMLNo4+T63xbbz1zREF1aAB/1ZFfd1y4xUqja1mG28KUGzaQc52kLN5ZGwHOZtHxnaQc+6zck+3s88+W8XFxTbeCgCAvDK+jffcsy5TKPKw5o49rVDkYZ03bTmnXaUA9ye0g5ztIGfzyNgOcjaPjO0g59xnZaXbl7/8Zd1999167LHHVFFRYeMtAQDIG2zjNYv7E9pBznaQs3lkbAc5m0fGdpBzbrNSui1ZskRjY2M677zzVFRUJNd1k17v7+ckDgAAzgTbeM2i2LSDnO0gZ/PI2A5yNo+M7SDn3GWldLvhhhv0zjvv6Itf/KJmz57NQQoAACDrUGzaQc52kLN5ZGwHOZtHxnaQc26yUrr94he/0M6dO3XhhRfaeDsAAAAAAAAgrawcpLBw4UIdOHDAxlsBAAAAAAAAaWeldPvSl76kDRs26Gc/+5n279+voaGhpL8AAAAAAACAXGJle2ltba0k6aqrrkp63vM8OY6jWCxmYxgAAAAAAACAFVZKtx07dhz3tT179tgYAgAAAAAAAGCNldLt4x//eNLj4eFhfe9739O3vvUt7dq1S7fffruNYQAAAAAAAABWWLmn27gXX3xRN910k0KhkB5++GFdeeWVeuWVV2wOAQAAAAAAADDO+Eq33t5ePfXUU/r2t7+toaEhrV69WgcPHtSPfvQjXXDBBabfHgAAAAAAALDO6Eq3uro6nX/++XrjjTf01a9+Vb///e/16KOPmnxLnEQs7unVcL92vevo1XC/YnEv3UMCAAAAAADIOUZLt+eee0633nqrNm7cqE984hPy+/0m3+64vvGNb+jcc89VYWGhLrnkErW3t6dlHOnW2tmj5Q+2ae0Tr+k7v/Fr7ROvafmDbWrt7En30AAAAAAAAHKK0dLtpZde0vDwsBYvXqxLLrlEX//61/Xuu++afMujbNmyRevXr1djY6N2796tCy+8UFdffbX6+vqsjiPdWjt7VN+8S+GRl9UT2KC9hderJ7BB4ZGXVd+8i+INKRGLe9r59n498/o72vn2flZSAgAAAADyltF7ul166aW69NJL9dWvflVbtmzRE088ofXr1ysej6utrU3nnHOOiouLTQ5BjzzyiG677TbdcsstkqTHHntM//Iv/6InnnhC99xzj9H3zhSxuKemlj0a9Xeob8omTY1Lh9ccvqVh5+9V6N2jB37g6apzr5Tf5ygeOaTAoYOSpPjoqOKHjp4mmXRNqt4n02RSxpO5pu1Xvbr/x/+ufUPRxHOzp7v6mz/7iFZeUD6p7/lUxaNROZHI4fG47ul9jQzKcLLXZJtMyy8TM2YuZ4dMyy8TM2YuZ49M+h0sEzNmLmePTMsw03JmLmePTMvQRM7O1KlyHOeMv042cTzPs7oUpaurS9/+9rf1z//8zxoYGNDKlSu1bds2I+8ViURUVFSk//N//o+uu+66xPM33XSTBgYG9Mwzzxz1Zw4ePKiDBw8mHg8NDemcc87Ru+++q+nTpxsZp2mvhvu19onX1BPYIH/8Le16+vx0DwkAAAAAAOSR8159Rb6iotP6s9FoVG1tbVq5cqXc0yyQU2VoaEgzZ87U4ODgSXsi65Xw+eefr4ceekgPPPCAWlpa9MQTTxh7r3fffVexWEyzZ89Oen727Nn69a9/fcw/88ADD2jjxo1HPb99+3YVnebkSLdd7zqS/Io63UrPXfUAAAAAAEA+2/bcdhVMLTijr9HW1pai0Zy+0dHRSV+btnWYfr9f1113XdIKtExw7733av369YnH4yvdVq1albUr3WaE+/Wd37wm16vQAX+XFn+qK+l1N3a+yiP369ufvVhLKz6QplGm32g0pku/9DNJ0iv3XKEi9+iK0uY12aKj+4+69Tu71Rv4a0V9bx31+sT5ZSLDlzZ8TNOLAqf1dbJRKjJkLp9Yuj4PmMvp/dzNxZyZy3Zk2jzNxZyZy3Zk2jzNxZyZy3Zk2jwl58PXvPqfa3VW4PRWqWXaSrfJyo3Nz8cxc+ZM+f1+7du3L+n5ffv2qbz82PeYCgQCCgSO/jByXTft/2BP17L5QZWXuDowskZ97iYdmHLEjmLPUXF8tcpmTNOyqgr5ffm1v/pIscghHZxy+J99YPp0BQqO/vGweU222B8f0cEpAQ273fKco3erj/m79YF4QPvjrgIlJUYyLJherMBZU0/r62SjVGTIXD6xdH0eMJfT+7mbizkzl+3ItHmaizkzl+3ItHmaizkzl+3ItHlKzn+ahwUFct0z+94zoZs5lfc3enppuhUUFGjx4sV6/vnnE8/F43E9//zzWrZsWRpHZpff56iprlpFsaUKRhtUEFsox5uqgthCBaMNKootVWNddV4Xbjh9weJCSZLrVRzzdTdekXQdAAAAAAD5IDfq1RNYv369brrpJi1ZskQ1NTX66le/qvfeey9xmmm+qK0KafPaxWpqKVDvYE3i+VCJq8a6atVWhdI4OmSzmsqypJWUcpJXUpbGVitU4qqmsix9gwQAAAAAwLKcL93WrFmjP/zhD7rvvvvU29uriy66SK2trUcdrpAPaqtCWnlBuXb+tk/b//VVrbr8Ei2bH2SFG87I+ErK+uaIgmrQgH+ror5uufEKlcZWs5ISAAAAAJCXcr50k6Tbb79dt99+e7qHkRH8PkeXVJZp/5ueLqksowhBSrCSEgAAAACAZHlRugEwb3wlZXu4X33DYwoWF6qGYhcAAAAAkKco3QCkjN/naNm8GekeBgAAAAAAaZfTp5cCQC6Kxd8/rKI93J/0GAAAAACQGSjdACCLtHb2aMUjLyQe3/xkh5Y/2KbWzp40jgoAAAAAMBHbSwEgS7R29qi+eZdG/R0aCGxR1OmW61XowMga1TdHtHntYg6tAAAAAIAMwUo3AMgCsbinppY9GvV3qM/dpIivS54zpoivS33uJo36O7SxZQ9bTQEAAAAgQ1C6AUAWaA/3q3cwqoEpWyRnQrHmeBrwb1XPYFTt4f70DDDHcN88AAAAAGeK0g0AskDf8JgkKep0H/P1qK876TqcPu6bZw/lJgAAAHIZpRsAZIFgcaEkyfUqjvm6G69Iug6nZ/y+eb977xfqCWzQ3sLr1RPYoPDIy6pv3kXxlkKUm3ZQbNpBzuaRsR3kbB4Z20HOdpDzyVG6AWnAhxNOVU1lmcpLXJUeWiN5TvKLnqPS2GqFSlzVVJalZ4A5gPvm2UO5aQfFph3kbB4Z20HO5pGxHeRsBzlPDqUbYBkfTjgdfp+jprpqFcWWKhhtUEFsoRxvqgpiCxWMNqgotlSNddXy+5yTfzEcE/fNs4Ny0w6KTTvI2TwytoOczSNjO8jZDnKePEo3wCI+nHAmaqtC2rx2sSqnLVco8rDmjj2tUORhnTdtuTavXazaqlC6h5jVuG+eHZSb5lFs2kHO5pGxHeRsHhnbQc52kPOpoXQDLOHDCalQWxXSy3ev1Pduu1T/+OmL9L3bLtVLd6+kcEsB7ptnB+WmeRSbdpCzeWRsBzmbR8Z2kLMd5HxqKN0AS/hwQqr4fY6WzZuhP7/obC2bN4MtpSnCffPsoNw0j2LTDnI2j4ztIGfzyNgOcraDnE8NpRtgCR9OQGbjvnl2UG6aR7FpBzmbR8Z2kLN5ZGwHOdtBzqeG0g2whA8nIPNx3zzzKDfNo9i0g5zNI2M7yNk8MraDnO0g51ND6QZYwocTkB24b555lJtmUWzaQc7mkbEd5GweGdtBznaQ86mZku4BAPli/MOpvjmioBo04N+qqK9bbrxCpbHVfDgBGWT8vnkwp7YqpJUXlKs93K++4TEFiwtVU1nGZ2CKjBebTS0F6h2sSTwfKnHVWFdNsZki5GweGdtBzuaRsR3kbAc5Tx6lG2ARH04A8D7KTbMoNu0gZ/PI2A5yNo+M7SBnO8h5cijdAMv4cAIA2EKxaQc5m0fGdpCzeWRsBznbQc4nR+kGpAEfTgAAAAAA5DYOUgAAAAAAAABSjNINAAAAAAAASDFKNwAAAAAAACDFKN0AAAAAAACAFKN0AwAAAAAAAFKM0g0AAAAAAABIMUo3AAAAAAAAIMUo3QAAAAAAAIAUo3QD/iQW9xJ/3x7uT3oMAAAAAABwKijdAEmtnT1a8cgLicc3P9mh5Q+2qbWzJ42jAgAAAAAA2WpKugcApFtrZ4/qm3dp1N+hgcAWRZ1uuV6FDoysUX1zRJvXLlZtVSjdwwQAAAAAAFmElW7Ia7G4p6aWPRr1d6jP3aSIr0ueM6aIr0t97iaN+ju0sWUPW02zFFuGAQAAAADpQumGvNYe7lfvYFQDU7ZIzoRCxvE04N+qnsGo2sP96RkgThtbhgEAAAAA6cT2UuS1vuExSVLU6T7m61Ffd9J1yA5sGQYAAAAApBsr3ZDXgsWFkiTXqzjm6268Iuk6ZD62DAMAAAAAMgGlG/JaTWWZyktclR5aI3lO8oueo9LYaoVKXNVUlqVngDhlbBkGAAAAAGQCSjfkNb/PUVNdtYpiSxWMNqggtlCON1UFsYUKRhtUFFuqxrpq+X3Oyb8YMgJbhgEAAAAAmYB7uiHv1VaFtHntYjW1FKh3sCbxfKjEVWNdNff+yjJHbhmOOF1Hvc6WYQAAAACADZRugA4XbysvKFd7uF99w2MKFheqprKMFW5ZaHzL8IGRNepzNyVvMWXLMAAAAADAEraXAn/i9zlaNm+G/vyis7Vs3gwKtyzFlmG7jjyQoj3czwEVAAAAAPAnrHQDkHPYMmxHa2ePGre9kXh885MdKi9x1UTGAAAAAEDpBiA3sWXYrNbOHtU379Kov0MDgS2KOt1yvQodGFmj+uaINq9dTPEGAAAAIK9RugHIWeNbhpFasbinppY9GvV3JN03L+J0qc/dpKAatLGlQCsvKKfkTJGJ23gvXzCLbAEAAIAMxz3dAACnpD3cr97BqAambEk+qEKSHE8D/q3qGYyqPdyfngHmmNbOHq145IXE45uf7NDyB9vU2tmTxlHlJu5RaB4Z20HO5pGxHeRsHhnbQc75i9INAHBK+obHJElRp/uYr0d93UnX4fSNb+P93Xu/UE9gg/YWXq+ewAaFR15WffMuircUotw0j4ztIGfzyNgOcjaPjO0g5/zG9lIAwCkJFhdKklyvQhGn66jX3XhF0nU4PWzjtYd7FJpHxnaQs3lkbAc5m0fGdpAzWOkGADglNZVlKi9xVXpojeRNKHs8R6Wx1QqVuKqpLEvPAHME23jtmFhuRnxd8pwxRXyHy81Rf4c2tuxhG8gZIGM7yNk8MraDnM0jYzvIGRKlGwDgFPl9jprqqlUUW6pgtEEFsYVyvKkqiC1UMNqgothSNdZVs/rqDLGN1w7KTfPI2A5yNo+M7SBn88jYDnKGxPZSAMBpqK0KafPaxWpqKVDvYE3i+VCJq8a6apbJpwDbeO2g3DSPjO0gZ/PI2A5yNo+M7SBnSJRuAIDTVFsV0soLytUe7lff8JiCxYWqqSxjhVuKjG/jPTCyJumebpLYxptClJvmkbEd5GweGdtBzuaRsR3kDIntpQCAM+D3OVo2b4b+/KKztWzeDAq3FGIbrx3co9A8MraDnM0jYzvI2TwytoOcIVG6AQCQsca38VZOW65Q5GHNHXtaocjDOm/ack67ShHKTfPI2A5yNo+M7SBn88jYDnKGxPZSAAAyGtt4zeMeheaRsR3kbB4Z20HO5pGxHeQMSjcAADLc+DZemEO5aR4Z20HO5pGxHeRsHhnbQc75jdINAABAlJs2kLEd5GweGdtBzuaRsR3knL+4pxsAAAAAAACQYpRuAAAAAAAAQIpRugEAAAAAAAApRukGAAAAAAAApBilG5BisbiX+Pv2cH/SY5APAAAAACA/ULoBKdTa2aMVj7yQeHzzkx1a/mCbWjt70jiqzEE+AAAAAIB8MSXdAwByRWtnj+qbd2nU36GBwBZFnW65XoUOjKxRfXNEm9cuVm1VKN3DTBvyAQAAAADkk5xe6Xb//ffrsssuU1FRkUpLS9M9HOSwWNxTU8sejfo71OduUsTXJc8ZU8TXpT53k0b9HdrYsidvt1KSDwAAAAAg3+R06RaJRPSpT31K9fX16R4Kclx7uF+9g1ENTNkiOROKI8fTgH+regajag/3p2eAaUY+AAAAAIB8k9PbSzdu3ChJeuqpp9I7EOS8vuExSVLU6T7m61Ffd9J1+YZ8AAAAAAD5JqdLt9Nx8OBBHTx4MPF4aGhIkhSNRhWNRtM1rJQa/z5y5fuxKRo9dMTfRxX906qtGUWHf5Rcr0IRp+uoP+fGKxLX5WPup5rP8XI+UvI1h/Iy1xM5WYannvGxr8lnqcqQuXxiZnJmPh+JuWwHc9k85rIdzGXzmMt2MJftSFU+mdRjnMoYKN0meOCBBxIr5I60fft2FRUVpWFE5rS1taV7CFnnYEwa/7H5yU+2K+A//Hzck0oKpAPRNeor2JS8hdJzVHpotUoLDukPv3pFP37T+rDT7lTzOV7ORzrymhdeeOGY1+Szk2V4qhkf75p8lqoMmcsnZiJn5nMy5rIdzGXzmMt2MJfNYy7bwVy2I9X5ZEKPMTo6Oulrs650u+eee/Tggw+e8Jo333xTCxcuPK2vf++992r9+vWJx0NDQzrnnHO0atUqTZ8+/bS+ZqaJRqNqa2vTypUr5bpuuoeTVYbHolL7DklS2flL9bH5M+X3OZIk99x9uv37fgWjDRrwb1XU1y03XqHS2GpNjS/V33/yIl39kdnpHH5anUo+o5FD+qv2FyRJV1+9SkUFR39UHXnNlVdeqZKzCu19M1ngZBmeasbHuyafpSpD5vKJmciZ+ZyMuWwHc9k85rIdzGXzmMt2MJftSFU+mdRjjO+InIysmw0bNmzQzTfffMJrzjvvvNP++oFAQIFA4KjnXddN+z/YVMvF78mk1s4eNW57I/H4v/7zL1Ve4qqprlq1VSH954s+qClT/GpqKVDvYE3iulCJq8Y/XZPPTiUf13Pe/3vXlese/VGVfM0U5vIEJ8vw1DM+9jX5LFUZMpdPzEzOzOcjMZftYC6bx1y2g7lsHnPZDuayHanOJxN6jFN5/6ybDbNmzdKsWbPSPQzkmdbOHtU379Kov0MDgS2KOt1yvQodGFmj+uaINq9drNqqkGqrQlp5Qbnaw/3qGx5TsLhQNZVlidVw+Y58AAAAAAD5IutKt1Oxd+9e9ff3a+/evYrFYnr99dclSfPnz9e0adPSOzhkjVjcU1PLHo36O9Tnvn8/sojTpT53k4Jq0MaWAq28oFx+nyO/z9GyeTPSPOrMRT52xOLv3zevPdyvyxfMotwEAAAAAIt86R6ASffdd58WLVqkxsZGjYyMaNGiRVq0aJFee+21dA8NWaQ93K/ewagGpmxJPgBAkhxPA/6t6hmMqj3cn54BAhO0dvZoxSMvJB7f/GSHlj/YptbOnjSOCgAAAADyS06Xbk899ZQ8zzvqryuuuCLdQ0MW6RsekyRFne5jvh71dSddB6TT+Fbo3733C/UENmhv4fXqCWxQeORl1TfvongDAAAAAEtyunQDUiFYfPiUH9erOObrbrwi6TogXSZuhY74uuQ5Y4r4Dm+FHvV3aGPLnqStpzh9E7fwkisAAACAI1G6ASdRU1mm8hJXpYfWSN6Ee2J5jkpjqxUqcVVTWZaeAQJ/wlZoe9jCCwAAAOBkKN2Ak/D7HDXVVasotlTBaIMKYgvleFNVEFuoYLRBRbGlaqyr5ib1SDu2QtvBFl67WFFoHhnbQc7mkbEd5GweGdtBznbke86UbsAk1FaFtHntYlVOW65Q5GHNHXtaocjDOm/acm1eu1i1VaF0DxFgK7QFbOG1ixWF5pGxHeRsHhnbQc7mkbEd5GwHOUtT0j0AIFvUVoW08oJytYf71Tc8pmBxoWoqy1jhhowxvhX6wMga9bmbkreYTtgKffBQLH0DzWKJLbyBE23hrVF7uF/L5s1IzyBzxPiKwlF/hwYCWxR1uuV6FTowskb1zRH+h0cKkLEd5GweGdtBzuaRsR3kbAc5H8ZKN+AU+H2Ols2boT+/6GwtmzeDwg0Zha3Q5rGF1w5WFJpHxnaQs3lkbAc5m0fGdpCzHeT8Pko3AMghbIU2iy28dnAoiHlkbAc5m0fGdpCzeWRsBznbQc7vY3spAOQYtkKbcypbeHH6WFFoHhnbQc7mkbEd5GweGdtBznaQ8/tY6QYAOYit0GawhdcOVhSaR8Z2kLN5ZGwHOZtHxnaQsx3k/D5KNwAATgFbeM0bX1FYemiN5E0oMFlRmBJkbAc5m0fGdpCzeWRsBznbQc7vo3QDAOAU1VaF9PLdK/W92y7VP376In3vtkv10t0rKdxShBWF5pGxHeRsHhnbQc7mkbEd5GwHOb+Pe7oByEpHnnTT8bs/6v/7cGFefGgjc4xv4YUZ4ysKm1oK1DtYk3g+VOKqsa6agjMFyNgOcjaPjO0gZ/PI2A5ytoOcD6N0A5B1Wjt71LjtjcTj//rPv1R5Saea8ujDG8gHHApiHhnbQc7mkbEd5GweGdtBznaQM6UbgCzT2tmj+uZdGvV3aCCwRVGnW65XoQMja1TfHOGeWkCOYUWheWRsBzmbR8Z2kLN5ZGwHOduR7zlzTzcAWSMW99TUskej/g71uZsU8XXJc8YU8XWpz92kUX+HNrbsSdp6CgAAAABAOlC6Acga7eF+9Q5GNTBli+RMKNYcTwP+reoZjKo93J+eAQIAAAAA8CeUbgCyRt/wmCQp6nQf8/WorzvpOgAAAAAA0oXSDUDWCBYXSpJcr+KYr7vxiqTrAAAAAABIF0o3AFmjprJM5SWuSg+tkbwJJ954jkpjqxUqcVVTWZaeAQIAAAAA8CeUbgCyht/nqKmuWkWxpQpGG1QQWyjHm6qC2EIFow0qii1VY111Xh1BDQAAAADITFPSPQAAOBW1VSFtXrtYTS0F6h2sSTwfKnHVWFet2qpQGkeXW448BbY93K/LF8yi0AQAAACASaJ0A5B1aqtCWnlBuXb+tk/b//VVrbr8Ei2bH6QQSqHWzh41bnsj8fjmJztUXuKqiWITAAAAACaF7aUAMs7EFVZHPh7n9zm6pLJMi2d6uqSyjMIthVo7e1TfvEu/e+8X6gls0N7C69UT2KDwyMuqb96l1s6edA8RAAAAADIepRuAjNLa2aMVj7yQeHzzkx1a/mAbRY8lsbinppY9GvV3qM/dpIivS54zpoivS33uJo36O7SxZc8xi1CcniOz7PjdH8kWAAAAyBGUbgAyBius0q893K/ewagGpmyRnAnlj+NpwL9VPYNRtYf70zPAHDOxZP6v//xLSmZDJrOCFgAAAEglSjcAGYEVVpmhb3hMkhR1uo/5etTXnXQdTh8lsz2soLWDVZt2UCCbx1y2g7lsHnPZDuYyToTSDUBGYIVVZggWF0qSXK/imK+78Yqk63B6KJntody0g1WbdlAgm8dctoO5bB5z2Q7mMk6G0g1ARmCFVWaoqSxTeYmr0kNrJG/C4RSeo9LYaoVKXNVUlqVngDmCktkOyk07KDbtIGfzyNgOcjaPjO0gZ0wGpRuAjMAKq8zg9zlqqqtWUWypgtEGFcQWyvGmqiC2UMFog4piS9VYV81psWeIktkOyk3zKDbtIGfzyNgOcjaPjO0gZ0wWpRuAjMAKq8xRWxXS5rWLVTltuUKRhzV37GmFIg/rvGnLtXntYtVWhdI9xKxHyWwH5aZ5FJt2kLN5ZGwHOZtHxnaQMyZrSroHAADS+yus6psjCqpBA/6tivq65cYrVBpbzQory2qrQlp5Qbnaw/3qGx5TsLhQNZVl5J8i4yXzgZE16nM3Jf+yRsmcMkeWmxGn66jXKTfPHMWmHeRsHhnbQc7mkbEd5IzJYqUbgIzBCqvM4vc5WjZvhv78orO1bN4MCrcUYhuvHaygNY9Vm3aQs3lkbAc5m0fGdpAzJouVbgAyCius7Jh4tPnlC2aRsWXjJXNTS4F6B2sSz4dKXDXWVVMypwAraM1j1aYd5GweGdtBzuaRsR3kjMmidAOQccZXWMGM1s4eNW57I/H45ic7VF7iqomix7rxknnnb/u0/V9f1arLL9Gy+UFKoBSi3DSLYtMOcjaPjO0gZ/PI2A5yxmRRugFAHhk/2nzU36GBwBZFnW65XoUOjKxRfXOEbbxp4Pc5uqSyTPvf9HQJqzqNYAWtWRSbdpCzeWRsBzmbR8Z2kDMmg9INAPLExKPNx5fBR5zDR5sH1aCNLQVaeUE5ZUSKsI03c7CC1ixWbdpBgWwec9kO5rJ5zGU7mMs4GUo3AMgTiaPNAyc62rxG7eF+yokUYBuvPZSbmYFVm3ZQIJvHXLaDuWwec9kO5jJOhNNLASBPcLS5PePbeH/33i/UE9igvYXXqyewQeGRl1XfvEutnT3pHmLOaO3s0YpHXkg8vvnJDi1/sI2MU2xisXnkY6QOOZtHxnaQs3lkbAc540xRugFAnuBoczsmbuON+LrkOWOK+A5v4x31d2hjyx5+aUsByk07KDbtIGfzyNgOcjaPjO0gZ6QCpRsA5Inxo81LD62RvAnbCzjaPGUS23innGgbb1Tt4f70DDBHUG7aQbFpBzmbR8Z2kLN5ZGwHOSNVKN0AIE+MH21eFFuqYLRBBbGFcrypKogtVDDawNHmKcI2XjsoN82j2LSDnM0jYzvI2TwytoOckUqUbgCQR8aPNq+ctlyhyMOaO/a0QpGHdd605dq8djE3+E8BtvHaQblpHsWmHeRsHhnbQc7mkbEd5IxU4vRSAMgzHG1u1vg23gMja9Tnbkr+ZY1tvClzZLkZcbqOep1y88xRbNpBzuaRsR3kbB4Z20HOSCVWugFAHho/2vzPLzpby+bNoHBLIbbx2sE9Cs1j1aYd5GweGdtBzuaRsR3kjFSidAMAIMXYxmse5aZ5FJt2kLN5ZGwHOZtHxnaQM1KJ7aUAABjANl7zxsvNppYC9Q7WJJ4PlbhqrKum3DxD48VmfXNEQTVowL9VUV+33HiFSmOrKTZThJzNI2M7yNk8MraDnJFKlG4AABgyvo0X5lBumkWxaQc5m0fGdpCzeWRsBzkjVSjdAABAVqPcNIti0w5yNo+M7SBn88jYDnJGKlC6AQAA4IQoNu0gZ/PI2A5yNo+M7SBnnCkOUgAAAAAAAABSjNINAAAAAAAASDFKNwAAAAAAACDFKN0AAAAAAACAFKN0AwAAAAAAAFKM0g0AAAAAAABIMUo3AAAAAAAAIMUo3QAAAAAAAIAUm5LuAWQ6z/MkSUNDQ2keSepEo1GNjo5qaGhIruumezjAaWMuI1cwl5ErmMvIFcxl5ArmMnJFJs3l8X5ovC86EUq3kxgeHpYknXPOOWkeCQAAAAAAADLB8PCwSkpKTniN402mmstj8Xhcv//971VcXCzHcdI9nJQYGhrSOeeco//4j//Q9OnT0z0c4LQxl5ErmMvIFcxl5ArmMnIFcxm5IpPmsud5Gh4e1pw5c+Tznfiubax0Owmfz6cPfvCD6R6GEdOnT0/7ZAVSgbmMXMFcRq5gLiNXMJeRK5jLyBWZMpdPtsJtHAcpAAAAAAAAAClG6QYAAAAAAACkGKVbHgoEAmpsbFQgEEj3UIAzwlxGrmAuI1cwl5ErmMvIFcxl5IpsncscpAAAAAAAAACkGCvdAAAAAAAAgBSjdAMAAAAAAABSjNINAAAAAAAASDFKNwAAAAAAACDFKN3yzDe+8Q2de+65Kiws1CWXXKL29vZ0Dwk4oQceeEBLly5VcXGxgsGgrrvuOnV1dSVdMzY2pnXr1mnGjBmaNm2a/uIv/kL79u1L04iByfnSl74kx3F01113JZ5jLiNbvPPOO1q7dq1mzJihqVOnqrq6Wq+99lridc/zdN999ykUCmnq1KlasWKFfvOb36RxxMDRYrGYGhoaVFlZqalTp2revHnatGmTjjxnjrmMTPXiiy+qrq5Oc+bMkeM4+tGPfpT0+mTmbn9/v2688UZNnz5dpaWluvXWWzUyMmLxuwBOPJej0ajuvvtuVVdX66yzztKcOXP02c9+Vr///e+TvkYmz2VKtzyyZcsWrV+/Xo2Njdq9e7cuvPBCXX311err60v30IDj+vnPf65169bplVdeUVtbm6LRqFatWqX33nsvcc0XvvAFtbS06Omnn9bPf/5z/f73v9cnP/nJNI4aOLGOjg790z/9kz760Y8mPc9cRjb44x//qOXLl8t1XT333HP61a9+pS9/+cv6wAc+kLjmoYce0te+9jU99thjevXVV3XWWWfp6quv1tjYWBpHDiR78MEHtXnzZn3961/Xm2++qQcffFAPPfSQHn300cQ1zGVkqvfee08XXnihvvGNbxzz9cnM3RtvvFH//u//rra2Nj377LN68cUX9d/+23+z9S0Akk48l0dHR7V79241NDRo9+7d+sEPfqCuri5de+21Sddl9Fz2kDdqamq8devWJR7HYjFvzpw53gMPPJDGUQGnpq+vz5Pk/fznP/c8z/MGBgY813W9p59+OnHNm2++6Unydu7cma5hAsc1PDzsLViwwGtra/M+/vGPe3feeafnecxlZI+7777b+9jHPnbc1+PxuFdeXu79wz/8Q+K5gYEBLxAIeN/73vdsDBGYlE984hPe5z73uaTnPvnJT3o33nij53nMZWQPSd4Pf/jDxOPJzN1f/epXniSvo6Mjcc1zzz3nOY7jvfPOO9bGDhxp4lw+lvb2dk+S193d7Xle5s9lVrrliUgkol27dmnFihWJ53w+n1asWKGdO3emcWTAqRkcHJQklZWVSZJ27dqlaDSaNLcXLlyouXPnMreRkdatW6dPfOITSXNWYi4je2zbtk1LlizRpz71KQWDQS1atEiPP/544vVwOKze3t6kuVxSUqJLLrmEuYyMctlll+n555/XW2+9JUn6t3/7N7300ku65pprJDGXkb0mM3d37typ0tJSLVmyJHHNihUr5PP59Oqrr1ofMzBZg4ODchxHpaWlkjJ/Lk9J9wBgx7vvvqtYLKbZs2cnPT979mz9+te/TtOogFMTj8d11113afny5aqqqpIk9fb2qqCgIPGhO2727Nnq7e1NwyiB4/v+97+v3bt3q6Oj46jXmMvIFv/v//0/bd68WevXr9df//Vfq6OjQ5///OdVUFCgm266KTFfj/U7B3MZmeSee+7R0NCQFi5cKL/fr1gspvvvv1833nijJDGXkbUmM3d7e3sVDAaTXp8yZYrKysqY38hYY2Njuvvuu3XDDTdo+vTpkjJ/LlO6Acga69atU2dnp1566aV0DwU4Zf/xH/+hO++8U21tbSosLEz3cIDTFo/HtWTJEn3xi1+UJC1atEidnZ167LHHdNNNN6V5dMDkbd26Vf/7f/9vffe739VHPvIRvf7667rrrrs0Z84c5jIAZJhoNKrVq1fL8zxt3rw53cOZNLaX5omZM2fK7/cfdQrevn37VF5enqZRAZN3++2369lnn9WOHTv0wQ9+MPF8eXm5IpGIBgYGkq5nbiPT7Nq1S319fbr44os1ZcoUTZkyRT//+c/1ta99TVOmTNHs2bOZy8gKoVBIF1xwQdJzH/7wh7V3715JSsxXfudApvuf//N/6p577tGnP/1pVVdX6zOf+Yy+8IUv6IEHHpDEXEb2mszcLS8vP+pAvUOHDqm/v5/5jYwzXrh1d3erra0tscpNyvy5TOmWJwoKCrR48WI9//zziefi8bief/55LVu2LI0jA07M8zzdfvvt+uEPf6gXXnhBlZWVSa8vXrxYrusmze2uri7t3buXuY2MctVVV2nPnj16/fXXE38tWbJEN954Y+LvmcvIBsuXL1dXV1fSc2+99ZYqKiokSZWVlSovL0+ay0NDQ3r11VeZy8goo6Oj8vmS/3PI7/crHo9LYi4je01m7i5btkwDAwPatWtX4poXXnhB8Xhcl1xyifUxA8czXrj95je/0U9/+lPNmDEj6fVMn8tsL80j69ev10033aQlS5aopqZGX/3qV/Xee+/plltuSffQgONat26dvvvd7+qZZ55RcXFxYl9+SUmJpk6dqpKSEt16661av369ysrKNH36dN1xxx1atmyZLr300jSPHnhfcXFx4l6E48466yzNmDEj8TxzGdngC1/4gi677DJ98Ytf1OrVq9Xe3q5vfvOb+uY3vylJchxHd911l/7+7/9eCxYsUGVlpRoaGjRnzhxdd9116R08cIS6ujrdf//9mjt3rj7ykY/ol7/8pR555BF97nOfk8RcRmYbGRnRb3/728TjcDis119/XWVlZZo7d+5J5+6HP/xh1dbW6rbbbtNjjz2maDSq22+/XZ/+9Kc1Z86cNH1XyEcnmsuhUEjXX3+9du/erWeffVaxWCzx34NlZWUqKCjI/Lmc7uNTYdejjz7qzZ071ysoKPBqamq8V155Jd1DAk5I0jH/evLJJxPXHDhwwPsf/+N/eB/4wAe8oqIi77/8l//i9fT0pG/QwCR9/OMf9+68887EY+YyskVLS4tXVVXlBQIBb+HChd43v/nNpNfj8bjX0NDgzZ492wsEAt5VV13ldXV1pWm0wLENDQ15d955pzd37lyvsLDQO++887y/+Zu/8Q4ePJi4hrmMTLVjx45j/o580003eZ43ubm7f/9+74YbbvCmTZvmTZ8+3bvlllu84eHhNHw3yGcnmsvhcPi4/z24Y8eOxNfI5LnseJ7n2Sz5AAAAAAAAgFzHPd0AAAAAAACAFKN0AwAAAAAAAFKM0g0AAAAAAABIMUo3AAAAAAAAIMUo3QAAAAAAAIAUo3QDAAAAAAAAUozSDQAAAAAAAEgxSjcAAAAAAAAgxSjdAAAAIEm6+eabdd1116V7GAAAADlhSroHAAAAAPMcxznh642NjfrHf/xHeZ5naUQAAAC5jdINAAAgD/T09CT+fsuWLbrvvvvU1dWVeG7atGmaNm1aOoYGAACQk9heCgAAkAfKy8sTf5WUlMhxnKTnpk2bdtT20iuuuEJ33HGH7rrrLn3gAx/Q7Nmz9fjjj+u9997TLbfcouLiYs2fP1/PPfdc0nt1dnbqmmuu0bRp0zR79mx95jOf0bvvvmv5OwYAAEgvSjcAAAAc1//6X/9LM2fOVHt7u+644w7V19frU5/6lC677DLt3r1bq1at0mc+8xmNjo5KkgYGBnTllVdq0aJFeu2119Ta2qp9+/Zp9erVaf5OAAAA7KJ0AwAAwHFdeOGF+tu//VstWLBA9957rwoLCzVz5kzddtttWrBgge677z7t379fb7zxhiTp61//uhYtWqQvfvGLWrhwoRYtWqQnnnhCO3bs0FtvvZXm7wYAAMAe7ukGAACA4/roRz+a+Hu/368ZM2aouro68dzs2bMlSX19fZKkf/u3f9OOHTuOeX+4t99+Wx/60IcMjxgAACAzULoBAADguFzXTXrsOE7Sc+OnosbjcUnSyMiI6urq9OCDDx71tUKhkMGRAgAAZBZKNwAAAKTMxRdfrP/7f/+vzj33XE2Zwq+aAAAgf3FPNwAAAKTMunXr1N/frxtuuEEdHR16++239ZOf/ES33HKLYrFYuocHAABgDaUbAAAAUmbOnDl6+eWXFYvFtGrVKlVXV+uuu+5SaWmpfD5+9QQAAPnD8TzPS/cgAAAAAAAAgFzC/24EAAAAAAAAUozSDQAAAAAAAEgxSjcAAAAAAAAgxSjdAAAAAAAAgBSjdAMAAAAAAABSjNINAAAAAAAASDFKNwAAAAAAACDFKN0AAAAAAACAFKN0AwAAAAAAAFKM0g0AAAAAAABIMUo3AAAAAAAAIMX+f9WD4YQn20QdAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig,axs = plt.subplots(2, figsize=(15, 10))\n", "markerline1, stemlines1, baseline1 = axs[0].stem(np.real(y[1:,]), label='Parte real de y[n]') \n", "markerline1.set_markerfacecolor('red')\n", "markerline2, stemlines2, baseline2 = axs[1].stem(np.imag(y[1:,]), label='Parte imaginaria de y[n]') \n", "markerline2.set_markerfacecolor('green')\n", "for ax in axs:\n", " ax.set(xlabel='Time', ylabel='Amplitude')\n", " ax.grid()\n", " ax.legend(loc='upper right')" ] }, { "cell_type": "markdown", "id": "bd8aa6cd-8c1f-4520-9bfd-79829946f3f5", "metadata": {}, "source": [ " Estamos claros que esto que hicimos está mal no?? La respuesta al impulso de un sistema que no es LTI no nos sirve en general para calcular la respuesta \n", "del mismo a cualquier otra entrada!!\n", "\n", "Para calcular entonces la respuesta otra entrada necesitamos lidiar con el sistema y hacer el cálculo para cada entrada que se me ocurra. No tenemos en general un método general para realizar dicho cálculo y que se universal para cualquier sistema y cualquier entrada! Esto está en claro contraste con el resultado para un sistema LTI!\n", "\n", "Afortunadamente el sistema que planteamos es lo suficientemente simple y podemos calcular su salida para la entrada considerada.\n", "\n", "Dado que $|x[n]|^2=1 \\ \\forall \\neq>0$ para $x[n]=e^{j2\\pi f_0 n}u[n]$ y igual a cero para $n<0$, entonces es claro que para esta señal $x[n]$ en particular:\n", "\n", "$|x[n]|^2=u[n]\\ \\forall n\\in\\mathbb{Z}$\n", "\n", "Entonces la salida del sistema planteado cuando $x[n]=e^{j2\\pi f_0 n}u[n]$ obedece a:\n", "\n", "$$y[n]= 0.9 y[n] + u[n] $$\n", "\n", "Y esto ya sabemos resolverlo con lfilter!!" ] }, { "cell_type": "code", "execution_count": 27, "id": "ae5e2ad9-32af-4dd3-8393-8fc2f3489482", "metadata": {}, "outputs": [], "source": [ "amplitude = 1\n", "alpha = 0\n", "sample_rate = fs\n", "duration = D\n", "position = 0 #Position of impulse. Value between 0 a 1. The start of exponential will be positioned in the index closer \n", " #to duration*position \n", "nu,u=generate_right_exponential(amplitude,alpha, sample_rate, duration, position) " ] }, { "cell_type": "code", "execution_count": 28, "id": "64638956-f01e-4c52-aee8-6344c0dc3e52", "metadata": {}, "outputs": [], "source": [ "y=signal.convolve(h, u, mode='same', method='direct')" ] }, { "cell_type": "code", "execution_count": 29, "id": "082bc68a-bebc-4778-8ac8-a3819903a110", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABOYAAANBCAYAAABEQrHyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjEUlEQVR4nOzde1hUBf7H8c8MDDcZVAQEkpDMMIMsL5TYZfNKF1dbTWuzzFpr1Uqzq5uUhpcuW+taSWlb1labdtPyVyZZ1paWilnahdIIU1FUMlAEhpnz+8N1cgIRFTiH4f16Hp7HOec753wPfqHx07nYDMMwBAAAAAAAAKBR2c1uAAAAAAAAAGiOCOYAAAAAAAAAExDMAQAAAAAAACYgmAMAAAAAAABMQDAHAAAAAAAAmIBgDgAAAAAAADABwRwAAAAAAABgAoI5AAAAAAAAwASBZjfgDzwej7Zv3y6n0ymbzWZ2OwAAAAAAADCJYRgqLS1VfHy87Pbaz4kjmKsH27dvV0JCgtltAAAAAAAAwCJ+/vlntWvXrtYagrl64HQ6JR38hkdERJjczYlzuVxatmyZ+vfvL4fDYXY7wHFjluFPmGf4C2YZ/oJZhr9gluEvrDTLJSUlSkhI8OZFtSGYqweHLl+NiIjwm2AuLCxMERERpg8zcCKYZfgT5hn+glmGv2CW4S+YZfgLK85yXW53xsMfAAAAAAAAABMQzAEAAAAAAAAmIJgDAAAAAAAATMA95gAAAAAAgKUYhqGqqiq53W6zW0ET4XK5FBgYqPLy8gafm4CAAAUGBtbpHnJHQzAHAAAAAAAso7KyUoWFhSorKzO7FTQhhmEoNjZWP//8c70EZkcTFhamuLg4BQUFndB2COYAAAAAAIAleDwe5efnKyAgQPHx8QoKCmqUkAVNn8fj0b59+xQeHi67veHu3GYYhiorK7Vr1y7l5+erY8eOJ7Q/gjkAAAAAAGAJlZWV8ng8SkhIUFhYmNntoAnxeDyqrKxUSEhIgwZzkhQaGiqHw6GCggLvPo8XD38AAAAAAACW0tDBCnCi6mtG/f6MuY8//liPPPKIcnNzVVhYqDfffFODBw/2rjcMQ/fff7/mzZunvXv3qlevXsrOzlbHjh3NaxoAAFiO22NodX6xikrLFeMMUVpSpALsNmqOsebz/GLl7rapTX6xep4aY3o/J1pjpV6oYZabSo2VeqHGerP8xZZfFFRZpf0VVQoONqpdxmoYhvZXuFXl8SjQbleL4IAmX2OlXqxY4+/8Ppjbv3+/unTpouuvv15/+tOfqq1/+OGHNXv2bD3//PNKSkpSZmamBgwYoG+++eaETkUEAABHZsV/mNRWs3RjoaYt3qCtpS7vsnZOhyYPSlVGShw1x1wToBd+WGuhfo6vxkq9UMMsN5UaK/VCjTVn2ZBHUy6KUeAvZdpV5lZcq1C1DD14c/1fD1SqcO8BVboN73aCAmw11hxwefTN9hIVl1Uqxhmkfp1jFdki+Ji309A1VurleGsybxur/aW/6vU336zzdubPn6/xEybo828Lat3XiZg/f75GjRolSRo/frxmzZpV5/ceCgdbtmypvXv3nnAvtfH7YO7iiy/WxRdfXOM6wzA0a9YsTZ48WYMGDZIkvfDCC2rbtq0WLVqkK6+8sjFbBQCgQVnlDAZr/8Okes3SjYUa82Ku+mxao9mrFih5V4HyohM1J324xpRWKntEN0mippnV3HjBKZr78Y+W6IUaappKDT831NSlZsyWjxXS7R7FhQWqxNlGBW5DiW0kSSrYU6aIiv1K2PeLQqoqVB4YrF3hravVrP9um57+70/aViGvx979Vndddob6nt62zts5lpqxkyfphSVLJEmBDocSEhJ05Z9HaOgNtyjSXVHjdqKdbu0qrah1P2Nu/It2FO3Rs3Pm1mu/9VnjrNivA263CvaU1Xk7ZZVVMgxDIWX7jlhTH+FcRESE8vLy1KJFi2N6X2FhoRYsWKD777//hHs4GpthGMbRy/yDzWbzuZT1xx9/VIcOHfTFF1/orLPO8tZdeOGFOuuss/TPf/6zxu1UVFSoouK3n/CSkhIlJCRo9+7dioiIaMhDaBQul0s5OTnq16+fHA6H2e0Ax41Zhr9wewx9tnmXPliVq949u+ncDtE1hmFrC35RUWmFYpzB6p7Y2qfmva936sElX2vrvirvsnbhgbrnsjM04Iy2R11fl23UdT+3vLJevTet0bjDPpw/mT5cH3ToocevPEuSLFPzz2Fd9PA73yh5/UrNez1Ldv32sckjm0YPzdR3Z/aUbDZ1oqbZ1PxlaKY+OaWbzt+ca3ov1FDTVGr4uaGmrjWViScr/6mnlBQVpWBJBa3jVB4aLkkKObBPib8U6vBPQcbvalZ/s1X3v5+vPpvWaGwN/22/95LT1fekkKNupy77OrzmuilTtLO4WM/ed582h7VWzqefKuveO3THxLv10JVDatxOaXALOSv217ifHyNiVBHm1L0Tx2n/L8V6b+a0eu3XMAy53W4FBAae0Hb0v2Pfu2+fZv3rpTpv580FL2nm/ZP06wfLj1hzWqxTx8IwDJWWlsrpdMpms2n+/PmaOHGiiouLj2k7hxzt/eXl5frpp5+UkJBQ7YrLkpISRUVF6ddffz1qTuT3Z8zVZseOHZKktm3b+ixv27atd11NZs6cqalTp1ZbvmzZMr96akxOTo7ZLQD1glmGWTyGtLnEphKXFOGQOkQY+l2edtSaL/fYtPhHQ3uqAnXwMpP1ahNYpUGn2NSljVFDzUGH13y5x6bn8uzqvXm1Zq9a+NsH1J7DdUupSxfFe/Th9iOvH5XskaRat1GXmpGnefR2vqHem3I17/Vp3g/nXbfnad5rWRo9JFP3v+qWbLJMzeTXPCrxBGj2qgU+/5iQJLsMjV25UEM6pEmSHqem2dRcuDlXH3RI0zgL9EINNU2lhp8bao6nxiYpet8v2hx88GynhH2/6HcfpXxq3B5DT//3J/XZtEZzDwsCvf9tH5qpZ1YEatjAk2rdTl32VVNNcFCQ4qKiFOEIUcQ112vZu0v0Uc47sl05RI+99JKee/tt/bhtmyIjItTvor66cepDOqV8r2yS5r/9tiY89phemDJF9zz5pL7fskWXXj5Mb732n4Pfr/ffkyR9+NRT+kO3btq6Y4cm/u1evf/5Z7LZ7Dr/7LP0xG23qX18fI39rln1if4ybKDemTVLk596Shs2bdKyJ57QBWefref/+YjmLnpTe4qK1DHxZN1//fUa2qePJMntduvGGTO0fG2uduzZo9iT2mnskCG6a9hQ/V5t35v5b7+t+55+Wrt//VXnXthHZ/c4V3bD8KlZ/NFHmjpvnr7Jz1dUbJyuuvIq3X3n7QoMrB5dffrppxo8eLA2btzok+lMmjRJ69ev17vvvqvy8nIZhqGSkhKf95555pkaOXKk8vPztXjxYrVs2VJ33HGHrrvuOp+6I73/kMrKSh04cEAff/yxqqqqfNaVlZXV+J6aNOtg7nhNmjRJEydO9L4+dMZc//79OWMOsBBmGQ2pLmeoPVKHs8tqq3nv6516blXNZ3M9V/XbGV+11fxzWBct2/CNem9eWT18ej3r4BkM6qbem9fUuH700Ey9F37w/2QfaRt1rVkSeq72VHk0btXCmj+cr1qoIace/HButZrkXQU1jYGSd/+2nJrmUxNaVWGZXqihpqnU8HNDzfHWhFRVHvbnilprvtleom0VRw8CN+woVa/o6pdJHsu+6lITEhKikl0H/2y32TT7jjuUFB+vH7dt002PPKL90+/Xy+PHet9XVl6uh154Qc/ce69atWqtvZ27q7y8XLbinZqfmSlJimzZUq6qKg249Vadm3qmnnvtHQUEBmrhw1OUceut+uo//1HQYf/2ObxfSbrnySf19/HjdcpJJ6m106mZ8+frlXff1eQZjykxqYN25CzSiPvuU3SrVrqwWzd5DEPtYmK04MEHtadDqr7M/VxT7xqv9q1bali/fnX63ny+caNumDZNM8eN08A/XKT5G79X9mMzff6O/vvFF7r2/vs1+447lH52V32w360Zf7tNLUKDdd9991X7Hl988cU65ZRTtHjxYt1xxx2SDgZlr776qh566CFFREQoJCRENputWk5jt9s1Z84cPfDAA7rvvvv0+uuv6/bbb9eAAQOUnJz82zEc4f2HlJeXKzQ0VBdccEGNZ8zVVbN+/nBsbKwkaefOnT7Ld+7c6V1Xk+DgYEVERPh8SZLD4fCbL387Hr6a7xezzNfvv+wBgVq7pUTvfF2ktVtKZA8IPOaa5Xm71ffvKzTi2bWa+OoGjXh2rfr+fYWW5+32rr/llfXqtH6l3vj37fr6saF649+3q9OXK3XLK+u1PG/3UWtyvt2lB//vG/XZtEbzXs9S1+15auEq9/4f3z6b1+jBJV/rwSW112S9fTD4O9IZChduzlWlLaDWMxi27XdrWy3bqGvN7vKDZ9VZ4UP+sdbkRSfWWJMXlUhNM6w5EBhsmV6ooaap1PBzQ83x1pQHBh325+Baa4rLDgZDR/tv+7bKgBPeV201BwIc+uy/K7Ty4w90ftq5kqQJf/6zLureXe3j49W7Rw9NuuU2LVuyyGcbrqoqzbn7bqV36aLEU09TuPNguOQIClZsVJRio6IU5HBowbJl8ng8mj01Sx1PP0OndEzWk1kztGXHDq3IzT1iv5L0wE03qd8556hDu3ZqERqqGc89pyenZqnXH/qoXWJ7Db98qEZcfLGefvNNSZIjMFBTb7pJKWeepXYnJ+rSy4dpxKDBWvj++3X+3vzzlVeU0bOn7rr2Wp3coaOuvv4mpV/QWzrsfLmp8+bpnpEjNfKyyxTf/hT1vOAiZd4/VXPnzpXdbq/x64YbbtD8+fO9r5csWaKKigoNGzbMu0xStfdJ0iWXXKJx48bptNNO0z333KOoqCh99NFHNdYeaf92u102m+2I/+6oq2YdzCUlJSk2NlbLly/3LispKdHnn3+unj17mtgZAOB4uD2GVm3eo8Xrt2nV5j1ye3wDoqUbC3XhzBxdNe8zjX9lva6a95kunJmjpRsL61xz6EEAnb741DdQW/+pxryYq3e+2q5pizd4L6E4PCyb+7+wbNqirzRtUe0197/5lbaWujT2CEHXmJULtXVflbbuq71m1wG3JGudwWCFD/nHUhMTGqA56cPl+d0FLR7ZlJ0+TO3CA9Uu3EFNM6r5uEM3BRluPWmBXqihpqnU8HNDzfHUGJJ2hbdWkN2mILtNu8Jb/+4Tj29NTPjBYOho/213RLasdTt12VdNNUs++UThF1ygNmndNe7aK3TxwMt14x1/kyHp/c8/V58xY3TSJZfIeeGFGjvpTu39pVhbAkK82whyOHRmx44++7HbpIrAIJ/9fPnDD9q0dava9jpXPZPbqWdyO7W78DyVV1Zq89atNfbr+N+3ttvpp3vXb/r5Z5WVl2vgmJu824lJP0cv/N//+WzniYULde7Vf9Yfupyqnsnt9Nwbr2tLDbf/OtL35tv8fJ1zxhk+/XTtniaPzeat+fKHH/TAv/6l8AsuUEz6OeqZ3E63jP2rCgsLj3hZ6HXXXadNmzbps88+kyQ9//zzGjx4cJ0e9HDmmWd6/2yz2RQbG6uioqKjvq8h+P2lrPv27dOmTZu8r/Pz87V+/XpFRkbq5JNP1oQJEzRt2jR17NhRSUlJyszMVHx8vPcBEQAAazjRJ33Wx5M1n/xzV814e2ON9y2Z+1qWbhyaqfvfDNSuA+4j3pNszGH3UqlLTX2GYV2351WrOfwMhprW/z7AOtGaQyHX3Neq3wD60IdzyWaZmgSnQ5MGpmrcgSqNHpqpsSsXKnl3gfKiEpWdPkzLO/RQ9uCDH+zG7KukppnUfNChx8GnS9rspvdCDTVNpYafG2rqXFPwX4XIprLAIO1wtlFJcAsltg6VJBV4DBW0jlP0vl8UUlWp8sAg7Qpv7a2JaRmix5Z+qyfTh2teDf9tn5M+TCeFB6p9YlsVuJxH3E5d9vX7GsNm0wXde+i+6Y+oIrylunfuoMDAQBXsKdOnm/fosokTddOQoZp86wQZcSfrv+u/1JQ7b9Eem0MFreNUEeBQaHCwyoJCffYTGhyoX+0BPr38UlGplJRUTXv8Xzqp9cFLKLf9Uq7wyjKdFhwgt81erd9I58HPfMVx7dXa7lFIVaV2uQ7+D9zH5y/U2acn+Wwnrqpcbptd/35/ue6YPVu3Z07TgN4XyOkM1/QHH9Y369ZovyNEIVWVqrIHqMwRcsTvjWRTZcDBh0wcqokIc0g2eWv2HTige/86VucN/JP2BYXppNYhcoYcDFp/f5noITExMRo4cKCee+45JSUlaenSpXr77bdrrP2935/RZrPZ5PF46vTe+ub3wdzatWt10UUXeV8fujfcyJEjNX/+fN11113av3+/brzxRu3du1fnnXeeli5desS/eABA/Wvo0K0ugdq0RQ5JtnoL3Ro6UKuvMOzwMxhq+gDb7EOu/81Ytr2bshY5vH+/kpTgdHjXS1L2CGqaW83ZJ7e2TC/UUNNUavi5oeZoNbee1VNTIqJV1SpWwcHBSmwVqpahBwOaxDZS4S827wMGJCkowOZTc9dlZ+iOsuqfNeb8LyDOHnymToluocJf7LVupy77Orxmb4hTaulRbOdUxf2u5vl3v5fbMDTqwcdlt9sVFGCT678fHPw+RIbqgBGsovBIeex2bW7Tzmc/4aEhCgqQykPDvb2c1D1dr+UsU5fTTlZC2yhJ0ikHKlX4ywHt9hjaXUO/4cEHg6jykBba7GwpSQpuEa2g4GC5Sop0dsqlPtup8Bj6WtJ73z2ls3uco7sm3uo9pt3bt8iwHexVkkqDW8hTWaXENmE1fm/iTk/Rx3k/aERYuLefL3PXymazeY+rU2oX5e7YpaG/+/4dzV/+8hddddVVateunTp06KBzzz23Tu+zEpthGL8/OxPHqKSkRC1btqzTY3CbApfLpXfeeUeXXHLJMV0XDVgNs2wN9Rm6jf1d6La8Qw9v6Nbpi099AjXpYCB049BMfZnSU7sOuPXGv2+vMcDKje+kIdf8XZLqVPP1Y0PVwlVerWZfUKhSbnu1zts5Wk1MaIDO3LiqxqDrxqGZ+q5LuiSbOn356RFr8s7qdTAMezlXvTevqTF8uvGCUzT34x+PuP7wswlPtObQ32nWoq+07bCHXiQ4Hbr3sA/nVquRpNJyl1KnLJMkzR/VQ+d3jPaZZWqOreaZa87WRafHWaaf462xUi/UMMtNpcZKvVBjvVnOeHS5plwUo65ndFRkRLhsNpsMw5Bx4IAkye3x6NvCUklSYlSYwoMCZbP5buedb3bqgSXfqaj8tzOgEsIDNeniTso4PbrO2/EEB+ub/9UkRbVQeHD1GrfHo6+3lyjztrFyl+/T228trlaz7osv1K1rV901ZaauHna51q/5XH/729+0bds2/fLLL3JGRGjGrKf0yNRJ2rZzt89+ZsyYoaefflrvLl2qXa4ghTsj1K5lkM4/t4dOOukkPfDAA2rXrp0KCgr0+uuv64/X/lVt406q1u+KFSt00UUXafeePdpWZvce04NZU/T000/r0Ucf1Xnnnadff/1V//3kE5W6HfrjFVdp6YLnNP2BKVq4cKGSkpL073//W7Nnz1ZSUpJeWLJCkvTQpFu1v7REixYtqvF789W6NRp5eYYefPBBDR48WO+9954yMzNlGIb2FBfr6+0l+nTFct066krde++9uuKKK2S32/Xll19q48aNmjZtmo7E4/Goffv22rlzp6ZOnaq//vWvioiIkN1u1/z58zVhwgTt3bvX5z3t27fXhAkTNGHCBO+ys846S4MHD9aUKVO8y470/kPKy8uVn5+vpKSkGh/+UNecyO/PmAMANBwrnOlmxbPY6uNyzXo7u6yOZ3w15hkMGSlx6nVqVK0fzq1WI8nn9e9nnZpjr+nRvrWl+jneGiv1Qg2z3FRqrNQLNdad5RDHb6GSceCA8rp286479L/ct1fbwkEdJD0rm76OOkXFwU5FVpTqjN0/KuBFQ4d/gjvadk5du9b757AagruDflsW8L+HAfxely5n6Y77puu5Of/U4w89oAsuuEAzZ87UtddeW20bv9/P6NGjtWLFCp2TlqZ9+/bpmYVv66whl+rjjz/W3XffrT/96U8qLS3VSSedpN69e6tFuLPO/YYFBWratGmKiYnRzJkz9eOPP6pVq1Y6++yuunL0LZKkm8eO0bcbv9Lw4cNls9l01VVXaezYsXr33Xe92wm0H+nxBQf3dWbXHnr66bmaOnWK7r//fvXt21eTJ09WVlaWt6bXH/po8Vtva/q0LD388MNyOBzq1KmT/vKXvxxh2wfZ7XZdd911mjFjhq655ppaa62KYA4AcFyaYujWGPdIa+xATaqfMIyQ6+g1AACg6QiQoTN3b260/WX9Y47OiG95xPXXjB6ra0aP1RnxLb2fMw4FSW6PoUHD/qxBw/5c7X3R0dFatmyZ3B5DX2//1bs8NjZWzz//vE/t72sO94c//EGGYcjtMbSt7Lcam82m8ePHa/z48TVuJzg4WM8995yee+45n+1Nmz7DW/Psc88d9bPTqOuv11/+coPPsttvv93nYW0DBgzQJRdn1Lqdmmzbtk2XXHKJ4uLiVFJSctT6n376qdqy9evXH/N+6wvBHACgRrWdDdcUQ7dGO4utgQO1mi4zqa8wjJALAABYkS00VMnrciUd/Iz6beHB8OX0uIgaP2fUV40nOETa66q2HNbw66+/asOGDXr55Zf11ltvHbEmPDxc48aN00MPPVTnbYeHh6uqqqpRnj9AMAcAzdCJXILar3Ospi3e0KRCNzPOYmuos8tO5DITAACApshms8kWFiZJMjyGFHrwM6o9LEz2Gj7z1GsNLGvQoEFavXq1/vrXv6pfv37Vnqo6ZMgQnXfeeZKkVq1aHdO2D51BFxAQUB+t1opgDgCamRO9BHVC39O0tdTVtEK3Rr4s9BDOLgMAAAAaxooVK2pd73Q65XQ6j2vbp5566nG973gQzAGAn2noS1CfDzn4n46mGLo19j3SAAAAAKA2BHMA4Eca8xLUphi6SZzFBgAAAMA6COYAoAk5kbPh6vMS1DbB9iYbugEAAMC6Dt7WzZBhcH83WFt9zSjBHAA0ESd6Nlx9XoJ67fmnalaFm9ANAAAA9WpvuUcut6EDZWUKbxFmdjvAEZWVlUmSHA7HCW2HYA4ALKKxzoarj0tQb+59qpJjwwndAAAAUK8OVBla/uM+tW9TJLvdprCwMNlsv302dHsMGVWVkqTy8vIaPzc2tRor9WLFmrryeDyqrKxUeXm57Hb7cW/naAzDUFlZmYqKitSqVasTfnIrwRwAWEBjnQ1XX5egBththG4AAABoEG98u1/j+7RUUVFRtXUew1DR3nJJUmBZiOy26p8tm1qNlXqxYk1dGYahAwcOKDQ01CfMbSitWrVSbGzsCW+HYA4AGoFVzoarz0tQJUI3AAAA1D9DUlRMW50UFyuXy+Wz7kBllW588xNJ0pJbzlNoUPVYo6nVWKkXK9bUlcvl0scff6wLLrjghC8vPRqHw3HCZ8odQjAHAA3MSmfD1fclqAAAAEBDCQgIqBZ+eOxV2lbqliQFh4QopIYgp6nVWKkXK9bUVUBAgKqqqhQSEtLgwVx9IpgDgBPUlM6G4xJUAAAAALAOgjkAOAFN8Ww4idANAAAAAKyAYA4AjlNTPhsOAAAAAGA+gjkAqMWRLlN1ewzOhgMAAAAAnBCCOQA4gtouU20ZGsTZcAAAAACAE0IwBwA1ONplqtf3SpLE2XAAAAAAgONHMAeg2TqRy1TfCj3465Oz4QAAAAAAx4tgDkCzVB+XqcaEBnA2HAAAAADguBHMAWh26usy1cu6Jui5A1WcDQcAAAAAOC4EcwCalfq8TLVf51ilJUVyNhwAAAAA4LjYzW4AABqC22Po8/xi5e626fP8Yrk9BwO41fnF2lrq0thaLlPddcDtvUzVI98A7fDLVNOSIpWREqeld/T2rp8/qodWTOrnE8oBAAAAAFATzpgD4Hd87x8XoBd+WOu9f1xFlUdS/V2mKnE2HAAAAADg+BDMAfArR7t/3IS+p0mq38tUAQAAAAA4HgRzAPxGXe4f92q4Q+3CHUd9muqhM994aAMAAAAAoKFwjzkATZLbY2jV5j1avH6bVm3eI7fHqNP947buq9IV5yZpeYceGj00U7nxnbQvKFS58Z1049BMLe/QQ/dymSoAAAAAoBFwxhyAJsf3HnIHtXM6NODMkyQd/f5x7aPClD2iG5epAgAAAABMRTAHoEmp7R5y/yrtIcl21PvHxThD1LNDGy5TBQAAAACYiktZATQZv7+HXNfteWrhKvfeQ67P5jUKMtx6Mn24PPIN2H5//ziJy1QBAAAAAOYimANgOTXdP07SUe8hN3blQlXaAvRBHe8fBwAAAACAmbiUFYClHOn+cZMHpaqiyiPp6PeQG9UrSe+Fc/84AAAAAIC1EcwBsIza7h83prRSE/qeJklHvYdcv86xuq3fad77xz1zzdm66PQ4zpQDAAAAAFgKl7ICsIS63D/u1c/y1S7coTl1uIfc4SFcj/atCeUAAAAAAJZDMAfAEo52/7gxKxdq674qXXFukpZzDzkAAAAAgB/gUlYAjcrtMbQ6v1hFpeWKcYZ4z24rKi2XdPT7x7WPClP2iG7KWsQ95AAAAAAATRvBHIBGU9uDHWKcIZKOfv+4GGeIenZoo16nRnnvITd/VA+d3zGaM+UAAAAAAE0Kl7ICaBSHHuzQ6YtP9ca/b9fXjw3VG/++XZ3Wf6oxL+bql/0Vaues2/3jJPmEcL+/pxwAAAAAAE0BwRyABleXBzvMfHuj/jYwlfvHAQAAAACaDS5lBdDgDj3YYXYtD3YY0iFNrVsEcf84AAAAAECzQTAHoN6c6IMdikrLNeisk7h/HAAAAACgWSCYA1Av6uvBDhL3jwMAAAAANA/cYw7ACavvBzsAAAAAANAcEMwBOCE82AEAAAAAgOPDpawATggPdgAAAAAA4PgQzAE4ITzYAQAAAACA48OlrADqxO0xtGrzHi1ev02rNu+R23Pw7LjDH+xQEx7sAAAAAABAzThjDsBR1fbE1X6dY70Pdpj7WpbP5aw82AEAAAAAgCMjmANQq0NPXO2zaY1mr1qg5F0FyotO1Jz04RpTWqnsEd00eVCqxpRWavTQTI1duVDJuwuUF5Wo7PRhWt6hh7J5sAMAAAAAANUQzAE4ot8/cfXQ2XCHnrh649BMTV8cpBWT+vFgBwAAAAAAjhHBHIAjqusTV1fnFysjJY4HOwAAAAAAcAx4+AOAIzqWJ65KPNgBAAAAAIBj0eyDObfbrczMTCUlJSk0NFQdOnRQVlaWDMM4+psBP3esT1wFAAAAAAB11+wvZX3ooYeUnZ2t559/XmeccYbWrl2rUaNGqWXLlrr11lvNbg9oFG6PodX5xSoqLVeMM8R7tltaUiRPXAUAAAAAoIE0+2Bu5cqVGjRokC699FJJUvv27fWf//xHq1evNrkzoHEs3VioaYs3aGupy7usndOhyf97aANPXAUAAAAAoGE0+2AuPT1dc+fO1ffff6/TTjtNX375pT755BM99thjR3xPRUWFKioqvK9LSkokSS6XSy6X60hvazIOHYM/HAtq997XO3XLK+vVe9MazV61QMm7CpQXnagn04drTGmlHr/yLA04o60ev/IszXjb94mr7cID9fhlZ6hPctRhM1PlXe9yueSyVb8kvLFqfNdX1TjPVuqXGmrqXtNw82zt46bG/2r843ezlXqhhlluKjVW6oUaZtkKNVbqxYo1dWWlLONYemj2wdw999yjkpISderUSQEBAXK73Zo+fbquvvrqI75n5syZmjp1arXly5YtU1hYWEO226hycnLMbgENyGNI09ZKvTflat7r07yXqXbdnqd5r2Vp9JBMTXnNLddPkt0m3dpZumfNwV8ZN3Vyq1OrKrkLcvXOYc+FqHBLh36tvPfeMgUHVN9vY9Ucvv6DDz4wtRdqqKnPmoacZysfNzX+V+Mvv5ut1As15tT4yyw3Zo2VeqHmtxpm2bwaK/VixZpjZYUso6ysrM61zT6YW7hwoV566SW9/PLLOuOMM7R+/XpNmDBB8fHxGjlyZI3vmTRpkiZOnOh9XVJSooSEBPXv318RERGN1XqDcblcysnJUb9+/eRwOMxuBw3k8/xi7flsrcatWuhz7zhJssvQ2FULNeTUNEV37q5zkiJVVlmle9Z8IEkae0U/hQVV//VRVlmlu1YfrBkwoL+pNYev7927t1q2qP6ACiv1Sw01da1pyHm28nFT4381/vK72Uq9UMMsN5UaK/VCDbNshRor9WLFmrqyUpZx6MrKumj2wdydd96pe+65R1deeaUkKTU1VQUFBZo5c+YRg7ng4GAFBwdXW+5wOEz/y69P/nY88LWn7OApw8m7Cmpcn7y7wFvncDjkMH67j9zB2aj+68NKNb7rA2ucZSv1Sw01da9puHm29nFT4381/vG72Uq9UMMsN5UaK/VCDbNshRor9WLFmmNlhSzjWPZvb8A+moSysjLZ7b7fhoCAAHk8HpM6AhpHjPPg/w3Li06scX1eVKJPHQAAAAAAqF/NPpgbOHCgpk+frv/7v//TTz/9pDfffFOPPfaYLr/8crNbA+qF22No1eY9Wrx+m1Zt3iO35+Blq2lJkWrndGhO+nB55PtUVY9syk4fpgSnQ2lJkWa0DQAAAACA32v2l7I+/vjjyszM1NixY1VUVKT4+HjddNNNuu+++8xuDThhSzcWatriDdpa+tsTYdo5HZo8KFUZKXGaPChVY0orNXpopsauXKjk3QXKi0pUdvowLe/QQ9mDUhVgt9WyBwAAAAAAcLyafTDndDo1a9YszZo1y+xWgHq1dGOhxryYqz6b1mj2qgVK3lWgvOhEzUkfrjGllcoe0U0ZKXHKHtFNWYscGtIhzfveBKdD2f8L7wAAAAAAQMNo9sEc4I/cHkPTFm9Qn01rNPf1LO9TV7tuz9Pc17J049BMTV8cpH6dY5WREqdep0YpdcoySdL8UT10fsdozpQDAAAAAKCBNft7zAH+aHV+sbaWujR21QJvKHeIXYbGrFyon0tdWp1fLEk+IVxaUiShHAAAAAAAjYBgDvBDRaXlkqTkXQU1rk/eXeBTBwAAAAAAGh/BHOCHYpwhkqS86MQa1+dFJfrUAQAAAACAxkcwB/ihtKRItXM6NCd9uDzyvSzVI5uy04cpwelQWlKkSR0CAAAAAAAe/gA0YW6PodX5xSoqLVeMM8R7f7gAu02TB6VqTGmlRg/N1NiVC5W8u0B5UYnKTh+m5R16KHtQKveSAwAAAADARARzQBO1dGOhpi3eoK2lLu+ydk6HJg9KVUZKnDJS4pQ9opuyFjk0pEOatybB6VD2/2oAAAAAAIB5COaAJmjpxkKNeTFXfTat0exVC5S8q0B50Ymakz5cY0orlT2imzec63VqlFKnLJMkzR/VQ+d3jOZMOQAAAAAALIB7zAFNjNtjaNriDeqzaY3mvp6lrtvz1MJVrq7b8zT3tSz12bxG0xdvkNtjSJJPCHfoUlcAAAAAAGA+gjmgiVmdX6ytpS6NXbVAdhk+6+wyNGblQv1c6tLq/GKTOgQAAAAAAHVBMAc0MUWl5ZKk5F0FNa5P3l3gUwcAAAAAAKyJYA5oYmKcIZKkvOjEGtfnRSX61AEAAAAAAGsimAOamLSkSLVzOjQnfbg88r1fnEc2ZacPU4LTobSkSJM6BAAAAAAAdUEwBzQxAXabJg9K1fIOPTR6aKZy4ztpX1CocuM76cahmVreoYfuHZTKQx4AAAAAALC4QLMbAFAzt8fQ6vxiFZWWK8YZ4vNE1YyUOGWP6KasRQ4N6ZDmfU+C06HsQanKSIkzq20AAAAAAFBHBHOABS3dWKhpizdoa6nLu6yd06HJh4VuGSlx6nVqlFKnLJMkzR/VQ+d3jOZMOQAAAAAAmgiCOcBilm4s1JgXc9Vn0xrNXrVAybsKlBedqDnpwzWmtFLZI7p5w7nDQ7jDz6gDAAAAAADWxz3mAAtxewxNW7xBfTat0dzXs9R1e55auMrVdXue5r6WpT6b12j64g1yewyzWwUAAAAAACeIYA6wkNX5xdpa6tLYVQtkl2/4ZpehMSsX6udSl1bnF5vUIQAAAAAAqC8Ec4CFFJWWS5KSdxXUuD55d4FPHQAAAAAAaLoI5gALiXGGSJLyohNrXJ8XlehTBwAAAAAAmi6COcBC0pIi1c7p0Jz04fLI90EOHtmUnT5MCU6H0pIiTeoQAAAAAADUF4I5wEIC7DZNHpSq5R16aPTQTOXGd9K+oFDlxnfSjUMztbxDD907KJWnrwIAAAAA4AcCzW4AgK+MlDhlj+imrEUODemQ5l2e4HQoe1CqMlLiTOwOAAAAAADUF4I5wARuj6HV+cUqKi1XjDNEaUmRPmfBZaTEqdepUUqdskySNH9UD53fMZoz5QAAAAAA8CMEc0AjW7qxUNMWb9DWUpd3WTunQ5N/dzbc4SHc74M7AAAAAADQ9BHMAY1o6cZCjXkxV302rdHsVQuUvKtAedGJmpM+XGNKK5U9ohuXqgIAAAAA0Ezw8Aegkbg9hqYt3qA+m9Zo7utZ6ro9Ty1c5eq6PU9zX8tSn81rNH3xBrk9htmtAgAAAACARkAwBzSS1fnF2lrq0thVC2SXb/hml6ExKxfq51KXVucXm9QhAAAAAABoTARzQCMpKi2XJCXvKqhxffLuAp86AAAAAADg3wjmgEYS4wyRJOVFJ9a4Pi8q0acOAAAAAAD4N4I5oJGkJUWqndOhOenD5ZHvE1Y9sik7fZgSnA6lJUWa1CEAAAAAAGhMBHNAIwmw2zR5UKqWd+ih0UMzlRvfSfuCQpUb30k3Ds3U8g49dO+gVAXYbUffGAAAAAAAaPICzW4AaE4yUuKUPaKbshY5NKRDmnd5gtOh7EGpykiJM7E7AAAAAADQmAjmgEaWkRKnXqdGKXXKMknS/FE9dH7HaM6UAwAAAACgmSGYA+qZ22NodX6xikrLFeMMUVpSZLXQ7fDXNa0HAAAAAAD+j2AOqEdLNxZq2uIN2lrq8i5r53RoMpepAgAAAACA3yGYA+rJ0o2FGvNirvpsWqPZqxYoeVeB8qITNSd9uMaUVip7RDfCOQAAAAAA4MVTWYF64PYYmrZ4g/psWqO5r2ep6/Y8tXCVq+v2PM19LUt9Nq/R9MUb5PYYZrcKAAAAAAAsgmAOqAer84u1tdSlsasWyC7f8M0uQ2NWLtTPpS6tzi82qUMAAAAAAGA1BHNAPSgqLZckJe8qqHF98u4CnzoAAAAAAACCOaAexDhDJEl50Yk1rs+LSvSpAwAAAAAAIJgD6kFaUqTaOR2akz5cHtl81nlkU3b6MCU4HUpLijSpQwAAAAAAYDUEc0A9CLDbNHlQqpZ36KHRQzOVG99J+4JClRvfSTcOzdTyDj1076BUBdhtR98YAAAAAABoFgLNbgDwFxkpccoe0U1Zixwa0iHNuzzB6VD2oFRlpMSZ2B0AAAAAALAagjmgHmWkxKnXqVFKnbJMkjR/VA+d3zGaM+UAAAAAAEA1XMoK1LPDQ7i0pEhCOQAAAAAAUCOCOQAAAAAAAMAEXMoKHAO3x9Dq/GIVlZYrxhnCGXEAAAAAAOC4EcwBdbR0Y6GmLd6graUu77J2Tocm82AHAAAAAABwHAjmgDpYurFQY17MVZ9NazR71QIl7ypQXnSi5qQP15jSSmWP6EY4BwAAAAAAjgn3mAOOwu0xNG3xBvXZtEZzX89S1+15auEqV9fteZr7Wpb6bF6j6Ys3yO0xzG4VAAAAAAA0IQRzkrZt26YRI0aoTZs2Cg0NVWpqqtauXWt2W7CI1fnF2lrq0thVC2SXb/hml6ExKxfq51KXVucXm9QhAAAAAABoipr9pay//PKLevXqpYsuukjvvvuuoqOj9cMPP6h169ZmtwaLKCotlyQl7yqocX3y7gKfOgAAAAAAgLpo9sHcQw89pISEBD333HPeZUlJSSZ2BKuJcYZIkvKiE9V1e1619XlRiT51AAAAAAAAddHsL2V966231L17d11xxRWKiYnR2WefrXnz5pndFiwkLSlS7ZwOzUkfLo9sPus8sik7fZgSnA6lJUWa1CEAAAAAAGiKLHvG3N69e/Xaa69p8+bNuvPOOxUZGal169apbdu2Oumkk+ptPz/++KOys7M1ceJE/e1vf9OaNWt06623KigoSCNHjqzxPRUVFaqoqPC+LikpkSS5XC65XK56680sh47BH46lvtxzaWfdUlqp0UMzNXblQiXvLlBeVKLmpA/TBx166PFLO8vjrpLHLblcVd73uVwuuWzVHwpBTcPX+K6vqnGerdQvNdTUvabh5tnax02N/9X4x+9mK/VCDbPcVGqs1As1zLIVaqzUixVr6spKWcax9GDJYO6rr75S37591bJlS/30008aPXq0IiMj9cYbb2jLli164YUX6m1fHo9H3bt314wZMyRJZ599tjZu3KinnnrqiMHczJkzNXXq1GrLly1bprCwsHrrzWw5OTlmt2Apo06zaXFAVw3pkOZdFhVYpVGneOQuyNU7/7sFXYVbOvSj9d57yxQcUH1b1DR8zeHrP/jgA8v3Sw01da1pyHm28nFT4381/vK72Uq9UGNOjb/McmPWWKkXan6rYZbNq7FSL1asOVZWyDLKysrqXGvJYG7ixIm67rrr9PDDD8vpdHqXX3LJJfrzn/9cr/uKi4tT586dfZadfvrpev3114/4nkmTJmnixIne1yUlJUpISFD//v0VERFRr/2ZweVyKScnR/369ZPD4TC7Hcu4RNLN5S51nf6hJOmZa87WeadGKcDue3lrWWWV7lr9gSRpwID+Cguq/mNGTcPXHL6+d+/eatmi+j0ArdQvNdTUtaYh59nKx02N/9X4y+9mK/VCDbPcVGqs1As1zLIVaqzUixVr6spKWcahKyvrwpLB3Jo1a/T0009XW37SSSdpx44d9bqvXr16KS/P94b+33//vRITE4/4nuDgYAUHB1db7nA4TP/Lr0/+djz1IcT4LYRL7xijkBp+aTgOqzn4PaTGjBrf9YE1zrKV+qWGmrrXNNw8W/u4qfG/Gv/43WylXqhhlptKjZV6oYZZtkKNlXqxYs2xskKWcSz7t+TDH4KDg2tMF7///ntFR0fX675uu+02ffbZZ5oxY4Y2bdqkl19+WXPnztW4cePqdT8AAAAAAADA4SwZzP3xj3/UAw884L1Zns1m05YtW3T33XdryJAh9bqvHj166M0339R//vMfpaSkKCsrS7NmzdLVV19dr/uB9bk9hlZt3qPF67dp1eY9cnuO/6aTAAAAAAAAR2PJS1kfffRRDR06VDExMTpw4IAuvPBC7dixQz179tT06dPrfX+XXXaZLrvssnrfLpqOpRsLNW3xBm0t/e3JKe2cDk0elKqMlDgTOwMAAAAAAP7KksFcy5YtlZOTo08++URfffWV9u3bp65du6pv375mtwY/tHRjoca8mKs+m9Zo9qoFSt5VoLzoRM1JH64xpZXKHtGNcA4AAAAAANQ7SwZzh5x33nk677zzzG4DfsztMTRt8Qb12bRGc1/Pkl0HL1/tuj1Pc1/L0o1DMzV9cZD6dY6t9vRVAAAAAACAE2GZYG727Nl1rr311lsbsBM0J6vzi7W11KXZqxZ4Q7lD7DI0ZuVCDemQptX5xerZoY1JXQIAAAAAAH9kmWDuH//4h8/rXbt2qaysTK1atZIk7d27V2FhYYqJiSGYQ70pKi2XJCXvKqhxffLuAp86AAAAAACA+mKZp7Lm5+d7v6ZPn66zzjpL3377rYqLi1VcXKxvv/1WXbt2VVZWltmtwo/EOEMkSXnRiTWuz4tK9KkDAAAAAACoL5YJ5g6XmZmpxx9/XMnJyd5lycnJ+sc//qHJkyeb2Bn8TVpSpNo5HZqTPlwe+d5DziObstOHKcHpUFpSpEkdAgAAAAAAf2XJYK6wsFBVVVXVlrvdbu3cudOEjuCvAuw2TR6UquUdemj00EzlxnfSvqBQ5cZ30o1DM7W8Qw/dOyiVBz8AAAAAAIB6Z5l7zB2uT58+uummm/TMM8+oa9eukqTc3FyNGTNGffv2Nbk7+JuMlDhlj+imrEUODemQ5l2e4HQoe1CqMlLiTOwOAAAAAAD4K0ueMffss88qNjZW3bt3V3BwsIKDg5WWlqa2bdvqmWeeMbs9+KGMlDgtvaO39/X8UT20YlI/QjkAAAAAANBgLHnGXHR0tN555x19//33+u677yRJnTp10mmnnWZyZ/Bnh1+umpYUyeWrAAAAAACgQVkymDvktNNOI4wDAAAAAACAX7JkMHf99dfXuv7ZZ59tpE4AAAAAAACAhmHJYO6XX37xee1yubRx40bt3btXvXv3PsK7AAAAAAAAgKbDksHcm2++WW2Zx+PRmDFj1KFDBxM6AgAAAAAAAOqXJZ/KWhO73a6JEyfqH//4h9mtoAlyewyt2rxHi9dv06rNe+T2GGa3BAAAAAAAmjlLnjF3JJs3b1ZVVZXZbaCJWbqxUNMWb9DWUpd3WTunQ5MHpSojJc7EzgAAAAAAQHNmyWBu4sSJPq8Nw1BhYaH+7//+TyNHjjSpKzRFSzcWasyLueqzaY1mr1qg5F0FyotO1Jz04RpTWqnsEd0I5wAAAAAAgCksGcx98cUXPq/tdruio6P16KOPHvWJrcAhbo+haYs3qM+mNZr7epbsOnj5atfteZr7WpZuHJqp6YuD1K9zrALsNpO7BQAAAAAAzY0lg7kPP/zQ7BbgB1bnF2trqUuzVy3whnKH2GVozMqFGtIhTavzi9WzQxuTugQAAAAAAM2VJR/+0Lt3b+3du7fa8pKSEvXu3bvxG0KTVFRaLklK3lVQ4/rk3QU+dQAAAAAAAI3JksHcihUrVFlZWW15eXm5/vvf/5rQEZqiGGeIJCkvOrHG9XlRiT51AAAAAAAAjclSl7J+9dVX3j9/88032rFjh/e12+3W0qVLddJJJ5nRGpqgtKRItXM6NCd9uOa+luVzOatHNmWnD1OC06G0pEgTuwQAAAAAAM2VpYK5s846SzabTTabrcZLVkNDQ/X444+b0BmaogC7TZMHpWpMaaVGD83U2JULlby7QHlRicpOH6blHXooe1AqD34AAAAAAACmsFQwl5+fL8MwdMopp2j16tWKjo72rgsKClJMTIwCAgJM7BBNTUZKnLJHdFPWIoeGdEjzLk9wOpQ9KFUZKXEmdgcAAAAAAJozSwVziYkH7/nl8XhM7gT+JCMlTr1OjVLqlGWSpPmjeuj8jtGcKQcAAAAAAExlmWDurbfe0sUXXyyHw6G33nqr1to//vGPjdQV/MXhIVxaUiShHAAAAAAAMJ1lgrnBgwdrx44diomJ0eDBg49YZ7PZ5Ha7G68xAAAAAAAAoAFYJpg7/PJVLmUFAAAAAACAv7Ob3QAAAAAAAADQHFnmjLnZs2fXufbWW29twE4AAAAAAACAhmeZYO4f//hHnepsNhvBHHy4PYZW5xerqLRcMc4QHu4AAAAAAACaBMsEc/n5+Wa3gCZo6cZCTVu8QVtLXd5l7ZwOTR6UqoyUOBM7AwAAAAAAqJ1lgrkjMQxD0sEz5YDDLd1YqDEv5qrPpjWavWqBkncVKC86UXPSh2tMaaWyR3QjnAMAAAAAAJZl2Yc//Otf/1JKSopCQkIUEhKilJQUPfPMM2a3BYtwewxNW7xBfTat0dzXs9R1e55auMrVdXue5r6WpT6b12j64g1yewyzWwUAAAAAAKiRJYO5++67T+PHj9fAgQP16quv6tVXX9XAgQN122236b777jO7PVjA6vxibS11aeyqBbLLN3yzy9CYlQv1c6lLq/OLTeoQAAAAAACgdpa8lDU7O1vz5s3TVVdd5V32xz/+UWeeeaZuueUWPfDAAyZ2BysoKi2XJCXvKqhxffLuAp86AAAAAAAAq7HkGXMul0vdu3evtrxbt26qqqoyoSNYTYwzRJKUF51Y4/q8qESfOgAAAAAAAKuxZDB3zTXXKDs7u9ryuXPn6uqrrzahI1hNWlKk2jkdmpM+XB75PhjEI5uy04cpwelQWlKkSR0CAAAAAADUzpKXskoHH/6wbNkynXvuuZKkzz//XFu2bNG1116riRMneusee+wxs1qEiQLsNk0elKoxpZUaPTRTY1cuVPLuAuVFJSo7fZiWd+ih7EGpCrDzNF8AAAAAAGBNlgzmNm7cqK5du0qSNm/eLEmKiopSVFSUNm7c6K2z2QhdmrOMlDhlj+imrEUODemQ5l2e4HQoe1CqMlLiTOwOAAAAAACgdpYM5j788EOzW0ATkZESp16nRil1yjJJ0vxRPXR+x2jOlAMAAAAAAJZnyXvMAcfi8BAuLSmSUA4AAAAAADQJljxjrry8XI8//rg+/PBDFRUVyePx+Kxft26dSZ0BAAAAAAAA9cOSwdwNN9ygZcuWaejQoUpLS+NecgAAAAAAAPA7lgzmlixZonfeeUe9evUyuxUAAAAAAACgQVjyHnMnnXSSnE6n2W0AAAAAAAAADcaSwdyjjz6qu+++WwUFBWa3AgAAAAAAADQIS17K2r17d5WXl+uUU05RWFiYHA6Hz/ri4mKTOgMAAAAAAADqhyWDuauuukrbtm3TjBkz1LZtWx7+AAAAAAAAAL9jyWBu5cqVWrVqlbp06WJ2KzCZ22NodX6xikrLFeMMUVpSpALsBLUAAAAAAKDps2Qw16lTJx04cMDsNmCypRsLNW3xBm0tdXmXtXM6NHlQqjJS4kzsDAAAAAAA4MRZMph78MEHdfvtt2v69OlKTU2tdo+5iIgIkzpDY1m6sVBjXsxVn01rNHvVAiXvKlBedKLmpA/XmNJKZY/oRjgHAAAAAACaNEsGcxkZGZKkPn36+Cw3DEM2m01ut9uMttBI3B5D0xZvUJ9NazT39SzZZUiSum7P09zXsnTj0ExNXxykfp1juawVAAAAAAA0WZYM5j788MMjrtuwYUOD7vvBBx/UpEmTNH78eM2aNatB94Warc4v1tZSl2avWuAN5Q6xy9CYlQs1pEOaVucXq2eHNiZ1CQAAAAAAcGIsGcxdeOGFPq9LS0v1n//8R88884xyc3N18803N8h+16xZo6efflpnnnlmg2wfdVNUWi5JSt5VUOP65N0FPnUAAAAAAABNkd3sBmrz8ccfa+TIkYqLi9Pf//539e7dW5999lmD7Gvfvn26+uqrNW/ePLVu3bpB9oG6iXGGSJLyohNrXJ8XlehTBwAAAAAA0BRZ7oy5HTt2aP78+frXv/6lkpISDRs2TBUVFVq0aJE6d+7cYPsdN26cLr30UvXt21fTpk2rtbaiokIVFRXe1yUlJZIkl8sll8t1pLc1GYeOwaxjObudU+3CA/Vk+nDNey3L53JWj2yakz5M7cIDdXY75/++51Xe9S6XSy6bUW2b1DS/Gt/1VTXOs5X6pYaautc03Dxb+7ip8b8a//jdbKVeqGGWm0qNlXqhhlm2Qo2VerFiTV2ZnWUc7lh6sFQwN3DgQH388ce69NJLNWvWLGVkZCggIEBPPfVUg+73lVde0bp167RmzZo61c+cOVNTp06ttnzZsmUKCwur7/ZMk5OTY9q++8fb9FxpD40ekqmxqxYqeXeB8qISNafnMH1wSg+Niq/Qe0vflSRVuKVDo/zee8sUHFB9e9Q0v5rD13/wwQeW75caaupa05DzbOXjpsb/avzld7OVeqHGnBp/meXGrLFSL9T8VsMsm1djpV6sWHOszMwyDikrK6tzraWCuXfffVe33nqrxowZo44dOzbKPn/++WeNHz9eOTk5Cgmp26WRkyZN0sSJE72vS0pKlJCQoP79+ysiIqKhWm00LpdLOTk56tevnxwOhyk9XCKp69c7NeNth4acmuZd3i48UI9fdoYGnNHWu6ysskp3rf5AkjRgQH+FBVUfa2qaX83h63v37q2WLar/fFupX2qoqWtNQ86zlY+bGv+r8ZffzVbqhRpmuanUWKkXaphlK9RYqRcr1tSVFbKMQw5dWVkXlgrmPvnkE/3rX/9St27ddPrpp+uaa67RlVde2aD7zM3NVVFRkbp27epd5na79fHHH+uJJ55QRUWFAgJ8I9vg4GAFBwdX25bD4TD9L78+mX08l53VThd2aqvUKcskSfNH9dD5HaMVYLf51DmM314f7Ln6WFPT/Gp81wfWOMtW6pcaaupe03DzbO3jpsb/avzjd7OVeqGGWW4qNVbqhRpm2Qo1VurFijXHyuws41APdWWphz+ce+65mjdvngoLC3XTTTfplVdeUXx8vDwej3JyclRaWlrv++zTp482bNig9evXe7+6d++uq6++WuvXr68WyqFxHR7CpSVFVgvlAAAAAAAAmipLBXOHtGjRQtdff70++eQTbdiwQbfffrsefPBBxcTE6I9//GO97svpdColJcXnq0WLFmrTpo1SUlLqdV8AAAAAAADAIZYM5g6XnJyshx9+WFu3btV//vMfs9sBAAAAAAAA6oWl7jFXm4CAAA0ePFiDBw9u8H2tWLGiwfcBAAAAAACA5s3yZ8wBAAAAAAAA/ohgDgAAAAAAADABwRwAAAAAAABgAoI5AAAAAAAAwAQEcwAAAAAAAIAJCOYAAAAAAAAAEwSa3QCaL7fH0Or8YhWVlivGGaK0pEgF2G1mtwUAAAAAANAoCOZgiqUbCzVt8QZtLXV5l7VzOjR5UKoyUuJM7AwAAAAAAKBxEMyh0S3dWKgxL+aqz6Y1mr1qgZJ3FSgvOlFz0odrTGmlskd0I5wDAAAAAAB+j3vMoVG5PYamLd6gPpvWaO7rWeq6PU8tXOXquj1Pc1/LUp/NazR98Qa5PYbZrQIAAAAAADQogjk0qtX5xdpa6tLYVQtkl2/4ZpehMSsX6udSl1bnF5vUIQAAAAAAQOMgmEOjKiotlyQl7yqocX3y7gKfOgAAAAAAAH9FMIdGFeMMkSTlRSfWuD4vKtGnDgAAAAAAwF8RzKFRpSVFqp3ToTnpw+WRzWedRzZlpw9TgtOhtKRIkzoEAAAAAABoHARzaFQBdpsmD0rV8g49NHpopnLjO2lfUKhy4zvpxqGZWt6hh+4dlKoAu+3oGwMAAAAAAGjCAs1uAM1PRkqcskd0U9Yih4Z0SPMuT3A6lD0oVRkpcSZ2BwAAAAAA0DgI5mCKjJQ49To1SqlTlkmS5o/qofM7RnOmHAAAAAAAaDa4lBWmOTyES0uKJJQDAAAAAADNCsEcAAAAAAAAYAKCOQAAAAAAAMAEBHMAAAAAAACACQjmAAAAAAAAABMQzAEAAAAAAAAmIJgDAAAAAAAATEAwBwAAAAAAAJiAYA4AAAAAAAAwAcEcAAAAAAAAYAKCOQAAAAAAAMAEBHMAAAAAAACACQLNbgD+ye0xtDq/WEWl5YpxhigtKVIBdpvZbQEAAAAAAFgGwRzq3dKNhZq2eIO2lrq8y9o5HZo8KFUZKXEmdgYAAAAAAGAdBHOoV0s3FmrMi7nqs2mNZq9aoORdBcqLTtSc9OEaU1qp7BHdCOcAAAAAAADEPeZQj9weQ9MWb1CfTWs09/Usdd2epxaucnXdnqe5r2Wpz+Y1mr54g9wew+xWAQAAAAAATEcwh3qzOr9YW0tdGrtqgezyDd/sMjRm5UL9XOrS6vxikzoEAAAAAACwDoI51Jui0nJJUvKughrXJ+8u8KkDAAAAAABozgjmUG9inCGSpLzoxBrX50Ul+tQBAAAAAAA0ZwRzqDdpSZFq53RoTvpweWTzWeeRTdnpw5TgdCgtKdKkDgEAAAAAAKyDYA71JsBu0+RBqVreoYdGD81Ubnwn7QsKVW58J904NFPLO/TQvYNSFWC3HX1jAAAAAAAAfi7Q7AbgXzJS4pQ9opuyFjk0pEOad3mC06HsQanKSIkzsTsAAAAAAADrIJhDvctIiVOvU6OUOmWZJGn+qB46v2M0Z8oBAAAAAAAchktZ0SAOD+HSkiIJ5QAAAAAAAH6HYA4AAAAAAAAwAcEcAAAAAAAAYAKCOQAAAAAAAMAEBHMAAAAAAACACQjmAAAAAAAAABMQzAEAAAAAAAAmIJgDAAAAAAAATEAwBwAAAAAAAJiAYA4AAAAAAAAwAcEcAAAAAAAAYAKCOQAAAAAAAMAEBHMAAAAAAACACZp9MDdz5kz16NFDTqdTMTExGjx4sPLy8sxuCwAAAAAAAH6u2QdzH330kcaNG6fPPvtMOTk5crlc6t+/v/bv3292awAAAAAAAPBjgWY3YLalS5f6vJ4/f75iYmKUm5urCy64wKSurM3tMbQ6v1hFpeWKcYYoLSlSAXab2W0BAAAAAAA0Kc0+mPu9X3/9VZIUGRl5xJqKigpVVFR4X5eUlEiSXC6XXC5XwzbYCA4dQ03H8t7XO/Xgkq+1dV+Vd1m78EDdc9kZGnBG28O2UXXYn11y2Ywa9kMNNQ1X47u+qsZ5tlK/1FBT95qGm2drHzc1/lfjH7+brdQLNcxyU6mxUi/UMMtWqLFSL1asqavasozGdiw9EMwdxuPxaMKECerVq5dSUlKOWDdz5kxNnTq12vJly5YpLCysIVtsVDk5OT6vv9xj03N5dvXevFqzVy1U8q4C5UUn6smew3VLqUujkj3q0ubgD1GFWzo0Xu+9t0zBAdW3Tw01DVlz+PoPPvjA8v1SQ01daxpynq183NT4X42//G62Ui/UmFPjL7PcmDVW6oWa32qYZfNqrNSLFWuO1e+zDDOUlZXVuZZg7jDjxo3Txo0b9cknn9RaN2nSJE2cONH7uqSkRAkJCerfv78iIiIaus0G53K5lJOTo379+snhcEg6ePnqI498qN6bV2re69Nk18EAruv2PM17PUujh2ZqmTNdd119kQLsNpVVVumu1R9IkgYM6K+woOqjRg01DVlz+PrevXurZYsQS/dLDTV1rWnIebbycVPjfzX+8rvZSr1Qwyw3lRor9UINs2yFGiv1YsWauqopyzDLoSsr64Jg7n9uvvlmLVmyRB9//LHatWtXa21wcLCCg4OrLXc4HKb/5denw49n7eY92rqvSrNXLfCGcofYZWjsyoUa0iFNX2wtVc8ObeQwbL/bTvVRo4aahqzxXR9Y48+mlfqlhpq61zTcPFv7uKnxvxr/+N1spV6oYZabSo2VeqGGWbZCjZV6sWLNsbJCNnMs+2/2wZxhGLrlllv05ptvasWKFUpKSjK7JUsqKi2XJCXvKqhxffLuAp86AAAAAAAA1M5udgNmGzdunF588UW9/PLLcjqd2rFjh3bs2KEDBw6Y3ZqlxDgPntKcF51Y4/q8qESfOgAAAAAAANSu2Qdz2dnZ+vXXX/WHP/xBcXFx3q8FCxaY3ZqlpCVFqp3ToTnpw+WRzWedRzZlpw9TgtOhtKQjP80WAAAAAAAAv+FSVuP4H8XbnATYbZo8KFVjSis1emimxq5cqOTdBcqLSlR2+jAt79BD2YNSFWC3HX1jAAAAAAAAIJhD3WWkxCl7RDdlLXJoSIc07/IEp0PZg1KVkRJnYncAAAAAAABNC8EcjklGSpx6nRql1CnLJEnzR/XQ+R2jOVMOAAAAAADgGDX7e8zh2B0ewqUlRRLKAQAAAAAAHAeCOQAAAAAAAMAEBHMAAAAAAACACQjmAAAAAAAAABMQzAEAAAAAAAAmIJgDAAAAAAAATEAwBwAAAAAAAJiAYA4AAAAAAAAwAcEcAAAAAAAAYAKCOQAAAAAAAMAEBHMAAAAAAACACQjmAAAAAAAAABMQzAEAAAAAAAAmIJgDAAAAAAAATEAwBwAAAAAAAJiAYA4AAAAAAAAwAcEcAAAAAAAAYAKCOQAAAAAAAMAEBHPw4fYY+jy/WLm7bfo8v1huj2F2SwAAAAAAAH4p0OwGYB1LNxZq2uIN2lrqkhSgF35Yq3ZOhyYPSlVGSpzZ7QEAAAAAAPgVgjlIOhjKjXkxV302rdHsVQuUvKtAedGJmpM+XGNKK5U9ohvhHAAAAAAAQD3iUlbI7TE0bfEG9dm0RnNfz1LX7Xlq4SpX1+15mvtalvpsXqPpizdwWSsAAAAAAEA9IpiDVucXa2upS2NXLZBdvuGbXYbGrFyon0tdWp1fbFKHAAAAAAAA/odgDioqLZckJe8qqHF98u4CnzoAAAAAAACcOII5KMYZIknKi06scX1eVKJPHQAAAAAAAE4cwRyUlhSpdk6H5qQPl0c2n3Ue2ZSdPkwJTofSkiJN6hAAAAAAAMD/EMxBAXabJg9K1fIOPTR6aKZy4ztpX1CocuM76cahmVreoYfuHZSqALvt6BsDAAAAAABAnQSa3QCsISMlTtkjuilrkUNDOqR5lyc4HcoelKqMlDgTuwMAAAAAAPA/BHPwykiJU69To5Q6ZZkk6ZlrztZFp8dxphwAAAAAAEAD4FJW+Dg8hOvRvjWhHAAAAAAAQAMhmAMAAAAAAABMQDAHAAAAAAAAmIBgDgAAAAAAADABwRwAAAAAAABgAoI5AAAAAAAAwAQEcwAAAAAAAIAJCOYAAAAAAAAAExDMAQAAAAAAACYgmAMAAAAAAABMQDAHAAAAAAAAmIBgDgAAAAAAADABwRwAAAAAAABgAoI5AAAAAAAAwAQEcwAAAAAAAIAJCOYAAAAAAAAAExDMAQAAAAAAACYgmAMAAAAAAABMQDAHAAAAAAAAmIBgDgAAAAAAADABwRwAAAAAAABgAoI5AAAAAAAAwAQEc//z5JNPqn379goJCdE555yj1atXm90SAAAAAAAA/BjBnKQFCxZo4sSJuv/++7Vu3Tp16dJFAwYMUFFRkdmtAQAAAAAAwE8Fmt2AFTz22GMaPXq0Ro0aJUl66qmn9H//93969tlndc8995jcXeMyDEPBVRWSJM+BA/LYjGo1nsqq32rKyuSpqj5G1FBjdo3PemaZGn+qacB5tvRxU+N/NX7yu9lKvVDDLDeVGiv1Qg2zbIUaK/ViZo1hVJ+/5sBmNNcj/5/KykqFhYXptdde0+DBg73LR44cqb1792rx4sXV3lNRUaGKigrv65KSEiUkJGj37t2KiIhojLYbzL5fS7XjvF5mtwEAAAAAAJqR2E8+VXhL53G/3+VyKScnR/369ZPD4ajHzo5dSUmJoqKi9Ouvvx41J2r2Z8zt3r1bbrdbbdu29Vnetm1bfffddzW+Z+bMmZo6dWq15cuWLVNYWFiD9NlYbJWV6mh2EwAAAAAAoFn574fLZQQFnfB2cnJy6qGbE1NWVlbn2mYfzB2PSZMmaeLEid7Xh86Y69+/f5M/Y84wDFX27q0PPvhAvXv3liOQEUHT5aqqYpbhN5hn+AtmGf6CWYa/YJZhFR1CQ2Wz2Y77/VY7Y66umv1PXVRUlAICArRz506f5Tt37lRsbGyN7wkODlZwcHC15Q6Hw/S//Ppgi4iQERSk4IgIvzgeNF92l4tZht9gnuEvmGX4C2YZ/oJZhr+xQjZzLPtv9k9lDQoKUrdu3bR8+XLvMo/Ho+XLl6tnz54mdgYAAAAAAAB/1uzPmJOkiRMnauTIkerevbvS0tI0a9Ys7d+/3/uUVgAAAAAAAKC+EcxJGj58uHbt2qX77rtPO3bs0FlnnaWlS5dWeyAEAAAAAAAAUF8I5v7n5ptv1s0332x2GwAAAAAAAGgmmv095gAAAAAAAAAzEMwBAAAAAAAAJiCYAwAAAAAAAExAMAcAAAAAAACYgGAOAAAAAAAAMAHBHAAAAAAAAGACgjkAAAAAAADABARzAAAAAAAAgAkCzW7AHxiGIUkqKSkxuZP64XK5VFZWppKSEjkcDrPbAY4bswx/wjzDXzDL8BfMMvwFswx/YaVZPpQPHcqLakMwVw9KS0slSQkJCSZ3AgAAAAAAACsoLS1Vy5Yta62xGXWJ71Arj8ej7du3y+l0ymazmd3OCSspKVFCQoJ+/vlnRUREmN0OcNyYZfgT5hn+glmGv2CW4S+YZfgLK82yYRgqLS1VfHy87Pba7yLHGXP1wG63q127dma3Ue8iIiJMH2agPjDL8CfMM/wFswx/wSzDXzDL8BdWmeWjnSl3CA9/AAAAAAAAAExAMAcAAAAAAACYgGAO1QQHB+v+++9XcHCw2a0AJ4RZhj9hnuEvmGX4C2YZ/oJZhr9oqrPMwx8AAAAAAAAAE3DGHAAAAAAAAGACgjkAAAAAAADABARzAAAAAAAAgAkI5gAAAAAAAAATEMyhmieffFLt27dXSEiIzjnnHK1evdrsloBazZw5Uz169JDT6VRMTIwGDx6svLw8n5ry8nKNGzdObdq0UXh4uIYMGaKdO3ea1DFQNw8++KBsNpsmTJjgXcYso6nYtm2bRowYoTZt2ig0NFSpqalau3atd71hGLrvvvsUFxen0NBQ9e3bVz/88IOJHQPVud1uZWZmKikpSaGhoerQoYOysrJ0+PPzmGVY0ccff6yBAwcqPj5eNptNixYt8llfl7ktLi7W1VdfrYiICLVq1Uo33HCD9u3b14hHAdQ+yy6XS3fffbdSU1PVokULxcfH69prr9X27dt9tmH1WSaYg48FCxZo4sSJuv/++7Vu3Tp16dJFAwYMUFFRkdmtAUf00Ucfady4cfrss8+Uk5Mjl8ul/v37a//+/d6a2267TW+//bZeffVVffTRR9q+fbv+9Kc/mdg1ULs1a9bo6aef1plnnumznFlGU/DLL7+oV69ecjgcevfdd/XNN9/o0UcfVevWrb01Dz/8sGbPnq2nnnpKn3/+uVq0aKEBAwaovLzcxM4BXw899JCys7P1xBNP6Ntvv9VDDz2khx9+WI8//ri3hlmGFe3fv19dunTRk08+WeP6uszt1Vdfra+//lo5OTlasmSJPv74Y914442NdQiApNpnuaysTOvWrVNmZqbWrVunN954Q3l5efrjH//oU2f5WTaAw6SlpRnjxo3zvna73UZ8fLwxc+ZME7sCjk1RUZEhyfjoo48MwzCMvXv3Gg6Hw3j11Ve9Nd9++60hyVi1apVZbQJHVFpaanTs2NHIyckxLrzwQmP8+PGGYTDLaDruvvtu47zzzjvieo/HY8TGxhqPPPKId9nevXuN4OBg4z//+U9jtAjUyaWXXmpcf/31Psv+9Kc/GVdffbVhGMwymgZJxptvvul9XZe5/eabbwxJxpo1a7w17777rmGz2Yxt27Y1Wu/A4X4/yzVZvXq1IckoKCgwDKNpzDJnzMGrsrJSubm56tu3r3eZ3W5X3759tWrVKhM7A47Nr7/+KkmKjIyUJOXm5srlcvnMdqdOnXTyyScz27CkcePG6dJLL/WZWYlZRtPx1ltvqXv37rriiisUExOjs88+W/PmzfOuz8/P144dO3xmuWXLljrnnHOYZVhKenq6li9fru+//16S9OWXX+qTTz7RxRdfLIlZRtNUl7ldtWqVWrVqpe7du3tr+vbtK7vdrs8//7zRewbq6tdff5XNZlOrVq0kNY1ZDjS7AVjH7t275Xa71bZtW5/lbdu21XfffWdSV8Cx8Xg8mjBhgnr16qWUlBRJ0o4dOxQUFOT95XxI27ZttWPHDhO6BI7slVde0bp167RmzZpq65hlNBU//vijsrOzNXHiRP3tb3/TmjVrdOuttyooKEgjR470zmtNnzmYZVjJPffco5KSEnXq1EkBAQFyu92aPn26rr76akliltEk1WVud+zYoZiYGJ/1gYGBioyMZLZhWeXl5br77rt11VVXKSIiQlLTmGWCOQB+Zdy4cdq4caM++eQTs1sBjtnPP/+s8ePHKycnRyEhIWa3Axw3j8ej7t27a8aMGZKks88+Wxs3btRTTz2lkSNHmtwdUHcLFy7USy+9pJdffllnnHGG1q9frwkTJig+Pp5ZBgALcblcGjZsmAzDUHZ2ttntHBMuZYVXVFSUAgICqj3db+fOnYqNjTWpK6Dubr75Zi1ZskQffvih2rVr510eGxuryspK7d2716ee2YbV5ObmqqioSF27dlVgYKACAwP10Ucfafbs2QoMDFTbtm2ZZTQJcXFx6ty5s8+y008/XVu2bJEk77zymQNWd+edd+qee+7RlVdeqdTUVF1zzTW67bbbNHPmTEnMMpqmusxtbGxstQcAVlVVqbi4mNmG5RwK5QoKCpSTk+M9W05qGrNMMAevoKAgdevWTcuXL/cu83g8Wr58uXr27GliZ0DtDMPQzTffrDfffFMffPCBkpKSfNZ369ZNDofDZ7bz8vK0ZcsWZhuW0qdPH23YsEHr16/3fnXv3l1XX32198/MMpqCXr16KS8vz2fZ999/r8TERElSUlKSYmNjfWa5pKREn3/+ObMMSykrK5Pd7vtPpoCAAHk8HknMMpqmusxtz549tXfvXuXm5nprPvjgA3k8Hp1zzjmN3jNwJIdCuR9++EHvv/++2rRp47O+Kcwyl7LCx8SJEzVy5Eh1795daWlpmjVrlvbv369Ro0aZ3RpwROPGjdPLL7+sxYsXy+l0eu8V0LJlS4WGhqply5a64YYbNHHiREVGRioiIkK33HKLevbsqXPPPdfk7oHfOJ1O770RD2nRooXatGnjXc4soym47bbblJ6erhkzZmjYsGFavXq15s6dq7lz50qSbDabJkyYoGnTpqljx45KSkpSZmam4uPjNXjwYHObBw4zcOBATZ8+XSeffLLOOOMMffHFF3rsscd0/fXXS2KWYV379u3Tpk2bvK/z8/O1fv16RUZG6uSTTz7q3J5++unKyMjQ6NGj9dRTT8nlcunmm2/WlVdeqfj4eJOOCs1RbbMcFxenoUOHat26dVqyZIncbrf334KRkZEKCgpqGrNs9mNhYT2PP/64cfLJJxtBQUFGWlqa8dlnn5ndElArSTV+Pffcc96aAwcOGGPHjjVat25thIWFGZdffrlRWFhoXtNAHV144YXG+PHjva+ZZTQVb7/9tpGSkmIEBwcbnTp1MubOneuz3uPxGJmZmUbbtm2N4OBgo0+fPkZeXp5J3QI1KykpMcaPH2+cfPLJRkhIiHHKKacY9957r1FRUeGtYZZhRR9++GGNn49HjhxpGEbd5nbPnj3GVVddZYSHhxsRERHGqFGjjNLSUhOOBs1ZbbOcn59/xH8Lfvjhh95tWH2WbYZhGI0ZBAIAAAAAAADgHnMAAAAAAACAKQjmAAAAAAAAABMQzAEAAAAAAAAmIJgDAAAAAAAATEAwBwAAAAAAAJiAYA4AAAAAAAAwAcEcAAAAAAAAYAKCOQAAANTZddddp8GDB5vdBgAAgF8INLsBAAAAWIPNZqt1/f33369//vOfMgyjkToCAADwbwRzAAAAkCQVFhZ6/7xgwQLdd999ysvL8y4LDw9XeHi4Ga0BAAD4JS5lBQAAgCQpNjbW+9WyZUvZbDafZeHh4dUuZf3DH/6gW265RRMmTFDr1q3Vtm1bzZs3T/v379eoUaPkdDp16qmn6t133/XZ18aNG3XxxRcrPDxcbdu21TXXXKPdu3c38hEDAACYi2AOAAAAJ+T5559XVFSUVq9erVtuuUVjxozRFVdcofT0dK1bt079+/fXNddco7KyMknS3r171bt3b5199tlau3atli5dqp07d2rYsGEmHwkAAEDjIpgDAADACenSpYsmT56sjh07atKkSQoJCVFUVJRGjx6tjh076r777tOePXv01VdfSZKeeOIJnX322ZoxY4Y6deqks88+W88++6w+/PBDff/99yYfDQAAQOPhHnMAAAA4IWeeeab3zwEBAWrTpo1SU1O9y9q2bStJKioqkiR9+eWX+vDDD2u8X93mzZt12mmnNXDHAAAA1kAwBwAAgBPicDh8XttsNp9lh5726vF4JEn79u3TwIED9dBDD1XbVlxcXAN2CgAAYC0EcwAAAGhUXbt21euvv6727dsrMJCPowAAoPniHnMAAABoVOPGjVNxcbGuuuoqrVmzRps3b9Z7772nUaNGye12m90eAABAoyGYAwAAQKOKj4/Xp59+Krfbrf79+ys1NVUTJkxQq1atZLfz8RQAADQfNsMwDLObAAAAAAAAAJob/pckAAAAAAAAYAKCOQAAAAAAAMAEBHMAAAAAAACACQjmAAAAAAAAABMQzAEAAAAAAAAmIJgDAAAAAAAATEAwBwAAAAAAAJiAYA4AAAAAAAAwAcEcAAAAAAAAYAKCOQAAAAAAAMAEBHMAAAAAAACACQjmAAAAAAAAABMQzAEAAAAAAAAmIJgDAAAAAAAATEAwBwAAAAAAAJiAYA4AAAAAAAAwAcEcAAAAAAAAYAKCOQAAAAAAAMAEBHMAAAAAAACACQjmAAAAAAAAABMQzAEAAAAAAAAmIJgDAAAAAAAATEAwBwAAAAAAAJiAYA4AAAAAAAAwAcEcAAAAAAAAYAKCOQAAAAAAAMAEBHMAAAAAAACACQjmAAAAAAAAABMEmt2AP/B4PNq+fbucTqdsNpvZ7QAAAAAAAMAkhmGotLRU8fHxsttrPyeOYK4ebN++XQkJCWa3AQAAAAAAAIv4+eef1a5du1prCObqgdPplHTwGx4REWFyNyfO5XJp2bJl6t+/vxwOh9ntAMeNWYY/YZ7hL5hl+AtmGf6CWYa/sNIsl5SUKCEhwZsX1YZgrh4cunw1IiLCb4K5sLAwRUREmD7MwIlgluFPmGf4C2YZ/oJZhr9gluEvrDjLdbndGQ9/AAAAAAAAAExAMAcAAAAAAACYgGAOAAAAAAAAMAH3mAMAAAAAwM8YhqGqqiq53e5a61wulwIDA1VeXn7UWsDKGnOWAwICFBgYWKd7yB0NwRwAAAAAAH6ksrJShYWFKisrO2qtYRiKjY3Vzz//XC8hA2CWxp7lsLAwxcXFKSgo6IS2QzAHAAAAAICf8Hg8ys/PV0BAgOLj4xUUFFRrSOHxeLRv3z6Fh4fLbuduV2i6GmuWDcNQZWWldu3apfz8fHXs2PGE9kcwBwAAAACAn6isrJTH41FCQoLCwsKOWu/xeFRZWamQkBCCOTRpjTnLoaGhcjgcKigo8O7zePFTBwAAAACAnyFkAxpWff2M8ZMKAAAAAAAAmIBLWQEAAAAAQDVuj6HV+cUqKi1XjDNEaUmRCrDzgAigPnHGHAAAAAAA8LF0Y6F6PZSjq+Z9pvGvrNdV8z5Tr4dytHRjodmtmWbFihWy2Wzau3ev2a1o/vz5atWqVZPe15QpU3TWWWfV+3Z/vw+bzSabzaZZs2bV+X0//fST930N3SPBHAAAAAAA8Fq6sVBjXsxV/r5PVRh8u7aEDFVh8O3K3/epxryY22Dh3HXXXecNQ4KCgnTqqafqgQceUFVV1Qlvd/DgwSfcX3p6ugoLC9WyZcsT3taJGj58uL7//nu/21dDOOOMM1RYWKgbb7yxzu9JSEhQYWGhbr/99gbs7CAuZQUAAAAAAJIOXr465e0NKgtYoyJHlmQzJEmVtjwVObIUo0xNfTtI/TrHNshlrRkZGXruuedUUVGhd955R+PGjZPD4dCkSZOOeVtut1s2W/31GBQUpNjY2Hrb3okIDQ1VaGhog+/H5XI12r4aSmBg4DH/vQUEBCg2Nlbh4eEN1NVvOGMOAAAAAABIklbnF2vHry7tDVzgDeW8bIb2BixU4a8urc4vbpD9BwcHKzY2VomJiRozZoz69u2rt956S5L02GOPKTU1VS1atFBCQoLGjh2rffv2ed976JLLt956S507d1ZwcLCuv/56Pf/881q8eLH3bLwVK1ZIkn7++WcNGzZMrVq1UmRkpAYNGqSffvrpiL39/lLWQ/tbsmSJkpOTFRYWpqFDh6qsrEzPP/+82rdvr9atW+vWW2+V2+32buff//63unfvLqfTqdjYWP35z39WUVGRz77eeustdezYUSEhIbrooov0/PPP17jvQw5dFvrvf/9b7du3V8uWLXXllVeqtLTUW7N06VKdd955atWqldq0aaPLLrtMmzdv9q4/dPnmggULdOGFFyokJEQvvfRStX1t3rxZgwYNUtu2bRUeHq4ePXro/fffP+rf7YMPPqi2bdvK6XTqhhtuUHl5ebWaZ555RqeffrpCQkLUqVMnzZkz54jbe+GFF9SmTRtVVFT4LL/88st1zTXX1NqLzWbTM888o8svv1xhYWHq2LGjd84aG8EcAAAAAACQJBWVHgxLXLaCGte77AU+dQ0tNDRUlZWVkiS73a7Zs2fr66+/1vPPP68PPvhAd911l099WVmZHnroIT3zzDP6+uuvNXv2bA0bNkwZGRkqLCxUYWGh0tPT5XK5NGDAADmdTv33v//Vp59+qvDwcGVkZHj3VxdlZWWaPXu2XnnlFS1dulQrVqzQ5ZdfrnfeeUfvvPOO/v3vf+vpp5/Wa6+95n2Py+VSVlaWvvzySy1atEg//fSTrrvuOu/6/Px8DR06VIMHD9aXX36pm266Sffee+9Re9m8ebMWLVqkJUuWaMmSJfroo4/04IMPetfv379fEydO1Nq1a7V8+XLZ7XZdfvnl8ng8Ptu55557NH78eH377bcaMGBAtf3s27dPl1xyiZYvX64vvvhCGRkZGjhwoLZs2XLE3hYuXKgpU6ZoxowZWrt2reLi4qqFbi+99JLuu+8+TZ8+Xd9++61mzJihzMxMPf/88zVu84orrpDb7fYJ1Hbt2qV33nlH119//VG/X1OnTtWwYcP01Vdf6ZJLLtHVV1+t4uKGCZxrw6WsAAAAAABAkhTjDJEkOYxEVdryqq13eBJ96hqKYRhavny53nvvPd1yyy2SpAkTJnjXt2/fXtOmTdNf//pXn4DH5XJpzpw56tKli3dZaGioKioqfC5nfPHFF+XxePTMM894L3d97rnn1KpVK61YsUL9+/evU58ul0vZ2dnq0KGDJGno0KH697//rZ07dyo8PFydO3fWRRddpA8//FDDhw+XJJ/Q6JRTTtHs2bPVo0cP7du3T+Hh4Xr66aeVnJysRx55RJKUnJysjRs3avr06bX24vF4NH/+fDmdTknSNddco+XLl3vfN2TIEJ/6Z599VtHR0frmm2+UkpLiXT5hwgT96U9/OuJ+unTp4vP9zcrK0ptvvqm33npLN998c43vmTVrlm644QbdcMMNkqRp06bp/fff9zlr7v7779ejjz7q3XdSUpK++eYbPf300xo5cmS1bYaGhurPf/6znnvuOV1xxRWSDgaAJ598sv7whz8csf9DrrvuOl111VWSpBkzZmj27NlavXq1MjIyjvre+sQZcwAAAAAAQJKUlhSp2JYOtaoaLhm/uz+bYVMr9zDFtXQoLSmyQfa/ZMkShYeHKyQkRBdffLGGDx+uKVOmSJLef/999enTRyeddJKcTqeuueYa7dmzR2VlZd73BwUF6cwzzzzqfr788ktt2rRJTqdT4eHhCg8PV2RkpMrLy30u7zyasLAwbygnSW3btlX79u197k3Wtm1bn0tVc3NzNXDgQJ188slyOp268MILJcl7xlleXp569Ojhs5+0tLSj9tK+fXtvKCdJcXFxPvv94YcfdNVVV+mUU05RRESE2rdv77PfQ7p3717rfvbt26c77rhDp59+ulq1aqXw8HB9++23tZ4x9+233+qcc87xWdazZ0/vn/fv36/Nmzfrhhtu8P59hIeHa9q0abX+fYwePVrLli3Ttm3bJEkvv/yyRo4cWad7Cx4+Jy1atFBERES1S4obA2fMAQAAAAAASVKA3aYpA1M15sVKxShTewMWymUvkMOTqFbuYQpz99D9A1Mb5MEPknTRRRcpOztbQUFBio+PV2Dgwdjip59+0mWXXaYxY8Zo+vTpioyM1CeffKIbbrhBlZWVCgsLk3TwLKq6hDL79u1Tt27d9NJLL1VbFx0dXed+HQ6Hz2ubzVbjskOXi+7fv18DBgzQgAED9NJLLyk6OlpbtmzRgAEDjukS2rr2cvhlqgMHDlRiYqLmzZun+Ph4eTwepaSkVNtvixYtat3PHXfcoZycHP3973/XqaeeqtDQUA0dOvSE+j90r8B58+ZVC/ACAgKO+L6zzz5bXbp00QsvvKC+ffvqu+++q/Hsupoc7fvVWAjmAAAAAADwY4ZhyDhwoMZ1Ho9HngMH5AkMlOwHL6rrf0pLPXlFqqYuDdTO0t/O1IqLCFTmgE7qf0pLeQ47S+1IbHUMyQ7XokULnXrqqdWW5+bmyuPx6NFHH5X9f30uXLiwTtsMCgryefiCJHXt2lULFixQTEyMIiIijqnHE/Hdd99pz549evDBB5WQkCBJWrt2rU9NcnKy3nnnHZ9la9asOaH97tmzR3l5eZo3b57OP/98SdInn3xyXNv69NNPdd111+nyyy+XdDBUq+2hGZJ0+umn6/PPP9e1117rXfbZZ595/9y2bVvFx8frxx9/1NVXX31M/fzlL3/RrFmztHXrVv3hD3/wfl+bCoI5AAAAAAD8mHHggPK6dqu1ZufvXidJ+pds+jrqFBUHOxVZUaozdv+ogBcMVb/zXM2S1+XK9r8z2U7UqaeeKpfLpccff1wDBw7Up59+qqeeeqpO723fvr3ee+895eXlqU2bNmrZsqWuvvpqPfLIIxo0aJAeeOABtWvXTgUFBXrjjTd01113qV27dvXS9++dfPLJCgoK0uOPP66//vWv2rhxo7KysnxqbrrpJj322GO6++67dcMNN2j9+vWaP3++JB1z0HlI69at1aZNG82dO1dxcXHasmWL7rnnnuPaVseOHfXGG29o4MCBstlsyszMPOqZZuPHj9d1112n7t27q1evXnrppZf09ddf65RTTvHWTJ06VbfeeqtatmypjIwMVVRUaO3atfrll180ceLEI277z3/+s+644w4988wzys7OPq5jMhP3mAMAAAAAANUEyNCZuzfrD9vW68zdmxUgw7ReunTposcee0wPPfSQUlJS9NJLL2nmzJl1eu/o0aOVnJys7t27Kzo6Wp9++qnCwsL08ccf6+STT9af/vQnnX766brhhhtUXl7eoGfQRUdHa/78+Xr11VfVuXNnPfjgg/r73//uU5OUlKTXXntNb7zxhs4880xlZ2d7n8oaHBx8XPu12+165ZVXlJubq5SUFN12223eh0scq8cee0ytW7dWenq6Bg4cqAEDBqhr1661vmf48OHKzMzUXXfdpW7duqmgoEBjxozxqfnLX/6iZ555Rs8995xSU1N14YUXav78+UpKSqp12y1bttSQIUMUHh6uSy+99LiOyUw2wzDM+8nyEyUlJWrZsqV+/fXXRj0FtqG4XC698847uuSSS6pdcw00Jcwy/AnzDH/BLMNfMMuwqvLycuXn5yspKUkhIQefnHq0S1lLSksV4XR6LxGtL8dzKStqNn36dD311FP6+eefzW7Fkvr06aPOnTsrKytLERER3lmeMmWKFi1apPXr1x/Xdmt7f00/a4ccS07EpawAAAAAAPgxm8125EtKPR7Zq6pkDwur92AOx2/OnDnq0aOH2rRpo08//VSPPPKIbr75ZrPbspxffvlFK1as0IoVK/TEE0/UWLNhwwaFh4fr4Ycf1tixY+u03S1btqhz586qrKxU586d67PlagjmAAAAAAAALOSHH37QtGnTVFxcrJNPPlm33367Jk2aZHZblnP22Wfrl19+0UMPPaTk5GSVlJT4rL/11ls1YsQIScf2tN34+HjvWXLHe/lwXRHMAQAAAAAAWMg//vEP/eMf/zC7Dcs7/GmwNT2AIjIyUpGRkce83cDAwBqfDtwQOE8VAAAAAAAAMAHBHAAAAAAAfobnPAINq75+xgjmAAAAAADwE4eeElxWVmZyJ4B/O/QzdqJP5uYecwAAAAAA+ImAgAC1atVKRUVFkqSwsDDZbLYj1ns8HlVWVqq8vJynsqJJa6xZNgxDZWVlKioqUqtWrRQQEHBC2yOYAwAAAADAj8TGxkqSN5yrjWEYOnDggEJDQ2sN8ACra+xZbtWqlfdn7UQQzAEAAAAA4EdsNpvi4uIUExMjl8tVa63L5dLHH3+sCy644IQvyQPM1Jiz7HA4TvhMuUMI5gAAAAAA8EMBAQFHDQ8CAgJUVVWlkJAQgjk0aU11lrmAHAAAAAAAADABwRwAAAAAAABgAoI5AAAAAAAAwAQEcwAAAAAAAIAJCOYAAAAAAAAAExDMAQAAAAAAACYgmAMAAAAAAABMQDAHAAAAAAAAmKDJBXNPPvmk2rdvr5CQEJ1zzjlavXp1rfWvvvqqOnXqpJCQEKWmpuqdd945Yu1f//pX2Ww2zZo1q567BgAAAAAAAHw1qWBuwYIFmjhxou6//36tW7dOXbp00YABA1RUVFRj/cqVK3XVVVfphhtu0BdffKHBgwdr8ODB2rhxY7XaN998U5999pni4+Mb+jAAAAAAAACAphXMPfbYYxo9erRGjRqlzp0766mnnlJYWJieffbZGuv/+c9/KiMjQ3feeadOP/10ZWVlqWvXrnriiSd86rZt26ZbbrlFL730khwOR2McCgAAAAAAAJq5QLMbqKvKykrl5uZq0qRJ3mV2u119+/bVqlWranzPqlWrNHHiRJ9lAwYM0KJFi7yvPR6PrrnmGt15550644wz6tRLRUWFKioqvK9LSkokSS6XSy6Xq66HZFmHjsEfjgXNG7MMf8I8w18wy/AXzDL8BbMMf2GlWT6WHppMMLd792653W61bdvWZ3nbtm313Xff1fieHTt21Fi/Y8cO7+uHHnpIgYGBuvXWW+vcy8yZMzV16tRqy5ctW6awsLA6b8fqcnJyzG4BqBfMMvwJ8wx/wSzDXzDL8BfMMvyFFWa5rKyszrVNJphrCLm5ufrnP/+pdevWyWaz1fl9kyZN8jkTr6SkRAkJCerfv78iIiIaotVG5XK5lJOTo379+nFpL5o0Zhn+hHmGv2CW4S+YZfgLZhn+wkqzfOjKyrpoMsFcVFSUAgICtHPnTp/lO3fuVGxsbI3viY2NrbX+v//9r4qKinTyySd717vdbt1+++2aNWuWfvrppxq3GxwcrODg4GrLHQ6H6X/59cnfjgfNF7MMf8I8w18wy/AXzDL8BbMMf2GFWT6W/TeZhz8EBQWpW7duWr58uXeZx+PR8uXL1bNnzxrf07NnT5966eApjYfqr7nmGn311Vdav3699ys+Pl533nmn3nvvvYY7GAAAAAAAADR7TeaMOUmaOHGiRo4cqe7duystLU2zZs3S/v37NWrUKEnStddeq5NOOkkzZ86UJI0fP14XXnihHn30UV166aV65ZVXtHbtWs2dO1eS1KZNG7Vp08ZnHw6HQ7GxsUpOTm7cgwMAAAAAAECz0qSCueHDh2vXrl267777tGPHDp111llaunSp9wEPW7Zskd3+20mA6enpevnllzV58mT97W9/U8eOHbVo0SKlpKSYdQgAAAAAAACApCYWzEnSzTffrJtvvrnGdStWrKi27IorrtAVV1xR5+0f6b5yAAAAAAAAQH1qMveYAwAAAAAAAPwJwRwAAAAAAABgAoI5AAAAAAAAwAQEcwAAAAAAAIAJCOYAAAAAAAAAExDMAQAAAAAAACYgmAMAAAAAAABMQDAHAAAAAAAAmIBgDgAAAAAAADABwRwAAAAAAABgAoI5AAAAAAAAwAQEcwAAAAAAAIAJCOYAAAAAAAAAExDMAQAAAAAAACYgmAMAAAAAAABMQDAHAAAAAAAAmIBgDgAAAAAAADABwRwAAAAAAABgAoI5AAAAAAAAwAQEcwAAAAAAAIAJCOYAAAAAAAAAExDMAQAAAAAAACYgmAMAAAAAAABMQDAHAAAAAAAAmIBgDgAAAAAAADABwRwAAAAAAABgAoI5AAAAAAAAwAQEcwAAAAAAAIAJCOYAAAAAAAAAExDMAQAAAAAAACYgmAMAAAAAAABMQDAHAAAAAAAAmIBgDgAAAAAAADABwRwAAAAAAABgAoI5AAAAAAAAwAQEcwAAAAAAAIAJCOYAAAAAAAAAExDMAQAAAAAAACYgmAMAAAAAAABMQDAHAAAAAAAAmIBgDgAAAAAAADABwRwAAAAAAABgAoI5AAAAAAAAwAQEcwAAAAAAAIAJCOYAAAAAAAAAExDMAQAAAAAAACYgmAMAAAAAAABMQDAHAAAAAAAAmIBgDgAAAAAAADABwRwAAAAAAABgAoI5AAAAAAAAwAQEcwAAAAAAAIAJCOYAAAAAAAAAEzS5YO7JJ59U+/btFRISonPOOUerV6+utf7VV19Vp06dFBISotTUVL3zzjvedS6XS3fffbdSU1PVokULxcfH69prr9X27dsb+jAAAAAAAADQzDWpYG7BggWaOHGi7r//fq1bt05dunTRgAEDVFRUVGP9ypUrddVVV+mGG27QF198ocGDB2vw4MHauHGjJKmsrEzr1q1TZmam1q1bpzfeeEN5eXn64x//2JiHBQAAAAAAgGaoSQVzjz32mEaPHq1Ro0apc+fOeuqppxQWFqZnn322xvp//vOfysjI0J133qnTTz9dWVlZ6tq1q5544glJUsuWLZWTk6Nhw4YpOTlZ5557rp544gnl5uZqy5YtjXloAAAAAAAAaGYCzW6griorK5Wbm6tJkyZ5l9ntdvXt21erVq2q8T2rVq3SxIkTfZYNGDBAixYtOuJ+fv31V9lsNrVq1eqINRUVFaqoqPC+LikpkXTw0liXy1WHo7G2Q8fgD8eC5o1Zhj9hnuEvmGX4C2YZ/oJZhr+w0iwfSw9NJpjbvXu33G632rZt67O8bdu2+u6772p8z44dO2qs37FjR4315eXluvvuu3XVVVcpIiLiiL3MnDlTU6dOrbZ82bJlCgsLO9qhNBk5OTlmtwDUC2YZ/oR5hr9gluEvmGX4C2YZ/sIKs1xWVlbn2iYTzDU0l8ulYcOGyTAMZWdn11o7adIknzPxSkpKlJCQoP79+9ca6DUVLpdLOTk56tevnxwOh9ntAMeNWYY/YZ7hL5hl+AtmGf6CWYa/sNIsH7qysi6aTDAXFRWlgIAA7dy502f5zp07FRsbW+N7YmNj61R/KJQrKCjQBx98cNRwLTg4WMHBwdWWOxwO0//y65O/HQ+aL2YZ/oR5hr9gluEvmGX4C2YZ/sIKs3ws+28yD38ICgpSt27dtHz5cu8yj8ej5cuXq2fPnjW+p2fPnj710sFTGg+vPxTK/fDDD3r//ffVpk2bhjkAAAAAAAAA4DBN5ow5SZo4caJGjhyp7t27Ky0tTbNmzdL+/fs1atQoSdK1116rk046STNnzpQkjR8/XhdeeKEeffRRXXrppXrllVe0du1azZ07V9LBUG7o0KFat26dlixZIrfb7b3/XGRkpIKCgsw5UAAAAAAAAPi9JhXMDR8+XLt27dJ9992nHTt26KyzztLSpUu9D3jYsmWL7P/f3r1HeVXX++N/DjCAyC2uIyaKhmJ5h0DU79EDhGZHj0maLFJUftrygDfsHLVEs44impfEW14qW2WaXUwtPXKUNBOBoFSUsOONjjiQ0jAogiPz+f3Rck4TSDM6sGc+PB5rzXI+7/3an3ltfW3W8HR/9m73fxcBHnDAAbnjjjtywQUX5Mtf/nIGDx6ce+65J3vssUeS5NVXX829996bJNlnn30a/azZs2fnkEMO2SLHBQAAAMDWp00Fc0kyZcqUTJkyZaPbfvWrX22wdswxx+SYY47ZaP1OO+2UUqnUku0BAAAAQJO0mXvMAQAAAEA5EcwBAAAAQAEEcwAAAABQAMEcAAAAABRAMAcAAAAABRDMAQAAAEABBHMAAAAAUADBHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFEAwBwAAAAAFEMwBAAAAQAEEcwAAAABQAMEcAAAAABRAMAcAAAAABRDMAQAAAEABBHMAAAAAUADBHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFOADBXM1NTW59dZbc/7552flypVJkoULF+bVV19t0eYAAAAAoFx1aO4OTz/9dMaMGZMePXrk5ZdfzimnnJJevXrlpz/9aZYuXZrvfe97m6NPAAAAACgrzb5iburUqTnxxBPzxz/+MZ07d25YP/zww/PYY4+1aHMAAAAAUK6aHczNnz8/X/ziFzdY33777VNdXd0iTQEAAABAuWt2MNepU6fU1tZusP7888+nb9++LdIUAAAAAJS7ZgdzRx55ZL72ta+lrq4uSVJRUZGlS5fm3HPPzbhx41q8QQAAAAAoR80O5q688sq8+eab6devX95+++0cfPDB+djHPpZu3brlkksu2Rw9AgAAAEDZafZTWXv06JFZs2bl8ccfz9NPP50333wz++23X8aMGbM5+gMAAACAstTsYO49Bx10UA466KCW7AUAAAAAthpNCuauvfbaJr/hGWec8YGbAQAAAICtRZOCuauvvrrR6z//+c9Zs2ZNevbsmSSpqalJly5d0q9fP8EcAAAAADRBkx7+8NJLLzV8XXLJJdlnn32yePHirFy5MitXrszixYuz33775etf//rm7hcAAAAAykKzn8o6bdq0zJw5M7vttlvD2m677Zarr746F1xwQYs2BwAAAADlqtnB3GuvvZZ33313g/X169dn+fLlLdIUAAAAAJS7Zgdzo0ePzhe/+MUsXLiwYW3BggU57bTTMmbMmBZtDgAAAADKVbODuW9/+9upqqrKsGHD0qlTp3Tq1CnDhw9P//79c+utt26OHgEAAACg7DTpqax/q2/fvvnlL3+Z559/Pn/4wx+SJEOGDMmuu+7a4s0BAAAAQLlqdjD3nl133VUYBwAAAAAfULODuZNPPnmT27/97W9/4GYAAAAAYGvR7GDuL3/5S6PXdXV1WbRoUWpqajJq1KgWawwAAAAAylmzg7mf/exnG6zV19fntNNOyy677NIiTQEAAABAuWv2U1k3+ibt2mXq1Km5+uqrW+LtAAAAAKDstUgwlyQvvPBC3n333ZZ6OwAAAAAoa83+KOvUqVMbvS6VSnnttdfyi1/8IhMnTmyxxgAAAACgnDU7mPvd737X6HW7du3St2/fXHnllf/wia0AAAAAwF81O5ibPXv25ugDAAAAALYqzb7H3KhRo1JTU7PBem1tbUaNGtUSPQEAAABA2Wt2MPerX/0q77zzzgbra9euza9//esWaQoAAAAAyl2TP8r69NNPN3z/3HPPpbq6uuH1+vXr8+CDD2b77bdv2e424vrrr88VV1yR6urq7L333pk5c2aGDx/+vvV33313pk2blpdffjmDBw/OjBkzcvjhhzdsL5VKueiii3LLLbekpqYmBx54YG688cYMHjx4sx9La7S+vpS5L63Mgtcr0vullRn5sX5p365ig5p5L63MitVr069b5wwf1EuNmlZXY5bVlFvNlpjn1njcasqvptz+bG5Nvagxy22lpjX1osYst4aa1tRLa6wpdxWlUqnUlMJ27dqlouKv/3I2tss222yTmTNnbtYHQNx111054YQTctNNN2XEiBG55pprcvfdd2fJkiXp16/fBvVPPPFE/umf/inTp0/Pv/zLv+SOO+7IjBkzsnDhwuyxxx5JkhkzZmT69Om5/fbbM2jQoEybNi3PPPNMnnvuuXTu3LlJfdXW1qZHjx5ZtWpVunfv3qLHvCU9uOi1fPW+Z1K9qq5hrapHZb56xJ45bI/t1KhpMzWtqRc1atpKTWvqRY2atlLTmnpRo6at1LSmXtSoaQ01ramX1ljTHHV1dfnlL3+Zww8/PJWVlc3evyU1JydqcjD3yiuvpFQqZeedd868efPSt2/fhm0dO3ZMv3790r59+w/X+T8wYsSIfPKTn8x1112XJKmvr88OO+yQ008/Peedd94G9Z///Ofz1ltv5f77729Y23///bPPPvvkpptuSqlUyoABA3LOOefkS1/6UpJk1apV6d+/f7773e/muOOOa1Jf5RDMPbjotZz2/QVZ035+ajrclbqKV1JZ2jE93/18uqz/ZG78wtAkUaOm1dec+k875+bHXmwVvahR01ZqnDdq1Dhv1Khx3qhR45xobTXNDefKPpgr2jvvvJMuXbrkxz/+cY466qiG9YkTJ6ampiY///nPN9hn4MCBmTp1as4666yGtYsuuij33HNPnnrqqbz44ovZZZdd8rvf/S777LNPQ83BBx+cffbZJ9/85jeb1FtbD+bW15dy4IxZeenN32RFh69nm/q/2ViqSN+687JjlxFJRUVeeevJ/LnysqSipEZN66t557x0Ke2bNe1+V3wvatS0lRrnjRo1za9x3qhR0/wa540aNY1rnBMb1LzdvpSkIv3qpmXnrgfm8XM/1ayPtZZ1MHfvvffm05/+dCorK3PvvfdusvbII49sXrdNtGzZsmy//fZ54oknMnLkyIb1//iP/8ijjz6auXPnbrBPx44dc/vtt2f8+PENazfccEMuvvjiLF++PE888UQOPPDALFu2LNtt939J7LHHHpuKiorcddddG+1l3bp1WbduXcPr2tra7LDDDnn99dfbZDA396WV+cK3f5vXOp2T9vXPZ8HduxXdEgAAALAVGXrMkrzdoZSO64dku3e+ke+fPCwjBvVq8v51dXWZNWtWPvWpT7WKYK5Pnz5NCuaa9PCHo446KtXV1enXr1+jq9X+XkVFRdavX9+sZtui6dOn5+KLL95g/aGHHkqXLl0K6OjDWfB6RZL2qat4JZv3w8gAAAAA76+u3StJkod+PTdvLG7+hzxnzZrV0i0125o1a5pc26Rgrr6+fqPfb0l9+vRJ+/bts3z58kbry5cvT1VV1Ub3qaqq2mT9e/9cvnx5oyvmli9f3uijrX/v/PPPz9SpUxtev3fF3NixY9vkFXO9X1qZ7/3xt6ks7Zi32y/J0GOWNNpeuX63VL1zSZKkutOXU9fu+Q3eQ42a1lCzbd1h6fXu/9cqelGjpq3UOG/UqGl+jfNGjZrm1zhv1KhpzDmxYc1fP8qaVNbvmCQZ+/9GtOkr5pqq3Wbso0V17NgxQ4cOzcMPP9ywVl9fn4cffrjRR1v/1siRIxvVJ39NTt+rHzRoUKqqqhrV1NbWZu7cue/7nknSqVOndO/evdFXklRWVrbJr5Ef65eqHpXp+e7nk1Tk7Q6l//tqn3SuODYf6bVtPtK7azrn83m7fdSoaZU17dp9MnWVHVpFL2rUtJUa540aNc4bNWqcN2rUOCdaQ00qkpQq0nP9sdmux1+ziubmG60pm2mqJt1j7tprr23yG55xxhlNrm2uu+66KxMnTsy3vvWtDB8+PNdcc01+9KMf5Q9/+EP69++fE044Idtvv32mT5+eJHniiSdy8MEH57LLLstnPvOZ3Hnnnbn00kuzcOHC7LHHHkmSGTNm5LLLLsvtt9+eQYMGZdq0aXn66afz3HPPpXPnzk3qq60//CH5u6eytv9R6tq9ksr6HdNz/bEbf2qKGjWttKbRk43aQL9q1LSGGueNGjXOGzVqnDdq1DgnWluNp7L+jUGDBjXpB1dUVOTFF19sWpcf0HXXXZcrrrgi1dXV2WeffXLttddmxIgRSZJDDjkkO+20U7773e821N9999254IIL8vLLL2fw4MG5/PLLc/jhhzdsL5VKueiii3LzzTenpqYmBx10UG644YbsuuuuTe6pHIK55K/h3FfveybVq+oa1rbrUZmLjtiz4YRQo6Yt1LSmXtSoaSs1rakXNWraSk1r6kWNmrZS05p6UaOmNdS0pl5aY01zlHUwx6aVSzCXJOvrS5nzPyvy0K/nZuz/G5GRH+u3weOJ19eXMu+llVmxem36deuc4YN6qVHT6mrMsppyq9kS89waj1tN+dWU25/NrakXNWa5rdS0pl7UmOXWUNOaemmNNU21VQZz7+1aUfHB/qWVi3IK5pLWNczwYZhlyol5plyYZcqFWaZcmGXKRWua5ebkRB/o4Q+33XZb9thjj3Tu3DmdO3fOHnvskVtvvfUDNQsAAAAAW6MOzd3hwgsvzFVXXZXTTz+94cmlc+bMydlnn52lS5fma1/7Wos3CQAAAADlptnB3I033phbbrkl48ePb1g78sgjs9dee+X0008XzAEAAABAEzT7o6x1dXUZNmzYButDhw7Nu+++2yJNAQAAAEC5a3Ywd/zxx+fGG2/cYP3mm2/OhAkTWqQpAAAAACh3zf4oa/LXhz889NBD2X///ZMkc+fOzdKlS3PCCSdk6tSpDXVXXXVVy3QJAAAAAGWm2cHcokWLst9++yVJXnjhhSRJnz590qdPnyxatKihrqKiooVaBAAAAIDy0+xgbvbs2ZujDwAAAADYqjT7HnMAAAAAwIfX7Cvm1q5dm5kzZ2b27NlZsWJF6uvrG21fuHBhizUHAAAAAOWq2cHcpEmT8tBDD+Vzn/tchg8f7l5yAAAAAPABNDuYu//++/PLX/4yBx544OboBwAAAAC2Cs2+x9z222+fbt26bY5eAAAAAGCr0exg7sorr8y5556bV155ZXP0AwAAAABbhWZ/lHXYsGFZu3Ztdt5553Tp0iWVlZWNtq9cubLFmgMAAACActXsYG78+PF59dVXc+mll6Z///4e/gAAAAAAH0Czg7knnngic+bMyd577705+gEAAACArUKz7zE3ZMiQvP3225ujFwAAAADYajQ7mLvssstyzjnn5Fe/+lXeeOON1NbWNvoCAAAAAP6xZn+U9bDDDkuSjB49utF6qVRKRUVF1q9f3zKdAQAAAEAZa3YwN3v27Pfd9swzz3yoZgAAAABga9HsYO7ggw9u9Hr16tX54Q9/mFtvvTULFizIlClTWqw5AAAAAChXzb7H3Hsee+yxTJw4Mdttt12+8Y1vZNSoUXnyySdbsjcAAAAAKFvNumKuuro63/3ud3PbbbeltrY2xx57bNatW5d77rknH//4xzdXjwAAAABQdpp8xdwRRxyR3XbbLU8//XSuueaaLFu2LDNnztycvQEAAABA2WryFXMPPPBAzjjjjJx22mkZPHjw5uwJAAAAAMpek6+Ye/zxx7N69eoMHTo0I0aMyHXXXZfXX399c/YGAAAAAGWrycHc/vvvn1tuuSWvvfZavvjFL+bOO+/MgAEDUl9fn1mzZmX16tWbs08AAAAAKCvNfirrtttum5NPPjmPP/54nnnmmZxzzjm57LLL0q9fvxx55JGbo0cAAAAAKDvNDub+1m677ZbLL788//u//5sf/vCHLdUTAAAAAJS9DxXMvad9+/Y56qijcu+997bE2wEAAABA2WuRYA4AAAAAaB7BHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFEAwBwAAAAAFEMwBAAAAQAEEcwAAAABQAMEcAAAAABRAMAcAAAAABRDMAQAAAEABBHMAAAAAUADBHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFEAwBwAAAAAFEMwBAAAAQAEEcwAAAABQgDYTzK1cuTITJkxI9+7d07Nnz0yaNClvvvnmJvdZu3ZtJk+enN69e6dr164ZN25cli9f3rD9qaeeyvjx47PDDjtkm222ye67755vfvObm/tQAAAAAKDtBHMTJkzIs88+m1mzZuX+++/PY489llNPPXWT+5x99tm57777cvfdd+fRRx/NsmXLcvTRRzdsX7BgQfr165fvf//7efbZZ/OVr3wl559/fq677rrNfTgAAAAAbOU6FN1AUyxevDgPPvhg5s+fn2HDhiVJZs6cmcMPPzzf+MY3MmDAgA32WbVqVW677bbccccdGTVqVJLkO9/5Tnbfffc8+eST2X///XPyySc32mfnnXfOnDlz8tOf/jRTpkzZ/AcGAAAAwFarTQRzc+bMSc+ePRtCuSQZM2ZM2rVrl7lz5+azn/3sBvssWLAgdXV1GTNmTMPakCFDMnDgwMyZMyf777//Rn/WqlWr0qtXr032s27duqxbt67hdW1tbZKkrq4udXV1zTq21ui9YyiHY2HrZpYpJ+aZcmGWKRdmmXJhlikXrWmWm9NDmwjmqqur069fv0ZrHTp0SK9evVJdXf2++3Ts2DE9e/ZstN6/f//33eeJJ57IXXfdlV/84heb7Gf69Om5+OKLN1h/6KGH0qVLl03u25bMmjWr6BagRZhlyol5plyYZcqFWaZcmGXKRWuY5TVr1jS5ttBg7rzzzsuMGTM2WbN48eIt0suiRYvyr//6r7nooosyduzYTdaef/75mTp1asPr2tra7LDDDhk7dmy6d+++uVvd7Orq6jJr1qx86lOfSmVlZdHtwAdmlikn5plyYZYpF2aZcmGWKRetaZbf+2RlUxQazJ1zzjk58cQTN1mz8847p6qqKitWrGi0/u6772blypWpqqra6H5VVVV55513UlNT0+iqueXLl2+wz3PPPZfRo0fn1FNPzQUXXPAP++7UqVM6deq0wXplZWXh//FbUrkdD1svs0w5Mc+UC7NMuTDLlAuzTLloDbPcnJ9faDDXt2/f9O3b9x/WjRw5MjU1NVmwYEGGDh2aJHnkkUdSX1+fESNGbHSfoUOHprKyMg8//HDGjRuXJFmyZEmWLl2akSNHNtQ9++yzGTVqVCZOnJhLLrmkBY4KAAAAAP6xdkU30BS77757DjvssJxyyimZN29efvOb32TKlCk57rjjGp7I+uqrr2bIkCGZN29ekqRHjx6ZNGlSpk6dmtmzZ2fBggU56aSTMnLkyIYHPyxatCj//M//nLFjx2bq1Kmprq5OdXV1/vznPxd2rAAAAABsHdrEwx+S5Ac/+EGmTJmS0aNHp127dhk3blyuvfbahu11dXVZsmRJoxvsXX311Q2169aty6GHHpobbrihYfuPf/zj/PnPf873v//9fP/7329Y33HHHfPyyy9vkeMCAAAAYOvUZoK5Xr165Y477njf7TvttFNKpVKjtc6dO+f666/P9ddfv9F9vvrVr+arX/1qS7YJAAAAAE3SJj7KCgAAAADlRjAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFEAwBwAAAAAFEMwBAAAAQAEEcwAAAABQAMEcAAAAABRAMAcAAAAABRDMAQAAAEABBHMAAAAAUADBHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFEAwBwAAAAAFEMwBAAAAQAEEcwAAAABQAMEcAAAAABRAMAcAAAAABRDMAQAAAEABBHMAAAAAUADBHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFEAwBwAAAAAFEMwBAAAAQAEEcwAAAABQAMEcAAAAABRAMAcAAAAABRDMAQAAAEABBHMAAAAAUADBHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFEAwBwAAAAAFEMwBAAAAQAEEcwAAAABQAMEcAAAAABRAMAcAAAAABRDMAQAAAEABBHMAAAAAUADBHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFKDNBHMrV67MhAkT0r179/Ts2TOTJk3Km2++ucl91q5dm8mTJ6d3797p2rVrxo0bl+XLl2+09o033shHP/rRVFRUpKamZjMcAQAAAAD8nzYTzE2YMCHPPvtsZs2alfvvvz+PPfZYTj311E3uc/bZZ+e+++7L3XffnUcffTTLli3L0UcfvdHaSZMmZa+99tocrQMAAADABtpEMLd48eI8+OCDufXWWzNixIgcdNBBmTlzZu68884sW7Zso/usWrUqt912W6666qqMGjUqQ4cOzXe+85088cQTefLJJxvV3njjjampqcmXvvSlLXE4AAAAAJAORTfQFHPmzEnPnj0zbNiwhrUxY8akXbt2mTt3bj772c9usM+CBQtSV1eXMWPGNKwNGTIkAwcOzJw5c7L//vsnSZ577rl87Wtfy9y5c/Piiy82qZ9169Zl3bp1Da9ra2uTJHV1damrq/tAx9iavHcM5XAsbN3MMuXEPFMuzDLlwixTLswy5aI1zXJzemgTwVx1dXX69evXaK1Dhw7p1atXqqur33efjh07pmfPno3W+/fv37DPunXrMn78+FxxxRUZOHBgk4O56dOn5+KLL95g/aGHHkqXLl2a9B5twaxZs4puAVqEWaacmGfKhVmmXJhlyoVZply0hlles2ZNk2sLDebOO++8zJgxY5M1ixcv3mw///zzz8/uu++eL3zhC83eb+rUqQ2va2trs8MOO2Ts2LHp3r17S7e5xdXV1WXWrFn51Kc+lcrKyqLbgQ/MLFNOzDPlwixTLswy5cIsUy5a0yy/98nKpig0mDvnnHNy4oknbrJm5513TlVVVVasWNFo/d13383KlStTVVW10f2qqqryzjvvpKamptFVc8uXL2/Y55FHHskzzzyTH//4x0mSUqmUJOnTp0++8pWvbPSquCTp1KlTOnXqtMF6ZWVl4f/xW1K5HQ9bL7NMOTHPlAuzTLkwy5QLs0y5aA2z3JyfX2gw17dv3/Tt2/cf1o0cOTI1NTVZsGBBhg4dmuSvoVp9fX1GjBix0X2GDh2aysrKPPzwwxk3blySZMmSJVm6dGlGjhyZJPnJT36St99+u2Gf+fPn5+STT86vf/3r7LLLLh/28AAAAADgfbWJe8ztvvvuOeyww3LKKafkpptuSl1dXaZMmZLjjjsuAwYMSJK8+uqrGT16dL73ve9l+PDh6dGjRyZNmpSpU6emV69e6d69e04//fSMHDmy4cEPfx++vf766w0/7+/vTQcAAAAALalNBHNJ8oMf/CBTpkzJ6NGj065du4wbNy7XXnttw/a6urosWbKk0Q32rr766obadevW5dBDD80NN9xQRPsAAAAA0EibCeZ69eqVO+64432377TTTg33iHtP586dc/311+f6669v0s845JBDNngPAAAAANgc2hXdAAAAAABsjQRzAAAAAFAAwRwAAAAAFEAwBwAAAAAFEMwBAAAAQAEEcwAAAABQAMEcAAAAABRAMAcAAAAABRDMAQAAAEABBHMAAAAAUADBHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFEAwBwAAAAAFEMwBAAAAQAEEcwAAAABQAMEcAAAAABRAMAcAAAAABRDMAQAAAEABBHMAAAAAUADBHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFEAwBwAAAAAFEMwBAAAAQAEEcwAAAABQAMEcAAAAABRAMAcAAAAABRDMAQAAAEABBHMAAAAAUADBHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFEAwBwAAAAAF6FB0A+WgVColSWprawvupGXU1dVlzZo1qa2tTWVlZdHtwAdmlikn5plyYZYpF2aZcmGWKRetaZbfy4fey4s2RTDXAlavXp0k2WGHHQruBAAAAIDWYPXq1enRo8cmaypKTYnv2KT6+vosW7Ys3bp1S0VFRdHtfGi1tbXZYYcd8qc//Sndu3cvuh34wMwy5cQ8Uy7MMuXCLFMuzDLlojXNcqlUyurVqzNgwIC0a7fpu8i5Yq4FtGvXLh/96EeLbqPFde/evfBhhpZglikn5plyYZYpF2aZcmGWKRetZZb/0ZVy7/HwBwAAAAAogGAOAAAAAAogmGMDnTp1ykUXXZROnToV3Qp8KGaZcmKeKRdmmXJhlikXZply0VZn2cMfAAAAAKAArpgDAAAAgAII5gAAAACgAII5AAAAACiAYA4AAAAACiCYYwPXX399dtppp3Tu3DkjRozIvHnzim4JNmn69On55Cc/mW7duqVfv3456qijsmTJkkY1a9euzeTJk9O7d+907do148aNy/LlywvqGJrmsssuS0VFRc4666yGNbNMW/Hqq6/mC1/4Qnr37p1tttkme+65Z3772982bC+VSrnwwguz3XbbZZtttsmYMWPyxz/+scCOYUPr16/PtGnTMmjQoGyzzTbZZZdd8vWvfz1/+/w8s0xr9Nhjj+WII47IgAEDUlFRkXvuuafR9qbM7cqVKzNhwoR07949PXv2zKRJk/Lmm29uwaOATc9yXV1dzj333Oy5557ZdtttM2DAgJxwwglZtmxZo/do7bMsmKORu+66K1OnTs1FF12UhQsXZu+9986hhx6aFStWFN0avK9HH300kydPzpNPPplZs2alrq4uY8eOzVtvvdVQc/bZZ+e+++7L3XffnUcffTTLli3L0UcfXWDXsGnz58/Pt771rey1116N1s0ybcFf/vKXHHjggamsrMwDDzyQ5557LldeeWU+8pGPNNRcfvnlufbaa3PTTTdl7ty52XbbbXPooYdm7dq1BXYOjc2YMSM33nhjrrvuuixevDgzZszI5ZdfnpkzZzbUmGVao7feeit77713rr/++o1ub8rcTpgwIc8++2xmzZqV+++/P4899lhOPfXULXUIkGTTs7xmzZosXLgw06ZNy8KFC/PTn/40S5YsyZFHHtmortXPcgn+xvDhw0uTJ09ueL1+/frSgAEDStOnTy+wK2ieFStWlJKUHn300VKpVCrV1NSUKisrS3fffXdDzeLFi0tJSnPmzCmqTXhfq1evLg0ePLg0a9as0sEHH1w688wzS6WSWabtOPfcc0sHHXTQ+26vr68vVVVVla644oqGtZqamlKnTp1KP/zhD7dEi9Akn/nMZ0onn3xyo7Wjjz66NGHChFKpZJZpG5KUfvaznzW8bsrcPvfcc6Ukpfnz5zfUPPDAA6WKiorSq6++usV6h7/197O8MfPmzSslKb3yyiulUqltzLIr5mjwzjvvZMGCBRkzZkzDWrt27TJmzJjMmTOnwM6geVatWpUk6dWrV5JkwYIFqaurazTbQ4YMycCBA802rdLkyZPzmc98ptHMJmaZtuPee+/NsGHDcswxx6Rfv37Zd999c8sttzRsf+mll1JdXd1olnv06JERI0aYZVqVAw44IA8//HCef/75JMlTTz2Vxx9/PJ/+9KeTmGXapqbM7Zw5c9KzZ88MGzasoWbMmDFp165d5s6du8V7hqZatWpVKioq0rNnzyRtY5Y7FN0Arcfrr7+e9evXp3///o3W+/fvnz/84Q8FdQXNU19fn7POOisHHnhg9thjjyRJdXV1Onbs2PCH83v69++f6urqArqE93fnnXdm4cKFmT9//gbbzDJtxYsvvpgbb7wxU6dOzZe//OXMnz8/Z5xxRjp27JiJEyc2zOvGfucwy7Qm5513XmprazNkyJC0b98+69evzyWXXJIJEyYkiVmmTWrK3FZXV6dfv36Ntnfo0CG9evUy27Raa9euzbnnnpvx48ene/fuSdrGLAvmgLIyefLkLFq0KI8//njRrUCz/elPf8qZZ56ZWbNmpXPnzkW3Ax9YfX19hg0blksvvTRJsu+++2bRokW56aabMnHixIK7g6b70Y9+lB/84Ae544478olPfCK///3vc9ZZZ2XAgAFmGaAVqaury7HHHptSqZQbb7yx6HaaxUdZadCnT5+0b99+g6f7LV++PFVVVQV1BU03ZcqU3H///Zk9e3Y++tGPNqxXVVXlnXfeSU1NTaN6s01rs2DBgqxYsSL77bdfOnTokA4dOuTRRx/Ntddemw4dOqR///5mmTZhu+22y8c//vFGa7vvvnuWLl2aJA3z6ncOWrt///d/z3nnnZfjjjsue+65Z44//vicffbZmT59ehKzTNvUlLmtqqra4AGA7777blauXGm2aXXeC+VeeeWVzJo1q+FquaRtzLJgjgYdO3bM0KFD8/DDDzes1dfX5+GHH87IkSML7Aw2rVQqZcqUKfnZz36WRx55JIMGDWq0fejQoamsrGw020uWLMnSpUvNNq3K6NGj88wzz+T3v/99w9ewYcMyYcKEhu/NMm3BgQcemCVLljRae/7557PjjjsmSQYNGpSqqqpGs1xbW5u5c+eaZVqVNWvWpF27xn9lat++ferr65OYZdqmpsztyJEjU1NTkwULFjTUPPLII6mvr8+IESO2eM/wft4L5f74xz/mv//7v9O7d+9G29vCLPsoK41MnTo1EydOzLBhwzJ8+PBcc801eeutt3LSSScV3Rq8r8mTJ+eOO+7Iz3/+83Tr1q3hXgE9evTINttskx49emTSpEmZOnVqevXqle7du+f000/PyJEjs//++xfcPfyfbt26Ndwb8T3bbrttevfu3bBulmkLzj777BxwwAG59NJLc+yxx2bevHm5+eabc/PNNydJKioqctZZZ+U///M/M3jw4AwaNCjTpk3LgAEDctRRRxXbPPyNI444IpdcckkGDhyYT3ziE/nd736Xq666KieffHISs0zr9eabb+Z//ud/Gl6/9NJL+f3vf59evXpl4MCB/3Bud9999xx22GE55ZRTctNNN6Wuri5TpkzJcccdlwEDBhR0VGyNNjXL2223XT73uc9l4cKFuf/++7N+/fqGvwv26tUrHTt2bBuzXPRjYWl9Zs6cWRo4cGCpY8eOpeHDh5eefPLJoluCTUqy0a/vfOc7DTVvv/126d/+7d9KH/nIR0pdunQpffazny299tprxTUNTXTwwQeXzjzzzIbXZpm24r777ivtsccepU6dOpWGDBlSuvnmmxttr6+vL02bNq3Uv3//UqdOnUqjR48uLVmypKBuYeNqa2tLZ555ZmngwIGlzp07l3beeefSV77yldK6desaaswyrdHs2bM3+vvxxIkTS6VS0+b2jTfeKI0fP77UtWvXUvfu3UsnnXRSafXq1QUcDVuzTc3ySy+99L5/F5w9e3bDe7T2Wa4olUqlLRkEAgAAAADuMQcAAAAAhRDMAQAAAEABBHMAAAAAUADBHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAE124okn5qijjiq6DQCAstCh6AYAAGgdKioqNrn9oosuyje/+c2USqUt1BEAQHkTzAEAkCR57bXXGr6/6667cuGFF2bJkiUNa127dk3Xrl2LaA0AoCz5KCsAAEmSqqqqhq8ePXqkoqKi0VrXrl03+CjrIYccktNPPz1nnXVWPvKRj6R///655ZZb8tZbb+Wkk05Kt27d8rGPfSwPPPBAo5+1aNGifPrTn07Xrl3Tv3//HH/88Xn99de38BEDABRLMAcAwIdy++23p0+fPpk3b15OP/30nHbaaTnmmGNywAEHZOHChRk7dmyOP/74rFmzJklSU1OTUaNGZd99981vf/vbPPjgg1m+fHmOPfbYgo8EAGDLEswBAPCh7L333rngggsyePDgnH/++encuXP69OmTU045JYMHD86FF16YN954I08//XSS5Lrrrsu+++6bSy+9NEOGDMm+++6bb3/725k9e3aef/75go8GAGDLcY85AAA+lL322qvh+/bt26d3797Zc889G9b69++fJFmxYkWS5Kmnnsrs2bM3er+6F154Ibvuuutm7hgAoHUQzAEA8KFUVlY2el1RUdFo7b2nvdbX1ydJ3nzzzRxxxBGZMWPGBu+13XbbbcZOAQBaF8EcAABb1H777Zef/OQn2WmnndKhg19HAYCtl3vMAQCwRU2ePDkrV67M+PHjM3/+/Lzwwgv5r//6r5x00klZv3590e0BAGwxgjkAALaoAQMG5De/+U3Wr1+fsWPHZs8998xZZ52Vnj17pl07v54CAFuPilKpVCq6CQAAAADY2vhfkgAAAABQAMEcAAAAABRAMAcAAAAABRDMAQAAAEABBHMAAAAAUADBHAAAAAAUQDAHAAAAAAUQzAEAAABAAQRzAAAAAFAAwRwAAAAAFEAwBwAAAAAFEMwBAAAAQAH+f4JptvbBEaukAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig,axs = plt.subplots(2, figsize=(15, 10))\n", "markerline1, stemlines1, baseline1 = axs[0].stem(np.real(y[1:,]), label='Parte real de y[n]') \n", "markerline1.set_markerfacecolor('red')\n", "markerline2, stemlines2, baseline2 = axs[1].stem(np.imag(y[1:,]), label='Parte imaginaria de y[n]') \n", "markerline2.set_markerfacecolor('green')\n", "for ax in axs:\n", " ax.set(xlabel='Time', ylabel='Amplitude')\n", " ax.grid()\n", " ax.legend(loc='upper right')" ] }, { "cell_type": "markdown", "id": "60ddb484-cf6f-45ef-b527-e8d746daa3e8", "metadata": {}, "source": [ " Claramente esta salida (que es la correcta!) para el sistema no lineal considerado no tiene nada que ver con la calculada usando la respuesta al impulso del sistema real!!!" ] }, { "cell_type": "code", "execution_count": null, "id": "3b67e624-a6d4-469f-b799-44abdaeb09d2", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "signal_proc_env", "language": "python", "name": "signal_proc_env" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }